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We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to

serve customers. Customers arrive to the system according to a stochastic process and upon arrival decide

whether or not to purchase the service, depending on their willingness-to-pay and the current price. The

service time during which the resource is used by the customer is stochastic and the firm may incur a service

cost. This model represents various markets for reusable resources such as cloud computing, shared vehicles,

rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts

to maximize a weighted combination of three central metrics: profit, market share, and service level. Under

Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution,

we establish a series of results that characterize the performance of static pricing in such environments.

In particular, while an optimal policy is fully dynamic in such a context, we prove that a static pricing

policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy.

Notably, this result holds for any service rate and number of units the firm operates. Our proof technique

relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing

policy. In the special case where there are two units and the induced demand is linear, we also prove that

the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large

testbed of instances suggest that the latter result is quite indicative of the profit obtained by the static

pricing policy across all parameters.

Key words : reusable resources, dynamic pricing, static pricing, approximation algorithm

1. Introduction

In many service industries, the same resource to serve one customer can be used to serve

future customers once the initial service is completed. This type of resource is commonly

referred to as a reusable resource. For instance, in the hotel or car rental industry, a fixed

number of rooms or vehicles are available to accommodate customers. Each customer uses
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one of these resources for some number of days until check out or return, after which it

is free to be used by another customer. In a related example, many offices, campuses, or

apartment buildings offer a pool of bicycles or vehicles to be rented or shared by their

members, and units are always returned to their origin after being used by a member.

Another example of a reusable resource is cloud computing servers, which can be used

by customers to complete jobs after which they become available for processing new jobs.

Finally, another interesting example of a reusable resource arises in the repair industry for

aircraft, trains, and other large machinery. Specifically, there is a class of spare parts that

are known as rotable, meaning that when they break, the customer exchanges the broken

part for a working part with the repair agent. When the repair agent receives the broken

part, it is “utilized” for some time as it is being repaired, after which it becomes available

again to service potential future customers. This application was the direct motivation for

this paper, and the details of an implementation of this model at an aircraft OEM can be

found in Besbes, Elmachtoub, and Sun (2019).

All of the examples above share several important features which we shall incorporate

into our model. First, the number of units available of each resource is fixed (over appro-

priate time horizons), as acquiring more capacity or units involves significant investments.

Second, when a resource is used, the service time is generally stochastic and varies across

customers. Third, customers are price-sensitive and in turn the demand rate in each of these

applications can be controlled by the price (which can be a one-time fee or an hourly/daily

fee to the customer). Fourth, there is a cost incurred by the service provider associated

with the usage of a unit (e.g., in terms of cleaning, maintenance, or repair). Finally, in

each of these settings it is highly unusual for a customer to wait for service. That is, if all

units of the resource are occupied, the customer is typically lost.

In all of the settings above, the seller may have multiple objectives. The profit rate

is clearly a fundamental objective for any service provider, but typically such providers

also focus significantly on their market share and service level, i.e., the probability that

an arriving customer finds a resource available. The latter two metrics are driven by the

long term objectives of maintaining a prominent position in the market and ensuring that

consumers find the service reliable.

In such environments, an optimal policy will be highly dynamic in general, adjusting its

prices often, as a function of the supply conditions. The question the present paper aims
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to address is the following. What is the performance of a simple static pricing (one price)

policy in such environments? This question has dual practical and theoretical motivations.

On the one hand, in practice, dynamic pricing may require systemic changes if prices

are typically published in a catalog upfront. Dynamic prices may also be undesirable due

to the negative perception by customers. On the other hand, the existing literature in

dynamic pricing has argued for particular objectives that static pricing yields near-optimal

performance in large-scale systems (see literature review). How robust is such an insight for

a combination of objectives and for arbitrary scales? (While the scale for cloud computing

may be large, it is often small as well, e.g., rotable spare parts.) In particular, in the present

paper, we derive the first universal performance guarantees for static pricing with respect

to the profit, market share, and service level objectives, with an optimal dynamic pricing

strategy serving as the benchmark. In particular, we aim to provide results on the strength

of static pricing that hold across all possible parameter regimes and scales.

To that end, we anchor our analysis around the following prototypical model. A service

provider manages a pool of a single type of reusable resource. The firm uses the reusable

resources to deliver service to customers over an infinite horizon. Customers arrive accord-

ing to a Poisson process in which the rate depends on the price set by the firm. We make

the standard assumption that the revenue rate is concave in the arrival rate. Upon arrival,

a customer seizes one unit of the resources for an exponentially distributed random amount

of time and pays a fee (which could depend on the realized duration of usage or be fixed in

advance). The unit of resource occupied by a customer becomes available to others after

service completion. The firm may also incur some cost of service. Note that the underlying

dynamics correspond to an Erlang loss model with state-dependent arrival rates (Erlang

(1917)). The goal of the firm is to decide on the optimal pricing policy to maximize a

combination of three different objectives: profit rate, market share, and service level.

The main contributions of the present paper lie in deriving universal performance guar-

antees for static pricing and can be summarized as follows.

• We establish that for any combination of the three objectives – profit rate, market

share, and service level – there exists a static pricing policy which can achieve at least

78.9% of the value of each objective under the optimal dynamic pricing policy. This result

holds for any capacity size, market size, and service rate.
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• We consider a special case where the service provider is a profit maximizer, there are

two units of the reusable resource, and the demand rate is linear in the price. We prove in

this case that the static policy achieves at least 95.5% of the optimal profit from dynamic

pricing. This result holds for any market size and service rate.

• Our proof technique relies the construction of a judicious static price that is based

on the actual optimal dynamic pricing policy in the following manner. The static price

is set so that arrival rate of the static policy (when there is at least 1 unit) is equal to

the expected arrival rate of the optimal dynamic policy (when there is at least 1 unit).

Under this construction, we lower bound the performance gap in terms of the stock-in

probabilities of said static policy and the optimal policy, and analyze this ratio using a

change of variables. Note that this is in stark contrast to the classical approach of relying

on a fluid (deterministic) relaxation to obtain pricing heuristics and performance bounds.

• We complement the theoretical results above with numerical experiments over a broad

test bed. These illustrate that the performance of static pricing is in general even better.

Furthermore, for profit maximization, we find the performance of static pricing is always

above 97.5% of that obtained by an optimal dynamic pricing policy, indicating the robust-

ness of the insights derived beyond the exact conditions assumed in the theorems.

To the best of our knowledge, these are the first universal guarantees derived for static

pricing for this class of problems. Furthermore, the bounds derived highlight the very high

performance of static pricing.

1.1. Literature review

We next provide an overview of the literature on the effectiveness of static pricing policies in

the context of perishable inventory, queuing systems, and reusable resources. We note that

although a server in a queueing system is indeed a reusable resource, these systems typically

allow for customers to wait for service. In contrast, the reusable resources literature assumes

that customers are immediately lost if no units are available.

The dynamic pricing literature has had an extensive focus on the context of perish-

able resources, where there is a finite time horizon to consume a finite number of units

of one or more resources (see den Boer (2015) for a recent survey). The seminal work

of Gallego and Van Ryzin (1994) shows that if the revenue function is concave, a static

pricing policy loses at most 1/(2
√

min{C,λ∗t}), where C is the number of units and λ∗t

represents the expected number of sales under the myopic price. The authors also show
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a universal guarantee of 1− 1/e for any parameter regime, with both results relying on

a concavity assumption on the revenue rate (see also Ma et al. (2018)). Ma et al. (2018)

recently generalize these results for the same model without the concavity assumption, and

also provide non-adaptive pricing policies for assortment optimization and non-stationary

demand settings with constant factor performance guarantees. Chen et al. (2018) showed

that the 1− 1/e guarantee and asymptotic optimality for static pricing also holds in the

presence of strategic customers. Gallego et al. (2008) establish conditions for when static

pricing is optimal in the presence of strategic customers. The value of static over dynamic

pricing policies has also been considered in models with inventory cost and replenish-

ment considerations, such as those in Federgruen and Heching (1999), Chen et al. (2006),

Yin and Rajaram (2007), Chen et al. (2010). Related to static pricing policies are poli-

cies with limited price changes, such as those considered in Feng and Gallego (1995),

Bitran and Mondschein (1997), Netessine (2006), Çelik et al. (2009), Chen et al. (2015),

Cheung et al. (2017). Note that in our model there are no inventory costs, and inventory

can be repeatedly reused over an infinite time horizon.

There is also an extensive literature on dynamic pricing in queues.

Paschalidis and Tsitsiklis (2000) provide numerical results showing the promise of static

pricing in multi-class systems. Ata and Shneorson (2006) studied the dynamic pricing of

an M/M/1 service system where the objective is welfare maximization, and numerically

show it can have significant gains over static pricing. Maglaras and Zeevi (2005) showed

in a service system, the revenue generated by the fluid-optimal prices are near optimal

when the capacity and market potential are both large. In a related model where the

objective is revenue maximization, with observable queues, Kim and Randhawa (2017)

quantify more precisely the asymptotic value of dynamic pricing in large systems and

prove conditions under which a two price policy is almost as good as a dynamic pricing

policy. Banerjee et al. (2015) provide a queueing analysis of a ride-share platform where

the customers are modeled as servers, and show that a static price is asymptotically equal

to a dynamic price policy for large-scale systems, although dynamic pricing is more robust

to modeling error.

Closest to our formulation is the work of Gans and Savin (2007) who study dynamic

pricing to maximize the expected profit for rentals. Their model considers discounted

rewards with a discrete price ladder, although with multiple customer types. They show
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the near-optimality of static pricing in highly utilized rental systems where both the offered

load and system capacity are large. To the best of our knowledge, all of the previously

mentioned results quantifying the gap between static pricing and dynamic pricing hold

asymptotically when the scale of the system is large. In contrast, our results provide uni-

versal guarantees that do not rely on the scale of the system. Recently, Waserhole and Jost

(2016) and Banerjee et al. (2016) consider a general network of a single type of resource

where prices control the rates between nodes, and prove a guarantee of C/(C+n−1) (for

multiple objectives in the latter paper) but zero service times, where n is the number of

nodes and C is the number of units. In related models, Balseiro et al. (2019) introduce and

analyze a Lagrangian-based dynamic pricing policy in a supply-constrained large network

regime, while Kanoria and Qian (2019) introduce an algorithm that does not require base

arrival rate information with guarantees for transient performance. With non-zero service

times, as we consider in our paper, Banerjee et al. (2016) provide a looser guarantee only

when C is large enough. Our paper provides a guarantee for any number of units, but does

not consider a general network. Note that for many applications, the regime of interest

has “small” C, emphasizing the need for universal guarantees. For example, for expensive

rotable spare parts, most of the parts have C ≤ 5 units (Besbes, Elmachtoub, and Sun

2019).

Various related studies focus on dynamic heuristics, multiple types of reusable resources,

and other levers beyond pricing. Lei and Jasin (2018) study the dynamic pricing problem in

a setting with deterministic service times and describe policies that are asymptotically opti-

mal in the regime where demand and resource capacity are both large. Doan, Lei, and Shen

(2019) study the pricing problem of reusable resources under ambiguous distributions of

demand and service time and use robust deterministic approximation models to construct

asymptotically optimal fixed-price policies.

Variants of the assortment optimization problem have been considered in

Rusmevichientong, Sumida, and Topaloglu (2017), Owen and Simchi-Levi (2018) and

Gong et al. (2019) with various universal approximation guarantees. The results in the

first two papers can be extended to allow for dynamic pricing with discrete price points.

Iyengar, Sigman et al. (2004) and Levi and Radovanović (2010) use linear programming

approaches to design admission control policies for such systems, which is a special case

of dynamic pricing where a resource is either priced at a nominal price or at infinity.
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Their admission control policies are asymptotically optimal, and Levi and Radovanović

(2010) also provides a universal guarantee of 1/2. Chen, Levi, and Shi (2017) consider a

generalization of this model that permits advanced reservations.

1.2. Organization

The paper is organized as follows. In Section 2, we describe the model along with structural

properties of the optimal policy. In Section 3, we prove the 78.9% performance guarantee of

static pricing under our multi-objective setting for any parameter range. We then refine our

guarantee to 95.5% in Section 4 for the special case of profit maximization with two units

under linear demand. Section 5 concludes our paper and offers future directions of research.

In an online appendix, we provide supplementary numerical experiments in Section EC.1

and provide all proofs that are omitted from the main body in Section EC.2.

2. Model and Preliminaries

In this section, we first describe a general model for pricing a reusable resource. We then

describe the various performance objectives the service provider may use, followed by

several important properties of the optimal dynamic pricing policy.

2.1. Pricing Model for a Reusable Resource

We consider a model in which a service provider has a fixed number of identical, non-

perishable units of a reusable resource that are sold to price-sensitive customers. The total

number of units of the reusable resource that the provider has is C. At any point in time,

each unit of the resource is either available for sale or occupied. Note that an occupied unit

can be interpreted as a customer using the unit in the cloud computing and ride sharing

examples, or being repaired in the rotable spare parts example from Section 1.

Customers arrive to the system over time according to a Poisson process with rate

Λ> 0. Each customer has an i.i.d. willingness-to-pay drawn from a valuation distribution

F . When a customer arrives, the provider offers a unit at some price p, and a customer

decides to purchase usage of the resource if their willingness to pay exceeds p. We denote

by λ(p) := ΛF̄ (p) the effective arrival rate at price p. When a customer decides to purchase

usage, one unit is then occupied for a random amount of time that follows an exponential

distribution with mean 1/µ. We assume that the usage times are i.i.d. across customers

and independent of the customer valuations.
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While a unit is being occupied, the firm cannot sell that unit until it is returned to the

system, i.e., a customer finishes using the unit or the provider finishes repairing the unit.

The firm incurs a cost c to serve one customer, which may be a cleaning, maintenance, or

repair cost. Any customer that arrives when all units are occupied is lost, regardless of the

current price being offered. This assumption is largely motivated by the fact that in most

of our applications the customers are seeking immediate service, and would naturally seek

out a competitor if the provider has no units available.

We assume that there is a one-to-one correspondence between prices and effective arrival

rates so that λ(p) has a unique inverse, denoted by p(λ). Therefore, one can view the

effective arrival rate λ as the decision variable. The firm dynamically determines a target

effective arrival rate λ which can be realized with the corresponding price p(λ). From an

analysis perspective, the effective arrival rate is more convenient to work with. We shall

make the standard assumption in the revenue management literature that the profit rate

function λ(p(λ)− c) is concave in λ.

The set of admissible policies, Π, is the set of non-anticipating policies, i.e., policies such

that the effective arrival rate at time t, λ(t), may only depend on events up to t−. We shall

also be interested in the class of static policies, Πs ⊂Π, that simply fix a single arrival

rate λ (price) at every time t.

2.2. Performance metrics

One natural metric when selling the reusable resources is the expected profit rate. Fix a

pricing policy π and let λ(t) denote the corresponding effective arrival rate at time t. Let

Nπ(t) denote the corresponding arrival process. Note that the latter is a non-stationary

Poisson process with intensity λ(t). Let Qπ(t) denote the number of on-hand units at time

t. The long-run average profit rate Pπ is given by

Pπ = lim inf
T→∞

1

T
E

[
∫ T

0

1{Qπ(t)> 0}(p(λ(t))− c)dNπ(t)

]

. (1)

For simplicity in the exposition of the paper, we assume p(λ(t)) is a one-time fee a user

pays for the service. Note that the analysis presented easily generalizes to the case when a

user’s payment depends on usage time, i.e., it is equivalent to charge a one-time price that

is simply the price per time unit multiplied by the expected usage time.

While the firm wants to maximize its profit, it may also want to keep a certain level of

market share, i.e., the expected number of units sold, as well as a certain service level. The
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market share objective MSπ is directly aligned with maximizing sales, while the service

level objective SLπ is measured by the fraction of time at least one unit is available. These

two objectives can be represented as

MSπ = lim inf
T→∞

1

T
E [Nπ(T )]

and

SLπ = lim inf
T→∞

1

T
E

[
∫ T

0

1{Qπ(t)> 0}dt
]

.

Note that there is a trade-off between the various metrics; the optimal solution for one

objective will generally be sub-optimal for another. For instance, maximizing the service

level corresponds to setting a static price as large as possible, while maximizing market

share corresponds to setting a static price of zero. Clearly neither price will result in any

profit at all.

In order to take the different objectives into account simultaneously, we assume the firm

maximizes a weighted combination of the objectives,

α1Pπ +α2MSπ +α3SLπ, (2)

where α1, α2, α3 ≥ 0 are the weights placed on each objective by the service provider.

Without loss of generality, we assume α1 + α2 + α3 = 1. We let V ∗ denote the long-run

value under the optimal policy, and is thus defined by

V ∗ := sup
π∈Π

{α1Pπ +α2MSπ +α3SLπ} . (3)

We denote by π∗ an optimal policy. Similarly, we let V s denote the long-run value under

the optimal static policy, and is thus defined by

V s := sup
π∈Πs

{α1Pπ +α2MSπ +α3SLπ} . (4)

In the present paper, we focus on universal performance guarantees for static pricing.

In particular, we shall focus on the worst-case performance of the optimal static pricing

policy in comparison to the optimal dynamic policy. That is, we seek to characterize the

maximum possible loss over all possible instances of our model. Formally, we let Ω denote

the family of instances

Ω := {(C,µ, p(·), c, α1, α2, α3) :C ∈N
+, c, µ> 0, α1+α2+α3 =1, αi ≥ 0, λ(p(λ)−c) concave in λ}.
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In turn, we aim to provide a universal lower bound on

inf
Ω

V s

V ∗ ,

which is the ratio between the objectives under the optimal static and dynamic pricing

policies. In fact, we shall show that our bound applies to the corresponding ratios of each

of the three objectives.

2.3. Analysis of the benchmark V ∗

We shall now characterize the structure of an optimal solution to the dynamic pricing

problem stated in Equation (3). Given the Poisson assumption on arrivals and the exponen-

tial assumption on service times, without loss of optimality, one may focus on stationary

policies that update the price only at changes in the number of units on-hand. The mem-

oryless property of the exponential distribution allows us to fully characterize the system

(a continuous-time Markov chain) by the number of units on-hand. As we shall see, this

allows us to provide closed-form expressions for the steady state distribution and objectives

under a particular policy.

An admissible policy π may be represented by C arrival rates λ1, . . .λC . When the

provider has only i units available, the price is set to p(λi). Note that the static policy is a

special case where λ1 = . . .= λC . Furthermore, the system can now be modeled as a birth-

death process where each state represents the number of units available. The transition

rate from state i to i+1 is (C− i)µ for i= 0, . . . ,C−1. The transition rate from i to i−1

is λi for i= 1, . . . ,C. A standard calculation for computing the steady state probabilities,

Pi(π) yields that

Pi(π) =
C!

(C − i)!

ΠC
j=i+1

λj

µ
∑C

k=0
C!

(C−k)!
ΠC

j=k+1
λj

µ

, i= 0, . . . ,C.

Using the steady state probabilities, we may express our three objectives simply as

Pπ =

C
∑

i=1

λi(p(λi)− c)Pi(π) (5)

MSπ =

C
∑

i=1

λiPi(π), (6)

SLπ =
C
∑

i=1

Pi(π) = 1−P0(π). (7)
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Let us denote by λ∗
i the effective arrival rate in state i under the optimal policy, and by

P
∗
i the steady-state probabilities of being in state i under the optimal policy. In Lemma 1,

we show a fundamental property that effective arrival rates are decreasing as the number

of units available increases. Moreover, all such arrival rates do not exceed the myopic rate

λ̄ (the rate only maximizes the immediate reward without considering the future), which

yields the highest possible instantaneous objective rate.

Lemma 1. Let λ∗
i be the optimal arrival rate when the on-hand inventory level is i. Let

λ̄ denote the myopic arrival rate where λ̄= argmaxλ λ(α1(p(λ)− c)+α2). Then

λ̄ ≥ λ∗
C ≥ · · · ≥ λ∗

1. (8)

The proof of Lemma 1 can be found in Section EC.2. Notice that the result presented in

Lemma 1 shares the same structural property as presented in Theorem 1 in Gans and Savin

(2007) where the objective is only profit maximization in a discounted reward setting.

We extend the analysis to a long-run average reward setting with multiple objectives and

prove that monotonicity of optimal prices (and rates) still holds. We will make use of this

property in the subsequent analysis.

3. Static Pricing Guarantee for Multi-Objective Optimization

We next investigate the performance of static pricing and present our first main result.

Theorem 1. There exists a static pricing policy πs that guarantees at least 15
19

of the

profit rate, market share, and service level of the optimal dynamic pricing policy. Equiva-

lently,

inf
Ω
min

{Pπs

Pπ∗
,
MSπs

MSπ∗ ,
SLπs

SLπ∗

}

≥ 15

19
.

Theorem 1 provides a strong guarantee: there exists a static price that nearly approxi-

mates the performance of an optimal dynamic pricing policy. Specifically, this price guar-

antees that the profit rate, market share, and service level are at least 15
19

≈ .789 of the

corresponding values under the dynamic pricing policy. Of course, a direct consequence of

Theorem 1 is that the optimal single price will have an overall objective of at least 0.789

of the objective under the optimal dynamic pricing policy as well. It is important to note

that our result makes no assumption on the number of units in the system, demand rate,

or service rate. This is in stark contrast to the previous literature which require the system

usage and capacity to be large to provide theoretical guarantees.
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It is worthwhile to note that our proof is constructive and exhibits a particular static

price that yields such performance. The static price behind our major finding is constructed

using the optimal policy, which we denote by π∗. Recall that λ∗
i are the arrival rates under

the optimal policy and P
∗
i are the steady-state probabilities. The single price is simply

chosen so that the corresponding arrival rate, λ̃, is the same as the expected arrival rate

under the optimal policy when units are available. More specifically, the static arrival rate

λ̃ is selected so that

λ̃=

∑C
i=1 λ

∗
iP

∗
i

∑C
i=1P

∗
i

=

∑C
i=1 λ

∗
iP

∗
i

1−P∗
0

. (9)

In our proof, which we detail in the next subsection, we show that the performance guaran-

tee of optimal static pricing can be lower bounded by the ratio of the stock-in probabilities

of the specific static policy λ̃ and the optimal policy. Note that the stock-in probabilities of

both policies can be expressed in terms of the optimal arrival rates λ∗
i , which allows us to

focus on lower bounding a closed-form quantity (a ratio of high-dimensional polynomials).

3.1. Proof of Theorem 1

The proof is organized around two main steps. In the first step, we exploit the concavity

of the revenue rate function (in the quantity space) to establish that for each of the three

objectives, the ratio of the performances under the static and optimal policies is at least

the ratio of the corresponding service levels. The second step bounds the ratio of the service

levels by 15/19 by enumerating several cases, with each case proven using elementary

calculus. A key component of this second step is a change of variables from demand rates

to the product of demand rates. Both steps fundamentally exploit the explicit construction

of λ̃ in Eq. (9). With some abuse of notation, we index quantities with λ̃ to denote these

under the static policy induced by this static rate.

Step 1. In the first step, we lower bound each of P λ̃

Pπ∗ , MSλ̃

MSπ∗ , and SLλ̃

SLπ∗ by 1−P0(λ̃)
1−P∗

0
. Note

that by Eq. (7), the lower bound is exact for the service level ratio, i.e.,

SLλ̃

SLπ∗ =
1−P0(λ̃)

1−P∗
0

. (10)

The lower bound is also exact for the market share ratio. Using Eqs. (6) and (9), we have

that

MS λ̃

MSπ∗ =
λ̃(1−P0(λ̃))
∑C

i=1 λ
∗
iP

∗
i

=

∑C
i=1 λ

∗
i P

∗
i

1−P∗
0

(1−P0(λ̃))
∑C

i=1 λ
∗
iP

∗
i

=
1−P0(λ̃)

1−P∗
0

. (11)
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For the profit ratio by the ratio, we have

P λ̃

Pπ∗
=

λ̃(p(λ̃)− c)(1−P0(λ̃))
∑C

i=1 λ
∗
i (p(λ

∗
i )− c)P∗

i

=
λ̃(p(λ̃)− c)

∑C
i=1 λ

∗
i (p(λ

∗
i )− c)

P∗
i

1−P∗
0

· 1−P0(λ̃)

1−P∗
0

≥ λ̃(p(λ̃)− c)

λ̃(p(λ̃)− c)
· 1−P0(λ̃)

1−P∗
0

=
1−P0(λ̃)

1−P∗
0

. (12)

The first equality follow from Eq. (5). The inequality follows from the fact that the function

λ(p(λ) − c) is concave in λ and applying Jensen’s inequality to a random variable that

takes value λ∗
i with probability

P
∗
i

1−P∗
0
for i= 1, . . . ,C. Note that the expected value of this

random variable is exactly λ̃ by Eq. (9). We next characterize the stock-in probabilities, and

the remainder of the proof, in terms of the new z variables. This variable transformation

unlocks the ability to apply (many) basic calculus ideas to prove our lower bound.

Step 2. To find the lower bound of the ratio of stock-in probabilities, we define a set of

auxiliary notation which will be useful in our subsequent analysis. We define ai :=
C!

(C−i)!

for i= 0,1, . . . ,C and zi := ΠC
j=i

λ∗
j

µ
for i= 1, . . . ,C +1. For clarity, note that zC+1 = 1. We

also define x :=
∑C

k=1 akzk+1 and y :=
∑C

k=2 akzk. Our analysis first relies on a change of

variables from the lambda-space to the z-space.

Using the steady-state probabilities derived in Section 2.3 and the definition of λ̃, the

service levels of the static and dynamic policies can be written as

1−P
∗
0 =

∑C
i=1 aizi+1

∑C
i=0 aizi+1

1−P0(λ̃) =

∑C
i=1 ai[(

∑C
k=1 akzk)/(

∑C
k=1 akzk+1)]

C−i

∑C
i=0 ai[(

∑C
k=1 akzk)/(

∑C
k=1 akzk+1)]C−i

.

From the above, it is clear that the ratio of the service levels may be written as a function

of z1, . . . , zC . We call this function R(z1, . . . , zC). Formally,

R(z1, · · · , zC) :=
1−P0(λ̃)

1−P∗
0

=
(
∑C

k=0 akzk+1)(
∑C

i=1 ai[(
∑C

k=1 akzk)/(
∑C

k=1 akzk+1)]
C−i)

(
∑C

k=1 akzk+1)(
∑C

i=0 ai[(
∑C

k=1 akzk)/(
∑C

k=1 akzk+1)]C−i)
.

We next develop a uniform lower bound on R(z1, · · · , zC) by developing separate bounds

for the cases where C is small (C ≤ 3) or large (C ≥ 4).
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Step 2a. We prove the lower bound for the cases where C is at most 3. When C = 1,

then λ̃= λ∗
1 and therefore R(z1) = 1. When C = 2, we have

R(z1, z2) =
z21 +4z1z2 +3z1+4z22 +6z2+2

z21 +4z1z2 +2z1+5z22 +6z2+2
≥ 4

5
,

where the inequality follows by matching terms and looking at the minimum ratio. When

C = 3, the numerator of R(z1, z2, z3) is

48+192z3+120z2+32z1+264z23 +336z2z3+96z1z3 +108z22 +64z1z2+10z21 +120z33

+228z2z
2
3 +68z1z

2
3 +144z22z3 +88z1z2z3+14z21z3 +30z32 +28z1z

2
2 +9z21z2 + z31

while the denominator of R(z1, z2, z3) is

48+192z3+120z2+24z1+264z23 +336z2z3+72z1z3 +108z22 +48z1z2 +6z21 +128z33

+252z2z
2
3 +60z1z

2
3 +168z22z3 +84z1z2z3+12z21z3 +38z32 +30z1z

∗2
2 +9z21z2+ z31 .

By matching terms in the numerator and denominator, it is then clear that

R(z1, z2, z3)≥
30

38
=

15

19
.

Step 2b. Next, we consider the case where C ≥ 4. While the function ratio R(·) is

difficult to analyze directly, we will derive a lower bound on R, which we denote by R̃(·),
which will be amenable to analysis. The bound can be derived simply by observing that

R(z1, . . . , zC) =
(
∑C

k=0 akzk+1)(
∑C

i=1 ai[(
∑C

k=1 akzk)/(
∑C

k=1 akzk+1)]
C−i)

(
∑C

k=1 akzk+1)(
∑C

i=0 ai[(
∑C

k=1 akzk)/(
∑C

k=1 akzk+1)]C−i)

=
(
∑C

k=0 akzk+1)[
∑C

i=1 ai(
∑C

k=1 akzk)
C−i(

∑C
k=1 akzk+1)

i−1]

[
∑C

i=0 ai(
∑C

k=1 akzk)
C−i(

∑C
k=1 akzk+1)i]

≥ (
∑C

k=0 akzk+1)[
∑4

i=1 ai(
∑C

k=1 akzk)
C−i(

∑C
k=1 akzk+1)

i−1]

[
∑4

i=0 ai(
∑C

k=1 akzk)
C−i(

∑C
k=1 akzk+1)i]

=
(
∑C

k=0 akzk+1)[
∑4

i=1 ai(
∑C

k=1 akzk)
4−i(

∑C
k=1 akzk+1)

i−1]

[
∑4

i=0 ai(
∑C

k=1 akzk)
4−i(

∑C
k=1 akzk+1)i]

=: R̃(z1, . . . , zC).

Next, we derive a lower bound on R̃(·) though two subcases, depending on the ratio of

y to z1. We first establish in Lemma 2 (proved in Section EC.2) that the partial derivative

with respect to the first argument is non-negative as long as y≥ a1z1.
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Lemma 2. Fix C ≥ 4. Fix z1, z2, ..., zC ∈ [0,∞)C and suppose y≥ a1z1, then

∂R̃

∂z1
≥ 0.

When y ≥ a1z1, Lemma 2 implies that the worst case value of R̃ occurs when z1 = 0.

In turn, in Lemma 3 (proved in Section EC.2), we establish a uniform lower bound on

R̃(0, z2, . . . , zC).

Lemma 3. Fix C ≥ 4. For all z2, ..., zC ∈ [0,∞)C−1, we have

R̃(0, z2, . . . , zC)≥
104

131
.

From Lemmas 2 and 3, we can conclude that when y ≥ a1z1, then R̃(z1, z2, . . . , zC) ≥
R̃(0, z2, . . . , zC)≥ 104

131
.

If y≤ a1z1, then there is no guarantee on the derivative, but one may directly establish

a uniform lower bound on R̃ as articulated in Lemma 4 (proved in Section EC.2).

Lemma 4. Fix C ≥ 4 and suppose y≤ a1z1, then

R̃(z1, z2, . . . , zC)≥
6

7
.

Combining both cases, We conclude that R(z1, z2, . . . , zC) ≥ R̃(z1, z2, . . . , zC) ≥
min{104

131
, 6
7
} ≥ 15

19
. This completes the proof of Theorem 1.

3.2. Tightness of analysis

We present an example which shows that the lower bound of 15
19

in Theorem 1 can be tight

for a family of instances. That is, we shall describe instances in which the static policy we

construct, λ̃, achieves exactly a fraction 15/19 of the optimal dynamic policy. Namely, we

shall fix C = 3, α1 = 0, α2 = 0, α3 = 1, µ to be arbitrarily close to 0, and p(λ) = 1
λ
.

Since α3 = 1, then the objective is to maximize the service level, that is

max
π

SLπ = 1−P(π).

The service level is always bounded above by 1, and hence it is clear that the policy

(λ∗
1, λ

∗
2, λ

∗
3) = (0,Λ,Λ) is optimal since

SL(0,Λ,Λ) =

∑3
i=1

6
(3−i)!

µiΠ3
j=i+1λ

∗
j

∑3
i=0

6
(3−i)!

µiΠ3
j=i+1λ

∗
j

=

∑3
i=1

6
(3−i)!

µiΠ3
j=i+1λ

∗
j

0+
∑3

i=1
6

(3−i)!
µiΠ3

j=i+1λ
∗
j

= 1.
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Now let us consider the static policy λ̃ which we construct according to Eq. (9). Recall

from Section 3.1 that the performance of the static pricing policy with respect to the

service level and market share objectives is R(z1, z2, z3), where zi :=ΠC
j=i

λ∗
j

µ
. In addition, the

performance of the static pricing policy with respect to the profit rate is also R(z1, z2, z3)

because λ(p(λ)− c) is linear in λ if p(λ) = 1
λ
, which makes the Jensen’s inequality tight in

the derivation of Eq. (12). Since z1 =0, then the ratio becomes

R(z1, z2, z3)

=
48+192z3+120z2+264z23 +336z2z3+108z22 +120z33 +228z2z

2
3 +144z22z3 +30z32

48+192z3+120z2+264z23 +336z2z3+108z22 +128z33 +252z2z23 +168z22z3 +38z32
.

Since z2 =
Λ2

µ2 and z3 =
Λ
µ
, we have z3 →∞ and z3 = o(z2) as µ→ 0, and hence

lim
µ→0

R(z1, z2, z3) =
30

38
=

15

19
.

4. Sharpening the Bound for Profit Maximization

In this section, we seek to focus more deeply on the profit maximization objective corre-

sponding to α1 = 1. This objective is central in the literature and we aim to understand to

what extent can our 78.9% guarantee from Section 3 be improved.

Theorem 2. Fix C = 2, and consider any rate µ and linear demand function λ(·). Let
π∗ denote a revenue maximizing dynamic policy. Then there exists a static pricing policy

πs such that
Pπs

Pπ∗
≥ 0.955.

This result establishes that for profit maximization, a simple static pricing policy guaran-

tees more than 95.5% of an optimal dynamic pricing policy. This is a much higher guarantee

than for the general multi-objective case. In particular, for profit maximization, there is

extremely limited value in dynamic pricing.

We note that due to the technical difficulty of the analysis, our result is limited to the

case with only 2 units (C = 2), and when the demand is linear (p(·) and λ(·) are linear),

a common assumption in both the literature and practice. However, in Section EC.1, we

see numerically that the level of guarantee above appears valid beyond the case C =2 and

linear demand. In fact, our computational results illustrate that the 95.5% lower bound

holds across every single instance tested in a wide testbed (across values of C and demand

models).
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The proof of Theorem 2 is again constructive in that it exhibits a particular static policy

with such a guarantee. This policy is the same as the one presented in Eq (9). The proof

relies on lower bounding the ratio of the service levels, which is indeed a lower bound on the

profit ratio as seen in Eq. (12). Then, the first order conditions of the profit maximization

objective are used to impose constraints on the worst-case arrival rates of an optimal policy,

which allows us to find a tighter bound on the ratio of the service levels.

Proof of Theorem 2. Let λ∗
1, λ

∗
2 be the effective arrival rates under the optimal policy

for profit maximization, and p∗1, p
∗
2 be the corresponding optimal prices. Let z1 =

λ∗
1λ

∗
2

µ2 and

z2 =
λ∗
2

µ
. For the static policy, let λ̃ be defined according to (9). Since C = 2, by Eq. (12)

we have
P λ̃

P∗ ≥ 1−P0(λ̃)

1−P∗
0

=
z21 +4z1z2+3z1 +4z22 +6z2 +2

z21 +4z1z2+2z1 +5z22 +6z2 +2
:=R(z1, z2).

Next, we show that R(z1, z2) is increasing in z1 and decreasing in z2 by simply looking

at the first partial derivatives. Taking derivatives of R w.r.t z1 and z2 gives

∂R(z1, z2)

∂z1
=

−z21 +2z1z
2
2 +4z32 +7z22 +6z2+2

(z21 +4z1z2 +2z1+5z22 +6z2+2)2
≥ 0

∂R(z1, z2)

∂z2
=−2(z21(z2+2)+ z1(2z

2
2 +7z2+3)+ z2(3z2+2))

(z21 +4z1z2 +2z1+5z22 +6z2+2)2
≤ 0.

To see that the partial derivative w.r.t. z1 is non-negative, it is sufficient to show that

z1 ≤ z22 , which follows from the fact that λ∗
1 ≤ λ∗

2, established in Lemma 1. To see that

the partial derivative w.r.t. z2 is non-positive, observe that all terms in the numerator are

negative.

The remainder of the proof proceeds by dividing the analysis in two cases: if z2 is above

or below
√
7−1
3

. When z2 ≤
√
7−1
3

, then in this case

R(z1, z2)≥R(0,

√
7− 1

3
)≈ 0.9557

since R(z1, z2) is increasing in z1 and decreasing in z2.

For the remainder of the proof we consider the case where z2 >
√
7−1
3

. In this case, we

leverage the first-order optimality conditions of the problem to show in Lemma 5 that z1

and z2 must be within a provable quantity of one another. This constraint then allows us

to tighten the lower bound on R(·). Denote γi =−p′(λi). Notice that since the demand is

linear, then γ1 = γ2. Define β :=
p∗1−c

γ1
≥ 0, and now we are ready to state the bounds on z1

and z2 in Lemma 5 (proved in Section EC.2).
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Lemma 5. Let g(β, z2) =
√

(z2+1)2+βz2(z2+2)− (z2+1). Then

z1 ≥ g(β, z2) (13)

z2 ≤
√

2β. (14)

By Lemma 5 and the fact that R(z1, z2) is non-decreasing in z1 we have that

R(z1, z2)≥R(g(β, z2), z2)

=
(2+β)z22 +(2β+3)z2+(2z2+1)

√

(1+β)z22 +2(1+β)z2+1+1

(3+β)z22 +(2β+4)z2+2z2
√

(1+β)z22 +2(1+β)z2+1+2

= 1− z22 + z2+1−
√

(1+β)z22 +2(1+β)z2+1

(3+β)z22 +(2β+4)z2+2z2
√

(1+β)z22 +2(1+β)z2+1+2

:= 1−G(β, z2). (15)

Therefore, minimizing R(z1, z2) is equivalent to maximizing G(β, z2), for which we provide

an upper bound in Lemma 6 (proved in Section EC.2).

Lemma 6. If z2 ≥
√
7−1
3

and β ≥ 0, then G(β, z2)≤ 0.0433.

Therefore, in the case when z2 ≥
√
7−1
3

, Eq. (15) and Lemma 6 imply that

R(z1, z2)≥ 1−G(β, z2)≥ 1− 0.0433= 0.9567.

Combining both cases, we obtain the claimed result and the proof is complete. �

5. Conclusion

In this paper, we have provided the first universal guarantees on the strength of static

pricing for reusable resources. Namely, we show that 78.9% of the profit, market share, and

service level from the optimal dynamic pricing policy can be obtained by a static price.

Our proof relies on a novel construction where the static arrival rate is set to the expected

arrival rate of the optimal policy when there is at least one unit available. We sharpen the

bound to 95.5% in a special case where there are two units, demand is linear, and profit

is being maximized. We believe that our static pricing policy construction naturally leads

to analyzing a ratio of stock-in probabilities in various more general settings, although

analyzing the ratio may require new ideas.

One important extension of this model is to allow for general i.i.d. service times rather

than exponential service times. In such a setting, the optimal dynamic pricing policy may
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no longer simply depend on the inventory state, as the remaining service time of every

unit must also be tracked in the optimal dynamic pricing policy. However, if one restricts

attention to inventory-based dynamic pricing policies, then our results have the potential

to be generalized (see, e.g., Brumelle (1978), for an analysis of steady state probabilities

of inventory state-dependent Erlang loss models).

Other important extensions of the results naturally include ones with multiple classes of

customers, products, and resource types. One may also consider the resources moving in

a network to model ride-sharing applications in more detail. A model with non-stationary

arrivals may also be of interest, in which case the hope would be to prove that a price that

only depends on time, but not the inventory state, is near-optimal.
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Electronic Companion

EC.1. Numerical Experiments

In this section, we conduct a set of numerical experiments to test the performance of the

static pricing policy. We consider three types of demand functions: linear, exponential,

and logistic. For a linear demand curve, we assume it takes the form λ=−ap+ b; for an

exponential demand curve, we assume it follows λ= be−ap; for the logistic demand curve,

we assume it is λ = b(1+e−ap0 )

1+ea(p−p0)
where p0 is the inflection point. Notice that in all three

demand curves, the maximum demand rate is set to be b when the price is set to 0.

For each value of C, we randomly generate the mean usage time uniformly in 1
µ
∈

[0.05,50]; a is randomly generated uniformly between 0.1 and 5; b is randomly generated

uniformly between 0.5 and 10; p0 is randomly generated uniformly between [0,20]. We

assume that the average service cost is 0, i.e., c= 0. We generate 1,000 different instances

of inputs and calculate the profit rate under the optimal dynamic pricing policy, the con-

structed static price policy λ̃ according to Eq. (9), and the best static price policy πs∗. We

report the worst case of P λ̃

Pπ∗ and Pπs∗

Pπ∗ for each capacity level C. The results are summarized

in Table EC.1.

Linear Exponential Logistic

C P λ̃

Pπ∗
Pπs∗

Pπ∗
P λ̃

Pπ∗
Pπs∗

Pπ∗
P λ̃

Pπ∗
Pπs∗

Pπ∗

2 99.53% 99.54% 99.06% 99.07% 99.16% 99.18%

3 99.27% 99.28% 98.57% 98.60% 98.68% 98.72%

4 99.10% 99.12% 98.26% 98.31% 98.41% 98.46%

5 98.97% 99.00% 98.05% 98.11% 98.19% 98.28%

10 98.66% 98.71% 97.58% 97.70% 97.71% 97.84%

20 98.46% 98.55% 97.38% 97.56% 97.46% 97.70%

30 98.40% 98.51% 97.39% 97.57% 97.45% 97.68%

40 98.38% 98.51% 97.48% 97.62% 97.51% 97.72%

50 98.37% 98.51% 97.60% 97.69% 97.58% 97.79%

Table EC.1 Worst case profit ratio: static pricing policies vs. optimal dynamic pricing policy.

As one can observe, the performance of static pricing is generally higher than 97.5%.

When C = 2, we observe the worst case to be 99.53% in the case of linear demand, which
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is even higher than the 95.5% guarantee proven in Theorem 2. We also note that this

very high performance of static prices continues to hold when we depart from the exact

assumptions of Theorem 2, for general values of C and for exponential and logistic demand

curves.

In general, the worst case performance of static pricing (either the best static price or

the price we construct) does not happen when C = 2. However, the ratio of the profit

rate achieved by the static policy and the optimal profit rate appears to be relatively

independent of the value of C. Of course, as C approaches infinity, the worst case ratio

indeed converges to 1.

In addition, one may observe that the performance of the static price policy we con-

structed in the proofs is very close to the performance of the best static price for profit

maximization. The difference of the worst case performance between the two static prices

is usually less than 0.2%.

Using a similar testbed, we also conducted numerical experiments for the multi-objective

case. We use the linear demand model in the numerical experiment and randomly generate

the values of αi’s uniformly at random. The rest of the experiment settings are the same as

described before. We calculate the worst case performance of our constructed static price

compared to the total objective as well as for the three performance metrics. The results

are presented in Table EC.2.

C V λ̃

V ∗

P λ̃

Pπ∗
MSλ̃

MSπ∗
SLλ̃

SLπ∗

2 81.08% 84.70% 81.03% 81.03%

3 80.32% 83.85% 80.23% 80.23%

4 80.95% 84.45% 80.82% 80.82%

5 81.80% 85.27% 81.63% 81.63%

10 85.37% 88.67% 85.02% 85.02%

15 87.68% 90.79% 87.17% 87.17%

20 89.30% 92.22% 88.67% 88.67%

Table EC.2 Performance of static pricing with multiple objectives.

As one may notice, the lowest of the worst case performance ratio happens when C = 3

at 80.32% for the overall objectives, and 80.23% for the market share and service level
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objectives. For this worst case ratio, the values of αi’s are similar to the construction in

our tightness example where α3 is very close to 1 while α1 and α2 is close to 0. This finding

is consistent with our tightness analysis.

EC.2. Additional proofs

Proof of Lemma 1. We prove this lemma by transforming the continuous time

Markov Decision Process (MDP) to a discrete time MDP and showing that the value

iteration operator preserve concavity and monotonicity.

Using standard techniques (see, e.g., Bertsekas (2012)), the continuous time MDP associ-

ated to Equation (3) can be transformed into a discrete time MDP, through uniformization,

and solved efficiently using value iteration. Let γ be given by

γ =
1

1+Λ+Cµ
,

where Λ is the maximum demand rate. Note that 1+Λ+Cµ upper bounds the transition

rates from any state in the Markov Chain.

Let h(i) denote the relative, long-run expected reward associated with having i units

available and η be the optimal average profit. The value iteration operator, T , takes the

following form,

T h(i) = max
λ∈[0,Λ]

{α1λ(p(λ)− c)+α2λ+α3− η+

γλh(i− 1)+ γµ(C− i)h(i+1)+ (1− γ(λ+µ(C− i))h(i))} ∀i (EC.1)

where

h(0) = 0.

Letting h∗(i) denote the relative optimal expected reward of having i units available,

then h∗(i) = lim
n→∞

T nh(i). We next prove the fact that h∗(i) is nondecreasing and concave

by showing T h(i) is nondecreasing and concave if h(i) has the same properties.

For any state i, we can rewrite the value iteration presented in Equation (EC.1) as

follows:

T h(i) =A(i)+B(i)



ec4 e-companion to Besbes, Elmachtoub and Sun: Static Pricing: Universal Guarantees for Reusable Resources

where

A(i) = max
λ∈[0,Λ]

[α1λ(p(λ)− c)+α2λ+ γλh(i− 1)+ γ(1+Λ−λ)h(i)] ,

B(i) = γµ [(C− i)h(i+1)+ ih(i)]− η+α3.

Denote

λi =argmaxA(i)

In order to show T h(i) is nondecreasing and concave, we will show both A(i) and B(i) are

nondecreasing and concave.

To show that A(i) is nondecreasing in i, observe that

A(i)−A(i− 1)=A(i)|λi
−A(i− 1)|λi−1

≥A(i)|λi−1
−A(i− 1)|λi−1

= γλi−1 [h(i− 1)−h(i− 2)]+ γ(1+Λ−λi−1) [h(i)−h(i− 1)]

≥ 0.

The first inequality comes from the fact that λi is the maximizer of A(i). The last inequality

comes from the assumption that h(·) is nondecreasing.
To show that B(i) in nondecreasing in i, observe that

B(i)−B(i− 1) = γµ ((C − i)h(i+1)+ ih(i)− (C− i+1)h(i)− (i− 1)h(i− 1))

= γµ ((C − i) [h(i+1)−h(i)]+ (i− 1) [h(i)−h(i− 1)])

≥ 0,

since h(·) is nondecreasing and both γ and µ are positive.

To establish the concavity of A(i), observe that

A(i− 1)+A(i+1)− 2A(i)

=A(i− 1)|λi−1
+A(i+1)|λi+1

− 2A(i)|λi

≤A(i− 1)|λi−1
+A(i+1)|λi+1

−A(i)|λi−1
−A(i)|λi+1

= γλ(λi−1)h(i− 2)+ γ(1+Λ−λi−1)h(i− 1)+λi+1h(i)+ γ(1+Λ−λi+1)h(i+1)

−λi−1h(i− 1)+ γ(1+Λ−λi−1)h(i)−λi+1h(i− 1)+ γ(1+Λ−λi+1)h(i)

= γλi−1 [h(i− 2)+h(i)− 2h(i− 1)]+ γ(1+Λ) [h(i− 1)+h(i+1)− 2h(i)]
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+ γλi+1 [2h(i)−h(i− 1)−h(i+1)]

= γλi−1 [h(i− 2)+h(i)− 2h(i− 1)]+ γ(1+Λ−λi+1) [h(i− 1)+h(i+1)− 2h(i)]

≤ 0.

The first inequality follows from the fact that λi is the maximizer of A(i). Since Λ is the

maximum rate of customer arrivals, then 1 +Λ− λi+1 is positive and the last inequality

follows from the concavity of h(·).
To establish the concavity of B(i), observe that

B(i− 1)+B(i+1)− 2B(i)= γµ [(C− (i− 1))h(i)+ (i− 1)h(i− 1)]

+ γµ [(C− (i+1))h(i+2)+ (i+1)h(i+1)]

− γµ [2(C− i)h(i+1)− 2ih(i)]

= γµ [(i− 1) [h(i− 1)+h(i+1)− 2h(i)]]

+ γµ [(C− i− 1) [h(i+2)+h(i)− 2h(i+1)]]

≤ 0.

The last inequality follows from the assumption that h(·) is concave and the fact that both

γ and µ are positive. Recall from Equation (EC.1), the optimal prices can be solved using

the following equation,

λ∗
i = argmax

λ
λ[α1(p(λ)− c)+α2− γ(h∗(i)−h∗(i− 1)].

Given the nondecreasing and concave properties of h∗(·), we can conclude the desired

property of the optimal policy. �

Proof of Lemma 2. The proof follows by simply showing that ∂R̃(z1,...,zC)
∂z1

≥ 0, which

is equivalent to showing that the numerator of ∂R̃(z1,...,zC)
∂z1

is non-negative. To do this, we

first establish a few facts. Recall that ai :=
C!

(C−i)!
for i = 0,1, . . . ,C and zi := ΠC

j=i

λ∗
j

µ
for

i= 1, . . . ,C +1. Also recall that x :=
∑C

k=1 akzk+1 and y :=
∑C

k=2 akzk.

Since λ∗
i is non-decreasing in i from Lemma 1, then for k= 1, . . . ,C we have that

z1zk+1 =ΠC
i=1

λ∗
i

µ
ΠC

j=k+1

λ∗
j

µ
≤ΠC

i=2

λ∗
i

µ
ΠC

j=k

λ∗hj

µ
= z2zk. (EC.2)
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Therefore,

y(a1z1 + y) =

(

C
∑

j=2

ajzj

)(

C
∑

i=1

aizi

)

≥ a2z2

(

C
∑

i=1

aizi

)

≥ a2

(

C
∑

i=1

aiz1zi+1

)

= a2z1x.

(EC.3)

where the second inequality follows from Eq. (EC.2).

Under the assumption of y≥ a1z1 and the fact that y≤ (C− 1)x, we also have that

x≥ z1, (EC.4)

x≥ a1z1 + y

2(C− 1)
. (EC.5)

Using the definitions of x and y, we may rewrite R̃(·) as

R̃(z1, . . . , zC) =
(a0z1+x)[a1(a1z1+ y)3+ a2(a1z1+ y)2x+ a3(a1z1 + y)x2+ a4x

3]

a0(a1z1+ y)4+ a1(a1z1+ y)3x+ a2(a1z1 + y)2x2+ a3(a1z1 + y)x3+ a4x4
.

The derivative of the numerator of R̃(z1, . . . , zC)is

[(a1z1 + y)4+ a1(a1z1+ y)3x+ a2(a1z1+ y)2x2 + a3(a1z1+ y)x3 + a4x
4]×

[3a21(a1z1 + y)2(z1+ x)+ 2a1a2(a1z1+ y)(z1+ x)x+ a1a3(z1 + x)x2

+ a1(a1z1+ y)3 + a2(a1z1 + y)2x+ a3(a1z1+ y)x2 + a4x
3]

− [a1(a1z1 + y)3(z1 + x)+ a2(a1z1+ y)2(z1 + x)x+ a3(a1z1 + y)(z1+ x)x2 + a4(z1 + x)x3]×

[4a1(a1z1 + y)3+3a21(a1z1+ y)2x+2a1a2(a1z1 + y)x2 + a1a3x
3]

=3a21(a1z1 + y)6(z1 + x)+ 2a1a2(a1z1+ y)5(z1 + x)x+ a1a3(a1z1+ y)4(z1 + x)x2

+ a1(a1z1+ y)7 + a2(a1z1 + y)6x+ a3(a1z1+ y)5x2 + a4(a1z1+ y)4x3

+3a31(a1z1+ y)5(z1 + x)x+2a21a2(a1z1 + y)4(z1 + x)x2 + a21a3(a1z1+ y)3(z1+ x)x3

+ a21(a1z1+ y)6x+ a1a2(a1z1+ y)5x2 + a1a3(a1z1 + y)4x3 + a1a4(a1z1 + y)3x4

+3a21a2(a1z1+ y)4(z1 + x)x2 +2a1a
2
2(a1z1 + y)3(z1 + x)x3 + a1a2a3(a1z1+ y)2(z1 + x)x4

+ a1a2(a1z1+ y)5x2 + a22(a1z1 + y)4x3 + a2a3(a1z1 + y)3x4 + a2a4(a1z1+ y)2x5

+3a21a3(a1z1+ y)3(z1 + x)x3 +2a1a2a3(a1z1 + y)2(z1+ x)x4 + a1a
2
3(a1z1+ y)(z1+ x)x5

+ a1a3(a1z1+ y)4x3 + a2a3(a1z1 + y)3x4 + a23(a1z1 + y)2x5 + a3a4(a1z1+ y)x6

+3a21a4(a1z1+ y)2(z1 + x)x4 +2a1a2a4(a1z1 + y)(z1+ x)x5 + a1a3a4(z1 + x)x6

+ a1a4(a1z1+ y)3x4 + a2a4(a1z1 + y)2x5 + a3a4(a1z1 + y)x6 + a24x
7

− 4a21(a1z1+ y)6(z1 + x)− 3a31(a1z1+ y)5(z1 + x)x− 2a21a2(a1z1 + y)4(z1+ x)x2 − a21a3(a1z1+ y)3(z1 + x)x3

− 4a1a2(a1z1+ y)5(z1 + x)x− 3a21a2(a1z1 + y)4(z1 + x)x2 − 2a1a
2
2(a1z1 + y)3(z1 + x)x3 − a1a2a3(a1z1 + y)2(z1 + x)x4
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− 4a1a3(a1z1+ y)4(z1 + x)x2 − 3a21a3(a1z1 + y)3(z1 + x)x3 − 2a1a2a3(a1z1 + y)2(z1 + x)x4 − a1a
2
3(a1z1 + y)(z1+ x)x5

− 4a1a4(a1z1+ y)3(z1 + x)x3 − 3a21a4(a1z1 + y)2(z1 + x)x4 − 2a1a2a4(a1z1 + y)(z1+ x)x5 − a1a3a4(z1 + x)x6

=3a21(a1z1 + y)6(z1 + x)+ [2a1a2 +3a31](a1z1 + y)5(z1+ x)x+ [a1a3 +5a21a2](a1z1 + y)4(z1+ x)x2 + a1(a1z1+ y)7

+ [a2 + a21](a1z1+ y)6x+ [a3+2a1a2](a1z1+ y)5x2 + [a4+ a22 +2a1a3](a1z1+ y)4x3 + [4a21a3 +2a1a
2
2](a1z1+ y)3(z1+ x)x3

+ [2a1a4 +2a2a3](a1z1+ y)3x4 + [3a1a2a3 +3a21a4](a1z1 + y)2(z1 + x)x4 + [2a2a4 + a23](a1z1 + y)2x5

+ [a1a
2
3 +2a1a2a4](a1z1 + y)(z1+ x)x5 +2a3a4(a1z1+ y)x6 + a1a3a4(z1+ x)x6 + a24x

7

− 4a21(a1z1+ y)6(z1 + x)− [3a31+4a1a2](a1z1+ y)5(z1 + x)x− [5a21a2 +4a1a3](a1z1 + y)4(z1 + x)x2

− [4a21a3 +2a1a
2
2 +4a1a4](a1z1 + y)3(z1 + x)x3 − [3a1a2a3 +3a21a4](a1z1 + y)2(z1 + x)x4

− [a1a
2
3 +2a1a2a4](a1z1 + y)(z1+ x)x5 − a1a3a4(z1 + x)x6

=a1(a1z1+ y)7 + [a2+ a21](a1z1+ y)6x+ [a3 +2a1a2](a1z1+ y)5x2 + [a4 + a22+2a1a3](a1z1 + y)4x3

+ [2a1a4 +2a2a3](a1z1+ y)3x4 + [2a2a4 + a23](a1z1+ y)2x5 +2a3a4(a1z1 + y)x6 + a24x
7

− a21(a1z1 + y)6(z1 + x)− 2a1a2(a1z1 + y)5(z1 + x)x− 3a1a3(a1z1 + y)4(z1 + x)x2 − 4a1a4(a1z1+ y)3(z1 + x)x3

=a1(a1z1+ y)7 + a2(a1z1+ y)6x+ a3(a1z1+ y)5x2 + [a4+ a22 − a1a3](a1z1 + y)4x3

+ [2a2a3 − 2a1a4](a1z1+ y)3x4 + [2a2a4 + a23](a1z1+ y)2x5 +2a3a4(a1z1 + y)x6 + a24x
7

− a21(a1z1 + y)6z1 − 2a1a2(a1z1 + y)5z1x− 3a1a3(a1z1 + y)4z1x
2 − 4a1a4(a1z1+ y)3z1x

3

=a1y(a1z1+ y)6+ a2y(a1z1+ y)5x+ a3y(a1z1+ y)4x2 + [a4+ a22 − a1a3]y(a1z1 + y)3x3

+ [2a2a3 − 2a1a4](a1z1+ y)3x4 + [2a2a4 + a23](a1z1+ y)2x5 +2a3a4(a1z1 + y)x6 + a24x
7

− a1a2(a1z1 + y)5z1x− 2a1a3(a1z1 + y)4z1x
2 − [3a1a4 − a1a

2
2 + a21a3](a1z1+ y)3z1x

3

≥a1a2(a1z1+ y)5z1x+ a22(a1z1+ y)4z1x
2 + a1a3(a1z1+ y)4z1x

2 + [a1a4 + a1a
2
2 − a21a3](a1z1 + y)3z1x

3

+ [2a2a3 − 2a1a4](a1z1+ y)3z1x
3 +

2a2a4 + a23
2(C − 1)

(a1z1 + y)3z1x
3 +

a3a4
2(C − 1)2

(a1z1 + y)3z1x
3 + a24x

7

− a1a2(a1z1 + y)5z1x− 2a1a3(a1z1 + y)4z1x
2 − [3a1a4 − a1a

2
2 + a21a3](a1z1+ y)3z1x

3

≥0

The first equality follows from expanding the products completely. The second equality

follows from combining positive terms, and then the negative terms. The third equality

follows from canceling terms out. The fourth equality follows from expanding (z1+x) terms

and simplifying. The fifth equality follows form expanding (a1z1+y) in some of the positive
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terms and simplifying. The first inequality follows from lower bounding some terms using

y≥ a1z1, Eq. (EC.3), Eq. (EC.4), or Eq. (EC.5). The second inequality follows since

a22 =C2(C− 1)2 ≥C2(C − 1)(C− 2) = a1a3

and

a1a4+ a1a
2
2− a21a3+2a2a3− 2a1a4+

2a2a4+ a23
2(C− 1)

+
a3a4

2(C− 1)2
− [3a1a4− a1a

2
2+ a21a3]

=2a1a
2
2− 2a21a3− 4a1a4+2a2a3+

2a2a4+ a23
2(C − 1)

+
a3a4

2(C− 1)2

=C2(6+C(6C− 13))

>0

when C ≥ 4. �

Proof of Lemma 3. Recall that

R̃(0, z2, . . . , zC) =

∑4
i=1 aiy

4−ixi

∑4
i=0 aiy

4−ixi

The main idea in proving this lemma is to compare the ratio of the coefficient of every

term in R̃(0, z2, . . . , zC). First, we restrict our focus only to the ratio of the coefficients for

the terms when y4 is expanded, since the ratio of the coefficients terms not in y4 is 1. To see

the fact that every term not in y4 has the same value of coefficient in both the numerator

and denominator, we can rewrite R̃(0, z2, . . . , zC) as

R̃(0, z2, . . . , zC) =

∑4
i=1 aiy

4−ixi

y4+
∑4

i=1 aiy
4−ixi

Since every term not in y4 must be in
∑4

i=1 aiy
4−ixi, and

∑4
i=1 aiy

4−ixi appears in both

numerator and denominator, then the ratio of the coefficient of the terms not in y4 must

be 1. Since R̃(0, z2, . . . , zC) ≤ 1 by definition, we only need to focus on the ratio of the

coefficient of the terms in y4 to find the lower bound of R̃(0, z2, . . . , zC).

We now calculate a lower bound on the ratio of the coefficients for the y4 terms. By the

definition of y =
∑C

k=2 akzk, every term in y4 takes the form: zk22 · · ·zkCC where
∑C

i=2 ki =

4, ki ∈ N. Therefore, a combination (k2, . . . , kC) uniquely defines a term in y4. For i =



e-companion to Besbes, Elmachtoub and Sun: Static Pricing: Universal Guarantees for Reusable Resources ec9

1, . . . ,4, we use the set Si to select possible ways of choosing terms from y and x, and is

defined as

Si = {k′, k′′ :

C
∑

j=2

k′
j = 4− i,

C
∑

j=2

k′′
j = i,

k′
j + k′′

j = kj, j = 2, . . . ,C

k′
j , k

′′
j ∈N}.

Now let A(k2, . . . , kC) denote the coefficient of the term defined by (k2, . . . , kC) in the

numerator and B(k2, . . . , kC) denote the coefficient of that term in the denominator. Plug-

ging in y=
∑C

k=2 akzk and x=
∑C

k=1 akzk+1 into R̃(0, z2, . . . , zC), we have that

A(k2, . . . , kC) =
4

∑

i=1

ai

[

∑

k′,k′′∈Si

(4− i)!

k′
2! · · ·k′

C !
ΠC

j=2

(

C!

(C− j)!

)k′j i!

k′′
2 ! · · ·k′′

C !
ΠC

j=2

(

C!

(C − j+1)!

)k′′j
]

B(k2, . . . , kC) =
4!

k2! · · ·kC !
ΠC

j=2

(

C!

(C− j)!

)kj

+A(k2, . . . , kC).

Notice that A(k2, . . . , kC) is from
∑4

i=1 aiy
4−ixi, and 4!

k2!···kC !
ΠC

j=2

(

C!
(C−j)!

)kj
is from y4.

Therefore,

R̃(z2, . . . , zC)≥min
A(k2, . . . , kC)

B(k2, . . . , kC)

=min
A(k2, . . . , kC)

4!
k2!···kC !

ΠC
j=2

(

C!
(C−j)!

)kj
+A(k2, . . . , kC)

=min
1

4!
k2!···kC !

ΠC
j=2( C!

(C−j)!)
kj

A(k2,...,kC)
+1

=min
1

F (k2, . . . , kC)+ 1

where

F (k2, . . . , kC) =

4!
k2!···kC !

ΠC
j=2

(

C!
(C−j)!

)kj

A(k2, . . . , kC)
.

To find the minimum of A(k2,...,kN )
B(k2,...,kN )

is equivalent to finding the maximum of F (k2, . . . , kC).
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We next show that for C ≥ 4, F (k2, . . . , kC) is upper bounded by 27
104

. First, we show

F (k2, . . . , kC) is maximized when k2 = 4 and ki = 0,∀i= 3, . . . ,C. This corresponds to the

term z42 . To see this, observe that

F (k2, . . . , kC) =

4!
k2!···kC !

ΠC
j=2

(

C!
(C−j)!

)kj

∑4
i=1 ai

[

∑

k′,k′′∈Si

(4−i)!
k′2!···k′C !

ΠC
j=2

(

C!
(C−j)!

)k′j i!
k′′2 !···k′′C !

ΠC
j=2

(

C!
(C−j+1)!

)k′′j
]

≤
4!

k2!···kC !
∑4

i=1
C!

(C−i)!
1

(C−1)i

∑

k′,k′′∈Si

(4−i)!
k′2!···k′C !

i!
k′′2 !···k′′C !

=
4!

k2!···kC !
(C − 1)4

∑4
i=1

C!
(C−i)!

(C− 1)4−i
∑

k′,k′′∈Si

(4−i)!
k′2!···k′C !

i!
k′′2 !···k′′C !

=
(C− 1)4

∑4
i=1

C!
(C−i)!

(C− 1)4−i

∑
k′,k′′∈Si

(4−i)!

k′
2
!···k′

C
!

i!
k′′
2
!···k′′

C
!

4!
k2!···kC !

=
(C − 1)4

∑4
i=1

C!
(C−i)!

(C− 1)4−i

:=H(C).

The first equality is by the definition of F (k2, . . . , kC). The first inequality holds since for

any i, the maximum possible ratio of the product terms in the numerator and the denom-

inator is (C− 1)i. The second equality follows by multiplying the numerator and denomi-

nator by (C− 1)4. The third equality follows by dividing the numerator and denominator

by 4!
k2!···kC !

. The last equality holds because
∑

k′,k′′∈Si

(4−i)!
k′2!···k′C !

i!
k′′2 !···k′′C !

and 4!
k2!···kC !

equivalent

calculations of the same multinomial coefficient.

Next, we show that H(C) is decreasing in C for C ≥ 4. Notice that

H(C +1)−H(C) =
C4

∑4
i=4

(C+1)!
(C+1−i)!

C4−i
− (C − 1)4

∑4
i=1

C!
(C−i)!

(C − 1)4−i

=
C4

(

∑4
i=1

C!
(C−i)!

(C − 1)4−i
)

− (C− 1)4
(

∑4
i=4

(C+1)!
(C+1−i)!

C4−i
)

(

∑4
i=4

(C+1)!
(C+1−i)!

C4−i
)(

∑4
i=1

C!
(C−i)!

(C− 1)4−i
)

=
−2C(C − 1)[2C(C − 1)(C− 2)− 1]

(

∑4
i=4

(C+1)!
(C+1−i)!

C4−i
)(

∑4
i=1

C!
(C−i)!

(C− 1)4−i
)

≤ 0 for C ≥ 4.
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So,

F (k2, . . . , kN)≤H(C)≤H(4) =
27

104
.

Therefore, we have the lower bound of R̃(0, z2, . . . , zC) as

R̃(0, z2, . . . , zC)≥min
T (k2, . . . , kC)

B(k2, . . . , kC)

=
1

maxF (k2, . . . , kC)+ 1

≥ 1

H(4)+ 1

=
1

27
104

+1

=
104

131
.

�

Proof of Lemma 4. We directly calculate the lower bound of R̃(z1, . . . , zC). In this

case, one can show that zC ≥ C − 1 and z1 ≥ (C − 1)C−1, so the zC1 dominates the rest

of terms in R̃(z1, . . . , zC). Since the coefficient of zC1 is the same in the numerator and

denominator, one can expect, in this case, R̃(z1, . . . , zC) to be close to 1.

First note that we have

y=

C
∑

k=2

akzk ≤ (C− 1)

C
∑

k=2

ak−1zk ≤ (C − 1)x.

Then

R̃(z1, . . . , zC) =
a1(a1z1+ y)2(a0z1+x)+ a2(a1z1+ y)(a0z1+x)x+ a3(a0z1+x)x2

a0(a1z1+ y)3+ a1(a1z1 + y)2x+ a2(a1z1+ y)x2+ a3x3

=
(Cz1+ y)2(Cz1+Cx)+ (C − 1)(Cz1+ y)(Cz1+Cx)x+(C− 1)(C− 2)(Cz1 +Cx)x2

(Cz1 + y)3+C(Cz1 + y)2y+C(C − 1)(Cz1+ y)x2+C(C − 1)(C − 2)x3

≥ A+(2C3−C2)z1x
2+(3C2−C)z1xy+C(C − 1)(C− 2)z1x

2

A+ y3+C3z21x+2C2z1xy+C2z21y+2Cz1y2

≥ 7y3+(2C3−C2)z21x+(3C2−C)z1xy+ [C2(C − 1)+C(C− 1)(C− 2)]z1x
2

8y3+(2C3−C2)z21x+(3C2−C)z1xy+ [C2(C − 1)+C(C− 1)2]z1x2

≥min{7
8
,
2C − 2

2C − 1
}

=
6

7

where

A=Cz1(Cz1 + y)2+C(C − 1)(Cz1+ y)x2+Cxy2.
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The first inequality comes from dropping C(C − 1)(C − 2)x3 in both the numerator

and denominator. The second inequality follows from the facts that A≥ 7y3 and C2z21y+

2Cz1y
2 ≤ C2(C − 1)z21x + C(C − 1)z1xy + C(C − 1)2z1x

2, since y ≤ a1z1 = Cz1 and y ≤
(C − 1)x≤Cx. The last inequality follows by the assumption that C ≥ 4. �

Proof of Lemma 5. We derive the optimal condition of the objective function to

bound λ1 and λ2. Recall that our objective function in the case of C = 2 is

max λ1(p(λ1)− c)P1+λ2(p(λ2)− c)P2

=max
2µλ1λ2(p(λ1)− c)+ 2µ2λ2(p(λ2)− c)

λ1λ2+2µλ2+2µ2
:= f(λ1, λ2) (EC.6)

Denote γi = −p′(λi). Notice that if λ = −ap + b is linear, then γ1 = γ2 =
1
a
. Taking

derivative of f(λ1, λ2) w.r.t λ1, λ2 and set those to zero yields

∂f

∂λ1

= 0⇒ 2γ1
λ2

µ

(

λ1

µ

)2

+2γ1(2
λ2

µ
+2)

λ1

µ
− (2(p1− c)(2

λ2

µ
+2)− 2

λ2

µ
(p(λ2)− c)) = 0

∂f

∂λ2

= 0⇒ 2γ2(
λ1

µ
+2)

(

λ2

µ

)2

+4γ2
λ2

µ
− 2(2(p(λ1)− c)

λ1

µ
+2(p(λ2)− c)) = 0.

Therefore, the optimal
λ∗
i

µ
’s take the form of

λ∗
1

µ
=

√

[γ1(
λ∗
2

µ
+1)]2+ γ1

λ∗
2

µ
((p(λ∗

1)− c)(2
λ∗
2

µ
+2)− λ∗

2

µ
(p(λ∗

2)− c))− γ1(
λ∗
2

µ
+1)

γ1
λ∗
2

µ

(EC.7)

λ∗
2

µ
=

√

4γ2
2 +4γ2(

λ∗
1

µ
+2)(2(p(λ∗

1)− c)
λ∗
1

µ
+2(p(λ∗

2)− c))− 2γ2

2γ2(
λ∗
1

µ
+2)

(EC.8)

Notice that by definition, z1 =
λ∗
1

µ

λ∗
2

µ
, z2 =

λ∗
2

µ
, and β =

p(λ∗
1)−c

γ1
=

p(λ∗
1)−c

γ2
. Therefore, we have

z1 =

√

[γ1(z2+1)]2+ γ1z2((p(λ
∗
1)− c)(2z2+2)− z2(p(λ

∗
2)− c))− γ1(z2+1)

γ1

≥
√

[γ1(z2+1)]2+ γ1z2(p(λ∗
1)− c)(z2+2)− γ1(z2 +1)

γ1

=
√

(z2+1)2+βz2(z2+2)− (z2+1)

and

z2 =

√

4γ2
2 +4γ2(

λ∗
1

µ
+2)(2(p(λ∗

1)− c)
λ∗
1

µ
+2(p(λ∗

2)− c))− 2γ2

2γ2(
λ∗
1

µ
+2)
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≤

√

4γ2(
λ∗
1

µ
+2)(2(p(λ∗

1)− c)
λ∗
1

µ
+2(p(λ∗

2)− c))

2γ2(
λ∗
1

µ
+2)

=

√

√

√

√

2(p(λ∗
1)− c)

λ∗
1

µ
+2(p(λ∗

2)− c)

γ2(
λ∗
1

µ
+2)

≤

√

√

√

√

2(p(λ∗
1)− c)(

λ∗
1

µ
+1)

γ2(
λ∗
1

µ
+2)

≤
√

2(p(λ∗
1)− c)

γ2
=
√

2β.

�

Proof of Lemma 6. We show in this case G(β, z2) is nondecreasing in z2 so that

we can plug in the upper bound of z2 to find the maximium of G(β, z2). Letting A :=
√

(1+β)z22 +2(1+β)z2+1, then the numerator of ∂G(β,z2)
∂z2

equals

z32(3+4β+β2)+ z22(5+3β2+3A+3β(2+A))+ 2z2(1+β2+A+βA)− 2βA

A
. (EC.9)

In the case that z2 ≥
√
7−1
3

, Equation (EC.9) is guaranteed to be non-negative since the

coefficient of βA equals 3z22 +2z2− 2 which is non-negative. Therefore, we can plug in the

upper bound of z2 to maximize G(β, z2). By Equation (14) in Lemma 5, we have

z2 ≤
√

2β.

Therefore,

G(β, z2)≤
2β+

√
2β+1−

√

(1+β)2β+2(1+β)
√
2β+1

(3+β)2β+(2β+4)
√
2β+2

√
2β
√

(1+β)2β+2(1+β)
√
2β+1+2

:= h(β).

Next, we find the maximum value of h(β) by looking at the first order condition. Setting

h′(β) = 0 yields the following equation,

5
√

2β+3
√
2β5/2 +4β3 − 4β2B+β(2− 4B)+ 2(1+B)−

√
2β3/2(2+3B) = 0

where

B =

√

1+2(
√
2+

√

β)
√

β(1+β).

Let θ=
√
β, then we have to solve the following,

4θ6+3
√
2θ5− 2

√
2θ3+2θ2+5

√
2θ+2= (4θ4+4θ2+3

√
2θ− 2)

√

1+2(
√
2+ θ)θ(1+ θ2).

(EC.10)
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Squaring both sides gives the following polynomial,

16θ12+56
√
2θ11+210θ10+244

√
2θ9+316θ8+96

√
2θ7−18θ6−36

√
2θ5−36θ4−48

√
2θ3−66θ2−12

√
2θ= 0.

The twelve roots to above equation are

θ={−1.59237,−0.951779± 0.164422i,−0.750502± 1.74268i,

− 0.547073± 0.940637i,−0.401417,0,0.356881± 0.649577i,0.768987}.

Since β ≥ 0, then θ =
√
β ≥ 0. Therefore, only θ = 0 and θ = 0.768987 can be the only

real valued solutions. Notice that θ= 0 is not the solution to Equation (EC.10), therefore

θ∗ = 0.768987 is the unique real solution to Equation (EC.10). The corresponding β∗ ≈
0.591341.

Since h′(0.1) ≈ 0.13 > 0 and h′(1) ≈ −0.007 < 0, then h(β) is increasing in [0, β∗] and

decreasing in [β∗,∞]. Therefore, β∗ ≈ 0.59341 maximizes h(β) where the maximum value

is approximately 0.0433. �
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