

1
2 **Identification of Propionate-Degrading Microbial Populations in Methanogenic Processes**
3 **for Waste Treatment: *Methanosaeta* and *Methanoculleus***
4
5

6 Si Chen^a, Yongfeng Wang^a, Huicai Cheng^c, Terry C. Hazen^a, Chunguang He^d, Qiang He^{a,b,*†}
7
8

9 ^a Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville,
10 Tennessee, USA
11

12 ^b Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville,
13 Tennessee, USA
14

15 ^c Biology Institute, Hebei Academy of Sciences, Shijiazhuang, Hebei, China
16

17 ^d State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation
18 Restoration, Northeast Normal University, Changchun, Jilin, China
19

20 † AEESP Member
21

22 *Corresponding author: Dr. Qiang He
23 E-mail addresses: qianghe@utk.edu
24 Tel.: +1 865 974 6067
25 Fax: +1 865 974 2669
26

27 Mailing address:
28

29 Dept. of Civil and Environmental Engineering
30 The University of Tennessee
31 418 John D. Tickle Engineering Building
32 851 Neyland Drive
33 Knoxville, TN 37996-2313
34 USA
35

36 **Keywords:** Methanogenesis, *Methanoculleus*, *Methanosaeta*, Propionate, Syntrophy, Anaerobic
37
38 digestion
39

40
41 **Running Title:** Methanogens in Propionate Biodegradation
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 1 Abstract

2 2 Methanogenic processes have great potential in the sustainable treatment of organic wastes with
3 3 the production of methane as a renewable source of energy. However, the broader application of
4 4 methanogenic processes has been hindered by process instability frequently encountered during
5 5 fluctuations in operational conditions. The accumulation of organic acids, particularly
6 6 propionate, is considered to be an important cause of process instability. Therefore, in order to
7 7 gain an understanding of microbial responses during process instability, it is imperative to
8 8 identify microbial populations involved in the utilization of elevated levels of propionate. In this
9 9 study, microbial community analysis showed that bacterial populations from the orders of
10 10 *Syntrophobacterales* and *Clostridiales* were the primary syntrophic partners in anaerobic
11 11 conversion of propionate. Archaeal populations associated with *Methanosaeta* and
12 12 *Methanoculleus* dominated the propionate-degrading communities enriched in methanogenic
13 13 batch bioreactors. The involvement of *Methanosaeta* and *Methanoculleus* in anaerobic
14 14 conversion of propionate was further supported by the close correspondence between elevated
15 15 propionate and increased population abundance of *Methanosaeta* and *Methanoculleus* in
16 16 continuous anaerobic digesters treating animal waste. Subsequent testing using additional
17 17 methanogenic batch bioreactors revealed that the dominance of *Methanosaeta* and
18 18 *Methanoculleus* populations was linked to the anaerobic degradation of elevated levels of
19 19 propionate and butyrate, but not the conversion of formate, acetate, or methanol into methane.
20 20 The identification of microbial populations specifically linked to anaerobic conversion of
21 21 elevated propionate in this study provided much needed insight for the understanding of
22 22 microbial processes relevant to process stability in methanogenic waste treatment.

23

1
2 **Keywords:** Methanogenesis, *Methanoculleus*, *Methanosaeta*, Propionate, Syntrophy, Anaerobic
3 digestion
4
5
6
7
8
9

10 4 **Introduction**
11

12 5 Methanogenic processes are vital in global elemental cycling, particularly given the relevance of
13 methane as a potent greenhouse gas to climate change (Bae et al., 2018; Falkowski et al., 2008).
14
15 6 As the end product of methanogenic conversion of organic matter, methane can also serve as a
16
17 7 renewable source of energy. Therefore, methanogenic processes have been applied in the
18
19 8 anaerobic treatment of diverse categories of organic waste with the simultaneous production of
20
21 9 renewable energy, represented by anaerobic digestion as the most implemented technology
22
23 10 (Hagos et al., 2017; Nallathambi Gunaseelan, 1997; Nasir et al., 2012). The broader adoption of
24
25 11 methanogenic treatment processes, however, has been hindered by the difficulties in maintaining
26
27 12 operational stability, especially during episodes of process perturbation (Chen et al., 2012; Yuan
28
29 13 and Zhu, 2018).
30
31
32
33
34

35 15 Considerable efforts have been made to understand the underlying mechanisms of process
36 instability in methanogenic treatment processes. Previous studies have shown that process
37
38 16 perturbations, such as changes in operational conditions and organic loading rates, would result
39
40 17 in process imbalance frequently characterized by pH fluctuations due to accumulation of organic
41
42 18 acids (Ahring et al., 1995; Leitão et al., 2006; Li et al., 2014). Among the organic acids produced
43
44 19 as intermediates during the anaerobic decomposition of organic materials, propionic acid, present
45
46 20 as propionate at neutral pH conditions, is found to be the most persistent and inhibitory, likely
47
48 21 due to its slower biodegradation kinetics and less favorable thermodynamics in anaerobic
49
50 22 biotransformation into methane (Boe et al., 2010; Nielsen et al., 2007).
51
52
53
54
55
56
57
58
59
60

1 1 The anaerobic degradation of propionate under methanogenic conditions requires syntrophic
2 2 interactions between methanogens and fermentative bacteria partners (Schink, 1997).
3 3 Fermentative bacteria are known to convert propionate into acetate and H₂ in two distinct
4 4 pathways (Müller et al., 2010). The *Smithella* pathway, observed in *Smithella* spp., converts
5 5 propionate to acetate and H₂ by dismutation followed by β-oxidation in the following reactions:

8 8 The overall *Smithella* pathway has the following stoichiometry:

10 10 The classic propionate oxidation pathway is found in all other known anaerobic propionate
11 11 degraders as per the following stoichiometry:

13 13 In order for both pathways to be thermodynamically favorable, the products of propionate
14 14 conversion, i.e. H₂ and acetate, need to be maintained at low levels, which can be achieved via
15 15 the utilization of H₂ and acetate by methanogens in methanogenic processes. The overall
16 16 stoichiometry of both anaerobic propionate oxidation pathways is identical following the
17 17 consumption of H₂ and acetate by hydrogenotrophic and acetoclastic methanogenesis,
18 18 respectively:

20 20 Despite the large diversity of bacterial taxa known to participate in syntrophic propionate
21 21 conversion, the bacterial partners specifically involved in this process have been consistently
22 22 identified as populations from two bacterial orders — *Syntrophobacterales* and *Clostridiales*
23 23 (Müller et al., 2010; Sieber et al., 2012). In contrast to the demonstrated specificity of these

bacterial populations to anaerobic propionate conversion, much less is known about the methanogens that specifically partner with bacteria to convert the products of anaerobic propionate oxidation into methane. Given the thermodynamic necessity of maintaining adequately low H₂ partial pressure to enable anaerobic propionate oxidation, hydrogenotrophic methanogens, with the ability to consume H₂, have been the focus of previous studies (Li et al., 2018; Narihiro et al., 2015; Shigematsu et al., 2006; Stams et al., 1992; Wu et al., 1992). Diverse populations of methanogens have been found in methanogenic treatment processes. However, unlike the bacterial counterparts where lineages specifically linked to anaerobic propionate conversion have been identified, methanogens specifically involved in the degradation of propionate remain obscure.

With the objective of this study to identify methanogen populations specifically involved in the anaerobic conversion of propionate, methanogenic batch bioreactors were developed with elevated propionate as the sole substrate to enrich propionate-degrading microbial populations, which were profiled by 16S rRNA gene amplicon sequencing and clone library analysis. Subsequently, the roles of methanogen populations identified to specifically involved in anaerobic propionate conversion were further evaluated in continuous anaerobic digesters with episodes of elevated propionate. Findings from this study provide much needed insight into the understanding of microbial responses to elevated propionate during process perturbations in methanogenic waste treatment.

Materials and Methods

Development of methanogenic batch bioreactors

1 To enrich for methanogenic microbial populations specifically involved in the anaerobic
2 conversion of propionate and other volatile organic acids (VFAs), methanogenic batch
3 bioreactors were developed using one of the following compounds as the sole substrate: formate,
4 acetate, propionate, butyrate, or methanol. All methanogenic batch bioreactors were set up using
5 previously described protocols (Chen and He, 2015) and the same defined anaerobic medium
6 prepared according to a previously described recipe (He and Sanford, 2002). The medium was
7 autoclaved, cooled, and subsequently aliquoted into 160-mL serum bottles flushed with pure N₂
8 and sealed with butyl rubber stoppers and aluminum caps.

9 The first-generation methanogenic batch bioreactors were seeded with a 10 % (v/v) inoculum
10 using the digestate from previously established continuous anaerobic digesters treating animal
11 waste (Zhang et al., 2011) into 100-mL fresh anaerobic medium. Subsequent to inoculation, each
12 batch bioreactor was fed with one of the following as the sole substrate: formate (50 mM),
13 acetate (20 mM), propionate (20 mM), butyrate (20 mM), or methanol (30 mM). Additional
14 feedings of the substrate at the same concentration were replenished when the substrate was
15 depleted in the batch bioreactors. At the completion of 10 feedings of substrates, second-
16 generation methanogenic batch bioreactors were established by transferring a 10% (v/v)
17 inoculum from first-generation batch bioreactors into fresh medium followed by repeated
18 feedings of the same substrate. At the conclusion of 10 feedings, the second-generation
19 methanogenic batch bioreactors were sampled for microbial community analysis. All batch
20 bioreactors were set up in triplicates and maintained in a shaking incubator at 80 rpm and 35 °C
21 with periodic monitoring of methane production and substrate concentration.

22

23 ***Configuration and operation of continuous anaerobic digesters treating animal waste***

1 To identify methanogenic microbial populations specifically involved in anaerobic conversion of
2 propionate, population dynamics of methanogens were monitored during two episodes of
3 elevated propionate in previously established triplicate continuous anaerobic digesters
4 established (Chen et al., 2012). Dairy wastewater was used as the regular feedstock for these
5 continuous anaerobic digesters at an organic loading rate of 1.0 g volatile solids (VS)/L/day. The
6 operating temperature was controlled at 35 °C with the hydraulic retention time maintained at 20
7 days throughout the study period. All continuous digesters exhibited stable operation prior to the
8 two episodes of elevated propionate.

9 The first episode of elevated propionate was introduced into the anaerobic digesters with the
10 direct addition of propionate without disrupting the regular feeding of dairy wastewater. To
11 maintain propionate at elevated levels, a sodium propionate stock solution (5 M) was used to
12 feed the triplicate continuous anaerobic digesters at a loading rate of 6.0 mmol/L/day for two
13 days. Propionate levels in the anaerobic digesters were closely monitored and the propionate
14 loading was increased to 9.0 mmol/L/day in order for the peak propionate level to reach 12.0
15 mM (Fig. 1). To replicate the microbial responses to elevated propionate, a 2nd episode of
16 elevated propionate was introduced 10 days after the completion of the 1st episode of elevated
17 propionate. Propionate was added at a loading rate of 9.0 mmol/L/day for 8 days, resulting in
18 elevated propionate levels similar to those in the 1st episode of elevated propionate (Fig. 1). The
19 loading rate of dairy wastewater remained unchanged at 1.0 g VS/L/day during the study period
20 with or without the addition of extraneous propionate.

21 Process parameters of the continuous anaerobic digestions, including CH₄ production and
22 VFA concentrations, were monitored as described previously (Chen et al., 2012). Biomass
23 samples were taken from the continuous anaerobic digesters at five time points A-E as illustrated

1 in Fig. 1. Samples were pelleted by centrifugation at 14,000× g for 15 min and preserved at
2 –80 °C for further processing.
3
4

5 ***High-throughput sequencing of 16S rRNA gene amplicon library***

6 The microbial communities in the methanogenic batch bioreactors with propionate as the sole
7 substrate was analyzed by 16S rRNA gene amplicon library sequencing. First, whole community
8 DNA was extracted from the biomass samples and purified as previously described (Zhang et al.,
9 2009). DNA extracts from triplicate batch bioreactors were pooled for PCR amplification of the
10 V4 region of the 16S rRNA gene with 515-F and 806-R Golay barcoded primers (Caporaso et
11 al., 2012). PCR amplification and cleaning, amplicon quantification, and paired-end sequencing
12 were completed with previously established protocols (Chen et al., 2017). All sequence reads
13 were analyzed by the Mothur (v.1.35) platform following previously established procedures
14 (Kozich et al., 2013).

15 After sequence quality processing including barcode and primer trimming, denoising, and
16 chimera checking, operational taxonomic units (OTUs) were assigned by a 97% identity
17 threshold using previously established procedures (Zhang and He, 2013) followed by assignment
18 of taxonomic ranks with the RDP Classifier at the confidence threshold of 80% as previously
19 described (Cole et al., 2003). Community compositions were estimated according to the
20 taxonomic assignments of all valid sequences.

21 ***Clone library analysis of methanogenic batch bioreactors***

22 The methanogen community in the propionate-amended methanogenic batch bioreactors was
23 also characterized by clone library analysis following previously established protocols (Zhang

1 and He, 2013). Clone library analysis was performed to verify results from the high-throughput
2 sequencing of 16S rRNA gene amplicon library and to obtain more complete 16S RNA gene
3 sequences for more accurate taxonomic classification. Briefly, DNA extracts from the second-
4 generation batch bioreactors were used for PCR amplification of the 16S rRNA genes with
5 archaea-specific primers, Arch21F and Arch958R, as previously described (DeLong, 1992).
6 Amplicons were subsequently purified and cloned into plasmid vectors following previously
7 described procedures (Zhang et al., 2011). Approximately 20 cloned plasmid inserts were
8 randomly selected for sequencing.

9 The resulting 16S rRNA gene sequences were checked for chimeric artifacts using the
10 Chimera Check program in the Ribosomal Database Project II (Cole et al., 2003), with high
11 quality sequences deposited at GenBank under the following accession numbers: KJ914860 —
12 KJ914878. Subsequently, OTUs with 3% difference cutoff were assigned based on the average
13 neighbor clustering algorithm. Phylogenetic analysis was conducted on representative 16S rRNA
14 gene sequences of OTUs classified as *Methanosaeta* and *Methanoculleus* with closely related
15 sequences in the NCBI GenBank database using MEGA 4.0 (Tamura et al., 2007).

16 17 ***Quantification of methanogen populations by real-time quantitative PCR (qPCR)***

18 Microbial populations of interest were quantified by qPCR in the methanogenic batch bioreactors
19 and continuous anaerobic digesters during two episodes of elevated propionate. All qPCR assays
20 used the TaqMan chemistry following previously established protocols (Chen and He, 2016).
21 The population-specific TaqMan primer/probe sets used in the qPCR assays included Mst702F-
22 Mst753P-Mst862R (Yu et al., 2005), Mc274F-Mc361P-Mc477R (Chen et al., 2014), and
23 Arc787F-Arc915P- Arc1059R (Yu et al., 2005), for the quantification of *Methanosaeta*,

1 1 *Methanoculleus*, and total archaea, respectively. DNA templates used as the standards for qPCR
2 2 were partial 16S rRNA genes of representative methanogen populations cloned from the
3 3 continuous anaerobic digesters in a previous study (Chen et al., 2014), including *Methanosaeta*
4 4 (GenBank Accession No. JN052761) and *Methanoculleus* (GenBank Accession No. JN052756).

5
6 6 **Analytical methods**
7 7 Biogas production from the batch bioreactors or continuous anaerobic digesters was measured
8 8 with a previously described water-displacement technique (Zhu et al., 2011). CH₄ content in
9 9 biogas was determined with a Hewlett Packard 5890 Series II gas chromatograph equipped with
10 10 a thermal conductivity detector and a Supelco packing column (60/80 Carbonxen®-1000; Sigma-
11 11 Aldrich, St Louis, MO, USA) according to a previously described operating procedure (Chen and
12 12 He, 2016). VFAs were quantified with an Agilent 1200 series High-Performance Liquid
13 13 Chromatography (Agilent Technologies, Santa Clara, California, USA) equipped with a Bio-Rad
14 14 Aminex HPX-87H ion exclusion column (Bio-Rad, Hercules, California, USA) as previously
15 15 described (Chen and He, 2016).

16
17 17 **Statistical analysis**
18 18 To evaluate the response of specific methanogen populations to elevated propionate levels, the
19 19 changes in the abundance of *Methanosaeta* as well as *Methanoculleus* during the two episodes of
20 20 elevated propionate in the continuous anaerobic digesters were analyzed with the one-way
21 21 analysis of variance (ANOVA) using qPCR results. Significant differences in the abundance of
22 22 *Methanosaeta/Methanoculleus* between time points, i.e. time points A-E (Fig. 1), with or without
23 23 elevated propionate were indicated by a probability value (*p*) less than 0.05 in ANOVA analysis.

1 Post hoc comparisons were performed using Tukey's test to further identify the time points with
2 significant difference in *Methanosaeta/Methanoculleus* abundance as indicated by a probability
3 value less than 0.05. Additionally, correlations of the abundance between *Methanosaeta* and
4 *Methanoculleus* in the continuous anaerobic digesters subjected to two episodes of elevated
5 propionate were evaluated with the Pearson's correlation.

6

7 **Results and Discussion**

8 ***Propionate utilization in methanogenic batch bioreactors***

9 High levels of propionate (20 mM) was used as the sole substrate to enrich methanogenic
10 populations involved in anaerobic conversion of propionate. In the second-generation batch
11 bioreactors amended with propionate, the utilization of propionate was accompanied with
12 proportional increases in cumulative methane production (Supplementary Fig. S1). The methane
13 yield from propionate averaged 1.61 mmol CH₄/mmol propionate, which was 92% of the
14 theoretical methane yield according to the overall stoichiometry of anaerobic propionate
15 conversion to methane (Eq. 5).

16 The agreement between experimental results and theoretical predictions on methane yields
17 from propionate confirmed that the methanogenic populations enriched in the batch bioreactors
18 were indeed involved in the syntrophic conversion of propionate. Therefore, these batch
19 bioreactors were further studied to characterize the methanogen populations grown on propionate
20 as the substrate.

21

22 ***Methanogen populations in methanogenic batch bioreactors***

1 The methanogen community in the propionate-amended batch bioreactors was profiled by 16S
2 rRNA gene amplicon library sequencing. With archaeal sequences accounting for 40.1% of the
3 overall microbial community, populations associated with *Methanosaeta* and *Methanoculleus*
4 were found to dominate the archaeal community, with a combined relative abundance of 88%
5 (Fig. 2a). Minor populations of methanogens included *Methanospirillum*, and
6 *Methanobacterium*. The predominance of *Methanosaeta* and *Methanoculleus* suggested that
7 *Methanosaeta* as acetoclastic methanogens likely utilized acetate as a product of propionate
8 oxidation while *Methanoculleus* as hydrogenotrophic methanogens consumed H₂ to sufficiently
9 low levels to sustain anaerobic biodegradation of elevated propionate.

10 To achieve more accurate phylogenetic classification of *Methanosaeta* and *Methanoculleus*
11 populations identified by 16S rRNA gene amplicon library sequencing, the methanogen
12 community was further characterized with clone library analysis in the propionate-amended
13 batch bioreactors. As expected, *Methanosaeta* and *Methanoculleus* were again found to be the
14 dominant methanogen populations (Fig. 2b). Combined, these two populations accounted for
15 95% of the archaeal community, which was consistent with the results from 16S rRNA gene
16 amplicon library sequencing. The nearly exclusive dominance of *Methanosaeta* and
17 *Methanoculleus* in the methanogen community further suggested the superior competitiveness
18 and specific involvement of both methanogen populations in the conversion of elevated
19 propionate.

20 Phylogenetic analysis of representative clones of 16S rRNA genes indicated that all clones of
21 *Methanosaeta* were closely related to *Methanosaeta concilii* (Fig. 3), which has been identified
22 as a primary acetoclastic methanogen population involved in the degradation of propionate in
23 anaerobic digestion processes (Ban et al., 2013; Kim et al., 2015; Shigematsu et al., 2006; Zhang

1 et al., 2018). The majority of *Methanoculleus* clones had *Methanoculleus receptaculi* as the
2 closest relative (Fig. 3). *M. receptaculi* is a strictly hydrogenotrophic methanogen (Cheng et al.,
3 2008) and has been found to be important members of propionate-degrading consortia (Ahlert et
4 al., 2016; Ban et al., 2013). These observations corroborated the potential competitiveness and
5 specific involvement of *Methanosaeta* and *Methanoculleus* in anaerobic propionate conversion.

6

7 ***Bacterial populations in methanogenic batch bioreactors***

8 Bacterial sequences accounted for 59.9% of the overall microbial community in the propionate-
9 amended batch bioreactors as profiled by 16S rRNA gene amplicon library sequencing.
10 Populations associated with *Syntrophobacter* and *Peptococcaceae* represented the majority of the
11 bacterial community, with a combined relative abundance of 57% (Supplementary Fig. S2). It
12 should be noted that *Syntrophobacter* and *Peptococcaceae* belong to the bacterial orders of
13 *Syntrophobacterales* and *Clostridiales*, respectively, which are known to be involved in
14 anaerobic propionate conversion as syntrophic partners (Müller et al., 2010; Sieber et al., 2012).

15 Other bacterial populations contributed more than 3% to the bacterial community
16 participating in anaerobic propionate conversion included sequences classified as *Thermovirga*
17 and *Thermotogaceae* (Supplementary Fig. S2), which have been frequently identified in
18 methanogenic processes, however, with specific involvement in propionate conversion remained
19 to be validated (Amin et al., 2021). Analysis of the bacterial populations in the propionate-
20 amended batch bioreactors confirmed the abundance and importance of *Syntrophobacterales* and
21 *Clostridiales* in syntrophic propionate degradation. However, further efforts are needed to
22 understand the roles of other minor but significant bacterial populations such as *Thermovirga* in
23 anaerobic propionate conversion.

1
2 1
3 2 ***Propionate utilization in continuous anaerobic digesters treating animal wastewater***

4
5 3 The continuous anaerobic digesters used animal wastewater as the substrate. As a result, the
6
7 4 microbial community in the anaerobic digesters was much more complex than that in the batch
8
9 5 bioreactors (Chen et al., 2012), providing ideal process conditions to further validate the
10
11 6 competitiveness and specific involvement of *Methanosaeta* and *Methanoculleus* in anaerobic
12
13 7 conversion of elevated propionate.

14 8 To identify methanogen populations specifically involved in the biodegradation of high
15
16 9 concentrations of propionate, two episodes of elevated propionate was introduced to the
17
18 10 continuous anaerobic digesters by the addition of extraneous propionate (Fig. 1). During both
19
20 11 episodes of elevated propionate, the additions of propionate led to rapid increases in propionate
21
22 12 concentration, peaking at about 12 mM (Fig. 4a). The concentration of propionate declined
23
24 13 immediately following the cessation of propionate feeding, to levels before propionate addition.
25
26 14 Corresponding to the increases in propionate concentration, methane production increased and
27
28 15 subsequently declined when propionate concentration decreased (Fig. 4b), indicating the rapid
29
30 16 conversion of propionate into methane. Notably, there was no indication of acetate accumulation
31
32 17 in the anaerobic digesters in response to propionate addition (Fig. 4a), further demonstrating the
33
34 18 effectiveness of the methanogen community in the utilization of intermediates from anaerobic
35
36 19 propionate oxidation.

40
41 20
42
43 21 ***Dynamics of Methanosaeta and Methanoculleus in continuous anaerobic digesters in***
44
45 22 ***response to elevated propionate***

1 Microbial community analysis of propionate-amended methanogenic batch bioreactors suggested
2 the competitiveness and specific involvement of *Methanosaeta* and *Methanoculleus* in the
3 biodegradation of high levels of propionate (Fig. 2a & 2b). It should be pointed out that in
4 treatment processes using complex waste materials as the substrate, *Methanosaeta* and
5 *Methanoculleus* might not be the dominant methanogens even with propionate accumulation, due
6 to competitions from other methanogen populations that utilize various intermediates other than
7 propionate. Thus, the continuous anaerobic digesters using animal wastewater as the substrate
8 provided a relevant model process to simulate this scenario.

9 The specific responses of *Methanosaeta* and *Methanoculleus* populations to elevated
10 propionate were monitored by qPCR in the continuous anaerobic digesters, where effective
11 propionate conversion into methane was observed (Fig. 4). *Methanosaeta*- and *Methanoculleus*-
12 specific qPCR assays showed that both methanogen populations responded positively to the
13 addition of extraneous propionate. When the anaerobic digesters experienced the first episode of
14 elevated propionate with an increase in propionate concentration from time point A to B (Fig. 1),
15 the abundance of both *Methanosaeta* and *Methanoculleus* increased significantly (Fig. 5a & 5b).
16 Afterwards, the pause in propionate addition at time point B (Fig. 1) and subsequent drop in the
17 propionate concentration (Fig. 4a) led to the significant decline in the abundance of both
18 *Methanosaeta* and *Methanoculleus* from time point B to C (Fig. 5a & 5b). The same population
19 dynamics were again demonstrated during the second episode of elevated propionate from time
20 point C to E (Fig. 5a & 5b), suggesting the specific involvement of *Methanosaeta* and
21 *Methanoculleus* in the conversion of elevated propionate to methane.

22 Moreover, the population dynamics of *Methanosaeta* and *Methanoculleus* were correlated
23 with a statistically significant correlation coefficient of 0.7, demonstrating the coordinated

1 responses to elevated propionate between *Methanosaeta* and *Methanoculleus* in the continuous
2 anaerobic digesters (Fig. 5c). The close coordination between *Methanosaeta* and *Methanoculleus*
3 might explain the combined dominance of *Methanosaeta* and *Methanoculleus* in the propionate-
4 degrading microbial communities observed in the methanogenic batch bioreactors with
5 propionate as the sole substrate (Fig. 2).

6

7 **Specificity of *Methanosaeta* and *Methanoculleus* to propionate conversion**

8 The involvement of *Methanosaeta* and *Methanoculleus* in the conversion of propionate to
9 methane was demonstrated by microbial community analysis of propionate-amended batch
10 bioreactors by 16S rRNA gene sequencing and continuous anaerobic digesters by qPCR (Figs. 2
11 and 5). It remained to be verified whether the involvement of *Methanosaeta* and *Methanoculleus*
12 was specific to propionate. Therefore, additional methanogenic batch bioreactors were set up
13 using other organic compounds, including formate, acetate, butyrate, and methanol. The
14 abundance of *Methanosaeta* and *Methanoculleus* was determined by qPCR and compared
15 between batch bioreactors using different compounds as the sole substrate.

16 As expected, qPCR analysis revealed that *Methanosaeta* and *Methanoculleus* populations
17 dominated in the propionate-amended batch bioreactors, accounting for a combined 87% of the
18 archaeal community (Fig. 6), consistent with results from 16S rRNA gene amplicon library
19 sequencing and clone library analysis (Fig. 2). Interestingly, the dominance of *Methanosaeta* and
20 *Methanoculleus* was also found in the butyrate-amended batch bioreactors (Fig. 6). Previous
21 studies have shown that anaerobic oxidation of butyrate uses β -oxidation to convert butyrate to
22 acetate and H_2 (Schink, 1997) with the following stoichiometry:

1 1 The products of anaerobic butyrate oxidation, i.e. acetate and H₂, were the same as those of
2 2 propionate oxidation (Eq. 3 & 4). Thus, this similarity between the conversions of propionate
3 3 and butyrate likely contributed to the dominance of *Methanosaeta* and *Methanoculleus* in both
4 4 propionate- and butyrate-amended batch bioreactors. These observations pointed to the
5 5 possibility that *Methanosaeta* and *Methanoculleus* were specifically linked to the anaerobic
6 6 conversion of organic compounds with acetate and H₂ as the primary intermediate products.

7 7 It was observed that the relative abundance of acetoclastic *Methanosaeta* was higher in
8 8 butyrate-amended batch bioreactors than that of the propionate-amended batch bioreactors (Fig.
9 9 6). In comparison, hydrogenotrophic *Methanoculleus* exhibited an opposite trend (Fig. 6).
10 10 According to Eq. 6, anaerobic conversion of butyrate would set the molar ratio of acetate/H₂ in
11 11 the product mix at 1.00. In contrast, anaerobic conversion of propionate following the classic
12 12 pathway (Eq. 4) would yield an acetate/H₂ molar ratio of 0.33. The molar ratio of acetate/H₂
13 13 represents the distribution of substrates between acetoclastic methanogens (i.e. *Methanosaeta*)
14 14 and hydrogenotrophic methanogens (i.e. *Methanoculleus*). Thus, the higher acetate/H₂ ratio from
15 15 anaerobic conversion of butyrate than propionate is consistent with the greater relative
16 16 abundance of *Methanosaeta* observed in butyrate- than propionate-amended batch bioreactors
17 17 (Fig. 6).

18 18 It should be noted that anaerobic conversion of propionate could follow the *Smithella*
19 19 pathway (Eq. 3), yielding an acetate/H₂ molar ratio of 1.50, which is higher than that of
20 20 anaerobic butyrate conversion (Eq. 6). Thus, the prevalence of the *Smithella* pathway would have
21 21 resulted in greater relative abundance of *Methanosaeta* in propionate- rather than butyrate-
22 22 amended batch bioreactors, which however was not the case (Fig. 6). It could be deduced that the
23 23 contribution of the *Smithella* pathway to anaerobic propionate conversion was insignificant in

1 propionate-amended batch bioreactors, which is further corroborated by the lack of detection of
2 *Smithella* in propionate-amended bioreactors (Fig. S2).

3 In the acetate-amended batch bioreactors, qPCR results showed that *Methanosaeta*
4 represented more than 80% of the archaeal community, while the abundance of *Methanoculleus*
5 was negligible (Fig. 6). These results were expected as acetate could be converted directly into
6 methane by *Methanosaeta* populations alone as obligatory acetoclastic methanogens (Smith and
7 Ingram-Smith, 2007). The absence of *Methanosaeta* and *Methanoculleus* was expected in the
8 methanol-amended batch bioreactors, which was consistent with the inability to perform
9 methylotrophic methanogenesis by either *Methanosaeta* or *Methanoculleus* (Maestrojuan et al.,
10 1990; Smith and Ingram-Smith, 2007).

11 The absence of *Methanoculleus* in the formate-amended batch bioreactors (Fig. 6), however,
12 was unexpected. With rare exceptions, the ability to utilize formate for methanogenesis has been
13 found in almost all *Methanoculleus* species (Maestrojuan et al., 1990), including *M. receptaculi*
14 (Cheng et al., 2008), with which many of the clones from the propionate-amended batch
15 bioreactors were closely associated (Fig. 3). It is evident that *Methanoculleus* populations in the
16 batch bioreactors were not able to compete for formate with other hydrogenotrophic
17 methanogens in this study. Instead, it is possible that these *Methanoculleus* populations might be
18 specifically competitive in the utilization of H₂ at very low partial pressure associated with the
19 syntrophic oxidation of propionate or butyrate, as evidenced by the dominance of
20 *Methanoculleus* as the hydrogenotrophic methanogens in propionate- and butyrate-amended
21 batch bioreactors. Indeed, *Methanoculleus* populations have been shown to have high affinity to
22 H₂ in previous studies (Hori et al., 2006; Sakai et al., 2009). Notably, *Methanosaeta* populations
23 are also known to have high affinity to acetate and outcompete other acetoclastic methanogens at

1 low acetate levels (Conklin et al., 2006). Thus, the involvement of *Methanosaeta* and
2 *Methanoculleus* in the anaerobic conversion of propionate or butyrate could likely be attributed
3 to the ability of these methanogens to utilize H₂ and acetate at low concentrations, a
4 thermodynamic requirement for anaerobic oxidation of VFAs.

5 6 **Conclusions**

7 In this study, *Methanosaeta* and *Methanoculleus* were identified as the key acetoclastic and
8 hydrogenotrophic methanogens, respectively, participating in the anaerobic degradation of
9 propionate as a central intermediate in methanogenic processes. Bacterial populations from the
10 orders of *Syntrophobacterales* and *Clostridiales* were confirmed as the primary syntrophic
11 partners in anaerobic conversion of propionate utilizing the classic anaerobic propionate
12 oxidation pathway. Findings from this study provide much needed insight into the understanding
13 of microbial responses to elevated propionate, which is recognized as an inhibitory intermediate
14 frequently contributing to process perturbations in methanogenic waste treatment. The
15 identification of microbial populations specifically involved in anaerobic propionate degradation
16 suggests the potential of exploiting microbial populations such as *Methanosaeta* and
17 *Methanoculleus* in enhancing the stability of methanogenic treatment processes.

18
19 **Author Contribution Statement** QH and SC conceived and designed research. SC, YW, and
20 HC conducted experiments. SC and CH analyzed data. QH and TCH wrote the manuscript. All
21 authors read and approved the manuscript.

22
23 **Author Disclosure Statement** No competing financial interests exist.

1
2 1
3 2 **Funding Statement** This work was supported in part by U.S. National Science Foundation
4 3 (NSF) award 2025339. SC was partly supported by the Institute for a Secure and Sustainable
5 4 Environment at the University of Tennessee, Knoxville. Any opinions, findings,
6 5 recommendations, and conclusions in this paper are those of the authors, and do not necessarily
7 6 reflect the views of NSF or University of Tennessee, Knoxville.
8
9
10
11
12
13
14
15
16
17
18 7
19 8 **References**
20
21 10 1. Amin FR, Khalid H, El-Mashad H, Chen C, Liu G, Zhang R. Functions of bacteria and
22 11 archaea participating in the bioconversion of organic waste for methane production. *Sci Total
23 12 Environ* 2021;763:143007.
24
25 14 2. Ahlert S, Zimmermann R, Ebling J, König H. Analysis of propionate-degrading consortia
26 15 from agricultural biogas plants. *MicrobiologyOpen* 2016;5:1027-1037.
27
28 17 3. Ahring BK, Sandberg M, Angelidaki I. Volatile fatty acids as indicators of process imbalance
29 18 in anaerobic digestors. *Appl Microbiol Biotechnol.* 1995;43:559-565.
30
31 20 4. Bae HS, Morrison E, Chanton JP, Ogram A. Methanogens are major contributors to nitrogen
32 21 fixation in soils of the Florida Everglades. *Appl Environ Microbiol.* 2018;84:e02222-17.
33
34 23 5. Ban Q, Li J, Zhang L, Jha AK, Zhang Y. Quantitative analysis of previously identified
35 24 propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor
36 25 containing propionate as a sole carbon source. *Appl Biochem Biotechnol.* 2013;171:2129-
37 26 2141.
38
39 28 6. Boe K, Batstone DJ, Steyer J-P, Angelidaki I. State indicators for monitoring the anaerobic
40 29 digestion process. *Water Res.* 2010;44:5973-5980.
41
42 31 7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
43 32 Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-
44 33 throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J.*
45 34 2012;6:1621-1624.
46
47 36 8. Chen S, Cheng H, Liu J, Hazen TC, Huang V, He Q. Unexpected competitiveness of
48 37 *Methanosaeta* populations at elevated acetate concentrations in methanogenic treatment of
49 38 animal wastewater. *Appl Microbiol Biotechnol.* 2017;101:1729-1738.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 9. Chen S, Zamudio Cañas EM, Zhang Y, Zhu Z, He Q. Impact of substrate overloading on
4 archaeal populations in anaerobic digestion of animal waste. *J Appl Microbiol*.
5 2012;113:1371-1379.
6
7 10. Chen S, He Q. Enrichment and specific quantification of *Methanocalculus* in anaerobic
8 digestion. *J Biosci Bioeng*. 2015;120:677-683.
9
10 11. Chen S, He Q. Distinctive non-methanogen archaeal populations in anaerobic digestion. *Appl*
11 *Microbiol Biotechnol*. 2016;100:419-430.
12
13 12. Chen S, Zhu Z, Park J, Zhang Z, He Q. Development of *Methanoculleus*-specific real-time
14 quantitative PCR assay for assessing methanogen communities in anaerobic digestion. *J Appl*
15 *Microbiol*. 2014;116:1474-1481.
16
17 13. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review.
18 *Bioresour Technol*. 2008;99:4044-4064.
19
20 14. Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, Zhang H. Isolation and
21 characterization of *Methanoculleus receptaculi* sp. nov. from Shengli oil field, China. *FEMS*
22 *Microbiol Lett*. 2008;285:65-71.
23
24 15. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM,
25 Schmidt TM, Garrity GM, Tiedje JM. The ribosomal database project (RDP-II): previewing
26 a new autoaligner that allows regular updates and the new prokaryotic taxonomy. *Nucleic*
27 *Acids Res*. 2003;31:442-443.
28
29 16. Conklin A, Stensel HD, Ferguson J. Growth kinetics and competition between
30 *Methanosaeta* and *Methanosaeta* in mesophilic anaerobic digestion. *Water Environ Res*.
31 2006;78:486-496.
32
33 17. DeLong EF. Archaea in coastal marine environments. *Proc Natl Acad Sci USA*
34 1992;89:5685-5689.
35
36 18. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's
37 biogeochemical cycles. *Science* 2008;320:1034-1039.
38
39 19. Hagos K, Zong J, Li D, Liu C, Lu X. Anaerobic co-digestion process for biogas production:
40 Progress, challenges and perspectives. *Renew Sust Energ Rev*. 2017;76:1485-1496.
41
42 20. He Q, Sanford RA. Induction characteristics of reductive dehalogenation in the *ortho*-
43 halophenol-respiring bacterium, *Anaeromyxobacter dehalogenans*, *Biodegradation*
44 2002;13:307-316.
45
46 21. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic
47 population in response to the concentration of volatile fatty acids in a thermophilic anaerobic
48 digester. *Appl Environ Microbiol*. 2006;72:1623-1630.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 22. Kim W, Shin SG, Han G, Cho K, Hwang S. Structures of microbial communities found in
2 anaerobic batch runs that produce methane from propionic acid—seeded from full-scale
3 anaerobic digesters above a certain threshold. *J Biotechnol.* 2015;214:192-198.

4 23. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-
5 index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the
6 MiSeq Illumina sequencing platform. *Appl Environ Microbiol.* 2013;79:5112-5120.

7 24. Leitão RC, van Haandel AC, Zeeman G, Lettinga G. The effects of operational and
8 environmental variations on anaerobic wastewater treatment systems: A review. *Bioresour
Technol.* 2006;97:1105-1118.

9 25. Li L, He Q, Wei Y, He Q, Peng X. Early warning indicators for monitoring the process
10 failure of anaerobic digestion system of food waste. *Bioresour Technol.* 2014;171:491-494.

11 26. Li Y, Sun Y, Li L, Yuan Z. Acclimation of acid-tolerant methanogenic propionate-utilizing
12 culture and microbial community dissecting. *Bioresour Technol.* 2018;250:117-123.

13 27. Maestrojuan GM, Boone DR, Xun L, Mah RA, Zhang L. Transfer of *Methanogenium
bourgense*, *Methanogenium marisnigri*, *Methanogenium olentangyi*, and *Methanogenium
thermophilicum* to the genus *Methanoculleus* gen. nov, emendation of *Methanoculleus
marisnigri* and *Methanogenium*, and description of new strains of *Methanoculleus bourgense*
28 and *Methanoculleus marisnigr*. *Int. J. Syst. Bacteriol.* 1990;40:117-122.

29 28. Müller N, Worm P, Schink B, Stams AJM, Plugge CM. Syntrophic butyrate and propionate
30 oxidation processes: from genomes to reaction mechanisms. *Environ Microbiol Rep.*
31 2010;2:489-499.

32 29. Nallathambi Gunaseelan V. Anaerobic digestion of biomass for methane production: a
33 review. *Biomass Bioenerg.* 1997;13:83-114.

34 30. Narihiro T, Nobu MK, Kim NK, Kamagata Y, Liu WT. The nexus of syntrophy-associated
35 microbiota in anaerobic digestion revealed by long-term enrichment and community survey.
36 *Environ Microbiol.* 2015;17:1707-1720.

37 31. Nasir IM, Ghazi TI, Omar R. Anaerobic digestion technology in livestock manure treatment
38 for biogas production: a review. *Eng Life Sci.* 2012;12:258-269.

39 32. Nielsen HB, Uellendahl H, Ahring BK. Regulation and optimization of the biogas process:
40 propionate as a key parameter. *Biomass Bioenerg.* 2007;31:820-830.

41 33. Sakai S, Imachi H, Sekiguchi Y, Tseng I-C, Ohashi A, Harada H, Kamagata Y. Cultivation
42 of methanogens under low-hydrogen conditions by using the coculture method. *Appl Environ
43 Microbiol.* 2009;75:4892-4896.

44
45
46

1 34. Schink B. Energetics of syntrophic cooperation in methanogenic degradation. *Microbiol Mol*
2 *Biol Rev.* 1997;61:262-280.

3 35. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K. Microbial
4 community of a mesophilic propionate-degrading methanogenic consortium in chemostat
5 cultivation analyzed based on 16S rRNA and acetate kinase genes. *Appl Microbiol*
6 *Biotechnol.* 2006;72:401-415.

7 36. Sieber JR, McInerney MJ, Gunsalus RP. Genomic insights into syntropy: the paradigm for
8 anaerobic metabolic cooperation. *Annu Rev Microbiol.* 2012;66:429-452.

9 37. Smith KS, Ingram-Smith C. *Methanosaeta*, the forgotten methanogen? *Trends Microbiol.*
10 2007;15:150-155.

11 38. Stams AJM, Grolle KC, Frijters CT, Van Lier JB. Enrichment of thermophilic propionate-
12 oxidizing bacteria in syntropy with *Methanobacterium thermoautotrophicum* or
13 *Methanobacterium thermoformicicum*. *Appl Environ Microbiol.* 1992;58:346-352.

14 39. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis
15 (MEGA) software version 4.0. *Mol Biol Evol.* 2007;24:1596-1599.

16 40. Wu WM, Jain MK, De Macario EC, Thiele JH, Zeikus JG. Microbial composition and
17 characterization of prevalent methanogens and acetogens isolated from syntrophic
18 methanogenic granules. *Appl Microbiol Biotechnol.* 1992;38:282-290.

19 41. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic
20 communities using quantitative realtime polymerase chain reaction. *Biotechnol Bioeng.*
21 2005;89:670-679.

22 42. Yuan H, Zhu N. Progress in inhibition mechanisms and process control of intermediates and
23 by-products in sewage sludge anaerobic digestion. *Renew Sust Energ Rev.* 2016;58:429-438.

24 43. Zhang Y, He Q. Characterization of bacterial diversity in drinking water by pyrosequencing.
25 *Water Sci Technol Water Supply* 2013;13:358-367.

26 44. Zhang Y, Li J, Liu F, Yan H, Li J. Mediative mechanism of bicarbonate on anaerobic
27 propionate degradation revealed by microbial community and thermodynamics. *Environ Sci*
28 *Pollut Res.* 2018;25:12434-12443.

29 45. Zhang Y, Zhang X, Zhang H, He Q, Zhou Q, Su Z, Zhang C. Responses of soil bacteria to
30 long-term and short-term cadmium stress as revealed by microbial community analysis. *Bull*
31 *Environ Contam Toxicol.* 2009;82:367-372.

32 46. Zhang Y, Zamudio Cañas EM, Zhu Z, Linville JL, Chen S, He Q. Robustness of archaeal
33 populations in anaerobic co-digestion of dairy and poultry wastes. *Bioresour Technol.*
34 2011;102:779-785.

1
2 47. Zhu Z, Hsueh MK, He Q. Enhancing biomethanation of municipal waste sludge with grease
3 trap waste as a co-substrate. *Renew Energy* 2011;36:1802-1807.
4
5

Figure Captions:

FIG. 1 The addition of extraneous propionate to continuous anaerobic digesters during the two episodes of elevated propionate. Biomass sampling at 5 time points was shown by the arrows labeled with letters A to E. Feeding of dairy wastewater to the anaerobic digesters remained constant at 1.0 g VS/L/day throughout the study period.

FIG. 2 Composition of the archaeal community in methanogenic batch bioreactors with propionate as the sole substrate. The relative abundance of methanogen taxa is shown as percentage values determined by 16S rRNA gene amplicon library sequencing (a) and by clone library analysis of 16S rRNA genes (b).

FIG. 3 Neighbor-joining phylogenetic tree showing relationships of representative partial 16S rRNA gene sequences cloned from methanogenic batch bioreactors with propionate as the sole substrate to close relatives. Clones from this study are in bold. GenBank accession numbers of the 16S rRNA gene sequences are indicated in the parentheses. The numerical values at branch nodes indicate bootstrap values per 1,000 re-samplings. The scale bar represents the number of substitutions per sequence position.

FIG. 4 Performance of continuous anaerobic digesters during two episodes of elevated propionate: a) Concentrations of acetate and propionate; and b) methane production. Data are means of triplicate anaerobic digesters, with the error bars indicating the standard deviations.

1
2
3 **FIG. 5** Abundance of a) *Methanosaeta* (Mst), b) *Methanoculleus* (Mc), and c) correlation
4 between the abundance of *Methanosaeta* (Mst) and *Methanoculleus* (Mc) during two episodes of
5 elevated propionate in the continuous anaerobic digesters. Time points A-E are illustrated in Fig.
6
7
8
9
10 1. The abundance of *Methanosaeta* and *Methanoculleus* was determined as the copies of
11 population-specific 16S rRNA genes with qPCR. Data points were means of triplicates with the
12 error bars showing standard deviations. Abundances of *Methanosaeta* or *Methanoculleus* (Mc)
13 are not significantly different from each other at time points labeled with the same lowercase
14 superscript letters (ANOVA, Tukey's test, $p < 0.05$).
15
16
17
18
19
20
21
22
23
24 **FIG. 6** Abundance of *Methanosaeta* (Mst) and *Methanoculleus* (Mc) as a percentage of total
25 archaea in methanogenic batch bioreactors amended by various organic acids or methanol as the
26 sole substrate. Microbial abundance was determined as the copies of population-specific 16S
27 rRNA genes with qPCR. Results were means of triplicates with the error bars showing standard
28 deviations.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Fig. 1

184x105mm (149 x 149 DPI)

Fig. 2

215x279mm (300 x 300 DPI)

Fig. 3

215x279mm (300 x 300 DPI)

Fig. 4

215x279mm (300 x 300 DPI)

Fig. 5

215x279mm (300 x 300 DPI)

Fig. 6

160x109mm (149 x 149 DPI)

Fig. S1 Methane production in second-generation methanogenic batch bioreactors with propionate as the sole substrate. Propionate (20 mM) was fed after the depletion of propionate from the previous feeding. Data points were cumulative methane production from each feeding of propionate. The dashed line is the linear regression of cumulative methane production vs feedings.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 **Fig. S2** Composition of the bacterial community in methanogenic batch bioreactors with propionate as the sole substrate. The
54 relative abundance of bacterial taxa are shown as percentage values determined by 16S rRNA gene amplicon library
55 sequencing. Shown are taxa with relative abundance greater than 3% at the genus level or the next taxonomic level when
56 classification is possible