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Abstract
The requirement of social distancing during the COVID-19 pandemic has presented
significant challenges for high-rise buildings, which heavily rely on elevators for ver-
tical transportation. In particular, the need for social distancing has reduced elevator
capacity typically by at least two-thirds or as much as over 90% of the normal amount.
This reduction is a serious concern, as reduced elevator capacities cause large queues
to build up in lobbies, which makes social distancing difficult and results in large wait
times. The objective of this study is to safely manage the elevator queues by propos-
ing simple, technology-free interventions that drastically reduce the waiting time and
length of lobby queues. We use mathematical modeling, epidemiological expertise, and
simulation to design and evaluate our interventions. The key idea is to explicitly or
implicitly group passengers that are going to the same floor into the same elevator as
much as possible. In the Cohorting intervention, we attempt to find passengers going to
the same floor as the first person in the queue. In the Queue Splitting intervention, we
create a different queue for different groups of floors. Based on simulation and analyt-
ical findings, Cohorting and Queue Splitting can significantly reduce queue length and
wait time, while also maintaining safety from viral transmission in otherwise crowded
elevators, building lobbies, and entrances. These interventions are generally accessible
for many buildings since they do not require programming the elevators, and rely on
only using signage and/or a queue manager to guide passengers.
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1 INTRODUCTION

The COVID-19 pandemic has made it imperative to design
interventions for people to stay safe in potentially crowded
areas. For high-rise buildings, social distancing reduces the
capacity of elevators, cutting the number of passengers per
elevator by two-thirds or as much as over 90% of the nor-
mal amount (Swinarski, 2020, 2021; Weber, 2020). Reduced
elevator capacity can cause large lobby queues and long
wait times, resulting in crowding and reduced social dis-
tancing (Smith, 2020; van Rijn et al., 2020; Weber, 2020;
Wilson, 2020). With no interventions and reduced capacity
on elevators, the increased waiting times and queue lengths
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in the lobby could pose significant safety risks. Thus, an
intervention to the public health problem of safely manag-
ing queues for elevator systems amidst a pandemic is needed
(our team is composed of operations researchers and an
epidemiologist). In fact, this project was directly in collab-
oration with the NYC Mayor’s Office of the Chief Technol-
ogy Officer and the Department of Citywide Administrative
Services. These offices had continuous input into our work
throughout the process and allowed us to conduct several
on-site visits with building managers, where we talked to
frontline staff and gathered input. We also presented our
findings multiple times to a variety of agency staff, devel-
oped an instructional video,1 and provided open source
code2 that can be tailored to the needs of different types of
buildings.
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One can broadly consider two major forms of interven-
tions based on (i) changing passenger behavior and (ii)
elevator artificial intelligence. A variety of technological
innovations from elevator companies and building manage-
ment have been considered during the pandemic (Wilson,
2020). In many elevator systems, especially in older ones,
changing the algorithms and technology of how the elevators
navigate through the building is challenging or infeasible, and
would require long-term planning and expensive modifica-
tions. Thus, in order to safely manage how passengers use
and board elevators, we focus on technology-free interven-
tions, which should be more accessible and practical for an
overwhelming majority of buildings with elevators. We
specifically provide a detailed simulation study in addition
to theoretical results of queuing systems to model and assess
the efficacy of our various interventions.
Currently, many elevator systems take a hands-off

approach to managing the flow of people to elevators, result-
ing in something that resembles first-come first-serve (FCFS)
(Fujino et al., 1997). Our simulations, using data calibrated
from a large New York City government building, show that
such a hands-off approach will lead to large and unsafe
queues if building occupancy returns to prepandemic lev-
els while elevator capacities are still reduced due to social
distancing. Thus, it is imperative that we design interven-
tions that use the elevators more efficiently—getting passen-
gers to their destination at a faster aggregate rate (higher
throughput)—by more carefully managing who uses which
elevator when. For instance, we shall consider interventions
where we try to get passengers going to the same or nearby
floor to ride an elevator together as well as interventions
where passengers are encouraged to walk up or down a floor
after riding the elevator.

1.1 Contributions

The social distancing requirement during a pandemic may
lead to unsafe queues in the lobby with no interventions.
Using mathematical modeling, epidemiological expertise,
and simulation, we design and evaluate simple interventions
to load passengers in elevators that can drastically reduce the
length of lobby queues amidst a pandemic. The proposed
interventions increase efficiency of the elevator system, and
are effective beyond the constraints imposed by a pandemic,
making them useful even after the pandemic to manage lobby
queues. Our interventions do not require programming the
elevators, and rely on using only signage and/or a queue man-
ager (QM) to guide passengers. Our interventions are effec-
tive in reducing both the number of stops per trip and the
travel distance per trip. Next, we outline our contributions in
detail.

1. We develop a general, open-sourced simulation model
that captures many of the details of elevator systems and
allows us to study the impact of various interventions and
queuing behavior. Our simulation model allows us to spec-
ify the number of elevators, capacity, elevator speed, and

boarding times, and to measure and visualize the queue
length and wait time of elevator systems for the various
interventions we consider. We primarily focus on a case
study calibrated by data from a large government build-
ing in New York City that is in need of managing elevator
traffic amidst the COVID-19 pandemic.

2. We propose an intervention we call Cohorting, in which
we attempt to find any and all passengers going to the
same floor as the first person in the queue. Simulations
show Cohorting reduces waiting time for passengers and
the number of people in the lobby (queue length) sig-
nificantly. In limited lobby spaces, we recommend the
Cohorting with Pairing intervention, where we pair pas-
sengers going to the same floors. Pairing is practically eas-
ier to implement as it only requires matching two people
at a time (rather than four, for instance). We also explore
the impact of some passengers’ willingness to walk up or
down one floor from their destination. The queue length
can be further reduced if just a small fraction of passen-
gers are willing to walk.

3. We also propose the Queue Splitting intervention where
we create a different queue for different groups of floors
and load the elevators from queues in a round-robin fash-
ion. The travel time of elevators is naturally reduced since
passengers are likely to be going to the same or nearby
floors. Queue Splitting requires less management efforts
comparing to Cohorting, and splitting into just two groups
achieves comparable performance to Cohorting in our
case study.

4. We analytically investigate the reason behind the strong
performance of Cohorting and Queue Splitting using a
technique from queuing theory known as stability anal-
ysis. Specifically, we characterize the system parameters
required for each intervention to ensure that the queues
do not increase in length over time, that is, the queues are
stable. Our theoretical analysis reveals that these interven-
tions can effectively reduce the average distance traveled
and the number of stops per elevator trip.

1.2 Related literature

Although researchers have studied algorithms for managing
elevator systems (Al-Sharif et al., 2012; Barney & Al-Sharif,
2015; Barney & Dos Santos, 1975; Fujino et al., 1997; Lee
et al., 2009; Pepyne & Cassandras, 1997), to the best of our
knowledge, there is not much literature on designing elevator
systems with pandemic safety considerations.
Our simulation model is based on queuing theory. A dis-

crete event simulation (Ross, 2013) models the operation of
a system as a sequence of events in time, thus we utilize a
detailed simulation to estimate mean wait times and queue
lengths. Previous works that utilize queuing theory in elevator
systems (Alexandris, 1977; Barney & Al-Sharif, 2015; Fin-
schi, 2010), and papers that use simulation for elevator traffic
studies (Al Sukkar et al., 2017; Hakonen & Siikonen, 2008)
do not consider the impact of reducing capacities while main-
taining service quality. A recent paper in the context of the
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COVID-19 pandemic (Swinarski, 2021) models and predicts
elevator traffic in a university classroom building when pas-
sengers mainly travel in the predetermined short time periods
between two classes, with known class schedules and traf-
fic patterns. The authors discuss an intervention that directs
passengers to sort themselves into pairs of passengers with a
shared destination floor, which can improve the performance,
but is not as effective as moving classes to lower floors or
staggering course start times. In this paper, we consider gen-
eral building types with random arrival and destination pat-
terns. In Mulvany and Randhawa (2021), the authors consider
breaking FCFS rules in exchange for fairness considerations,
whereas we break FCFS in exchange for safety reasons and
improved performance.
The stability analysis in this paper is built upon literature

in queuing and stochastic processing networks (Dai & Harri-
son, 2020; Dai & Li, 2003). The interventions in the paper are
designed specifically for an elevator system, while they share
similarities to some well-studied dispatch policies in multi-
class queuing networks. The Cohorting intervention resem-
bles the first-in-first-out dispatch policy (Bramson, 1996) if
we consider passengers going to the same floor as a class and
an empty server always picks a class whose head-of-line job
arrived first. The Queue Splitting intervention is essentially a
round-robin dispatch policy in the multiclass queuing litera-
ture, which is related to fair queuing policies widely studied
in the computer network literature; see, for example, Demers
et al. (1989) or Parekh and Gallager (1994).

1.3 Organization

We introduce the simulation model of the elevator system in
Section 2 and present the simulation results in Section 3. Sec-
tion 4 analyzes the stability condition for each intervention
we propose and compares the results to FCFS. In Section 5,
we discuss some practical issues and solutions for the Cohort-
ing intervention. Finally, we conclude and discuss ideas for
future work in Section 6.

2 SIMULATION MODEL

In this section, we describe our modeling framework. In
particular, the model considers moving passengers upwards
through a building from a lobby, which presents the biggest
challenge for social distancing in a high-rise building. We
study low-tech solutions (requiring no programming of ele-
vators and no knowledge of internal elevator algorithms) and
describe interventions to manage the queue of passengers in
the lobby. We focus on analyzing solutions that work for high
volume periods, for example, morning rush hour, lunchtime,
and so forth, where social distancing is a challenge. These
busy periods are referred to as uppeak (Barney & Dos Santos,
1975) and typically an elevator system working efficiently
during the morning uppeak can handle interfloor traffic and
downpeaks without any issues (Barney & Al-Sharif, 2015).

Below we describe the model we use in the simulation. We
will simplify some of the assumptions when deriving the ana-
lytical results in Section 4.
We model a building as having a lobby on floor 1, m des-

tination floors denoted 2, … ,m + 1, and N elevators denoted
1, … ,N. We assume passengers wanting to go to floor j at
time t arrive at the lobby according to a non-stationary Pois-
son process with arrival rate 𝜆j(t). The Poisson assumption
for individual arrivals is considered a good approximation to
the arrival process (Alexandris, 1977; Barney & Al-Sharif,
2015). Each of theN elevators has a capacity ofC, the number
of people that the elevator can safely transport while ensuring
social distancing.

Remark 1 (SAFE CAPACITIES). The capacity C of the
elevators should be set based on the physical dimensions
of each elevator. Social distancing needs to be taken into
account to put floor markers for passengers to stand inside
an elevator, for example, opposite corners of a diagonal for
loading two people, or all corners for loading four people.
In general, there is a fundamental trade-off between set-
ting a lower elevator capacity and increased queues in the
lobby.

In many high-rise buildings, elevators are constrained to
certain floors so we let S(n) denote the set of destination
floors that elevator n can serve. If there is no restriction on
the service range of the elevator n, then S(n) = {2, … ,m + 1}.
We assume the elevator travel time per floor 𝜈 is constant
and the (de)boarding times of the elevator are a function of
the number of people k that are (de)boarding, denoted by
BoardingTime(k). The (de)boarding time BoardingTime(k) is
a constant time 𝜔 to open and close the elevator door, and
additional time depending on the number of passengers k
entering (exiting). For our theoretical results in Section 4, we
assume that the service time only depends on 𝜈 and 𝜔. But for
the purpose of creating a realistic simulation tool we describe
the elevator dynamics in greater detail.
The travel time to start at floor j1 and stop at floor j2 is

T(j1; j2) = 𝜈(j2 − j1). If k (at most C) passengers with desti-
nations d1 ≤ d2 ≤ ⋯ ≤ dk board an elevator n at the lobby,
we can create a count F⃗ = {F2, … ,Fm+1} of the number of

passengers deboarding at each floor. Note that
∑m+1

j=2 Fj = k,
the number of passengers boarding at the lobby. The floor
H := dk is typically referred to as the highest reversal floor
in the literature (Lee et al., 2009), and is useful in calculat-
ing the round trip time. We also need to approximate inter-
floor traffic (including down traffic), which we do by using
an estimated multiplier 𝛽 (e.g., 𝛽 = 1.3, which means it takes
30% longer down) from the time the elevator takes to drop
off the last passenger. Then the ascent time AscentTime(F⃗)
without accounting for stops, is given by AscentTime(F⃗) =
T(1; dk), the time spent making stops is StopTime(F⃗) =∑m+1

j=2 BoardingTime(Fj), and the descent time from when

the last passenger has deboarded is DescentTime(F⃗) = 𝛽 ×
AscentTime(F⃗) = 𝛽T(1; dk). The time to board at the lobby is
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BoardingTime(F⃗) = BoardingTime(
∑m+1

j=2 Fj). Thus the total

round trip time RoundTripTime(F⃗) of an elevator is

RoundTripTime (F⃗) = BoardingTime (F⃗) + AscentTime (F⃗)

+ StopTime (F⃗) + DescentTime (F⃗). (1)

To measure the performance of different interventions in
the simulation, we consider the following metrics: average
waiting time of a passenger at the lobby (measured at every
time unit), average number of passengers at the lobby (queue
length, measured at every time unit), and the average round
trip time of elevators. We also explore qualitative consid-
erations like human and material resources needed, ease of
understanding for managers and passengers, and perceived
inequity (Berry et al., 2002; Larson, 1987) (e.g., when an
intervention lets some passengers skip ahead of others).
We want to mathematically characterize the performance

of the system. Let Wi denote the wait time for passenger i.
Let N(t) denote the number of people waiting in the lobby
at time t. In a classic service system, the traditional goal is
to minimize the total (average) expected wait time, that is,
𝔼[
∑

i Wi]. However, the primary objective in the context of a
pandemic is to maximize safety, which corresponds to min-
imizing the number of people in the lobby that are waiting
for an elevator. Metrics of interest are the expected number
of passengers in the lobby over a time horizon of T periods,
1

T
∫ T

0
𝔼[N(t)]dt, and the maximum queue length, maxt N(t).

Finally, we describe our system dynamics in the simula-
tion. Passengers arrive at the (first floor) lobby according to
the Poisson process 𝜆j(t) defined above and queue in a line
or multiple lines, depending on the intervention being imple-
mented. When an elevator is available at the lobby (either
there is a free elevator already or passengers wait for an ele-
vator to arrive), it is loaded according to the rules of the inter-
vention, up to the capacity limit C of the elevator. The logic
of each intervention can be found in Section 2.1. At con-
stant intervals (Δ t seconds), we update the system by load-
ing available elevators in the lobby with passengers already
in line(s) using the rules of the intervention. Once loaded,
the elevators make stops corresponding to destinations of the
passengers, and finally come back to the lobby to be loaded
again.
We shall refer to an instance as the sequence of random

passenger arrival times and destinations generated during
one simulated rush hour morning. We record all quantitative
metrics listed above. We simulate 100 independent random
instances for every set of parameters and report the average
performance for each metric. The code for the simulations is
publicly available online.1,2

2.1 Interventions

The standard way most elevator systems operate is akin
to first-come first-serve (FCFS). However, moving toward

safe interventions requires moving away from FCFS, which
means that some people may be allowed to “cut in line” in
order to decrease queue lengths and waiting times, while
serving as many passengers as possible. Our interventions
may rely on a queue manager (QM) for implementation,
where the QM can be thought of as a personnel or a device
with a screen.
First, we discuss the status quo - FCFS - where the passen-

gers who arrive at the lobby first will enter an elevator first.
FCFS for elevator loading follows the standard social norm
of queuing. There are obvious advantages for using the sta-
tus quo, as it ensures fairness and requires no management
of the queue. However, even pre-COVID especially during
rush hours such as morning and lunchtime- the lobby may be
crowded with passengers, elevators are fully loaded, and they
may make many stops during a trip. With a social distanc-
ing rule during a pandemic such as COVID-19, the dramati-
cally reduced elevator capacity could cause a severe increase
in congestion in the lobby and thus increase the risk of dis-
ease spread.
Next, we propose the intervention, which we call Cohort-

ing, which seeks to group together passengers going to the
same floor. In this intervention, passengers line up in a queue
in order of arrival. When an elevator arrives, the first pas-
senger boards. Then, the QM asks if anyone in the queue is
going to the same floor as the first passenger and then they
board as well (according to their arrival order). This creates a
cohort going to the same floor (such passengers are allowed to
“cut in line”). If there is still capacity in the elevator, then the
passenger at the front of the queue enters and the QM again
allows passengers going to the same floor to board the ele-
vator. This process is repeated until the elevator is full or the
queue is empty. See Algorithm 1 in Supporting Information
Section EC.4 for a detailed simulation pseudocode. Cohort-
ing is the best-performing intervention to improve efficiency
(as seen in Section 4), but requires a QM to interact effec-
tively with the queue to learn where passengers are going.
It may be difficult for the QM to know the destinations of
passengers that are far back in the queue. Thus, in Section 5
we consider easier-to-implement variants where we can only
communicate with the first few people in the queue and where
we only try to cohort in pairs.
The next intervention we propose isQueue Splitting, where

we form a separate queue for disjoint groups of floors.
In Queue Splitting, floors are assigned to different groups,
where each group consists of consecutive floors, for example,
2–8 and 9–16. We create a queue corresponding to each floor
group. Arriving passengers join a queue corresponding to
their floor group, and elevators are boarded from the queues
in a round-robin fashion (possibly with the help of a QM).
For instance, there can be four queues, each corresponding to
six floors. When any elevator arrives, one of the queues sends
the first C passengers in line to it. If there are less than C in
the queue, then the next queue sends passengers and so on.
The queues are chosen in a round-robin fashion (or in a way
to dynamically balance the length of each queue). See Algo-
rithm 2 in Supporting Information Section EC.4 for a detailed
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F IGURE 1 Illustrating the Cohorting and Queue Splitting interventions. Note: Passengers enter from the left and are guided by the queue manager
(QM) to the elevators. Those exiting the elevator leave the building on the right, to ensure social distancing from entering passengers. In this example, the QM
is loading an elevator in the lobby. We indicate the passengers who will board the next elevator using dark green circles. Under the Cohorting intervention in
(a), the first elevator will stop at two floors, which are the destinations of the first and second passenger. Under the Queue Splitting intervention in (b), the QM
is first loading from the queue for floors 2–5, and thus the elevator will stop at three floors [Color figure can be viewed at wileyonlinelibrary.com]

simulation pseudocode. By creating queues for every floor
group, the travel time of elevators is naturally reduced since
passengers are likely to be going to the same or nearby floors,
which achieves an effect similar to Cohorting. The number of
stops is also reduced compared to FCFS by grouping pas-
sengers in a limited floor range. This intervention does not
require any programming of the elevator system, only requir-
ing organizing the lobby space. A schematic showing the
implementation of Cohorting and Queue Splitting is shown
in Figure 1.
Finally, we discuss the Allocation intervention, where each

elevator is assigned to only go to predetermined floors. This
intervention can be accomplished by changing the elevator
control system, or simply by adding signs on each eleva-
tor door. We propose several floor allocation interventions,
including partitioning into ranges of floors, or splitting into
odd and even floors. For instance, one building in our case
study has 14 elevators and 24 destination floors to serve. We
can split the 14 elevators into 2 groups of 7, where each group
goes to 12 floors. Another possibility is to split into odd and
even floors, which may encourage people to use one level of
stairs to reach their final destination. The key intuition behind
the allocation intervention is that each elevator, or each set of
elevators is only serving a small range of floors. By doing
so, the chances of two people in the same group going to
the same or nearby floor increases, compared to FCFS. Thus,
Allocation has an effect that resembles Cohorting and Queue
Splitting, leading to a reduction in travel and deboarding time.
It is also perhaps the easiest intervention to implement. In
fact, many buildings are using Allocation to create a sepa-
ration of high floors and low floors in practice, where some
of the elevators only serve high floors and the others serve
low floors. In this case, Cohorting and Queue Splitting can
also be applied in addition to the Allocation intervention (we
provide simulation results in Supporting Information, Section

EC.3.2). We also note that Queue Splitting and Allocation are
less likely to be perceived as unfair, as no one visibly cuts the
line although it is possible that passengers do not board in
FCFS order.
In this paper, we focus on the performance of Cohorting

and Queue Splitting because Allocation does not perform
well compared to the other two interventions. We only discuss
the performance of the allocation intervention in Supporting
Information Section EC.3.

3 SIMULATION RESULTS

In this section, we describe our findings via simulation from
three examples corresponding to a small, medium, and large
building. The discussions in this section are centered around
the large building, while the small and medium buildings
are discussed in Supporting Information, Section EC.2. The
large building is calibrated using data from a large govern-
ment building in New York City that is planning for reopen-
ing and urgently needs to manage elevator traffic amidst the
COVID-19 pandemic. It is a historical building with a legacy
elevator system, so only technology-free solutions can be
implemented. Moreover, this building is heavily used and
had more than 5500 people (staff and visitors) accessing
it on a prepandemic day during the rush hour. The build-
ing has 25 floors and the 28 elevators are split into two
elevator banks (North and South). Without loss of general-
ity, we consider the South bank, where 14 elevators serve
about 2750 visitors during the morning rush hour from 8
a.m. to 10 a.m. (N = 14,m = 24). In the two-hour period,
we assume the arrival process is a stationary Poisson pro-
cess with an arrival rate 2750∕7200 passengers per sec-
ond. Arriving passengers are equally likely to go to any of
floors 2 through 25. Based on the physical dimensions of
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(a) (b) (c)

F IGURE 2 Comparison of interventions for our large building case study. Note: We run 100 independent random instances and report the average
performance. (a) Plot of percentage of passengers experiencing different waiting times in the lobby across interventions. (b) Plot of percentage of time
different queue lengths in the lobby occur (measured every 1 s) across interventions. (c) Plot of queue length in the lobby from beginning to end of the busy
period across interventions [Color figure can be viewed at wileyonlinelibrary.com]

the elevators, the capacity is C = 4. Every elevator n serves
all floors, that is, S(n) = {2, … , 25}. It takes 15 s for one
passenger to (de)board, and an additional 2 s per extra passen-
ger. Thus, BoardingTime(k) = 15 + 2(k − 1) s for k passen-
gers in an elevator. The elevators have a constant travel time
per floor of 1.4 s/floor, hence the time to travel from floor j1 to
floor j2 is T(j1; j2) = 1.4(j2 − j1) s. The speed multiplier 𝛽 to
account for interfloor traffic is 𝛽 = 1.3. All parameters used
for our simulations can be found in Supporting Information,
Section EC.1. Note that the queues will all eventually dimin-
ish after the end of rush hour because the passenger traffic
goes down, but we do not simulate this. In the figures below,
we simulate only until the end of rush hour (peak) and hence
the queue decline after this time is not shown.
The results for FCFS, Cohorting, and Queue Splitting (two

queues with floor ranges 2–13 and 14–25) on the large build-
ing are presented in Figure 2. One can observe that for FCFS,
the number of people in the lobby grows linearly during the
rush hour period we simulate. In fact, by the end of the rush
hour, there can be up to 100 people in the queue and wait
times can reach almost 5 min. Thus, an intervention is abso-
lutely necessary to avoid this unsafe buildup of passengers.
We see that Cohorting has a much lower range of queue
lengths and waiting times compared to FCFS. Cohorting has
a maximum queue length of around 12, which is over a fac-
tor of eight times smaller than the maximum queue length of
FCFS. In other words, a passenger arriving at any point in the
rush hour is likely to experience a queue of at most 12 people
with the Cohorting intervention.
In the Queue Splitting intervention, we do not allocate any

elevators but rather form a queue for every group of floors. In
Figure 2, we see that Queue Splitting (into two queues) has
a much lower range of queue lengths and waiting times com-
pared to FCFS. Similar to Cohorting, the maximum queue
length is around 15. In other words, a passenger arriving at
any point in the rush hour is likely to experience a queue

F IGURE 3 Impact of Cohorting and Queue Splitting intervention
into 2, 3, and 4 queues for our large building case study. Note: We plot the
queue length in the lobby (measured every 1 s) throughout rush hour. We
run 100 independent random instances and report the average performance
[Color figure can be viewed at wileyonlinelibrary.com]

of less than 15 people in the 2 Queue Split intervention,
which is over a factor of five times smaller than the maxi-
mum queue length of FCFS. One can see in Figure 2 that
the maximum wait times and total queue length are relatively
stable over time for this intervention, and with average reduc-
tions of over 80% compared to the default FCFS. Thus, a 2
Queue Split achieves comparable performance to Cohorting,
the best intervention.
We also consider the effect of the number of queues used

in Queue Splitting, with the results displayed in Figure 3
for the large building. The floor ranges for each queue are
split evenly: {(2 − 13), (14 − 25)} in the 2 Queue Split, {(2 −
9), (10 − 17), (18 − 25)} in the 3 Queue Split, and {(2 −
7), (8 − 13), (14 − 19), (20 − 25)} in the 4 Queue Split. In
this building, 4 Queue Split works better than 2 and 3 Queue
Splits (higher number of queue splits achieves an effect simi-
lar to Cohorting). There is a marked improvement (Figure 3)
from 2 to 3 Queue Split and only a marginal return on 4
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(a) (b)

F IGURE 4 Comparison of interventions
using round trip for our large building case study.
Note: We run 100 independent random instances
and report the average performance. (a) Plot of
percentage of elevator trips with different round
trip times (service times) across interventions. (b)
Reporting average service time and average
number of passengers per elevator trip for all
interventions [Color figure can be viewed at
wileyonlinelibrary.com]

Queue Split (which has almost the same queue length per-
formance as Cohorting) instead of 3 Queue Split. In fact,
the more queues we create, the more efficient the system
becomes. However, the trade-off is that more queues require
a more complex operation and more space in the lobby,
especially for horizontal separation between the queues. We
find that simply splitting into two to four queues already
recovers most of the benefit in comparison to the Cohorting
intervention.

3.1 Difference in round trip time

The round trip time of an elevator trip (service time) deter-
mines the efficiency of the elevator system. The shorter the
round trip time is, the faster the elevator can come back and
serve more people. We record the service time profile for
FCFS, Cohorting, and 2 Queue Split in the simulation in
Figure 4.
In Figure 4, Cohorting and Queue Splitting have a lower

average round trip time (131 and 134 s, respectively) than
FCFS (148 s). In terms of number of trips they can com-
plete in the given time period, Cohorting and 2 Queue Split
are much better than FCFS, indicating that our proposed
interventions indeed make the elevator trips more efficient.
Our main indicator of system performance, queue length, is
typically inversely related to average service time in classic
queuing models (Ross et al., 1996), and a seemingly small
improvement in the round trip time as in Figure 4 has a big
impact on system performance.
In Figure 4b, we also report the average number of pas-

sengers per elevator trip across interventions. With capacity
4, elevators under FCFS carry 3.87 passengers per trip on
average, so most trips are at full capacity. Elevators under
Cohorting carry only 3.54 passengers per trip on average and
similarly under the 2 Queue Split intervention, elevators carry
3.62 passengers per trip on average. Our proposed interven-
tions make the elevators more efficient compared to FCFS,
using less of the elevator capacity on average per trip.
The round trip time of an elevator, as seen in (1) and dis-

cussed in detail in Section 4 is primarily determined by the
number of stops S made and the highest reversal floor H of

the trip. Therefore, we analyze the performance of different
interventions by comparing the quantities S andH in Figure 5.
In Figure 5a, we plot the distribution of S, that is, the per-

centage of elevator trips with different number of stops made
(or equivalently the number of buttons pressed in each trip by
the passengers) across interventions. In FCFS, about 75% of
the trips make four stops. In Cohorting only about 25% of the
trips make four stops and about 70% elevator trips make only
two or three stops, which leads to shorter round trip times.
2 Queue Splitting does not perform as well as Cohorting,
although it is better than FCFS, with more than 50% of the
trips making four stops and 40% rides making only two or
three stops.
In Figure 5b, we plot the distribution of H, that is, the per-

centage of elevator trips with different highest reversal floors
across interventions. In the distribution of H for FCFS, more
percentage of elevator trips reverse at the topmost floors than
other interventions. For instance, about 50% of FCFS trips
reverse in the last four floors (H ≥ 23), while only 40% of
trips under Cohorting do so, suggesting that elevators come
back to the lobby faster in Cohorting. 2 Queue split has simi-
lar distributions of H among the destination ranges of the two
mini-queues and hence, 40% of the trips have H at most 13,
which is much better than Cohorting (less than 20% of trips)
and FCFS (less than 10% of trips) for the same range.
In Figure 5, we report the average of the number of stops

and highest reversal floors for all interventions, to supple-
ment the distribution plots. In Figure 5d, we also report the
standard deviation of the estimated mean of S and H over
100 instances (i.e., we estimate the mean value of S and H
for each instance, and show the standard deviation over 100
independent random instances). Elevators under FCFS make
an average of 3.64 ± 0.05 stops, whereas under Cohorting,
they make on average only 2.78 ± 0.04 stops, a key driver of
lower round trip time. 2 Queue split does not perform as well
as Cohorting, making an average 3.27 ± 0.07 trips, which is
comparable to FCFS. Similarly, FCFS has the highest aver-
age H of 20.3 ± 0.17, whereas Cohorting has an average H of
18.7 ± 0.19, 2 Queue Split has the lowest H at 17.6 ± 0.17,
due to the two similar distributions among the mini-queues.
Though 2 Queue Split makes a comparable average num-

ber of stops to FCFS, having the lowest highest reversal floor
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(a) (b) (c) (d)

F IGURE 5 Comparison of interventions using number of stops and highest reversal floor of elevator trips for our large building case study. Note: We
run 100 independent random instances and report the average performance. (a) The percentage of elevator trips with different number of stops made (or
equivalently the number of buttons pressed in each trip by the passengers) across interventions. (b) The percentage of elevator trips with different highest
reversal floor H across interventions. (c) Reporting average over 100 instances of the number of stops and highest reversal floor for all interventions. (d)
Reporting standard deviation of the estimated mean (over 100 instances) of number of stops S and highest reversal floor H for all interventions [Color figure
can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 6 Sensitivity of average queue lengths to 𝜈 and 𝜔 for our large building case study. Note: We run 100 independent random instances and
report the average performance. Between 8 and 10 a.m., 2750 passengers with destinations ranging from floors 2 to 25 are served by 14 elevators (each with
capacity 4). (a, b) Plots of average queue length from beginning to end of the busy period across interventions. In (a) we change the travel time per floor
parameter 𝜈. In (b) we change the (de)boarding time parameter 𝜔 [Color figure can be viewed at wileyonlinelibrary.com]

among all interventions explains why it performs closer to
Cohorting in service time in Figure 4. Ultimately, the impact
of S is higher than that of H in service time due to simula-
tion parameters (each stop adds 15 s to service time, but each
additional floor only adds 1.4 s one way).

3.2 Sensitivity analysis

In this subsection, we study how the performance of the inter-
ventions may change when parameters change. We inves-
tigate the sensitivity of average queue lengths to the two
parameters that determine round trip time—travel time per
floor 𝜈 and (de)boarding time 𝜔.

In Figure 6a, we vary travel time per floor 𝜈 with a scaling
in the interval [0.7,1.3] of the baseline 𝜈0 = 1.4 s/floor and
observe the average queue lengths for FCFS and our inter-
ventions. The average queue length in FCFS is very sensitive
to the parameter 𝜈, since FCFS has the largest average highest
reversal floor. 2 Queue Split performs comparably to Cohort-
ing until the baseline, with an average queue length of less
than 20 but rises to 50 when 𝜈 becomes 30% more than the
baseline. Cohorting is the least sensitive, maintaining an aver-
age queue length of less than 20 throughout.
In Figure 6b, we vary (de)boarding time 𝜔 with a scaling

in the interval [0.7,1.3] of the baseline 𝜔0 = 15 s and observe
the average queue lengths for FCFS and our interventions.
The average queue length in FCFS is very sensitive to the
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parameter 𝜔, since FCFS has the largest number of stops. 2
Queue Split performs comparably to Cohorting until the base-
line, with an average queue length of less than 20 but rises to
100 when 𝜈 becomes 30%more than the baseline. The param-
eter 𝜔 has a bigger sensitivity impact on 2 Queue Split than
𝜈, showing the importance of number of stops to the round
trip time. Cohorting is the least sensitive to 𝜔, maintaining an
average queue length of less than 20 throughout.
Other parameters also affect the performance of Cohorting

and Queue Splitting. When the elevator capacity C becomes
larger, the round trip time will become longer for all the inter-
ventions. Queue Splitting can keep the average highest rever-
sal floor at a relatively low level because it separates the trips
for high floors from low floors. However, it may be difficult
to keep the number of stops low. On the other hand, Cohort-
ing can still keep the number of stops S at a relatively low
value. However, it becomes harder to keep the highest rever-
sal floorH low, because we do not have the separation of high
floors to low floors, and it is more likely to mix high floor
trips with low floor trips when the capacity becomes larger.
Also when capacity increases, it takes more time and effort to
find a cohort of people going to the same floor. This practical
issue may cause the Cohorting intervention to be less attrac-
tive, while the management effort for Queue Splitting does
not scale up when capacity increases.
To conclude this section, we showed via simulation that

Cohorting and Queue Splitting reduce the round trip time
for the elevator trips and serve more passengers in a given
time period. These numerical results provide motivation to
understand why these two interventions perform similarly
well while managing the queue completely differently. In the
next section, we offer theoretical support for our proposed
interventions and focus on the distribution of the number of
stops and highest reversal floor.

4 STABILITY ANALYSIS

In this section, we investigate the theory behind the good
performance of the proposed Cohorting and Queue Splitting
interventions. As observed in Figure 2, the queue length does
not grow over time under the Cohorting and Queue Splitting
intervention, while under FCFS it keeps increasing. In other
words, by using the Cohorting and Queue Splitting inter-
vention, we manage to transfer an unstable queuing system
into a stable one under the simulation setting in Section 3.
In this section, we aim to establish stability conditions for
each intervention and explain why the proposed interventions
work. We find that our proposed interventions can be stable
under higher arrival rates than FCFS for two reasons. First,
the interventions reduce the number of stops in comparison
to FCFS, and second, the interventions reduce the average
total distance traveled by the elevators. In particular, the sec-
ond reason is supported by a stochastic dominance result for
the highest reversal floor distribution of the different policies.
In Section 4.1 we provide a background on queuing stability
and in Section 4.2 we explain assumptions needed to prove

our results. In Section 4.3 we calculate the stability condi-
tion for a special case with two floors and one elevator and in
Section 4.4 we extend our analysis to general settings.

4.1 Stability condition for a queuing
network

In this section, we describe results in the literature on sta-
bility of multiclass queuing networks with different opera-
tions rules. The model we focus on has I buffers (or arrival
classes) and K types of resources to serve the arrivals. Each
arrival class is served by a specific resource type. The arrival
process for each buffer i is a Poisson process with rate 𝜆i,
and the service for type i requires a random time with mean
ti. Each resource k is a pool of bk identical servers, where
b⃗ := (b1, … , bK). Each arrival class is processed by servers
from a single specified pool, and each such service is accom-
plished by a single server from the pool. The set of buffers
that resource k can serve is defined as (k). The load vector
𝜌 := (𝜌1, … , 𝜌K) is defined as 𝜌k =

∑
i∈(k) 𝜆iti.

In Lemma 1 below, we see that the stability condition, also
known as the standard load condition,

𝜌 < b⃗ (2)

is a sufficient and necessary condition for the stability of the
queuing network we study in this paper. For some queuing
systems, such as M∕M∕1 queue, it is well known that the
system is stable if and only if the load vector 𝜌 is less than
1. However, it is not always true that Equation (2) is a suf-
ficient condition for a general queuing network (Bramson,
1996). In Lemma 1 below, we establish the stability condi-
tion for a feedforward queuing network under a non-idling
control policy. Fortunately, the queuing models correspond-
ing to the elevator interventions all fall within the category of
a feedforward queuing network, which is defined as a queu-
ing network in which the resources can be numbered in such
a way that the arrival jobs never move from higher num-
bered servers to lower numbered ones (all passengers/jobs
see one elevator/server). Also, the interventions we propose
are non-idling dynamic control policies, which is defined as
a control policy where no server remains idle while there is
a job waiting in any of the buffers that are processed by the
server.

Lemma 1. Under any non-idling policy, a feedforward queu-
ing network is stable if and only if the stability condition
𝜌 < b⃗ holds.

Proof. The proof is supported by multiple results from Dai
and Harrison (2020), which we list in Lemmas 2 and 3 below.

Lemma 2 (Proposition 5.1 and Theorem 5.2 in Dai & Har-
rison, 2020). If a unitary network is stable, then it satisfies
the standard load condition 𝜌 < b.
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Lemma 3 (Theorem 8.14 in Dai & Harrison, 2020). In a
feedforward queuing network, if the standard load condition
𝜌 < b⃗ holds, then the queuing network is stable under any
non-idling policy.

A unitary network is a general type of stochastic processing
network. In simple words, it requires a one-to-one relation-
ship between the service activity and the buffers, and there is
only one way to process jobs of any given class. We note that
the feedforward queuing network, which is how our interven-
tions can be described, is a special case of a unitary network.
Thus, by Lemma 2 we can conclude that if a feedforward
queuing network is stable, then the standard load condition
𝜌 < b⃗ must hold. Finally, combining with Lemma 3, we can
conclude that the condition 𝜌 < b⃗ is indeed a sufficient and
necessary condition for the queuing network we are inter-
ested in. □

In the following subsections, we will specify the structure
of the queuing network for each intervention, and derive the
stability condition by using Lemma 1.

4.2 Assumptions and justification

We first simplify the simulation model from Section 2 for the
sake of analysis. We formulate the elevator system as a queu-
ing network, in which the N elevators are the servers and the
round trip time of an elevator trip is the service time. As dis-
cussed in Section 2, the round trip time is composed of the
boarding time, stop time, ascent time, and descent time. We
simplify the calculation of round trip time by omitting the
boarding time at the lobby, which is the same for all interven-
tions. We let 𝜈 be the time it takes an elevator to travel one
floor and we simplify the stop time of an elevator for one stop
to be 𝜔. We also simplify the ascent time and descent time
to be identical. We assume the destination of passengers is
uniformly at random across all the floors, and the aggregate
arrival rate is 𝜆. Recall that F⃗ is the number of passengers
going to each floor in a particular elevator trip. We let S be the
random variable denoting the number of stops in an elevator

trip, that is, S :=
∑m+1

j=2 𝟙{Fj > 0}. We let H be the random
variable denoting the highest reversal floor in an elevator trip,
that is, H: = maxj j 𝟙{Fj > 0}.

We use 𝜏 (H, S) to denote the round trip time for an elevator
trip, which is a random variable with finite support, and its
mean value depends on the random variables H and S. The
conditional expected round trip time is defined as

𝔼[𝜏(H, S)|H, S]: = 2𝜈(H − 1) + 𝜔S, (3)

where 2𝜈(H − 1) is the ascent and descent time, and 𝜔S is
the stop time. The distributions of H and S are determined by
the random arrival process and the intervention, and are used
to determine the expected round trip time. We do not make
any further assumptions on the distribution of the round trip
time.

For the Queue Splitting intervention, we assume that the m
floors are divided into l groups, where each group is a sepa-
rate buffer and consists of k consecutive floors, that is, m = lk
and l, k ≥ 2 are integers. The jth floor in the ith group can
be written as x := (i − 1)k + j + 1, for i = 1, … , l; j = 1, … , k.
For example, floor 2 is the first floor in the first group.
Next, we describe the queuing networks that represent our

elevator system under different interventions. Our goal is to
derive the stability conditions, under which the queue does
not grow over time under, for each intervention. Thus, we
only consider such a condition in a system with extremely
long (infinite) queues. We assume that from now on, we treat
a set of C passengers as one arrival job to the system, which
is without loss of generality in this regime. The assumption of
treatingC passengers as one job allows us to utilize tools from
the literature and have a sufficient and necessary condition for
stability (Lemma 1). We note that Dai and Li (2003) provide
stability analysis for batch service systems, and 𝜌 < b⃗ is a
sufficient condition for stability for the queue under the oper-
ation rule corresponding to the Cohorting and Queue Split-
ting intervention.
We now connect the interventions to the setup described in

Section 4.1. In FCFS, there is only one buffer and an arrival
job will be C random passengers with independent and
uniformly distributed destinations among all floors. In the
Queue Splitting intervention, each floor group corresponds to
one buffer. An arrival job will be C random passengers who
are going to the same group of floors. In Cohorting, each
destination floor corresponds to one buffer, and an arrival job
is C passengers who are going to the same floor. Note that
for FCFS, Cohorting, and Queue Splitting, there is only one
resource type, that is, all elevators can serve all floors. In the
Allocation intervention where elevators are assigned to floor
groups, the elevators are divided into groups, which repre-
sents different types of resources. Each floor group forms a
separate FCFS queue that can only be served by one resource
type. This distinction makes the Allocation less effective than
the other proposed interventions, as we show in Supporting
Information, Section EC.3. In the following subsections, we
focus on the analysis of the stability condition (2) for FCFS,
Cohorting, and Queue Splitting. The stability analysis for All-
ocation is provided in Supporting Information, Section
EC.3.1.

4.3 One elevator and two destination floors

We first focus on the simplest setting where the building
only has two destination floors 2 and 3 and one elevator with
capacity C = 2. The passengers arrive at the building accord-
ing to a Poisson process with rate 𝜆, and go to floor 2 or 3
with equal probability. Equivalently, the arrival process for
passengers who go to floor 2 (similarly for floor 3) is a Pois-

son process with rate
𝜆

2
.

The elevator system under FCFS is an M∕G∕1 queue,
where the new jobs arrive according to a Poisson process with
rate 𝜆∕2, and the elevator is the server with the round trip time
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being the service time. In anM∕G∕1 queue, the stability con-
dition Equation (2) is well-known and can be found in the
literature and the textbooks (e.g., Ross et al., 1996, Example
4.3(a)). It can also be derived from Lemma 1 since anM∕G∕1
queue is a special case of a feedforward queuing network, and
FCFS is a non-idling policy.
For the Cohorting and 2 Queue Splitting intervention, we

can think of the following multiclass queuing network with
two queuing buffers and one server. The passengers who go
to floor 2 form a queue in buffer 1, and the passengers who go
to floor 3 form a separate queue in buffer 2. The passengers
are also assigned into pairs, and a pair of passengers is con-
sidered as a job that is waiting to be served. This network with
two buffers and one server satisfies the condition of a feedfor-
ward queuing network. In the Queue Splitting intervention,
the server will choose a buffer to serve in a round-robin fash-
ion once it finishes the previous job. In the Cohorting inter-
vention, the elevator serves the first passenger in the queue
and we let the second passenger whose destination is the same
as the first passenger board the same elevator. We can rep-
resent the dynamic as a multiclass queue where each floor
destination forms a buffer, and the server decides which job
to take by choosing the buffer whose head of queue arrives
the earliest to the system. In the literature, this is called an
FCFS control policy (Bramson, 1994) since the way a server
chooses between buffers is in the FCFS fashion. Both the
Queue Splitting and Cohorting interventions are non-idling
policies. Therefore, we can again use Lemma 1 to derive the
stability condition.

Proposition 1.

(a) The elevator system is stable under FCFS if and only if
the arrival rate

𝜆 <
4

7𝜈 + 3𝜔
:= 𝜂FCFS.

(b) The elevator system is stable under the Cohorting and 2
Queue Splitting if and only if

𝜆 <
4

6𝜈 + 2𝜔
:= 𝜂Cohort = 𝜂QS.

Proof.

(a) The queuing system corresponding to FCFS consists of
only one buffer with 𝜆∕2 being the arrival rate of each
pair of passengers. The service time distribution is a
mixture of three distributions. With probability 0.25, the
highest reversal floor H is 2 and the number of floors and
the total number of stops S is 1. Similarly, with proba-
bility 0.25, the elevator only stops once and H is 2. With
probability 0.5, H is 3 and S is 2. Therefore, the expected
service time is

𝔼[𝜏(2, 1)] + 2𝔼[𝜏(3, 2)] + 𝔼[𝜏(3, 1)]
4

=
2𝜈(2− 1)+𝜔+ 2(2𝜈(3− 1)+ 2𝜔)+ 2𝜈(3− 1)+𝜔

4

=
7𝜈 + 3𝜔

2
.

By Lemma 1, the system is stable if and only if
𝜆

2
⋅

7𝜈+3𝜔

2
< 1, which is equivalent to 𝜆 <

4

7𝜈+3𝜔
.

(b) The queuing system for Queue Splitting and Cohorting

intervention has two buffers, each with arrival rate
𝜆

4
for a

pair of passengers. For buffer 1, all passengers are going
to floor 2, so the expected service time is 𝔼[𝜏(2, 1)] =
2𝜈(2 − 1) + 𝜔. Similarly, for buffer 2, all passengers
are going to floor 3, so the expected service time is
𝔼[𝜏(3, 1)] = 2𝜈(3 − 1) + 𝜔. By Lemma 1, the system is

stable if and only if
𝜆

4
⋅ 𝔼[𝜏(2, 1)] +

𝜆

4
⋅ 𝔼[𝜏(3, 1)] < 1,

which is equivalent to 𝜆 <
4

6𝜈+2𝜔
. □

Since the stability thresholds above provide an upper
bound on the total arrival rate of passengers, the higher the
threshold is, the better the system can deal with rush hour
traffic. In the following proposition, we establish by how
much the proposed interventions can improve the stability
threshold.

Proposition 2. Consider a building with one elevator, two
destination floors, and elevator capacity of two. The Cohort-
ing and Queue Splitting intervention can increase the stabil-
ity threshold by at least 16.67%, and at most 50%.

Proof. In this proof, we want to bound the ratio
𝜂QS

𝜂FCFS
. Plug-

ging in the threshold we get from Proposition 1, we have
𝜂QS

𝜂FCFS
=

7𝜈+3𝜔

6𝜈+2𝜔
. Since 𝜈 and 𝜔 are positive real numbers,

7

6
<

7𝜈+3𝜔

6𝜈+2𝜔
<

3

2
, which yields the final result. □

Proposition 2 provides a clean explanation to the phe-
nomenon we observe from the simulation: When facing the
same passenger arrival pattern, the stability condition for
FCFS is violated while the arrival rate is still below the
threshold for Queue Splitting and Cohorting. Thus, the key
driver for the good performance of the proposed interventions
is that the expected service time is much shorter, thanks to
the fact that both the highest reversal floor and the number of
stops have smaller values. When we use FCFS, H = 3 with
probability 0.75, despite the fact that only half of the pas-
sengers go to floor 3. Using Cohorting and Queue Splitting
intervention, we can make sure that only 50% of the time
the elevator will go to the higher floor. For the number of
stops per elevator trip, using Cohorting and Queue Splitting
intervention, we can ensure that the elevator only makes one
stop in each elevator trip, while in FCFS, 50% of the time
the elevator will make two stops. Our proposed interventions
can simultaneously reduce the stop time and the travel time
of the elevator, and make the elevator trips more efficient.
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The analysis for the two-destination system can be extended
to multiple floors. In the 2 Queue Split intervention, we have
two destination ranges, the high floors and the low floors.
When using FCFS, 75% of the trips will end up in the high
floor range, while using 2 Queue Split, we can reduce the
fraction of trips going to the high floors to 50%. In the next
subsection, we provide detailed analysis of a building with
multiple elevators and floors.

4.4 General case

In this subsection, we focus on a general building with m
destination floors 2, … ,m + 1 and N identical elevators that
can serve all the floors. Though the expected service time is
complicated to compute exactly in the general setting, we can
focus on the distribution ofH and S and show that the stability
threshold for Queue Splitting and Cohorting is much higher
than the one for FCFS. In this subsection, we again assume
that we group C passengers together and let them enter the
lobby as a new job to the queuing system. Lemma 3 below
shows that the stability threshold 𝜂 for each intervention is a
simple function of the 𝔼[H] and 𝔼[S].

Proposition 3. For intervention 𝜋 ∈ {FCFS, Cohorting,
QS}, the queue is stable if and only if the arrival rate

𝜆 < 𝜂𝜋: =
NC

2𝜈 (𝔼 [H𝜋]−1)+𝜔𝔼 [S𝜋]
.

Proof. We start with FCFS. By Equation (2), the stability

condition is
𝜆

C
𝔼[𝜏(HFCFS, SFCFS)] < N, which is equivalent

to

𝜆
C

(
2𝜈(𝔼[HFCFS] − 1) + 𝜔𝔼[SFCFS]

)
< N. (4)

Under the Cohorting intervention, the queuing network
consists of m independent buffers for m floors, and an idle
server will choose to serve the buffer with the earliest arrival
time. By Equation (2), we need to specify the average round
trip time for each buffer. The highest reversal floor for
buffer i is simply i, and every trip only has one stop so
𝔼[SCohort] = 1. Therefore, the stability condition (2) becomes∑m

i=1 𝜆i𝔼[𝜏(H, 1)|H = i] < N, where 𝜆i =
𝜆

Cm
. Note that the

highest reversal floor HCohort follows a uniform distribution,
we can rewrite the left-hand side of the stability condition
into

m∑
i=1

𝜆i𝔼[𝜏(H, 1)|H = i] =
𝜆
C

m∑
i=1

1
m
𝔼[𝜏(H, 1)|H = i]

=
𝜆
C

(
2𝜈(𝔼[HCohort] − 1) + 𝜔

)
. (5)

Under the Queue Splitting intervention, recall that we
assume that the m floors are divided into l groups, where
each group is a separate buffer and consists of k consecutive
floors. Note that m = lk and l, k ≥ 2 are integers. The stabil-

ity condition becomes
∑l

i=1𝜆i𝔼[𝜏(H, S)|H ∈ group i] < N,

where 𝜆i =
𝜆

Cl
in this case. Since the jobs are processed in

a round-robin fashion, the probability for a new job to be in

group i is
1

l
. Then we can rewrite the left-hand side of the

stability condition as

l∑
i=1

𝜆i𝔼[𝜏(H, S)|H ∈ group i]

=
𝜆
Cl

l∑
i=1

(
2𝜈(𝔼[HQS|H ∈ group i] − 1)

+ 𝜔𝔼[SQS|H ∈ group i]
)

=
𝜆
C

(
2𝜈(𝔼[HQS] − 1) + 𝜔𝔼[SQS]

)
. (6)

Therefore, following the result in Lemma 1, for FCFS,
Cohorting, and Queue Splitting intervention, the queue is sta-

ble if and only if 𝜆 <
NC

2𝜈(𝔼[H𝜋]−1)+𝜔𝔼[S𝜋]
. □

From Lemma 3, we know that the key to compare the
stability conditions for different interventions is to compare
the expectation of the highest reversal floor and number of
stops. The analysis for FCFS can be found in the literature
of elevator analytics (Barney & Al-Sharif, 2015), whereas
the Cohorting and Queue Splitting intervention require new
analysis. Next, we compute the distribution and expectation
of the highest reversal floor (Lemma 4) and number of stops
(Lemma 5) and provide a comparison.

Lemma 4.

(a) For x = 2, … ,m + 1, the cumulative density function of
the highest reversal floors is

ℙ[HFCFS ≤ x] =

(
x − 1
m

)C

,

ℙ[HQS ≤ x] =

⌊
x−1

k

⌋
l

+
1
l

⎛⎜⎜⎜⎝
x − 1 − k

⌊
x−1

k

⌋
k

⎞⎟⎟⎟⎠
C

,

ℙ[HCohort ≤ x] =
x − 1
m

.

(b) The expectation of the highest reversal floors is

𝔼[HFCFS] = m + 1 −
1
mC

m−1∑
x=1

xC,

𝔼[HQS] =
k(l + 1)

2
+ 1 −

k−1∑
j=1

(
j
k

)C

,

𝔼[HCohort] =
m + 1
2

+ 1.
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(c) HFCFS stochastically dominates HQS, and HQS stochasti-
cally dominates HCohort, that is, HFCFS ⪰ HQS ⪰ HCohort.
Therefore, 𝔼[HFCFS] ≥ 𝔼[HQS] ≥ 𝔼[HCohorting].

Proof.

(a) In FCFS, the random event that the highest reversal floor
to be no larger than x is equivalent to the event that the
destination of each passenger is randomly chosen from 2
to x, which directly gives us the result.
For the Queue Splitting intervention, we can rewrite floor
x as (i − 1)k + j + 1, so that floor x is the jth floor in

the ith group. Therefore, i − 1 = ⌊ x−1
k
⌋, and j = x − 1 −

(i − 1)k. Conditioning on the fact that the current service
group is the ith group, the probability of the highest rever-
sal floor is no larger than x = (i − 1)k + j + 1 is equal to(

j

k

)C
, following the same argument for FCFS. Note that

if x is in floor group i, all the trips in group 1, … , i − 1
satisfy the condition HQS ≤ x.

ℙ[HQS ≤ x] =
i−1∑
y=1

ℙ[HQS in group y]

+ℙ[HQS ≤ (i− 1)k+ j+ 1|HQS in group i]

=
i − 1
l

+
1
l

(
j
k

)C

.

The distribution of the highest reversal floor for Cohort-
ing directly follows from the definition of a uniform dis-
tribution on value 2, … ,m + 1.

(b) A straightforward calculation shows 𝔼[HCohort] =
m+1

2
+

1. We next use the tail formula to derive the expectation
for FCFS and Queue Splitting intervention:

𝔼[HFCFS] =
∞∑
x=1

ℙ[HFCFS ≥ x] = 1 +
m+1∑
x=2

(1 − ℙ[HFCFS ≤ x − 1])

= m + 1 −
m+1∑
i=2

(
x − 2
m

)C

= m + 1 −
1
mC

m−1∑
x=1

xC.

𝔼[HQS] =
∞∑
x=1

ℙ[HQS ≥ x]

= 1 +
m+1∑
x=2

ℙ[HQS ≥ x]

= m + 1 −
m+1∑
x=2

ℙ[HQS ≤ x − 1]

= m + 1 −
m∑
x=2

ℙ[HQS ≤ x]

= m + 1 −

(
l∑

i=1

k∑
j=1

ℙ[HQS ≤ (i − 1)k + j + 1] − 1

)

= m + 1 −

(
l∑

i=1

i − 1
l

k +
k∑

j=1

(
j
k

)C

− 1

)

=
k(l + 1)

2
+ 1 −

k−1∑
j=1

(
j
k

)C

.

(c) We first prove that the random variables preserve stochas-
tic dominance, that is, HCohort ⪯ HQS ⪯ HFCFS. By def-
inition, we only need to verify that ℙ[HCohort ≤ x] ≥
ℙ[HQS ≤ x] ≥ ℙ[HFCFS ≤ x] is true for all x. The first
inequality is easy to verify since

ℙ[HCohort ≤ x] =
(i − 1)k + j

kl
=

i − 1
l

+
1
l
j
k

≥ i − 1
l

+
1
l

(
j
k

)C

= ℙ[HQS ≤ x].

Next we verify the second inequality:

ℙ[HFCFS ≤ x] =

(
(i − 1)k + j

m

)C

=

(
i − 1
l

+
1
l
j
k

)C

=

(
(l − 1)

l
i − 1
(l − 1)

+
1
l
j
k

)C

≤ (l − 1)
l

(
i − 1
l − 1

)C

+
1
l

(
j
k

)C

=
i − 1
l

(
i − 1
l − 1

)C−1

+
1
l

(
j
k

)C

≤ i − 1
l

+
1
l

(
j
k

)C

= ℙ[HQS ≤ x].

The first inequality follows from Jensen’s inequal-
ity, and the second inequality follows from the
fact that i − 1 ≤ l − 1. Following the stochastic dom-
inance result, we obtain the desired ordering in
expectation. □

Since our simulation results in Section 3 are for a 25-story
building, the highest reversal floor plays an essential role in
the performance of the elevator system. Lemma 4 strongly
supports the good performance of Cohorting and Queue
Splitting in the simulation, as the distribution of the highest
reversal floor preserves stochastic dominance across the
three interventions we study. Note that the expected ascent
time and descent time is equal to 2𝜈(𝔼[H] − 1). With the
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formula of 𝔼[H] from Lemma 4, in Proposition 4 we provide
guarantees on the potential improvement by deriving the
ratio of the expected ascent time and descent time between
interventions.

Proposition 4.

(a) The ratio of the expected ascent time and descent time

between FCFS and Cohorting is at least
2Cm

(C+1)(m+1)
.

(b) For the special case of C = 2 and m ≥ 3, the ratio of the
expected ascent time and descent time between FCFS and

Cohorting is equal to
4m−1

3m
, which at least

11

9
. The ratio

reaches the lower bound when there are only three floors
and reaches the upper bound when the number of floors
grows to infinity.

(c) For the special case of C = 2, the ratio of the expected
ascent time and descent time between FCFS and Queue

Splitting is equal to
4m2+3m−1

3m2+3m+mk−l
> 1.

Proof. We first bound 𝔼[HFCFS] − 1 and 𝔼[HQS] − 1 by
replacing summation with integral.

𝔼[HFCFS] − 1 = m −
1
mC

m−1∑
i=1

iC

≥ m − ∫
m

x=0
xCdx = m −

m
C + 1

,

𝔼[HQS] − 1 =
k(l + 1)

2
−

k−1∑
j=1

(
j
k

)C

≤ k(l + 1)
2

− ∫
k−1

x=0

(x
k

)C
dx

=
k(l + 1)

2
−

(k − 1)C+1

(C + 1)kC
.

(a) We compare the expected ascent time and descent time
between FCFS and Cohorting by considering the ratio

2𝜈(𝔼[HFCFS] − 1)
2𝜈(𝔼[HCohort] − 1)

≥ m − m∕(C + 1)

(m + 1)∕2

=
2Cm

(C + 1)(m + 1)
.

(b) When C = 2, we can compute 𝔼[HFCFS] explicitly.
Therefore, the ratio becomes

2𝜈(𝔼[HFCFS] − 1)
2𝜈(𝔼[HCohort] − 1)

=
m −

1

m2

∑m−1
i=1 i2

(m + 1)∕2

=
m −

1

m2

(m−1)(m−1+1)(2(m−1)+1)

6

(m + 1)∕2

=
4m − 1
3m

. (7)

Note that since Equation (7) is increasing in m, we can
plug in m = 3 and yield the lower bound on the ratio and
send m to infinity to get the upper bound.

(c) In the special case of C = 2, we can also explicitly com-
pute the expectation of HQS. Note that since m = kl, we
can simplify the ratio and get

2𝜈(𝔼[HFCFS] − 1)
2𝜈(𝔼[HQS] − 1)

=
m −

1

m2

(m−1)(m−1+1)(2(m−1)+1)

6
k(l+1)

2
−

(k−1)(2k−1)

6k

=
4m2 + 3m − 1

3m2 + 3m + mk − l
.

Note that
4m2+3m−1

3m2+3m+mk−l
is always greater than 1 since l <

m. □

From Proposition 4, we can observe that the value of the
ascent and descent time can be shifted to lower values through
the Cohorting and Queue Splitting interventions. The more
groups it splits into, the greater the reduction can be. Next,
we consider the distribution of the number of stops. The dis-
tribution and expected value of the number of stops can be
found in a book (Barney & Al-Sharif, 2015). We summarize
the results in Lemma 5 below.

Lemma 5.

(a) For each intervention, the distribution of the number of
stops is as follows

SCohort = 1 with probability 1,

ℙ[SFCFS = x] =
x!
mC

(m
x

){C
x

}
, x = 1, … ,min{C,m},

ℙ[SQS = x] =
x!
kC

(k
x

){C
x

}
, x = 1, … ,min{C, k},

where
{C
x

}
is the Stirling number of the second kind, the

number of ways to partition a set of C objects into x
nonempty subsets.

(b) The expected number of stops for FCFS and Queue Split-
ting is

𝔼[SFCFS] = m

[
1 −

(
m − 1
m

)C
]
,

𝔼[SQS] = k

[
1 −

(
k − 1
k

)C
]
.
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F IGURE 7 Expected highest reversal floor and number of stops in Lemmas 4 and 5 [Color figure can be viewed at wileyonlinelibrary.com]

With the distribution ofH and S being derived in Lemmas 4
and 5, we plot the expected values in Figure 7 for various
parameter settings. When the number of destination floors m
becomes large, the expected number of stops will approach
the capacity C in both FCFS and Queue Splitting interven-
tion. However, Queue Splitting is increasing much slower,
and the more groups we split into, the lower the value is. Sim-
ilar behavior can be observed in the expected highest reversal
floor graphs.
When the elevator capacity C increases, the reduction in

the expected values of S and H becomes more significant for
both the Queue Splitting and Cohorting intervention when
compared with FCFS. Using a building with 32 floors as an
example, 2 Queue Split can reduce the average number of
stops by 4.6% when C = 4, but only by 1.6% when C = 2.
For the average highest reversal floor, 2 Queue Split reduces
it by 17.8% when C = 4, but only by 11.8% when C = 2. In
general, the higher the capacity C is, and the larger the num-
ber of floors m is, the more difference we can observe from
Figure 7. Therefore, it is indeed more critical for higher build-
ings with larger elevators to apply the proposed interventions
to reduce the round trip time and make the queuing system
more efficient.

5 PRACTICAL ISSUES IN COHORTING

Cohorting as discussed in Section 4 is focused on the situa-
tion where there is a large queue and we can create a cohort of

passengers perfectly. Under this setup, we proved Cohorting
is always the best in terms of highest reversal floor and num-
ber of stops (Lemmas 4 and 5). Of course, in our simulations
it may not be always possible to cohort perfectly if the queue
length is under control, and we see in the numerical results
that Cohorting has inferior performance in highest reversal
floor compared to 2 Queue Split in Figure 5. Cohorting has a
slightly higher average H value (18.8) than 2 Queue Splitting
(17.6). However, the number of stops in Cohorting (2.78) is
lower than 2 Queue Split (3.27). Therefore, the overall round
trip time, impacted by both number of stops and highest rever-
sal floor is lower in Cohorting in the simulations, since each
stop takes 15 s whereas traveling one floor takes only 1.4 s.
In the remainder of this section, we discuss three practice-

related issues about our interventions that may improve
or hurt their performance. For concreteness, we focus
on Cohorting, but similar modifications can be made to
other interventions.

5.1 The impact of willingness-to-walk

First, when the queue length is not large, we may not find
enough people who go to the same floor. One way to increase
the chance of people going to the same floor is by asking
them to take the stairs. We model this behavior using the
Willingness-to-Walk (WtW) parameter indicating the proba-
bility that a given passenger would walk one floor up or down
from their intended destination instead of preferring to only
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F IGURE 8 Plot of average queue length in the lobby vs.
willingness-to-walk. Note: We run 100 independent random instances and
report the average performance. Between 8 and 10 a.m., 2750 passengers
with destinations ranging from floors 2 to 25 are served by 14 elevators
(each with capacity 4). In the 4 Queue Split intervention, we divide the floor
ranges equally among all the queues. The queue length under the default
FCFS is on average 62 passengers across the 100 random instances [Color
figure can be viewed at wileyonlinelibrary.com]

go to their destination floor. For example, ifWtW = 20%, then
20% of all passengers whose intended destination is floor d
would consider the option of taking an elevator to any of the
floors d − 1, d or d + 1. Our consideration ofWtW is inspired
by literature showing that leveraging demand-side flexibility
can be effective in managing operations (Elmachtoub et al.,
2019; Tao et al., 2020).
When some passengers have the willingness of walking

one floor up or down to their intended destination, the sys-
tem may benefit from the potential reduction in the number
of stops each elevator trip needs to make. Using simulation,
we can see how much value it provides for different levels
of WtW on the Cohorting and Queue Splitting interventions.
In the Cohorting intervention, passengers line up in a single
queue and the QM asks along the line whether the passen-
gers are going to the target floor, which is the first passen-
ger’s destination. If a passenger is going to an adjacent floor
of the target floor and is willing to walk, then they would
say yes and join the cohort with the first passenger. In the
Queue Splitting intervention, we assume that a passenger who
is willing to walk will choose the shortest queue to join upon
arrival, which can either go to the final destination directly,
or stop at one floor lower or higher. Note that this option
is only available to passengers whose destination floor is at
the boundary of a floor group. We summarize the results in
Figure 8.
In Figure 8, we report the boxplot of the average queue

length for three interventions with WtW level from 0% to
100%. When WtW = 0.25, then Cohorting can be improved
an additional 10%–20%, while if WtW = 100% (which is
idealistic), Cohorting can be improved by up to 30%–40%.
There is barely any change in the queue length when increas-
ing WtW from 0% to 100% for Queue Splitting, though the
performance varies slightly due to randomness in the 100
simulated instances, because the distribution of the highest

F IGURE 9 Performance of the Cohorting intervention with practical
considerations. Note: We run 100 independent random instances and report
the average performance. Between 8 and 10 a.m., 2750 passengers with
destinations ranging from floors 2 to 25 are served by 14 elevators (each
with capacity 4). We consider two practical issues: (1) limited number of
passengers within reach of the QM, and (2) only finding another passenger
to be paired with the first passenger. The black, red, and pink dots in the
graph are performance benchmarks without the limit on the number of
passengers the QM can talk to [Color figure can be viewed at
wileyonlinelibrary.com]

reversal floor and the number of stops do not change much
when we allow passengers whose destination is at the bound-
ary of the queue ranges to switch to another queue. Overall,
the willingness of passengers to walk one flight can improve
the performance if Cohorting is implemented, but the benefit
is marginal (comparing to the queue length decrease one can
observe by solely using Cohorting, which is approximately
62 in FCFS to 9 in Cohorting). Furthermore, the effect may
be overestimated since passengers may not comply with their
willingness to walk a flight of stairs once they board, since
they can easily push the floor button they desire, and it may
take extra time for communication when walking is included
in the operations.

5.2 Limited space and communication time

The second practical issue relates to the number of passengers
the QM can reach. In a particular building, the QM may not
be able to communicate with everyone in the line. The QM
cannot reach out to people beyond a point, perhaps due to a
turn in the hallway or the small size of the lobby. We reevalu-
ate the Cohorting intervention with an extra constraint, which
is that the QM can only consider a certain number of pas-
sengers from the front of the queue. In Figure 9, we study
Cohorting with a limited number of people within reach of
the QM for the large building case study.
The final practical issue is the extra time Cohorting may

take due to the communication time it takes for the QM
to learn about the passengers’ destination. To simplify the
Cohorting implementation in this simulation, we propose the
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Cohorting with Pairing intervention, which only requires the
QM to find one other passenger with the same destination as
the first person and create a “pair” to board the same elevator.
In the original Cohorting intervention, the QM tries to match
up to C − 1 people with the first person in line. Loading an
elevator of capacity 4 with one pair leads to at most three
stops, and two pairs leads to two stops being made by the ele-
vator. A pseudocode implementation of the Cohorting with
Pairing intervention is available in Supporting Information,
Section EC.4 as Algorithm 3.
Figure 9 shows the performance of Cohorting and Cohort-

ing with Pairing interventions when the number of people
within reach of the QM is limited. As comparison bench-
marks, we also plot the performance of the FCFS, Cohort-
ing, and Cohorting with Pairing intervention without the con-
straint on the number of passengers that can be considered
by the QM. The first observation is that Cohorting with Pair-
ing is an effective and easy-to-implement intervention, as it
performs almost as good as the Cohorting intervention when
the QM can reach the same number of passengers. More-
over, as the QM can approach passengers further in the queue,
the average queue length shrinks rapidly. When the QM can
reach out to about 10 people, the queue length is already less
than 20 and being able to reach more than 10 passengers adds
marginal value. Therefore, it is critical to design a safe queu-
ing plan with physical distancing such that 10 people can hear
the QM, which is a practical and reasonable target. Moreover,
the QM can simply implement the Cohorting with Pairing
intervention in the limited lobby space. The figures may vary
across different buildings and our code implementation can
easily be changed to analyze different settings.

6 CONCLUSIONS AND FUTUREWORK

This project was done with the guidance of New York
City Mayor’s Office of the Chief Technology Officer and
the Department of Citywide Administrative Services, which
had continuous input into our work throughout the process.
Through this work, we combine mathematical modeling and
epidemiological expertise to design interventions for safely
managing elevator systems amidst a pandemic. The social
distancing requirement during a pandemic may lead to large
buildup of queues in the lobby during busy periods when
using FCFS. We propose various interventions with a QM
to help load passengers in the lobby. The fundamental idea
behind these interventions is to try to reduce queue buildup
by maximizing the number of people in an elevator trip going
to the same floor (or nearby floors), which in turn reduces
boarding/deboarding times as well as travel times. The inter-
ventions we study apply to generic buildings, and we have
provided open-source code so other building settings can be
studied. The intervention chosen by a building may depend
on its particular simulation results, physical layout, person-
nel, and epidemiological considerations. For example, in the
large NYC building case study, the maximum queue length in
Cohorting and 2 Queue Split are, respectively, over a factor
of eight and five times smaller than that of FCFS. Cohorting

TABLE 1 Cohorting versus Queue Splitting

Cohorting Queue splitting

Pros ∙ Shortest service time
in theory

∙ Shorter queue length
across buildings

∙ Less communication
needed, QM not necessary

∙ Ease of understanding for
users and managers

Cons ∙ Need a QM for good
implementation

∙ Communication may
be difficult

∙ Worse than Cohorting under
heavy traffic

∙ Need space for horizontal
separation of queues

is even effective when the QM can only talk to the first few
people in the queue, or when we cohort in pairs only. We also
provide customizable open-source code and an instructional
video explaining our interventions.1,2

A comparison of the two proposed interventions is pro-
vided in Table 1. Our simulations show that the Cohorting
intervention leads to lower waiting time for passengers in the
lobby and reduces the number of people in the lobby (queue
length) significantly. If the QM cannot talk to many people in
the line, we suggest the Cohorting with Pairing intervention
in limited space, which is easier to implement and provides
similar benefits as Cohorting, as long as the QM’s announce-
ment can reach a suitable number of people in the line. We
also propose the Queue Splitting intervention which implic-
itly groups similar passengers together to improve efficiency
while needing less communication from the QM. Queue
Splitting with even a small number of queues achieves com-
parable performance to Cohorting. The proposed interven-
tions are effective beyond the constraints imposed by a pan-
demic, and thus are still useful after the pandemic to manage
lobby queues.
In this paper, we have only considered the problem of mov-

ing people upwards in a building from the lobby. Without any
elevator AI, it is near-impossible to do any interventions for
downward and interfloor movement. Using sensors, it would
be possible to know how many people are in each elevator,
where they are going, which floors have a request, and how
many people are waiting on each floor. We could then inter-
vene, allowing us to design algorithms that balance efficiency
of the system with fair waiting times, while maintaining the
safety standards necessary (Pepyne & Cassandras, 1997). For
instance, due to the reduced elevator capacities, a passenger
on a middle floor may have difficulty leaving the building
during lunchtime. Every time an elevator arrives, it may be
filled with passengers from higher floors. In future work, one
can design algorithms that mitigate such a situation, which is
likely (and known) to occur.
There are many other considerations to be investigated.

Due to perceived inequity in interventions like Cohorting,
which let passengers jump the queue maybe for the greater
good, there could be individual frustrations (Berry et al.,
2002; Larson, 1987). One can also only implement an
intervention when the queue length exceeds a threshold and
otherwise rely on FCFS, which reduces the overall need
of a QM. In our study, the passenger arrival patterns and
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destinations were generally stationary and uniform, and
different effects may occur otherwise. However, we note
that if some floors are more popular than others, then it may
actually be easier to implement Cohorting. Finally, given
more data and knowledge of the internal elevator algorithms,
our models could simulate interfloor traffic more accurately.
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E-Companion for “Queuing Safely for Elevator Systems
amidst a Pandemic”

EC.1 Base Simulation Parameters

We summarize in Table EC.1 the parameters used in our simulations for Figures in Section 3

and Section 5 in the paper as well as the figures in the Appendix. The parameters can be easily

customized to any building in our simulation. The code for the simulation is publicly available

online1.

Parameter
Large government building

in NYC
An example medium

sized building
An example
small building

Building Configuration

Number of destination floors (m) 24 16 6

Number of elevators (N) 14 6 2

Capacity of elevators (C) 4 4 2

Elevator configuration

Travel time per floor of elevators ν 1.4 sec/floor

Speed multiplier β (coming down) 1.3, extra 30% to approximate down traffic

Loading time BoardingT ime(.) ω= 15 sec to board, additional 2 sec per passenger

Unloading time StopT ime(.) ω= 15 sec to deboard, additional 2 sec per passenger

Dedication on elevators None

System update interval ∆t 1 second

Passenger Profile

Number of passengers 2750 1500 400

Arrival pattern to the lobby Poisson process between 8 AM to 10 AM (rush hour)

Destination
Uniformly at random

in 2 to 25
Uniformly at random

in 2 to 16
Uniformly at random

in 2 to 7

Willingness-To-Walk (WtW) 0%

Table EC.1 Input Parameters for the simulation models

EC.2 Results for other building types

In the main body, we primarily report the results of interventions in the large building setting.

For understanding a more general performance, we also model another two examples- (1) a 7-

story small building with 6 destination floors being served by 2 elevators with capacity 2 for 400

passengers arriving during rush hour; (2) a 17-story medium sized building with 16 destination

1 https://github.com/saimali/elevators

ec1
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floors being served by 6 elevators with capacity 4 for 1500 passengers arriving during rush hour.

Figure EC.1 shows the performance in interventions in these two other examples.

Figure EC.1 A shows that for the small building, the queue length in FCFS builds up reaching a

peak of more than 50 people at the end of rush hour, whereas Cohorting has a queue length of no

more than 10, which is over a 75% improvement. Queue Splitting is better than FCFS but not as

beneficial as Cohorting. Queue lengths in 2 Queue Split build up to 40 people and up to 30 people

in 3 Queue Split. Cohorting would be the best overall solution in this example.

Figure EC.1 B shows that for the medium sized building, the queue length in FCFS builds up

reaching a peak of up to 175 people at the end of rush hour, whereas Cohorting has a queue length

of around 15, which is a huge improvement. Queue Splitting is better than FCFS and the number

of queues impact the performance. The queue length in 2 Queue Split steadily builds up to 60

people, whereas 3 and 4 Queue Split are better and perform similarly with only around 25 people.

Thus, Cohorting or a 3 Queue Split would be good solutions in this example.

Figure EC.1 Comparison of interventions in examples of small and medium sized buildings.
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Note. In Queue splitting, we always split the floor ranges (nearly) equally among all queues. A) Plot of queue length

in the lobby from beginning to end of the busy period across interventions for an example small building on a typical

Monday morning rush hour. Between 8 to 10 AM, 400 passengers with destinations ranging from floors 2 to 7 are

served by 2 elevators (each with capacity 2). B) Plot of queue length in the lobby from beginning to end of the busy

period across interventions for an example medium building on a typical Monday morning rush hour. Between 8 to

10 AM, 1500 passengers with destinations ranging from floors 2 to 16 are served by 6 elevators (each with capacity

4).

EC.3 Performance of Allocation

In this section, we study the performance of the Allocation intervention. We considered several

distinct ways to allocate elevators to floors, although not all of them worked properly. For example,
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we initially tested the performance of allocating half of the elevators to the odd levels and the rest to

the even levels. The main motivation for this allocation is to encourage people to walk up or down

one level because it is always feasible for a passenger who is willing to walk to take the elevator in

the other group of elevators. However, the improvement is rather negligible in comparison to FCFS

even with people willing to walk. This is because the distribution of the highest reversal floor is

barely changed, and it is almost as likely as FCFS that the elevator trips will end up in very high

floors. Due to the poor performance, we do not describe the odd-and-even intervention in detail

and do not recommend such strategies that cannot reduce the average highest reversal floors.

Next, we consider the Allocation intervention that dedicates each elevator to a predetermined

floor range. It is a common practice in high rise buildings that a dedicated group of elevators serves

the higher floors, and other elevators serve low floors. By implementing this allocation intervention,

the chances of two random passengers in the same group going to the same floor becomes relatively

high, and trips to high floors are grouped together. This results in a natural cohorting phenomenon

and travel time reduction. Note that Queue Splitting is theoretically better than the Allocation

intervention with the same division of floor ranges, as there is an extra constraint in the usage of

elevators in the Allocation intervention. We observe the drastic difference in Figure EC.2.

Figure EC.2 Comparison of interventions, including Allocation intervention for our large building

case study.
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Note. Between 8 to 10 AM, 2750 passengers with destinations ranging from floors 2 to 25 are served by 14 elevators

(each with capacity 4). We run 100 independent random instances and report the average performance. A) Plot of

percentage of passengers experiencing different waiting times in the lobby across interventions. B) Plot of percentage

of time different queue lengths in the lobby occur (measured every 1 second) across interventions. C) Plot of queue

length in the lobby from beginning to end of the busy period across interventions.
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In the case study of the 25-floor high rise building, we numerically evaluate the performance of

the Allocation 4 intervention, where we divide the 14 elevators into groups of 3,3,4,4, with each

group serving 6 floors. The two groups with 4 elevators serve the relatively higher floor ranges. We

also try the Allocation 2 intervention in which we divide the elevators into 2 groups of 7 elevators

and each group serves 12 floors.

The results are shown in Figure EC.2. The Allocation 2 intervention can delay the build-up

of queues slightly comparing with FCFS, but generally still have a large queue length. Using the

Allocation 4 intervention, the queue length and waiting time can be reduced quite significantly,

and the queue does not keep building up in the lobby. Therefore, with proper allocation of eleva-

tors, the safety concerns in elevator management can be controlled. However, in comparison with

the performance of Cohorting and 2 Queue Split, the Allocation 4 intervention results in much

longer queue length. The key reason why Allocation is not as effective as Queue Splitting is that

when one of the elevator groups has stabilized its queue, it cannot help another group which has

unstable queue. This reasoning can be seen in the theoretical stability analysis in Appendix EC.3.1.

In addition to the worse performance, there are higher complexity to implement the Allocation

intervention as the elevators require extra programming and control with the relevant floor ranges.

Generally speaking, using the Allocation intervention can significantly reduce the queue length,

though not as much as the Cohorting and Queue Splitting intervention.

Figure EC.3 The impact of WtW in the Allocation 4 Intervention.
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Note. Plot showing the average queue lengths in the lobby of both Cohorting and Allocation 4 interventions with

the WtW parameter varying between 0% to 100%. As the WtW increases, there is negligible impact on Cohorting

whereas the performance of Allocation 4 improves markedly.

Next, we consider the impact of willingness-to-walk to the performance of the Allocation inter-

vention. Suppose a passenger is willing to walk up or down one level to the destination floor x,
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he or she will first check all the queues that can reach either the destination floor x, x− 1, or

x+1, and choose the queue with shortest length to join when arriving to the system. Therefore,

when the elevators are assigned to small ranges of floors, only the passengers whose destinations

are at the boundary of the floor ranges can make the choice of which queue to join. In Figure

EC.3, we show the impact of WtW under the Allocation 4 intervention. Unlike the impact of

WtW on Cohorting and Queue Splitting intervention where the improvement is relatively small,

the improvement with respect to the increased WtW is much more dramatic for Allocation. This

is due to the fact that the service resources in Allocation are not shared between groups, so that

the passengers who shift from a long queue to a short queue help the system achieve a better

match between its service capacity and demand. Therefore, in a building where the Allocation

intervention is physically implemented, the management team may try to ask passengers switching

to another queue by walking up/down one level to better utilize the elevator capacities. This is an

alternative way to reduce the queue length.

EC.3.1 Stability Condition for Allocation

In the Allocation intervention where m floors and N elevators are divided into l groups, the

queueing system is essentially l independent queue with FCFS service rule. The standard stability

condition (2) for Allocation is

λ

Cl
E[τ(H,S)|group i]<

N

l
for all i= 1, . . . , l.

Equivalently, the queuing system is stable if and only if the arrival rate λ is lower than

ηAllocation := min
i=1,...,l

{
NC

E[τ(H,S)|group i]

}
= min

i=1,...,l

{
NC

2ν(E[H |group i]− 1)+ωE[S|group i]
.

}
Comparing with the stability condition of Queue Splitting, we can see that the stability threshold

for Allocation is lower then Queue Splitting (assuming the floors are split the same way). Indeed,

whether the queuing system is stable or not is determined by the highest floor group (when there is

an even split) since the round trip time for the highest floor group has the largest value among all

floor groups. One can also consider allocating the floors unevenly to minimize the stability threshold

ηAllocation, but this requires solving a difficult optimization problem that is hard to calibrate.

In Figure EC.4, we report the histogram of number of stops, highest reversal floor, and elevator

load for 2 Queue Split and Allocation 2. Because we use the same floor groups for both interventions,

we can observe a similar behavior in the distribution shape of highest reversal floor. Due to the fact

that passengers in different floor groups can be mixed together in Queue Splitting intervention when

a queue does not have enough people to fill up the elevator capacity, we observe that Allocation
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Figure EC.4 Comparing Queue Splitting and Allocation using number of stops and highest

reversal floor of elevator trips.
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Note. We run 100 independent random instances and report the average performance. A) The percentage of elevator

trips with different number of stops made. B) The percentage of elevator trips with different highest reversal floor H

across interventions. C) The percentage of elevator trips with different load. D) Reporting average number of stops

and average highest reversal floor.

2 leads to a smaller average highest reversal floor H overall. However, the queue is not stable

because the high floor group has a much higher average H value of 22.94. Indeed, the queue for

the low floor group is mostly empty because the elevator load is full only for 40% of the trips.

About 50% of the elevator trips only utilize half or less than half of the capacity. It indicates an

extremely imbalanced situation in the Allocation 2 intervention: there are too many elevators for

the low floors, but not enough for the high floors. When Allocation is implemented in a building,

the elevators are programmed to only serve a certain floor range. Therefore, empty elevators for the

low floor group cannot help the long queue for the high floor group, which is a dramatic drawback

of restricting service resources to a dedicated job type.

Of course, the performance for Allocation can be improved if the number of elevators for each

floor group is optimized. We can also make the floor range for high floors smaller. However, when

facing demand fluctuation and imbalanced arrival patterns, the Allocation intervention lacks the

flexibility to fully utilize the service capacity. Therefore, we recommend choosing Queue Splitting

over Allocation.

EC.3.2 Hard Constraints on Elevators

In reality, many buildings (including the large NYC building we studied) have banks of elevators

with pre-determined allocation of floor ranges for different elevators. Consider the allocation where

half the elevators (7 elevators) serve half the floors 2−13 and the other half (7 elevators) serve the

floors 13−25. These hard constraints on elevator systems are essentially the Allocation intervention
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we just discussed, and we can further apply the Cohorting or Queue Splitting intervention to the

system with hard constraints.

In this case, the Cohorting and Queue Splitting interventions still perform much better than

FCFS, as expected. Irrespective of interventions, passengers whose destinations are in higher floors

make a big impact on performance since the round trip time of these elevators are bigger. At

the very least, careful management of higher floor passengers should be considered, e.g., in queue

splitting intervention, one can shorten the ranges for higher floor passengers to encourage more

intrinsic cohorting.

In Figure EC.5, we show the simulation results under the large building setting with 7 elevators

dedicated to floor 2−13 and the other 7 elevators serving floor 14−25. We consider the performance

of the 4 queue split intervention by plotting the length of each of the 4 queues in the lobby over

the entire busy period.

Figure EC.5 Impact of Queue Splitting (4 queues) intervention for our large building case study.
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Note. Between 8 to 10 AM, 2750 passengers with destinations ranging from floors 2 to 25 are served by 14 elevators

(each with capacity 4). In this setting, not all elevators serve all floors. Instead, 7 elevators serve floors 2 to 13 and 7

serve floors 14 to 25. (A,B) Plots of queue length in the lobby from beginning to end of the busy period. In A) we

evenly split the floors in the ranges (2 - 13) and (14 - 25) and each queue gets exactly 6 floors. In B) we evenly split

the floors in the two queues serving (2 - 13) but unevenly split the two queues serving (14 - 25) into one serving (14

- 21) and the other serving (22 - 25).

In Figure EC.5 A, we split the floor ranges 2− 25 equally among all the queues so that each

queue gets exactly 6 floors. While the three lower queues have good performance (less than 5 people

on average), the queue for the highest floors 20−25 builds up over time to more than 40 people at

the end of rush hour. This imbalance arises because floors 13− 25 are only served by 7 elevators,

hence the passengers going to the highest floors wait longer for the busy elevators to come back to

the lobby.
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In Figure EC.5 B, we split the floor ranges 2− 13 equally as before, whereas in the floor range

14− 25, we assign one queue to serve eight floors 14− 21 and assign only four floors 22− 25 for

the last queue. The low floor queues for 2 to 13 have good performance as before, but both the

high floor queues, i.e., the ones serving floors 14− 21 and 22− 25 absorb the imbalance and their

lengths build up over time to at most 25 people at the end of rush hour for floors 22− 25 and at

most 10 people for floors 14− 21. The queue serving 22− 25 will also have fewer number of stops

since there are only four floors in this range, and the elevators taking these passengers are more

likely to come back faster to the lobby. Thus tuning the floor ranges for the queues serving the

higher floors leads to better performance compared to Figure EC.5 A where all queues have their

destination ranges split equally. Allocation therefore may be a hard constraint, and when applying

an intervention like queue splitting, a careful design of floor ranges is necessary for buildings with

pre-determined floor allocations for elevators.

EC.4 Algorithms for the proposed interventions

In this section, we describe the algorithms to evaluate the proposed interventions. For all algo-

rithms, we simulate a passenger arrival sequence over a time horizon T as an input file, and update

the evolution of the system every ∆t seconds. We denote P (t) as the list of passengers that arrive

before time t. In the Queue Split intervention, we have k queues, and we use a queue index I to

indicate from which queue we should load in a round-robin fashion. I → I+1 denotes the transition

to the next queue, and specifically, the (k+1)-th queue is equivalent to the first queue. The set of

destinations of the I-th queue is denoted as DI .
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Algorithm 1: Cohorting
t= 0 // current time

Q= ∅ // current queue

F⃗ = 0⃗ // number of passengers of an elevator deboarding at each floor

E = ∅ // set of empty elevators in the lobby

while t < T do
t= t+∆t

Update the current queue Q=Q∪P (t)\P (t−∆t) := {p1, p2, . . . , pl}, where l is the length of

current queue and p1 is the first passenger in the queue

Record queue length N(t) = l

Update the elevators in lobby E =E ∪{e :ReturnT ime(e)∈ [t−∆t, t)}

while there exist elevators in lobby and there are passengers waiting in the lobby do
e is the first elevator in E

while there exist capacity in e and there are passengers waiting in the lobby do
Update the current queue, l is the length of current queue and p1 is the first passenger in

the queue

leader= p1

Remove p1 from Q and record wait time W1

Update F according to p1’s destination

i= 2

while there exists remaining capacity in the elevator and i≤ l do
if destination of pi is the same as leader then

pi enter the current elevator and record wait time Wi

Remove pi from Q

Update F⃗ according to pi’s destination
else

i→ i+1

end
end

end

Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )

Remove elevator e from E

Update F⃗ = 0⃗
end

end
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Algorithm 2: Queue Splitting (k queues)
t = 0 // current time

Qi = ∅ for i= 1, . . . , k

F⃗ = 0⃗ // number of passengers of an elevator deboarding at each floor

E = ∅ // set of empty elevators in the lobby

I = 1 // start from the first queue

while t < T do
t= t+∆t

Update the current queues Qi =Qi ∪{p : p∈ P (t)\P (t−∆t), p’s destination ∈Di} for i= 1, . . . , k

Record the total queue length N(t);

Update the elevators in lobby E =E ∪{e :ReturnT ime(e)∈ [t−∆t, t)}

while there exist elevators in lobby and there are passengers waiting in the lobby do
e is the first elevator in E

RemainCap=C

if there are at least C passengers in queue QI then
Load the elevator with the first C passengers in QI , remove from QI , record wait time,

and update F⃗

I → I +1
else

Load the elevator with all passengers in QI , remove from QI , record wait time, and

update F⃗

RemainCap=C − |QI |

I → I +1 // try to load the current elevator from the next queue

while there exists remaining capacity in elevator e and there are passengers in queue QI

do
Load the elevator with up to RemainCap passengers in QI , remove from QI , record

wait time, and update F⃗

RemainCap=RemainCap− |QI |

I → I +1
end

end

Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )

Remove elevator e from E

Update F⃗ = 0⃗
end

end
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Algorithm 3: Cohorting with Pairing
t= 0

Q= ∅

F⃗ = 0⃗ // number of passengers of an elevator deboarding at each floor

E = ∅ // set of empty elevators in the lobby

while t < T do
t= t+∆t

Update the current queue Q=Q∪P (t)\P (t−∆t) := {p1, p2, . . . , pl}, where l is the length of

current queue and p1 is the first passenger in the queue

Record queue length N(t) = l

Update the elevators in lobby E =E ∪{e :ReturnT ime(e)∈ [t−∆t, t)}

while there exist elevators in lobby and there are passengers waiting in the lobby do
e is the first elevator in E

while there exist capacity in e and there are passengers waiting in the lobby do
Update the current queue, l is the length of current queue and p1 is the first passenger in

the queue

leader= p1

Remove p1 from Q and record wait time W1

Update F⃗ according to p1’s destination

i= 2

// Start finding a passenger that goes to the same destination of p1

if there exists remaining capacity in the elevator then
while destination of pi is not the same as leader and i≤ l do

i→ i+1

end

if i≤ l then // if i= l+1, there is no passenger to be paired with the

leader
pi is paired with the leader and enters the elevator

Record wait time Wi of passenger pi

Remove pi from Q

Update F⃗ according to pi’s destination
end

end
end

Update ReturnT ime(e) = t+RoundTripT ime(F⃗ )

Remove elevator e from E

Update F⃗ = 0⃗
end

end

Electronic copy available at: https://ssrn.com/abstract=3755062


