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Abstract — Domain-specific neural network accelerators have
seen growing interest in recent years due to their improved energy
efficiency and performance compared to CPUs and GPUs. In this
paper, we propose a novel cross-layer optimized neural network
accelerator called CrossLight that leverages silicon photonics.
CrossLight includes device-level engineering for resilience to
process variations and thermal crosstalk, circuit-level tuning
enhancements for inference latency reduction, and architecture-
level optimizations to enable better resolution, energy-efficiency,
and throughput. On average, CrossLight offers 9.5x lower energy-
per-bit and 15.9x higher performance-per-watt than state-of-the-
art photonic deep learning accelerators.
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I. INTRODUCTION

Many emerging applications such as self-driving cars, autonomous
robotics, fake news detection, pandemic prediction, and real-time
language translation are increasingly being powered by sophisticated
machine learning models. With researchers creating deeper and more
complex deep neural network (DNN) architectures, including multi-
layer perceptron (MLP) and convolution neural network (CNN)
architectures, the underlying hardware platform must consistently
deliver better performance while satisfying strict power dissipation
limits. This endeavor to achieve higher performance-per-watt has
driven hardware architects to design custom accelerators for deep
learning, e.g., Google’s TPU [1] and Intel’s Movidius [2], with much
higher performance-per-watt than conventional CPUs and GPUs.

Unfortunately, electronic accelerators face fundamental limits in
the post Moore’s law era where processing capabilities are no longer
improving as they did over the past several decades [3]. In particular,
moving data electronically on metallic wires in these accelerators
creates a major bandwidth and energy bottleneck [4]. Silicon photonics
is a promising technology to enable ultra-high bandwidth, low-latency,
and energy-efficient communication solutions [5]. CMOS-compatible
photonic interconnects have already replaced metallic ones for light-
speed data transmission at almost every level of computing, and are
now actively being considered for chip-scale integration [6].

Remarkably, it is also possible to use optical components to
perform computation, e.g., matrix-vector multiplication [7]. Thus, itis
now possible to conceive of a new class of DNN accelerators that
employ photonic interconnects and photonic integrated circuits (PICs)
for low-latency and energy-efficient data transport and computation.
The operational bandwidth of such photonic accelerators can approach
the photodetection rate (~hundreds of GHz), which is significantly
higher than electronic systems today that operate at few GHz [8].

Despite the above benefits, a number of obstacles must be
overcome before viable photonic DNN accelerators can be realized.
Fabrication process and thermal variations can adversely impact the
robustness of photonic accelerator designs by introducing undesirable
crosstalk noise, optical phase shifts, resonance drifts, tuning
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overheads, and photo-detection current mismatches. For example,
experimental studies have shown that micro-ring resonator (MR)
devices used in chip-scale photonic interconnects can experience
significant resonant drifts (e.g., ~9 nm reported in [9]) within a wafer
due to process variations. This matters because even a 0.25 nm drift
can cause the bit-error-rate (BER) of photonic data traversal to degrade
from 1012 to 10. Moreover, thermal crosstalk in MRs can limit the
achievable precision (i.e., resolution) of weight and bias parameters to
a few bits, which can reduce DNN model accuracy. Common tuning
circuits that rely on thermo-optic phase-change effects to control
photonic devices, e.g., when imprinting activations or weights on
optical signals, also place a limit on the achievable throughput and
parallelism in photonic accelerators. Lastly, at the architecture level,
there is a need for a scalable, adaptive, and low-cost fabric that can
handle the demands of diverse MLP and CNN models.

In this paper, we introduce CrossLight, a novel silicon photonic
neural network accelerator that addresses the challenges highlighted
above through a cross-layer design approach. By cross-layer, we refer
to the design paradigm that involves considering multiple layers in the
hardware-software design stack together, for a more holistic
optimization effort. Our novel contributions in this work include:

¢ Improved photonic device designs that we fabricated to make our
architecture more resilient to fabrication-process variations;

e An enhanced tuning circuit to simultaneously support large
thermal-induced resonance shifts and high-speed device tuning;

e Consideration of thermal crosstalk mitigation methods to
improve the weight resolution achievable by our architecture;

e Improved wavelength reuse and matrix decomposition at the
architecture-level to increase throughput and energy-efficiency;

e A comprehensive comparison with state-of-the-art accelerators
that shows the efficacy of our cross-layer optimized solution.

II. BACKGROUND AND RELATED WORK

Silicon-photonics based DNN accelerator architectures represent
an emerging paradigm that can immensely benefit the landscape of
deep learning hardware design [10]-[14]. A photonic neuron in these
architectures is analogous to an artificial neuron and consists of three
components: a weighting, a summing, and a nonlinear unit.

Noncoherent photonic accelerators, such as [11]-[13], typically
employ the Broadcast and Weight (B&W) protocol [10] to manipulate
optical signal power for setting and updating weights and activations.
The B&W protocol is an analog networking protocol that uses
wavelength-division multiplexing (WDM), photonic multiplexors, and
photodetectors to combine outputs from photonic neurons in a layer.

Coherent photonic accelerators, such as [8], [14]. manipulate the

electrical field amplitude rather than signal power and use only a single
wavelength. For both types of accelerators, non-linearity can be
implemented with devices such as electro-absorption modulators [8].

Due to the scalability, phase encoding noise, and phase error
accumulation limitations of coherent accelerators [15], there is
growing interest in designing efficient noncoherent photonic
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accelerators. In particular, the authors of DEAP-CNN [11] have
described a noncoherent neural network accelerator that implements
the entirety of the CNN layers using connected convolution units. In
these units, the tuned MRs assume the kernel values by using phase
tuning to manipulate the energy in their resonant wavelengths.
Holylight [12] is another noncoherent architecture that uses microdisks
(instead of MRs) for its lower area and power consumption. It utilizes
a “whispering gallery mode™ resonance for microdisk operation, which
is inherently lossy due to the tunneling ray attenuation phenomenon
[16]. More generally, these noncoherent architectures suffer from
susceptibility to process variations and thermal crosstalk, which are
not addressed in these architectures. Microsecond-granularity thermo-
optic tuning latencies further reduce the speed of optical computing
[17]. We address these shortcomings as part of our cross-layer
optimized noncoherent photonic accelerator architecture in this work.

IIT. NONCOHERENT PHOTONIC COMPUTATION OVERVIEW

As mentioned earlier, noncoherent photonic accelerators typically
utilize the B&W photonic neuron configuration with multiple
wavelengths. Fig. 1 shows an example of this B&W configuration with
n neurons in a layer where the colored-dotted box represents a single
neuron. Each input to a neuron is imprinted onto a unique wavelength
(Ai) emitted by a laser diode (LD) using a Mach—Zehnder modulator
(MZM). The wavelengths are multiplexed (MUXed) into a single
waveguide using arrayed waveguide grating (AWG), and split into n
branches that are each weighted with a micro-ring resonator (MR)
bank that alters optical signal power proportional to weight values. A
balanced photodetector (BPD) performs summation across positive
and negative weight arms at each branch. Optoelectronic devices such
as electro-absorption modulators (not shown for brevity) introduce
non-linearity after the multiplication and summation operations.

LD: A,
%* AWG +. BPD
MZM  based MR bank {W,;} W G — —
I r, ¥i= i
L - (- 1= Iy

2 h W i34 =
i3 ; g
iy '-i/ Aq _..Linearnto-1 o
s T .  BFD i
i T N o1 . (P = (W L —— ie

—0 ; : Vo = EWali

| — : ._._._..'{w;ill‘}__ !

Fig. 1: Noncoherent Broadcast-and-weight (B&W) based photonic nenron.

MRs are the fundamental components that impact the efficiency of
this configuration. Weights (and biases) are altered by tuning MRs so
that the losses experienced by wavelengths—on which activations
have been imprinted—can be modified to realize matrix-vector
multiplication. MR-weight banks have groups of these tunable MRs,
each of which can be tuned to drain energy from a specific resonant
wavelength so that the intensity of the wavelength reflects a specific
value (after it has passed near the MR).

An MR is essentially an on-chip resonator which is said to be in
resonance when an optical wavelength on the input port matches with
the resonant wavelength of the MR, generating a Lorentzian-shaped
signal at the through port. Fig. 2 shows an example of an all-pass MR
and its output optical spectrum. The extinction ratio (ER) and free-
spectral range (FSR) are two primary characteristics of an MR. These
depend on several physical properties in the MR, including its width,
thickness, radius, and the gap between the input and ring waveguide
[18]. Changing any of these properties changes the effective index
(neg) of the MR, which in turn causes a change in the output optical
spectrum. For reliable operation of MRs, it is crucial to maintain the
central wavelength at the output optical spectrum. However, MRs are
sensitive to fabrication-process variations (FPVs) and variations in
surrounding temperature. These cause the central wavelength of the

MR to deviate from its original position, causing a drift in the MR
resonant wavelength (Alur) [19]. Such a drift (due to FPV or thermal
variations) can be compensated using thermo-optic (TO) or electro-
optic (EO) tuning mechanisms. Both of these have their own
advantages and disadvantages. EO tuning is faster (~ns range) and
consumes lower power (~4 pW/nm) but with a smaller tuning range
[20]. In contrast, TO tuning has a larger tunability range, but consumes
higher power (~27 mW/FSR) and has higher (~ps range) latency [17].
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Fig. 2: An all-pass MR with output spectral charactenistics at the through port
with extinction ratio (ER) and free spectral range (FSR) specified in the figure.

A large number of MRs must be used at the architecture-level to
support complex MLP and CNN model executions. As the number of
MRs increase, so does the length of the waveguide which hosts the
banks. Unfortunately, this leads to an increase in the total optical signal
propagation, modulation, and through losses experienced, which in
turn increases the laser power required to drive the optical signals
through the weight banks, so that they can be detected error-free at the
photodetector. An excessive number of parallel arms with MR weight
banks (the dotted box in Fig. 1 represents one arm working in parallel
with other arms) also increases optical splitter losses. Moreover,
without considering crosstalk mitigation strategies (as is the case with
prior work on photonic accelerators), there is increased crosstalk noise
in signals, which reduces the weight resolution of the architecture.

In summary, to design efficient photonic accelerators, there is a
need for (i) improved MR device design to better tolerate variations
and crosstalk; (ii) efficient MR tuning circuits to quickly and reliably
imprint activation and parameter values; and (iii) a scalable
architecture design that minimizes optical signal losses. Our novel
Crosslight accelerator addresses these concerns and is discussed next.
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Fig. 3: An overview of CrossLight, showing dedicated vector dot product
(VDP) umts for CONV and FC layer acceleration, and the internal architecture.

IV. CROSSLIGHT ARCHITECTURE

Fig. 3 shows a high-level overview of our CrossLight noncoherent
silicon photonic neural network accelerator. The photonic substrate
performs vector dot product (VDP) operations using silicon photonic
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MR devices, and summation using optoelectronic photodetector (PD)
devices over multiple wavelengths. An electronic control unit is
required for the control of photonic devices, and for communication
with a global memory to obtain the parameter values, mapping of the
vectors, and for partial sum buffering. We use digital to analog
converter (DAC) arrays to convert buffered signals into analog tuning
signals for MRs. Analog to digital converter (ADC) arrays are used to
map the output analog signals generated by PDs to digital values that
are sent back for post-processing and buffering. We break down the
discussion of this accelerator into three parts (subsections A-C),
corresponding to the device, tuning circuit, and architecture levels.

A. MR device engineering and fabrication

Process variations are inevitable in CMOS-compatible silicon
photonic fabrications, causing undesirable changes in resonant
wavelength of MR devices (AkMr). We fabricated a 1.5x0.6 mm? chip
with high-resolution Electron Beam (EBeam) lithography and
performed a comprehensive design-space exploration of MRs to
compensate for FPVs while improving MR device insertion loss and
Q-factor. In this exploration, we varied the input and ring waveguide
widths to find an MR device design that was tolerant to FPVs. We
found that in an MR design of any radii and gap. when the input
waveguide is 400 nm wide and the ring waveguide is 800 nm wide at
room temperature (300 K), the undesired Admzr due to FPVs can be
reduced from 7.1 to 2.1 nm (70% reduction). This is a significant
result, as these engineered MRs require less compensation for FPV-
induced resonant wavelength shifts, which can reduce the power
consumption of architectures using such MRs.

Unfortunately, even with such optimized MR designs, the impact
of FPVs is not completely eliminated, and there is still a need to
compensate for FPVs. Thermal variations are another major factor to
cause changes in MR nef which also leads to undesirable Alug.
Thermo-optic (TO) tuners are used to compensate for such deviations
in AlMR. These TO tuners use microheaters to change the temperature
in the proximity of an MR device, which then alters the ngyof the MR,
changing the device resonant wavelength, and correcting the Alng.
Unfortunately, high temperatures from such heaters can cause thermal
energy dissipation, creating thermal crosstalk across MR devices
placed close to each other. One can avoid such thermal crosstalk by
placing devices at an appropriate distance from each other, typically
120 pm to 200 pm (depending on the number of MR devices in
proximity within an MR bank). But such a large spacing hurts area
efficiency and also increases waveguide length, which increases
propagation losses and its associated laser power overhead. We
propose to address this challenge at the circuit level, as discussed next.

B. Tuning circuit design

To reduce thermal crosstalk, we must reduce the reliance on TO
tuning, an approach that is used in all prior photonic neural network
accelerators, but one that entails high overheads. We propose to use a
hybrid tuning circuit where both thermo-optic (TO) and electro-optic
(EO) tuning are used to compensate for Almr. Such a tuning approach
has previously been proposed in [22] for silicon photonic Mach—
Zehnder Interferometers with low insertion loss. Such an approach can
be easily transferred to an optimized MR for hybrid tuning in our
architecture. The hybrid tuning approach supports faster operation of
MRs with fast EO tuning to compensate for small Alyr shifts and,
using TO tuning when large Alur shifts need to be compensated.

To further reduce the power overhead of TO tuning in this hybrid
approach, we adapt a method called Thermal Eigen Decomposition
(TED), which was first proposed in [23]. Using TED, we can
collectively tune all the MRs in an MR bank to compensate for large
Al shifts. By doing so, we can cancel the effect of thermal crosstalk
(i.e., an undesired phase change) in MRs with much lower power
consumption. The TO tuning power can be calculated by the amount

of phase shift necessary to apply to the MRs in order for them to be at
their desired resonant wavelength. The extent of phase crosstalk ratio
(due to thermal crosstalk) as a function of the distance between an MR
pair is shown in Fig. 4, for our fabricated MR devices. The results are
based on detailed analysis with a commercial 3D heat transport
simulation EDA tool for silicon photonic devices (Lumerical HEAT
[21]). It can be seen from the orange line that as the distance between
an MR pair increases, the amount of phase crosstalk reduces
exponentially. Such a trend has also been observed in [24]. To find a
balance between tuning power savings while having reduced crosstalk,
we perform a sensitivity analysis based on the distance between two
adjacent MRs in our architecture. We placed the optimized MRs
(described in the previous section) in such a manner that maximum
tuning power is saved when they are close to each other while
compensating for thermal crosstalk. Results from our analysis (the
solid-blue line in Fig. 4) indicate that placing each MR pair at a
distance of 5 pm is optimal, as increasing or decreasing such a distance
causes an increase in power consumption of individual TO heaters in
the MRs. Fig. 4 also shows the tuning power required without using
the TED approach (blue dotted line), which is notably higher.
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Fig. 4: Phase crosstalk ratio and tumng power consumption in a block of 10
fabricated MRs with vaniable distance between adjacent pair of MRs.

The workflow of our circuit-level hybrid tuning approach can be
summarized as follows. When the accelerator is first booted at runtime,
a one-time compensation for design-time FPVs is applied using TO
tuning. The extent of compensation for crosstalk is calculated offline
during the test phase, where the required phase shift in each of the MRs
is caleulated, and once the system is online, the respective phase shift
values are applied to cancel the impact of thermal crosstalk.
Subsequently, we apply EO tuning due to its extremely low latency to
represent vector elements in each vector operation with MRs
(discussed in the next section). If large shifts in temperature are
observed at runtime, we can perform a one-time calibration with TO
tuning to compensate for it. In our analysis, runtime TO tuning would
be required rarely beyond its first use after the initial bootup phase.

C. Architecture design

The optimized MR devices, layouts, and tuning circuits are utilized
within optical VDP units, which are shown in Fig. 3. We use banks
(groups) of MRs to imprint both activations and weights onto the
optical signal. At the architecture level, we compose multiples of VDP
units into two architectural components: one to support convolution
(CONV) layer acceleration and the other to support fully connected
(FC) layer acceleration. We focus on these two types of layers as they
are the most widely used and consume the most significant amount of
latency and power in computational platforms that execute DNNs. In
contrast, other layer types (e.g., pooling, batch normalization) can be
implemented very efficiently in the electronic domain. Note also that
we focus on inference acceleration, as done in all photonic DNN
accelerators, and almost all electronic DNN accelerators.

C.1 Decomposing vector operations in CONV/FC layers
To map CONV and FC layers from DNN models to our
accelerator, we first need to decompose large vector sizes into smaller
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ones. In CONV layers, a filter performs convolution on a patch (e.g..
2x2 elements) of the activation matrix in a channel to generate an
element of the output matrix. The operation can be represented as:

KQA=Y m
For a 2x2 filter kernel and weight matrices, (1) can be expressed as:
ky k a, a
[k: ki] ®Olo o=kt + ket t kot +ha, @

Rewriting (2) as a vector dot product, we have:
ay
[y Ky ks kgl [:g] =kyay + koay + ksaz + koay 3
ag

Once we are able to represent the operation as a vector dot product, it
is easy to see how it can be decomposed into partial sums, e.g.:

lky k2 ).[2] = kaay + Koz = PS,
lky ky).[%] = kya; + kya, = PS,
PS; +PS, =Y @
In FC layers, much larger dimension vector multiplication
operations are performed between activations and weight matrices:
a

a,

AW = Wr Wz w,] (5)

a;cwy tagcwy o Gt Wy

AW = |22 W1 +ﬁ'q'“':2 Foeagtwy ®

Ay Wy, +a,-wy, T Gy Wy

In (5). a, to a, represent a column vector of activations (A) and
w; to W, represent a row vector of weights (W). The resulting vector
is a summation of dot products of vector elements (6). Like in CONV
layers, these can be decomposed into lower dimensional dot products.

C.2 Vector dot product (VDP) unit design

We secparated the implementation of CONV and FC layers in
CrossLight due to the vastly different orders of vector dot product
computations required to implement each layer. For instance, typical
CONV layer kernel sizes vary from 2x2 to 5x5, whereas in FC layers
it is not uncommon to have 100 or more neurons (requiring 100x100
or higher order multiplication). State-of-the-art photonic DNN
accelerators, e.g., [11], only consider the scales involved at the CONV
layer, and either only support CONV layer acceleration in the optical
domain, or use the same CONV layer implementation to accelerate FC
layers. This will lead to increased latencies and reduced throughput as
the larger vectors involved with FC layer calculation must be divided
up into smaller chunks, in the order of the CONV filter kernel size.

For improved efficiency, we separately support the unique scale a
of vector dot products involved in CONV layers and FC layers. For
CONV layer acceleration, we consider # VDP units, with each unit
supporting an NxN dot product. For FC layer acceleration, we consider
m units, with each unit supporting a KxK dot product. Here n>m and
K>N, as per the requirements of each of the distinet layers. In each of
the VDP units, the original vector dimensions are decomposed into N
or K dimensional vectors, as discussed above. We performed an
exploration to determine the optimal values for N, K n, and m. The
results of this exploration study are presented in Section V.

C.3 Optical wavelength reuse in VDP units

Prior work on photonic DNN accelerator design typically
considers a separate wavelength to represent each individual element
of a vector. This approach leads to an increase in the total number of
lasers needed in the laser bank (as the size of the vectors increases)
which in turn inereases power consumption. Beyond employing the
decomposition approach discussed above, we also consider
wavelength reuse per VDP unit to minimize laser power. In this
approach, within VDP units, the N or K dimensional vectors are further

decomposed into smaller sized vectors for which dot products can be
performed using MRs in parallel, in each arm of the VDP unit. The
same wavelengths can then be reused across arms within a VDP to
reduce the number of unique wavelengths required from the laser. PDs
perform summation of the element-wise products to generate partial
sums from decomposed vector dot products. The partial sums from the
decomposed operations are then converted back to the photonic
domain by VCSELs (bottom right of Fig. 3), multiplexed into a single
waveguide, and accumulated using another PD, before being sent for
buffering. Thus, our approach leads to an increase in the number of
PDs compared to other accelerators but significantly reduces both the
number of MRs per waveguide and overall laser power consumption.
In each arm within a VDP unit, we used a maximum of 15 MRs
per bank for a total of 30 MRs per arm., to support up toa 15x15 vector
dot product. The choice of MRs per arm considers not only the thermal
crosstalk and layout spacing issues (discussed earlier), and the benefits
of wavelength reuse (discussed in previous para), but also the fact that
optical splitter losses become non-negligible as the number of MRs per
arm increases, which in turn increases laser power requirements. Thus,
the selection of MRs per arm within a VDP unit was carefully adjusted
to balance parallelism within/across arms, and laser power overheads.

V. EVALUATION AND SIMULATION RESULTS
A.  Simulation setup

To evaluate the effectiveness of our CrossLight accelerator, we
conducted several simulation studies. These studies were
complemented by our MR-device fabrication and optimization efforts
on real chips, as discussed in Section IV. We considered the four DNN
models shown in Table I for execution on the accelerator. Model 1 is
Lenet5 [25] and models 2 and 3 are custom CNNs with both FC and
CONV layers. Model 4 is a Siamese CNN utilizing one-shot learning.
The datasets used to train these models are also shown in the table. We
designed a custom CrossLight accelerator simulator in Python to
estimate its performance and power/energy. We used Tensorflow 2.3
along with Qkeras [26], for analyzing DNN model accuracy across
different parameter resolutions.

Table I: Models and datasets considered for evaluation

[Model no.|CONV layers| FC lavers | Parameters Datasets
1 2 2 60.074 Sign MNIST
2 4 2 890.410 CIFARI10
3 7 2 3,204,080 STL10
4 8 4 38.951,745 Omniglot
Table II: Parameters considered for analyses of photonic accelerators
Devices Latency Power
EO Tuning [20] 20 ns 4 pWinm
TO Tuning [17] 4 us 27.5 mW/FSR
VCSEL [32] 10 ns 0.66 mW
TIA [33] 0.15ns 72 mW
Photodetector [34] 5.8 ps 2.8 mW

We compared CrossLight with the DEAP-CNN [11] and Holylight
[12] photonic DNN accelerators from prior work. Table II shows the
parameters considered for this simulation analysis. We considered
photonic signal losses due to various factors: signal propagation (1
dB/cm [6]), splitter loss (0.13 dB [27]). combiner loss (0.9 dB [28]),
MR through loss (0.02 dB [29]), MR modulation loss (0.72 dB [30]),
microdisk loss (1.22 dB [31]). EO tuning loss (6 dB/cm [20]), and TO
tuning loss (1 dB/em [17]). We also considered the 1-to-56-Gb/s
ADC/DAC-based transceivers from recent work [37]. To calculate
laser power consumption, we use the following laser power model:

Plaser - Sdetec[or 2 Pphom_mss +10 x lf.)gm NA (7}

where Pjgqqr is laser power in dBm, Sgareceor 15 the PD sensitivity in
dBm, and Pppgte joss 15 the total photonic loss encountered by the
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optical signal, due to all of the factors discussed above.
B. Results: CrossLight resolution analysis

We first present an analysis of the resolution that can be achieved
with CressLight. We consider how the optical signals from MRs
impact each other due to their spectral proximity, also known as inter-
channel crosstalk. For this, we use the equations from [35]:

s 52
06 = s ®

In (8), @(i, j) describes the noise content from the j MR present
in the signal from the i MR. As the noise content increases, the
resolution achievable with CrossLight will decrease. Also, (4; — 4;) is
the difference between the resonant wavelengths of i MR and j* MR,
while § (= Ai/2Q) denotes the 3dB bandwidth of the MRs, with Q
being the quality factor (Q-factor) of the MR being considered. The
noise power component can thus be calculated as:

Pnn!se = ?-1('0(5_})?1“ ["] (9)
For unit input power intensity, resolution can then be computed as:
Resolution = ——— (10)
max|Prgicel

From this analysis, we found that with the FSR value of 18 nm and
the Q value of ~8000 in our optimized MR designs, and the wavelength
reuse strategy in CrossLight, which allows us to have large (Ai — %))
values (>1 nm), our MR banks will be able to achieve a resolution of
16 bits for up to 15 MRs per bank (Section IV.C.2). This is much
higher than the resolution achievable by many photonic accelerators.
For instance, DEAP-CNN can only achieve a resolution of 4 bits,
whereas Holylight can only achieve a 2-bit resolution per microdisk
(they however combine 8 microdisks to achieve an overall 16-bit
resolution). Higher resolution ensures better accuracy in inference,
which can be critical in some applications. Fig. 5 shows the impact of
varying the resolution across the weights and activations from 1 bit to
16 bits (we used quantization-aware training to maximize accuracy),
for the four DNN models considered (Table I). It can be observed that
model inference accuracy is sensitive to the resolution of weight and
activation parameters. Models such as the one for STL10 are
particularly sensitive to the resolution. Thus, the high resolution
afforded by CrossLight can allow achieving higher accuracies than
other photonic DNN accelerators, such as DEAP-CNN.
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Quantization Levels
Fig_ 5: Inference accuracy of the 4 DINN models considered, across quantization
(resolution) range from 1 bit to 16 bats (for both weights and activations).
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C. Results: CrossLight sensitivity analysis

We performed a sensitivity analysis by varying the number of VDP
units in the CONV layer accelerator (n) and FC layer accelerator (m),
along with the complexity of the VDP units (N and K, respectively).
Fig. 6 shows the frames per second (FPS; a measure of inference
performance) vs. energy per bit (EPB) wvs. area of wvarious
configurations of CrossLight. We selected the best configuration as the
one that had the highest value of FPS/EPB. In terms of (N, K n. m),
the values of the four parameters for this configuration are (20. 150.
100. 60). This configuration also had the highest FPS value, but had a
higher area overhead than other configurations. Nonetheless, this area
is comparable to that of other photonic accelerators. We used this

configuration for comparisons with prior work, as discussed next.
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Fig. 6: Scatterplot of avg. FPS vs. avg. EPB vs. area of vanous CrossLight
configurations; the configuration with mghest FPS/EPB and FPS 1s mghlighted.

D. Results: Comparison with state-of-the-art accelerators

We compared our CrossLight accelerator against two well-known
photonic accelerators: DEAP-CNN and Holylight, within a reasonable
area constraint for all accelerators (~16-25 mm?). We present results
for four variants of the CrossLight architecture: 1) Cross_base utilizes
conventional MR designs (without FPV resilience) and traditional TO
tuning; 2) Cross_opt utilizes the optimized MR designs from Section
IV.A, and traditional TO tuning; 3) Cress _base TED utilizes the
conventional MR designs with the hybrid TED-based tuning approach
from Section IV.B; and 4) Cross_opt TED utilizes the optimized MR
designs and the hybrid TED-based tuning approach.
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Fig. 7: Power consumption comparison among vanants of CrossLight vs.
photome accelerators (DEAP-CNN, Holylight), and electromic accelerators
(P100, Xeon 9282, Threadripper 3970x, DaDianNao, EdgeTPU, Null Hop)

Power (W)

Fig. 7 shows the power consumption comparison across the four
CrossLight variants and the two photonic accelerators from prior work.
We also include comparison numbers for electronic platforms: three
deep learning accelerators (DaDianNao, Null Hop, and EdgeTPU). a
GPU (Nvidia Tesla P100), and CPUs (Intel Xeon Platinum 9282
denoted as IXP9282, and AMD Threadripper 3970x denoted as AMD-
TR) [36]. The difference in power values between the CrossLight
variants arises due to the optimization approaches adopted in each of
the variant. The variants which considered conventional MR design
instead of the optimized designs have larger power consumption for
compensating for FPV. This value becomes non-trivial as the number
of MRs increase, and thus having reduced tuning power requirement
per MR (in Cross_opt and Cross_opt TED) becomes a significant
advantage. Using the TED based hybrid tuning approach provides
further significant power benefits for Cross_opt TED over Cross_opt.,
which uses conventional TO tuning. Cross_opt TED can be seen to
have lower power consumption than both photonic accelerators, as
well as the CPU and GPU platforms, although this power is higher than
that of the edge/mobile electronic accelerators.

Fig. 8 shows a comparison of energy-per-bit (EPB) across all of
the photonic accelerators, for the four DNN models. On average, our
best CrossLight configuration (Cross_opt TED) has 1544x and 9.5x
lower EPB compared to DEAP-CNN and Holylight, respectively. The
reason for CrossLight's lower EPB is because we comprehensively
took into consideration various losses and crosstalk that a photonic
DNN accelerator would experience, and put in place novel approaches
at the device, circuit, and architecture layers to counteract their impact
in CrossLight. The utilization of TED-based thermal crosstalk
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management allows us to have MRs placed much closer together,
which in turn reduces propagation losses. In addition, CrossLight
considers a combination of TO and EO tuning which enables the
reduction of power and EPB as well. The use of EO tuning in our
hybrid tuning approach also provides the advantage of lower latencies,
which is apparent in the EPB values.
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Fig. 8: Comparison of EPB values of the photonic DNN accelerators

Table IIT summarizes the average values of EPB (in pJ/bit) and
performance-per-watt (in kiloFPS/Watt) of the photonic accelerators
as well as the electronic accelerators considered in this work. It can be
observed that the best CrossLight configuration (Cross opt TED)
achieves significantly lower EPB and higher performance-per-watt
values than all of the accelerators considered. Specifically, against
Holylight, which is the best out of the two photonic DNN accelerators
considered, CrossLight achieves 9.5x lower energy-per-bit and 15.9x
higher performance-per-watt.

Table ITI: Average EPB and kiloFPS/Watt values across accelerators

Accelerator Avg. EPB (pJ/hit) |Ave. kiloFPS/watt|
P100 97131 249
IXP 9282 5099.68 2.39
AMD-TR 5831.18 2.09
DaDianNao 5833 0.65
Edge TPU 697.37 17.53
Null Hop 272743 4.48
DEAP CNN 44453 88 0.07
Holylight 274.13 33
Cross_base 14235 10.78
Cross_base TED) 92.64 16.54
Cross_opt 75.58 2025
Cross_opt TED 28.78 52.59

VI. CONCLUSION

In this paper, we presented a novel cross-layer optimized photonic
neural network accelerator called CrossLight. Utilizing silicon
photonic device-level fabrication-driven optimizations along with
circuit-level and architecture-level optimizations, we demonstrated
9.5x lower energy-per-bit and 15.9x higher performance-per-watt
compared to state-of-the-art photonic DNN accelerators. CrossLight
also shows improvements in these metrics over several CPU, GPU,
and custom electronic accelerator platforms considered in our analysis.
CrossLight shows the promise of cross-layer optimization strategies in
countering various challenges such as crosstalk, fabrication-process
variations, high laser power, and excessive tuning power. The results
presented in this paper demonstrate the promise of photonic DNN
accelerators in addressing the need for energy-efficient and high
performance-per-watt DNN acceleration.
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