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Abstract— Novel numerical estimators are proposed for the
forward-backward stochastic differential equations (FBSDE)
appearing in the Feynman-Kac representation of the value
function. In contrast to the current numerical approaches
based on discretization of the continuous-time FBSDE re-
sults, we propose a converse approach, by first obtaining a
discrete-time approximation of the on-policy value function,
and then developing a discrete-time result which resembles the
continuous-time counterpart. This approach yields improved
numerical estimators in the function approximation phase,
and demonstrates enhanced error analysis for those value
function estimators. Numerical results and error analysis are
demonstrated on a scalar nonlinear stochastic optimal control
problem, and they show improvements in the performance of
the proposed estimators in comparison with the state-of-the-art
methodologies.

I. INTRODUCTION

Recent investigations have shown that stochastic control
problems with nonlinear dynamics and non-quadratic costs
can be solved with an iterative application of Feynman-Kac
representation theory and its associated forward-backward
stochastic differential equations (FBSDEs) [1], [2], [3], [4].
Applying Girsanov’s theorem (see, e.g., [5, Chapter 5, The-
orem 10.1]) to the typical FBSDE formulation results in
the association of a broad class of FBSDEs to the same
stochastic optimal control problem. This theoretical result
gives rise to an iterative-FBSDE (iFBSDE) method, which
alternates between solving for the value function over an
arbitrary distribution of trajectories, and refining the distri-
bution of trajectories to more closely match an optimally-
controlled distribution. Although this theoretical result is well
understood, numerical methods which approximate trajectory
distributions with Monte-Carlo sample distributions show
instability across iterations and offer poor accuracy guaran-
tees on even simple problems such as the linear quadratic
regulator (LQR). Improving the stability and accuracy of
iFBSDE methods is important for making FBSDE-based
approaches viable alternatives to other stochastic control
numerical methods.

The solution of a single pair of FBSDEs has been ad-
dressed previously in the literature and still remains an
active field of study, especially in the mathematical finance
community [6], [7], [8], [9], [10], [11]. These methods
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generally assume that the forward distribution is available
and not changing – so that enough of the state space can
be covered by dense sampling of the given forward SDE
in the order of 105 paths or more [7], [11] is satisfactory
to produce a desirable FBSDE solution. The focus of such
approaches is to show asymptotic convergence of the FBSDE
solution as more samples are added or as the approximation
is refined, either through Picard-iteration schemes [7] or
multi-level schemes [8]. However, since iFBSDE methods
iteratively update the forward SDE, dense sampling of any
particular forward SDE or highly accurate solutions lead
to very slow convergence in iterative application of those
methods. Instead, iFBSDE methods seek to produce fast
approximations with smaller numbers of samples and good
extrapolative properties, since the purpose of solving the
backward SDE is to arrive at an improved forward SDE
policy in the next iteration.

This paper focuses on improving the accuracy of the value
function approximation step, associated with the solution of
the backward SDE, under the assumption that the number of
trajectory samples is relatively small compared to traditional
FBSDE numerical methods. Specifically, we investigate the
discrete-time approximation of the backward SDE in the
context of solving for the value function in the backward
pass. Although some algorithms use analytic solutions of the
backward SDEs over short intervals [12], for many nonlinear
problems analytic solutions are not available. In this case,
one can use Euler-Maruyama approximations for both the
continuous-time forward and backward SDEs [1] to solve
for the continuous-time value function. In this paper we
propose to first form the Euler-Maruyama approximation
of the dynamics, costs, and value function, and then target
the discrete-time value function for approximation. Instead
of approximating relationships arriving from Feynman-Kac
FBSDE theory, we derive discrete-time relationships which
resemble their continuous-time counterparts. By doing so, we
arrive at a set of alternative estimators for the value function
of higher numerical accuracy.

The primary contributions of this paper are as follows:

• We propose a pair of alternative estimators for the value
function for the backward pass of a Girsanov-shifted
Feynman-Kac FBSDE numerical method.

• We characterize the theoretical bias and variance of
these estimators and showing its theoretic superiority
to previously proposed estimators.

• We numerically confirm the theoretical results on a
scalar nonlinear stochastic optimal control problem.

The structure of the paper is as follows. In Section II



we introduce the stochastic optimal control problem we
are interested in solving, as well as the continuous-time
approach to solving for an on-policy value function using
drifted FBSDEs. At the end of this section we describe a
discrete-time method of approximating the backward SDE
which we propose to improve upon. In Section III we discuss
a novel approach to this theory, beginning by replacing the
continuous-time problem with a discrete-time approximation.
We then use discrete-time relationships to arrive at estimators
which resemble the estimators arrived at through continuous-
time theory. Finally, in Section IV we present results from a
numerical experiment which confirms the error analysis and
that they perform better than previously proposed estimators.

Due to space limitations, we present the theorems without
proofs. Proofs can be found in the extended version of the
paper in [13].

II. CONTINUOUS-TIME FEYNMAN-KAC FBSDES

A. Stochastic Optimal Control Problem

We start with a complete, filtered probability space
(Ω,F , {Ft}t∈[0,T ],Q), on which WQ

s is an n-dimensional
standard Brownian (Wiener) process with respect to the prob-
ability measure Q and adapted to the filtration {Ft}t∈[0,T ].
Consider a stochastic nonlinear system governed by the
Itô differential equation

dXs = f(s,Xs, us) ds+ σ(s,Xs) dWQ
s , X0 = x0, (1)

where Xs is a Fs-progressively measurable state process
on the interval s ∈ [0, T ] taking values in Rn, u[0,T ]

is a progressively measurable input process on the same
interval, taking values in the compact set U ⊆ Rm, and
f : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn → Rn×n are
the Markovian drift and diffusion functions, respectively. The
cost associated with a given control signal u[t,T ] is

St(u[t,T ]) :=

∫ T

t

`(s,Xs, us) ds+ g(XT ), (2)

where ` : [0, T ]×Rn×U → R+ is the running cost, and g :
Rn → R+ is the terminal cost. Let membership of a function
in Cl,kb denote that the function and its partial derivatives in
t of order ≤ l and in x of order ≤ k are continuous and
bounded on its domain, defining Ckb similarly. We assume
the functions f, a := σσ>, ` ∈ C1,2

b , g ∈ C3
b , and that

σ−1 exists and is uniformly bounded on its domain. The
stochastic optimal control (SOC) problem is to determine
the optimal value function

V ∗(t, x) = inf
u[t,T ]

{
EQ[St(u[t,T ])|Xt = x ]

}
. (SOC)

B. On-Policy Value Function

In numerical methods, optimal value functions and optimal
policies can only be estimated, so in practice we work with
generic Markov policies µ : [0, T ]× Rn → U and the value
functions associated with them V µ, and use iterative methods
to approximate V ∗ and π∗ from V µ and µ. The on-policy

value function V µ is defined as

V µ(t, x) = EQ[Sµt |Xt = x ],

Sµt :=

∫ T

t

`µs ds+ g(XT ),
(3)

with the process Xs satisfying the forward SDE (FSDE)

dXs = fµs ds+ σs dWQ
s , X0 = x0, (4)

where we abbreviate fµ := (t, x) 7→ f(t, x, µ(t, x)),
fµs := (s) 7→ fµ(s,Xs), and similarly for `, σ. We call µ
an admissible Markov policy if it is Borel-measurable and
V µ has a classic, unique, C1,2

b solution for its associated
Hamilton-Jacobi PDE

∂tV
µ +

1

2
tr[σσ>∂xxV

µ] + (∂xV
µ)>fµ + `µ

∣∣
t,x

= 0,

V µ(T, x) = g(x),
(5)

for (t, x) ∈ [0, T ) × Rn, where ∂t and ∂x are the partial
derivative operators in t and x, and ∂xx is the Hessian
in x. Since the boundedness of σ−1 makes the PDE non-
degenerate parabolic, a sufficient condition for the existence
of a classical solution is that fµ and `µ are in C1,2

b [14,
p. 156; Chapter 3, Theorem 4.2, Theorem 4.4]. The same
reference guarantees V ∗ ≡ V π∗

.

C. On-Policy Backward SDE

The positivity of σσ> yields that (5) is a parabolic PDE
and, hence, by the Feynman-Kac Theorem (see, e.g. [15])
it is linked to to the solution (Xs, Ys, Zs) of the pair of
FBSDEs composed of the FSDE (4) and the backward SDE
(BSDE)

dYs = −`µs ds+ Z>s dWQ
s , YT = g(XT ), (6)

where Ys and Zs are, respectively, one and n-dimensional
adapted processes. Due largely to [16, Chapter 7, Theo-
rem 4.5, (4.29)], we arrive at the following theorem.

Theorem II.1 (Feynman-Kac Representation). For the so-
lution (Xs, Ys, Zs) to the FBSDE characterized by (4) and
(6), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(7)

Q-almost surely (a.s.).

D. Drifted FBSDE

We now show how an alternative pair of drifted FBSDEs
with a different trajectory distribution can be used to estimate
the same value function V µ. Starting with a new, complete,
filtered probability space (Ω,F , {Ft}t∈[0,T ],P), let Ks be a
given Fs-progressively measurable and bounded process on
the interval generating the forward SDE,

dXs = Ks ds+ σs dWP
s , X0 = x0, (8)

where WP
s is Brownian in P. Consider further the corre-

sponding drifted backward SDE,

dYs = −(`µs + Z>s Ds) ds+ Z>s dWP
s , YT = g(XT ), (9)



where

Ds := σ−1
s (fµs −Ks). (10)

Under very mild conditions on Ks, Girsanov’s theorem [5,
Chapter 5, Theorem 10.1] can be used to show that the
solution (Xs, Ys, Zs) to this FBSDE also solves the on-
policy FBSDE characterized by (4) and (6). The following
drifted representation theorem can then be proved.

Theorem II.2. For the solution (Xs, Ys, Zs) to the drifted
FBSDE characterized by (8) and (9), it holds that

Ys = V µ(s,Xs), s ∈ [0, T ],

Zs = σ>s ∂xV
µ(s,Xs), a.e. s ∈ [0, T ],

(11)

P-a.s..

The relationship over short intervals follows.

Corollary II.1. Let (Xs, Ys, Zs) be the solution to the drifted
FBSDE characterized by (8) and (9), then,

Yt = EP[Ŷ noisy
t,τ |Xt] = EP[Ŷ noiseless

t,τ |Xt] = V µ(t,Xt), (12)

P-a.s. for 0 ≤ t ≤ τ ≤ T for

Ŷt,τ := Yτ −∆Ŷt,τ , (13)

where ∆Ŷt,τ is either

∆Ŷ noisy
t,τ := −

∫ τ

t

(`µs + Z>s Ds)ds+

∫ τ

t

Z>s dWP
s , (14)

or ∆Ŷ noiseless
t,τ := −

∫ τ

t

(`µs + Z>s Ds)ds. (15)

This result suggests that we can choose a drift process Ks

at-will, picking any state trajectory distribution over which
to solve for the backward process Ys, which corresponds
to the value function. Computation of the backward process
estimators Ŷt,τ requires the addition of a correction term
Z>s Ds to compensate the change of drift in the forward SDE
due to Ks. The primary constraint is that the diffusion matrix
σ is consistent across different representations of the forward
SDE.

E. Euler-Maruyama FBSDE Approximation

Many approaches to solving the FBSDEs, e.g. [1], propose
approximating both the forward and backward steps with
Euler-Maruyama-like SDE approximations. For the drifted
FSDE the approximation is

Xτ −Xt = Kt∆t+ σt(∆t)
1/2∆Wt, (16)

where ∆t := τ − t. For the drifted BSDE step variable we
use in LSMC, we have

Ŷt,τ = V (τ,Xτ )−∆Ŷt,τ , (17)

where ∆Ŷt,τ is taken in [1] to be

∆Ŷ noiseless
t,τ = −(`µt + Z>τ Dt)∆t. (18)

The variable Zτ is evaluated at the end of the interval so that
it can utilize the latest approximation of the value function
gradient. Although the Z>τ ∆Wt term does not, in general,

have a conditional expectation of zero, and thus introduces
bias into the estimator, excluding it reduces variance and
additional error introduced via the approximation of Zτ . The
primary contribution of this paper, discussed in Section III,
is proposing new estimators for Ŷt,τ .

F. Least Squares Monte Carlo

Least squares Monte Carlo (LSMC) is a scheme for
obtaining the parameters of a model of the value function
V µ, originally credited to [12]. Let φ(x;α) be a function
representation with parameters α ∈ A and {(xkt , ŷkt )}Mk=1

be a set of Monte Carlo samples approximating the joint
distribution (Xt, Ŷt,τ ). The value function approximation is
obtained by enforcing the constraint (12), minimizing

α∗t = arg min
α∈A

M∑
k=1

1

M
(ŷkt − φ(xkt ;αi))

2, (19)

and letting φ(x;α∗t ) =: Ṽ µ(t, x) ≈ V µ(t, x).

III. FORWARD-BACKWARD DIFFERENCE
EQUATIONS

In this section we begin by forming a discrete-time approx-
imation of the dynamics and value function, then rediscover
relationships which resemble those arrived at previously. In
doing so, we make two contributions: first, we arrive at better
estimators compared to direct discretization of continuous
time relations because we are able to exploit characteristics
of the discrete-time formulation the continuous-time problem
obscures, and, secondly, we provide a discrete-time intuition
for what the continuous-time theory is actually doing.

A. Discrete Time SOC Approximation

The interval [0, T ] is partitioned into N subintervals of
length ∆t with the partition {t0 = 0, t1 = ∆t, ..., tN−1 =
T − ∆t, tN = T}. We abbreviate variables Xti =: Xi

for brevity. Let (Ω̃, F̃ , {F̃i}i∈{0,...,N}, Q̃) be the discrete-
time filtered probability space where WQ

i is a discrete
time Brownian process in Q̃ such that WQ

i ∼ N (0, In)
is normally distributed. The on-policy forward difference
equation is

Xi+1 −Xi = Fµi + ΣiW
Q
i , X0 = x0, (20)

where, using the Euler-Maruyama approximation method,
Fµi := f(ti, x, µi(x))∆t, Σi(x) := σ(ti, x)

√
∆t, and the

on-policy value function is

V µi (x) := EQ̃[
N−1∑
j=i

Lµj + g(XN )|Xi = x ], (21)

Lµi := `(ti, x, µi(x))∆t. The value function satisfies the on-
policy Bellman equation

V µi (Xi) = Lµi + EQ̃i+1[µi]
[V µi+1(Xi+1)|Xi = x]. (22)



B. Discrete-Time BSDE Approximation
For the discrete-time value function {V µi }i and forward

process {Xi}i we define the process {Yi := V µi (Xi)}i.
Further, we define the term ∆Yi as one that satisfies the
backward difference,

Yi = Yi+1 −∆Yi. (23)

In our numerical methods, we use estimators Y i+1 ≈ Yi+1

and ∆Ŷi ≈ ∆Yi to obtain a combined estimator

Ŷi := Y i+1 −∆Ŷi. (24)

with the interpretation Ŷi ≈ V µi (Xi). Both Y i+1 and ∆Ŷi
can be chosen according to different approximation schemes;
these choices are investigated in the later parts of this section.

C. On-Policy Taylor-Expanded BSDE
We now propose an alternative expression for ∆Ŷi, an

analogue to the on-policy terms defined in (14) and (15)
when Ds ≡ 0. This method of approximation uses second
order Taylor-expansions and the on-policy Bellman equation
to produce a similar but more accurate backward step,

∆Ŷ taylor
i := −Lµi + Z

>
i+1W

Q
i +

1

2
tr(M i+1(WQ

i W
Q>
i − I)),

(25)

where

Zi+1 := Σ>i ∂xṼ
µ
i+1(X

Q
i+1), (26)

M i+1 := Σ>i ∂xxṼ
µ
i+1(X

Q
i+1)Σi, (27)

and X
Q
i+1 := Xi + Fµi . If we compare (25) to the previous

method, it is different in two ways. First, the gradient of the
value function is evaluated at X

Q
i+1 instead of Xi+1. Second,

the trace term does not appear in the previous method, though
its appearance in this equation is not uncommon. Note that
this term has zero mean since EQ[WQ

i W
Q>
i |Xi] = I . In the

continuous-time counterpart, these second order effects are
infinitesimally small, but in a discrete-time approximation
they can no longer be ignored.

The following theorem suggests that this choice of approx-
imation of ∆Yi has relatively small residual error.

Theorem III.1. The choice (25) is an unbiased estimator of
the actual value function difference ∆Yi := V µi+1(Xi+1) −
V µi (Xi), i.e.,

EQ̃[∆Ŷi|Xi] = EQ̃[∆Yi|Xi]. (28)

Further, its residual error is

∆Yi −∆Ŷi = δ∆Ŷ
i+1 −EQ̃[δ∆Ŷ

i+1 |Xi], (29)

δ∆Ŷ
i+1 := δṼi+1 + δh.o.t.

i+1 , (30)

where δh.o.t.
i+1 is the 3rd and higher order terms in the Taylor

expansion of Ṽ µi+1(Xi+1) centered at X
Q
i+1 := Xi + Fµi ,

and δṼi+1 := V µi+1(Xi+1) − Ṽ µi+1(Xi+1) is the error in the
(i+ 1)st step value function representation.

Under a very basic function approximation scheme, we
can dismiss this term entirely.

Proposition III.1. If the value function approximation Ṽ µi+1

is quadratic then δh.o.t.
i+1 ≡ 0.

Note that this does not require the true value function
to be quadratic, only its approximation. Although using a
less expressive representation in this way improves the error
coming from the term δh.o.t.

i+1 , there may be a trade-off in
terms of increasing the magnitude of error in δṼi+1, since
the function V µi+1 might be less appropriately modeled.

The most remarkable aspect of Proposition III.1 is that it
suggests that for linear-quadratic-regulator (LQR) problems
these estimators are exact up to function approximation
error, due to the fact that for LQR problems V µi itself
is quadratic and its best function approximation is in the
class of quadratic functions. This provides a fundamental
guarantee for these estimators.

D. Estimators of Y i+1

We propose two potential estimators for Y i+1 ≈
V µi+1(Xi+1) in (24). First, we can use the value function
approximation associated with the previous backward step
to reestimate the Y i+1 values,

Y
reestimate
i+1 = Ṽ µi+1(Xi+1). (31)

We can also choose an estimate expression Y
noiseless
i+1 which

ends up cancelling out the terms with WQ
i in them, leaving

only

Ŷ noiseless
i = Lµi + Ṽ µi+1(X

Q
i+1) +

1

2
tr(M i+1), (32)

in place of (24). The following theorem establishes the error
analysis of these estimators.

Theorem III.2. The bias of the reestimate estimator is

EQ̃[Yi − Ŷ reestimate
i |Xi] = EQ̃[δṼi+1|Xi], (33)

and the variance of the estimator is

VarQ̃[Ŷ reestimate
i |Xi] = VarQ̃[δh.o.t.

i+1 |Xi]. (34)

The bias of the noiseless estimator is

EQ̃[Yi − Ŷ noiseless
i |Xi] = EQ̃[δṼi+1 + δh.o.t.

i+1 |Xi], (35)

and the variance of the estimator is

VarQ̃[Ŷ noiseless
i |Xi] = 0. (36)

This theorem shows that the reestimate condition has less
bias than the noiseless condition, but is a higher variance
estimator.

E. Drifted Taylor-Expanded BSDE

We now offer a discrete-time approximation of the drifted
off-policy FBSDEs. Let (Ω̃, F̃ , {F̃i}i∈{0,...,N}, P̃) be an al-
ternative discrete-time filtered probability space where WP

i

is the associated Brownian process. Define also on this space
the process {Ki}N−1

i=0 which may be selected using the
function Ki(ω) = hi(Xi(ω), ω). We assume Ki is bounded,
F̃i-measurable, and independent of WP

i . Further, we assume
Ki is Markovian with respect to Xi.



Choose as the FSDE

Xi+1 −Xi = Ki + ΣiW
P
i , X0 = x0. (37)

We choose for the backward step variable, instead of (25),

∆Ŷ drift
i := −Lµi + Z

>
i+1W

P
i − Z

>
i+1Di

+
1

2
tr(M i+1(WP

i W
P>
i − I −DiD

>
i )),

(38)

where

Di := Σ−1
i (Fµi −Ki), (39)

Zi+1 := Σ>i ∂xṼ
µ
i+1(X

P
i+1), (40)

M i+1 := Σ>i ∂xxṼ
µ
i+1(X

P
i+1)Σi, (41)

X
P
i+1 := Xi +Ki. (42)

The only difference between these discrete-time off-policy
FBSDEs and their on-policy equivalents is the drift term Ki

in the FSDE and the two terms with Di in the BSDE. Indeed,
when Ki = Fµi then Di = 0 and the pair returns to the
on-policy form, making the proposed off-policy method a
generalization of the on-policy method.

The reestimate estimator remains Y
reestimate
i+1 = Ṽ µi+1(Xi+1)

but the noiseless condition now resolves to

Ŷ noiseless
i = Lµi + Ṽ µi+1(X

P
i+1) + Z

>
i+1Di

+
1

2
tr(M i+1(I +DiD

>
i )). (43)

Note that the residual error ∆Yi−∆Ŷi is a random variable
whose distribution depends on the measure. Since we are
now constructing the measure P̃ instead of Q̃, this estimator
is no longer unbiased.

Theorem III.3. For the solution of the FBSDEs in the drifted
measure P̃ , the bias of each of the estimators given in
Section III-D is

EP̃[Yi − Ŷi|Xi,Ki] = EQ̃[Yi − Ŷi|Xi,Ki] + ε
P|Q
i+1, (44)

where the first term is the bias given in Theorem III.2 and

ε
P|Q
i+1 := EP̃[δ∆Ŷ

i+1 |Xi,Ki]−EQ̃[δ∆Ŷ
i+1 |Xi,Ki], (45)

and the variance of the estimator is equivalent

VarP̃[Ŷi|Xi,Ki] = VarQ̃[Ŷi|Xi,Ki]. (46)

We can characterize this added bias exclusively in the
measure P̃ using the next result.

Proposition III.2. The bias term appearing in Theorem III.3
is bounded as

|EQ̃[δ∆Ŷ
i+1 |Xi,Ki]|

≤ exp(
1

2
‖Di‖2) EP̃[(δ∆Ŷ

i+1)2|Xi,Ki]
1/2. (47)

Although the error bound suggests that the bias grows
rapidly with the magnitude ‖Di‖, when the magnitude ‖Di‖
is small, the first term in the product does not grow much
faster than linearly. Further, it is still the case that if the
value function approximation is quadratic then the higher
order terms δh.o.t.

i+1 drop out.

IV. NUMERICAL RESULTS

We evaluated these estimators on a 1-dimensional problem
with dynamics and costs

f(t, x, u) = 0.1(x− 3)2 + 0.2u, x0 = 7

`(t, x, u) = 12|x− 6|+ 0.4u2, g(x) = 25x2,

for a time interval of length T = 10, and noise σ = 0.8. The
ground-truth optimal value function is computed by directly
evaluating the optimal Bellman equation using a finely grided
state space and N = 200 timesteps. For the purposes of
evaluating and comparing different estimators, we assume
the optimal policy is known ahead of time, but in typical
applications of these estimators only an approximation would
be available. For the initial sampling distribution we select
Ki according to Ki = −0.2Xi, which is equivalent to Fπi
with the sampling policy of πi(x) = −0.5(x − 3)2 − x.
We use Hermite polynomials to represent the value function
basis functions.

TABLE I: Expressions for the proposed Taylor estimators,
as well as the competing Euler-Maruyama estimators.

Estimator Ŷi =

Taylor Lµi + Ṽ µi+1(X
P
i+1) + Z

>
i+1Di

Noiseless + 1
2
tr(M i+1(I +DiD

>
i ))

Taylor Ṽ µi+1(Xi+1) + Lµi − Z
>
i+1W

P
i + Z

>
i+1Di

Reestimate + 1
2
tr(M i+1(I +DiD

>
i −WP

i W
P>
i ))

Euler-Maruyama Ṽ µi+1(Xi+1) + Lµi + Z>
i+1Di

Noiseless [1]

Euler-Maruyama Ṽ µi+1(Xi+1) + Lµi − Z>
i+1W

P
i + Z>

i+1Di

Noisy

For each estimator in Table I a single forward pass is
performed with the initial sampling policy and a single
backward pass is performed with the target policy µ = π∗

where π∗ is the optimal policy obtained from the ground
truth. We repeated this single pair of forward-backward
passes under different experimental conditions to investigate
how each estimator performs, visualized in Fig. 1. The metric
in Fig. 1(a) is the average absolute deviation taken over
the sampling policy distribution, then averaged over time,
computed as

N∑
i=1

1

N
EP̃[|Ṽi(Xi)− V ∗i (Xi)|], (48)

where Ṽ is the value function estimate and V ∗ is the ground
truth. The metric in Fig. 1(b) is the percentage of values
in the estimate which deviate largely from the ground truth
uniformly over the region of interest (ROI) x ∈ [−10, 10],
then averaged over time, computed as

N∑
i=1

1

N

∫ 10

−10

1[|Ṽi(x)− V ∗i (x)| > εi]dx, (49)
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Fig. 1: Heatmaps of experiments comparing different estimators with varying numbers of basis functions and numbers of
trajectory samples. Each matrix element is averaged over time and over 20 trials.

where εi := 3σ[−10,10][(V
∗
i (x))] is a multiple of the standard

deviation of the ground truth over the ROI, and 1 is the
indicator function. The metrics (48) and (49) measure local
accuracy and extrapolation accuracy, respectively.

The results show that in all cases the proposed Taylor-
based estimators perform as well as the Euler-Maruyama
estimators and for the vast majority perform significantly
better. Although the two proposed estimators show largely
equivalent performance, we can see a confirmation of the
theory in the bottom left heatmap. When the number of
trajectory samples is small and the number of basis functions
is high, high variance in the resetimate estimator yields
very poor performance. However, when M = 2000 samples
are collected, its accuracy is improved over the noiseless
estimator. In practice, it is likely that the low variance of the
noiseless estimator is preferable to its slightly higher bias.

V. CONCLUSION
In this paper we have proposed and justified novel nu-

merical estimators for numerically solving Feynman-Kac
FBSDEs for iFBSDE applications. While we have evaluated
their effectiveness on a nonlinear one dimensional problem
with a single pair of forward and backward passes, future
work could evaluate higher dimensional problems which
require multiple iterative pairs of passes. In addition, the
discrete-time approach used here can improve the selection
of optimizing policies.
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