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ABSTRACT

Parameter quantization in convolutional neural networks (CNNs)
can help generate efficient models with lower memory footprint
and computational complexity. But, homogeneous quantization can
result in significant degradation of CNN model accuracy. In
contrast, heterogeneous quantization represents a promising
approach to realize compact, quantized models with higher
inference accuracies. In this paper, we propose HONNA, a CNN
accelerator based on non-coherent silicon photonics that can
accelerate both homogeneously quantized and heterogeneously
quantized CNN models. Our analyses show that HONNA achieves
up to 73.8x better energy-per-bit and 159.5x better throughput-
energy efficiency than state-of-the-art photonic CNN accelerators.
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1. INTRODUCTION

Artificial neural networks (ANNs), especially convolutional
neural networks (CNNs), have gained popularity as alternatives to
classic machine learning (ML) algorithms. CNNs have exhibited
success across application domains such as image and video
classification, object detection, and even sequence learning. As
CNNs continue to be used for solving increasingly complex
problems, they have in turn become even more compute and
memory intensive. Research into exploring how to reduce the
memory footprint of CNN models while retaining their inference
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accuracy has been an active area of research in recent years. Some
examples of such research areas include exploiting sparsity in CNNs
[1], where unnecessary model parameters are pruned, and inducing
quantization in CNN models [2], [3], where the parameter bitwidths
are reduced. Through quantization, both memory usage and energy
requirement for CNN inference can be reduced. Increasing CNN
model complexity also necessitates that the underlying hardware
platform consistently delivers better performance while satisfying
strict energy requirements. Therefore, CNN model optimizations,
such as sparsity and quantization are being considered for emerging
accelerator platform designs [4].

But even with optimization at the hardware and software levels,
electronic CNN accelerators are still prone to diminishing energy
and throughput efficiencies, due to the slow-down of Dennard
scaling. A potential solution to obtain better energy and throughput
efficiency for CNN applications is to consider more efficient
hardware technologies, such as silicon photonics, for the design of
CNN accelerators. Silicon photonics not only enables low-latency
and high bandwidth communication [5], [6], but can also be used
for low-latency and energy-efficient computations, e.g., matrix-
vector multiplication in the photonic domain [7], which has a
computation complexity of only O(1). However, there are various
challenges when designing an energy-efficient silicon photonic
CNN accelerator, including high laser power, high power
dissipation at electro-photonic interfaces, and high latencies
associated with inevitable photonic device tuning. Moreover, none
of the photonic CNN accelerators proposed to date support the
execution of heterogeneously quantized CNN models.

In this work, we propose HONNA which is a silicon photonic
CNN accelerator designed for optimizing both homogeneous and
heterogeneous quantization in CNN models for energy- and
throughput-efficient inference acceleration with high accuracy. Our
novel contributions in this work include:

e The design of a novel non-coherent silicon photonic accelerator
which utilizes wavelength-division multiplexing (WDM) along
with time-division multiplexing (TDM) for bit-slicing-based
operation for heterogeneously quantized CNN acceleration;

e The design of energy- and throughput-energy efficient modular
vector-granularity-aware matrix-vector multiplication;

e A comprehensive comparison with state-of-the-art silicon-
photonic-based CNN accelerators.

The rest of this paper is organized as follows: Section 2 discusses
related work and our motivation for this work. Section 3 discusses
our HONNA architecture. Section 4 describes the experiments and
results. Lastly, Section 5 concludes the work.
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2. BACKGROUND AND MOTIVATION

Silicon-photonic-based ML accelerator architectures represent
an emerging paradigm and can be broadly divided into two major
categories: coherent and non-coherent. Due to the superior
scalability and performance of non-coherent architectures over
coherent architectures [8], the architecture we consider in this work
is a non-coherent architecture. Non-coherent architectures use
multiple wavelengths, and parameters are imprinted onto the
wavelength amplitude by using wavelength-selective devices (e.g.,
microring resonators (MRs)). Several prior works have discussed
CNN acceleration using non-coherent photonic principles. In [11],
an MR-based CNN accelerator architecture was proposed which
utilizes modular vector-dot-product units with optimized MR
designs and tuning circuit optimization, for energy and throughput
efficiency. The work in [12] utilized microdisks instead of MRs for
lower area and power consumption. Another microdisk-based
photonic accelerator was proposed in [13] for fully binarized CNNs
(single-bit weight and activation parameters). The work in [14]
proposed an MR-based partially binarized CNN accelerator. The
partially binarized CNNs allowed for increased inference accuracy
over fully binarized CNN.

For achieving improved memory and computational efficiency,
conventional quantization approaches use the same bit-width for all
the weight and activation parameters across layers (homogeneous
quantization). Heterogeneous or mixed precision quantization allows
different layers to have different levels of quantization to achieve
lower memory and computational complexity for similar model
accuracy. Several efforts have proposed intelligent neural network
architecture search strategies for optimizing the quantization levels
across layers in a CNN. A differentiable neural architecture search
(DNAS) framework was proposed in [2] to explore the search space
with gradient-based optimization. The technique presented in [3] is
similar to the one in [2], with an optimized loss function, which
penalizes a higher weighted average of the bitwidths of the weights
across layers.

Given the prominence of quantized models to achieve efficient
CNN deployment on resource-limited embedded and IoT platforms,
the ability to accelerate heterogeneously quantized models is
essential for modern CNN accelerator architectures. The photonic
architectures discussed, support fixed parameter resolution and
hence are unable to accelerate heterogeneously quantized models
altogether or effectively accelerating heterogeneously quantized
models. To fully exploit quantization for latency and energy
benefits, we propose the HONNA accelerator, which utilizes WDM
and TDM, along with bit-slicing to achieve efficient inference
performance.

3. HONNA HARDWARE ACCELERATOR
3.1. TDM-based Operation and Energy Benefits

Due to large power consumption required for high resolution
DACs and the presence of heterodyne signal crosstalk noise [15],
most non-coherent photonic architectures opt to support low-
resolution parameters in CNNs. For example, the photonic
accelerator discussed in [12] is designed for a 4-bit resolution, while
those in [13] and [14] target 1-bit resolution. However, without

sufficient optimization of the CNN model, the quantized CNN may
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exhibit poor inference accuracy at low resolutions, as observed in
[12]-[14].
optimizations in terms of tuning and WDM management to achieve

The photonic accelerator in [11] proposed various

a high resolution of 16-bits, which ensures better inference accuracy
than [12
in terms of energy efficiency when accelerating a heterogeneously

]-[14]. However, such an architecture is at a disadvantage

quantized model.

To support heterogeneous quantization and obtain the energy
and power benefits it offers, we propose a novel bit-slicing and
TDM-based approach in HONNA. Moreover, HONNA makes use of
WDM-based operations along with TDM and bit-slicing to
aggressively reduce power and energy consumption. Our approach
distributes bit-slices across time steps onto the matrix-vector
multiplication unit (MVU) to perform the multiplication and
accumulation operations photonically, and then makes use of digital
shift and adder circuits to obtain the correct output from the MVU
operation. The number of time slices required to complete an
operation depends on the bit-slice size (b) and the parameter size
(p). An overview of our operation, making use of a simple example,
is shown in Fig. 1, involving multiplication of two 2-element (p = 8-
bit) vectors: A = [0x31, 0x0D] and B = [0x34, 0x14].
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Figure 1: (a) TDM-based operation for a vector-dot-product operation
between two 2-element vectors in our proposed HONNA architecture;
(b) the same vector-dot-product operation performed with
accelerator in [11].

Considering b = 4-bit, HONNA requires four time steps to finish
this operation. At T1, the least significant nibbles of the elements in
A and B are introduced into the multiplication unit. Elements,
which must interact with each other during the dot-product
operation, are assigned the same wavelength (4). The interaction
between the nibbles generates intermediate products at each time
step, indicated by the colored circles and corresponding callout
tables. The intermediate sums (generated using photodetectors) are
converted to digital signals using an analog-to-digital converter
(ADC), shifted appropriately, and are stored in a local buffer. At T2,
the second set of nibbles from the B-elements are imprinted, while
A data remains unchanged. After T2, all the data from B have been
introduced to the least significant nibbles of A and corresponding
sums are obtained. Thus, at T3, the second nibble of A-elements can
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be introduced, and B needs to be fed again in T3 and T4 [11] will
accomplish the same operation in a single time-step (Fig. 1(b)).

The energy consumption for HONNA (Fig. 1(a)) is ~6 mJ while
the architecture in [11] (Fig. 1(b)) consumes ~240 mJ for this
operation. These energy calculations use the parameters in Table 2,
which is discussed later. Even for p of 16-bit (not shown), HONNA,
at b of 4-bit, will only have an approximate energy consumption of
24 mJ over 16 time steps, while [11] will still consume 240 m7¥
(detailed results in Section 4 ).

3.2. Tuning Circuits

The thermo-optic (TO) tuning approach is widely used for FPV
correction in MR-based systems, and non-coherent photonic
accelerator architectures use them for imprinting CNN parameters.
However, the operation of TO tuning circuits can affect the fidelity
of operation of neighboring MRs in the form of thermal crosstalk
[16]. Therefore, solely relying on microheater-based TO tuning can
impair the operation of the non-coherent CNN accelerator. As an
alternative, the electro-optic (EO) tuning mechanism operates
through carrier injection into the MR body with a PN-junction
across the MR. However, the lower tuning range means EO tuning
alone is inadequate to address the large variations induced by FPV
in MRs but is sufficient for CNN parameter imprinting onto the
resonant wavelength. To overcome FPVs and for accurate
parameter imprinting required for photonic multiplication, HOQNNA
make use of a hybrid tuning circuit which combines EO and TO
tuning. The hybrid tuning approach considers the advantages each
tuning mechanism offers while covering for their disadvantages. To
address the thermal noise generation from TO tuning, we adapt a
method called thermal Eigenmode decomposition (TED), which was
first proposed in [16]. TED also comes with the added advantage of
significantly reducing TO power consumption and frequency of TO
operation.

3.3. MVU design

To accelerate ANNs in general, the most time-consuming
operation, matrix-vector multiplication, must be accelerated.
Inference acceleration in particular deals with fixed weight matrices
and input-dependent activations. For CNNs, two main types of
layers have to be considered: convolution (CONV) layers and fully
connected (FC) layers. CONV layers perform convolution
operations between smaller weight matrices or kernels and input
feature maps (activations), to generate output feature maps for the
next layer. On the other hand, FC layers perform matrix-vector
multiplication operations between significantly larger weight
matrices and activation vectors. The basic compute unit in our
architecture, to support both CONV and FC layer operations, is an
MVU. The MVU accepts a WDM signal through an input
waveguide, which is imprinted with the vector parameters using an
MR bank. For imprinting the parameters, we make use of DAC-
based EO tuning in the hybrid tuning circuit. The tuned signal from
the MR bank is distributed across the matrix rows, again distributed
across waveguides, using a splitter-based photonic multiplexer.

For FC layers, the matrix is comprised of bit-slices of individual
weight values, which need to change with time steps so that the
vector-matrix multiplication operation can happen in its entirety.
For CONV layers, the architecture performs a vector-dot-product
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operation [11], so the MVU can be used to represent all the bit-slices
of one of the vectors simultaneously, across waveguides, to reduce
the number of time slices needed for vector-dot-product operations.
In both cases, the results per time slice need to be shifted and added.
For FC layer operation, this can be done after the summation
operation as each waveguide generates partial sums for separate
elements. For the CONV layer, the entire MVU generates a single
convolution output. In FC layers, the shift and accumulate operation
is done electronically, but for CONV layers, it can be done
photonically. For photonic shifting, we make use of gain-tuning
signal (o) fed Semiconductor Optical Amplifiers (SOAs) along with
addition via Kirchhoff's Current Law (KCL) from the photodiode
outputs.
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Figure 2: Architectural overview of HQNNA with the internal
architecture of CONV-MVU and FC-MVU highlighted.

3.4. HQNNA Architecture

HQNNA architecture, as shown in Fig. 2, is composed of an array
of MVUs, with input data routed through an electronic control unit.
The MVU array is reused for CONV and FC layer activation. The
vectors and matrices are mapped across the MVU array and the
resulting partial sum vectors are summed digitally to obtain the sum
vectors. For FC layers, each MVU considers an activation vector of
size v and a vxv weight matrix simultaneously. Larger vectors and
matrices with different dimensions are split up across different FC-
MVUs to obtain the vector to be passed to the next FC layer. The
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Table 1: The best models found through heterogeneous quantization techniques considered, compared to the quantized versions
from other photonic accelerator works, in terms of inference accuracy and memory footprint

Model Number Parameter Quantization Weight bitwidths Activation bitwidths Inference Memory
of layers count type across layers across layers accuracy | footprint
HQNNA [6,6,4, 4, 4, 4, 4] [6,6,4, 4, 4, 4, 4] 76.4% 169 MB
CrossLight [11] 16 16 79.3% 650 MB
AlexNet 7 38,413,156 HolyLight [12] 4 4 76.1% 162 MB
LightBulb [13] 1 1 56.1% 41 MB
ROBIN [14] 1 4 62.5% 48 MB
mowa | RN | oo oo | T | s
CrossLight [11] 16 16 81.9% 70 MB
ResNet20 20 271,786 HolyLight [12] 4 4 77.6% 175 MB
LightBulb [13] 1 1 56.1% 44 MB
ROBIN [14] 1 4 64.2% 5.8 MB
HQNNA [8,8,4, 4, 4, 4, 4] [8,8,4, 4, 4,8, 4] 87.9% 34.4 MB
CrossLight [11] 16 16 86.2% 134 MB
(SCVI\}IINN) 7 552,362 HolyLight [12] 4 4 82.1% 324 MB
LightBulb [13] 1 1 29.4% 8.4 MB
ROBIN [14] 1 4 49.4% 9.8 MB

weight parameters must be fed across ceil(p/b) time-steps and a
single activation vector slice has to operate on all the weight slices.
This process needs to be repeated ceil(p/b) times to obtain the final
output vector. Thus, an output vector of v size is generated every
(ceil(p/b)P time-steps. For CONV layer acceleration, the kernel,
unfurled to a vector of size k, and its different bit-slices can be
presented simultaneously to a k-element, activation vector slice.
The activation vector slices, in turn, must be presented to the kernel
across ceil(p/b) time-steps to obtain a single output vector element.
The value of k is decided by the kernel sizes present in the CNN
models and may be further decomposed across MVUs as dictated by
laser power consumption constraints. As the value of k increases,
the MR count, the waveguide length, and hence the laser power
needs to be increased, the relation among which can be modeled
using:

1

Here, Piaser is the laser power in dBm, Sgetector is the PD sensitivity in
dBm, N; is the number of wavelengths, and Pphotloss is the total
optical loss experienced by the signal. We considered optical signal
losses due to various factors: waveguide propagation loss (1 dB/cm
[11]), splitter loss (0.05 dB [25]), MR through loss (0.02 dB [11]), MR
modulation loss (0.72 dB [11]), EO tuning loss (6 dB/cm [9]), and TO
tuning power (27.5 mW/FSR [10]). The value of v is more open-
ended and needs to be optimized depending on the throughput
analysis for FC layers across models. The DAC resolution, and the
corresponding power and latency, will be dependent on the b value
being used. For CONV layer operations, we consider K Conv-MVUs
and for FC layer operation, VFC-MVUs are considered. We analyze
the values of these parameters in Section 4.

Plaser - Sdetector = Pphotoloss +10 % 10g10 NA .

4. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of HONNA, we conducted several
simulation-based analyses. For the CNN models, we consider the
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well-known models AlexNet and ResNet20 for CIFAR 10 dataset
classification, along with a custom model for SVHN dataset
classification. For power, energy, and latency analysis of silicon
photonic CNN accelerators, we developed a Python-based in-house
simulator. For analyzing the model accuracy, we used Tensorflow
v2.8 along with QKeras [17]. We compare the performance of our
architecture in terms of energy-efficiency (energy-per-bit, or EPB),
and throughput-energy efficiency (GOPS/EPB) against state-of-the-
art photonic CNN accelerators: CrossLight [11], HolyLight [12],
LightBulb [13], and ROBIN [14]. For obtaining optimal
heterogeneous quantization for these models, we explored different
algorithms. The best configuration found using [2] was used for
AlexNet and ResNet20, and for the SVHN CNN model, an
exhaustive quantization search using AutoQKeras was performed
(results in Table 1). This quantization exploration among the
models, for HONNA, is essentially a search for optimal p value in
terms of accuracy and memory footprint. We also simulate the
various quantization techniques adapted in the works [11]-[14] that
we compare HQNNA against (see Table 1). Note how the
heterogeneously quantized models (HQONNA) have significantly
lower memory footprint than the 16-bit quantized models ([11])
while maintaining competitive model accuracy.

Table 2: Parameters considered for architecture analysis

Devices Latency Power

EO tuning [9] 20 ns 4 yW/nm
TO tuning [10] 4 us 27.5 mW/FSR
VCSEL [18] 0.07 ns 1.3 mW
Photodetector [19] 5.8 ps 2.8 mW

SOA [20] 0.3 ns 2.2mW
DAC (16-bit) [21] 033 ns 40 mW

ADC (16-bit) [22] 14 ns 62 mW

DAC (8-bit) [23] 0.29 ns 3 mW

ADC (8-bit) [24] 0.82 ns 31mW
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The power and latency parameters used to model the
architectures are shown in Table 2. DACs with lower resolutions (1-
bit, 2-bit, 4-bit) are not widely researched, possibly due to niche
application spaces. For them, we have assumed the same latency as
the design from [24]. We have also scaled DAC power for these
lower resolution devices, with respect to resolution (V) using the
following proportionality [26]:

Poac x (24 1). 2

In our first experiment, we optimize the HONNA architecture,
in terms of (v, k, b, V, K) (see Section 3.4). The best configuration
was found in terms of throughput-energy efficiency in terms of
GOPS/EPB. The best (v, k, b, V, K) was found to be (50, 20, 4, 200,
100) for the CNN models considered. This configuration of HONNA
exhibits low maximum-power consumption (57.5 W) due to the
lower tuning and DAC power consumption.
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Figure 3: EPB for CNN models, across photonic accelerators.

Fig. 3 shows the EPB comparison across different architectures.
The lower power consumption of HQONNA along with lower
latencies of the lower resolution DACs being used enable this
architecture to obtain lower EPB values as well. On average,
HQNNA achieves 73.8%, 52.2%, 12.2X, and 3.59% lower EPBs than
HolyLight, LightBulb, CrossLight, and ROBIN, respectively, as shown
in Fig. 3.
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Despite having lower throughput than CrossLight and ROBIN,
due to the significantly lower EPB, HONNA exhibits significantly
higher GOPS/EPB. As shown in Fig. 4, our HONNA architecture
achieves 159.5%, 103.1%, 28.6%, and 3.37x better GOPS/EPB than
HolyLight, LightBulb, CrossLight, and ROBIN respectively. These
results highlight the energy- and throughput-energy efficient
quantized CNN acceleration capabilities of the HONNA accelerator.

5. CONCLUSION

In this paper, we presented a novel non-coherent photonic CNN
accelerator called HQNNA, which uses WDM and TDM
simultaneously to efficiently accelerate heterogeneously quantized
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CNN models. Through identifying optimal quantization profiles for
the CNNs and corresponding optimizations for hardware, HONNA
succeeded to achieve better performance in terms of energy- and
throughput-efficiency: up to 73.8x better energy-per-bit and 159.5%
better throughput-energy efficiency than conventional photonic
CNN accelerators. Thus, HONNA represents a promising new
substrate for energy-efficient quantized CNN model acceleration.
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