3686

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

Detecting the Locations and Predicting the
Maintenance Costs of Compound
Architectural Debts

Lu Xiao™, Yuanfang Cai*, Rick Kazman™, Ran Mo*, and Qiong Feng

Abstract—Architectural Technical Debt (ATD) refers to sub-optimal architectural design in a software system that incurs high
maintenance “interest” over time. Previous research revealed that ATD has significant negative impact on daily development. This
paper contributes an approach to enable an architect to precisely locate ATDs, as well as capture the trajectory of maintenance cost on
each debt, based on which, predict the cost of the debt in a future release. The ATDs are expressed in four typical patterns, which entail
the core of each debt. Furthermore, we aggregate compound ATDs to capture the complicated relationship among multiple ATD
instances, which should be examined together for effective refactoring solutions. We evaluate our approach on 18 real-world projects.
We identified ATDs that persistently incur significant (up to 95 percent of) maintenance costs in most projects. The maintenance costs
on the majority of debts fit into a linear regression model—indicating stable “interest” rate. In five projects, 12.1 to 27.6 percent of debts
fit into an exponential model, indicating increasing “interest” rate, which deserve higher priority from architects. The regression models

can accurately predict the costs of the majority of (82 to 100 percent) debts in the next release of a system. By aggregating related
ATDs, architects can focus on a small number of cost-effective compound debts, which contain a relatively small number of source
files, but account for a large portion of maintenance costs in their projects. With these capabilities, our approach can help architects
make informed decisions regarding whether, where, and how to refactor for eliminating ATDs in their systems.

Index Terms—Software architecture, technical debt, software maintenance, debt quantification and prioritization

1 INTRODUCTION

TECHNICAL Debt (TD) is a metaphor that describes the
shortcuts taken in software development for achieving
immediate goals but compromising the long-term bene-
fits [1]. Architectural TD (ATD), a subset of TD, refers to
sub-optimal architectural design decisions in a software sys-
tem [2], [3], [4]. Previous research revealed that ATD has the
most significant negative impact on the long-term success
of a project [2], [3], [5], compared to other types of TD.
Architects have a compelling need for an effective approach
to detect and manage architectural TD [6]. This paper con-
tributes an approach to 1) detect compound architectural
TD that are composed of multiple, related architectural
flaws, whose elimination should be treated together; and 2)

o Lu Xiao is with the School of Systems and Enterprises, Stevens Institute of
Technology, Hoboken, NJ 07030 USA. E-mail: Ixiao6@stevens.edu.

o Yuanfang Cai is with the Computer Science, Drexel University, Philadel-
phia, PA 19104 USA. E-mail: yfcai@cs.drexel .edu.

o Rick Kazman is with the Department of Information Technology Manage-
ment, University of Hawaii, Honolulu, HI 96822 USA.
E-mail: kazman@hawaii.edu.

e Ran Mo is with Computer Science, Central China Normal University,
Wuhan, Hubei, China. E-mail: moran@mail.ccnu.edu.cn.

o Qiong Feng is with the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210014, Jiangsu,
China. E-mail: giongfeng@njust.edu.cn.

Manuscript received 29 Mar. 2020; revised 4 July 2021, accepted 19 July 2021.
Date of publication 5 Aug. 2021; date of current version 19 Sept. 2022.
(Corresponding author: Lu Xiao.)

Recommended for acceptance by Y. Brun.

Digital Object Identifier no. 10.1109/TSE.2021.3102221

quantify the “interest” and predict the future “cost” of dif-
ferent instances of ATD to help architects make informed
refactoring decisions.

Although ATD has received significant attention [7], [8],
[9], [10], [11], [12], [13], existing approaches suffer from sev-
eral limitations. First, existing approaches identify usually
architectural smells and anti-patterns [4], [14], [15], [16],
[17], [18], which are not true “debts” if they do not generate
maintenance “interest”. In addition, architectural smells/
anti-patterns usually contain focused groups of files with
flawed architectural connections. However, multiple instan-
ces of anti-patterns may aggregate to form more compli-
cated debts, i.e., we call them the “compound” ATDs, that
should be treated together for eliminating the flaws. For
instance, Unstable Interface [14] is featured by a change-
prone “interface”, changes to whom frequently propagate
to its dependents. It is possible that one of the dependents is
an unstable “interface” with respect to another group of
files. Thus, they should be treated together for eliminating
the “unstableness”. Another main challenge in managing
ATD is to quantify the “interest” for making informed refac-
toring decisions [19], [20], [21]. Currently, this relies heavily
on architects’ estimation and experience [22], [23], [24], [25].
Architects need a predictive and repeatable approach to
quantify the current and future cost on debts [19], [20], [21].

To overcome the above challenges, this paper propose a
new approach to detect ATDs that incur high maintenance
costs over time. We define an ATD as a tuple consisting of:
1) a group of architecturally connected files, and 2) a model
describing the trajectory of maintenance cost on this group

0098-5589 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3202-3077
https://orcid.org/0000-0002-3202-3077
https://orcid.org/0000-0002-3202-3077
https://orcid.org/0000-0002-3202-3077
https://orcid.org/0000-0002-3202-3077
https://orcid.org/0000-0002-2690-8557
https://orcid.org/0000-0002-2690-8557
https://orcid.org/0000-0002-2690-8557
https://orcid.org/0000-0002-2690-8557
https://orcid.org/0000-0002-2690-8557
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0001-7556-153X
https://orcid.org/0000-0001-7556-153X
https://orcid.org/0000-0001-7556-153X
https://orcid.org/0000-0001-7556-153X
https://orcid.org/0000-0001-7556-153X
mailto:lxiao6@stevens.edu
mailto:yfcai@cs.drexel.edu
mailto:kazman@hawaii.edu
mailto:moran@mail.ccnu.edu.cn
mailto:qiongfeng@njust.edu.cn

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

of files. Based on this definition, we contribute an approach
to automatically locate ATDs. Once we locate each debt we
model its growth using regression models. Our ATD detec-
tion has two parts. We first create a novel history coupling
probability (HCP) matrix to manifest the probability of
changing one file when another file is changed. Then we
index file groups through the lens of 4 patterns of prototypi-
cal architectural flaws that have been shown to correlate
with reduced software quality [26], namely hub, anchor-sub-
missive, anchor-dominant, and modularity violation.

Given an ATD, we quantify the maintenance costs spent
on the files involved in the debt. The actual maintenance
costs in a software project—time and money—are almost
never directly measurable. Thus, we approximate mainte-
nance costs by bug-related churn—the lines of code commit-
ted to fix bugs. From the costs incurred in each release, we
can model the growth trend using various regression mod-
els: linear, logarithmic, exponential or polynomial. These
models represent scenarios of stable, reducing, increasing,
and fluctuating maintenance interest rates respectively.
This ensures that the identify file groups form true “debts”
that incur maintenance “interests”. As we will show in the
evaluation, architects can use the debt model to predict the
cost of a debt in a future release.

Finally, we aggregate ATD instances to form compound
debts with more complicated connections. Through the lens
of the four debt patterns, each ATD instance is composed of
an anchor file, which is the core of the debt, and a group of
member files, which form the respective pattern centered
around the anchor file. We aggregate compound ATDs
through two criteria: 1) Transitive Anchors, where the
anchor file of a debt is a member file of another debt. This
reveals the hierarchical pattern in a compound debt; and 2)
Compound Anchors, where the anchors files of two debts
share overlapping members. Architects need to examine the
complicated connections aggregated in compound debts for
developing effective refactoring solutions.

We aim to evaluate the effectiveness of our approach in
identifying and quantifying ATDs in software projects. Spe-
cifically, we evaluate whether the proposed approach can
provide useful insights for software architects to make
informed decisions regarding whether, where, and how to
refactor to reduce ATDs in their software projects. We there-
fore focus on three questions.

e RQI: Can significant ATDs in software projects be
identified using a systematic approach?

e RQ2:Is it possible to quantify and accurately predict
the future cost of an ATD?

e RQ3: Are compound ATDs common in software
projects, and do they form cost-effective refactoring
candidates?

As shown in our evaluation results, our approach has the
potential to enable an architect to precisely locate architectural
debts, in terms of identifying the source files and how they are
involved in ATDs. Our approach also captures the trajectory of
maintenance costs for each ATD. Based on this an architect can
estimate the cost of a debt in a future release. Furthermore, the
debt patterns described in this paper identify design flaws—
architectural connections that incur high maintenance costs in
a project—which should be analyzed and, if the debt is high

3687

enough, refactored. The ATD detection and quantification
approach in this paper can be fully automated through mining
a software repository. Architects can repeat this approach
through the life-cycle of a software project, and thus make
informed decisions to managed ATD.

The key contributions and novelty of our approach are

e An automatic approach to identify and quantify
ATDs by mining project repositories. We are the first
to combine structural and evolutionary connections
to identify patterns that lead to true ATDs with sig-
nificant maintenance costs.

e Four atomic ATDs patterns—hub, anchor submis-
sive, anchor dominant, and modularity violation—
that are potentially refactoring targets.

e The adoption of regression models to capture the
maintenance cost trajectory of each ATD, to estimate
their future costs. This provides an objective means
for architects to prioritize debts based on predictions
of a debt’s future costs. To the best of our knowledge,
we are the first to leverage regression models to esti-
mate future debt costs.

e The compound ATD aggregation approach, which
captures the connections among atomic patterns.
This work is the first to consider the connections that
form compound ATD:s.

e A quantitative evaluation of the effectiveness of our
approach on 18 large-scale software projects with
varying characteristics.

The rest of this paper is organized as follows. Section 2
introduces the background of this paper. Section 3 provides
the formal definition of ATD in the scope of this paper. Sec-
tion 4 introduces our ATD identification and quantification
approach. Section 5 introduces the research questions and
evaluation subjects. Section 6 presents the evaluation
results. Section 7 discusses how architects can benefit from
the proposed approach and the factors that may impact the
results of our approach. Section 8 discuss related work. Sec-
tion 9 discuss the threads to validity and limitations of our
approach. Section 10 concludes this paper.

2 BACKGROUND

We now introduce the key concepts our work is based on.
Design Rule Space. In our prior work [27] we proposed a
novel architectural model—Design Rule Space(DRSpace)—
based on the Baldwin and Clark’s design rules [28]. Building
upon existing definitions of software architecture [29], we
characterize a software architecture as a set of overlapping
DRSpaces, each reflecting a unique aspect of the architec-
ture. Each DRSpace is a subset of a system’s source files and
some kind of relationships (dependencies) among these
files. Each DRSpace has one or more “leading file(s)”, which
all other files in the DRSpace depend on, directly or indi-
rectly. The leading files are usually the files with architec-
tural importance, such as interfaces or abstract classes,
which we call Design Rules. The relations within a DRSpace
may be structural—such as “Implement”, “Extend”, “Call”"—
or relations may be based on history coupling between
source files—indicating the number of times two files

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3688
1 2 3 4 5 6 7 8
1 AbstractType (1) |
2 UUIDSerializer ,100% I(Z) ,50% ,100% ,50%
3 UUIDType ext,dp,33% dp, |(3) 33% ,50%
4 AbstractCell dp,50% (4)
5 TypeCast dp,33% ,33% (5) ,33% ,33%
6 IntegerSerializer ,100% ,100% ,50% (6) ,50%
7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Fig. 1. DSM example.

changed together as recorded in the project’s revision
history.

There are numerous DRSpaces in any non-trivial soft-
ware system, e.g., each dependency type forms a DRSpace:
files connected by “Extend” and “Inherit” relationships form
an inheritance DRSpace, and files that are coupled in the
project’s revision history form an evolution DRSpace. We
created an architecture root detection algorithm that com-
putes the intersection between DRSpaces and the project’s
“error space”’—the set of error-prone files in a system [27].
We showed that the majority of the error-prone files are con-
centrated in just a few DRSpaces, suggesting that these
error-prone files are not islands-they are architecturally
connected [27]. Furthermore, we showed that these DRSpa-
ces frequently contain architectural issues (flaws) that, we
claim, are the root causes of error-proneness.

In this paper, we capture the architecture of a software
system following the DRSpace modeling approach. The
ATD detection approach is based upon the DRSpace model-
ing as we will introduce in detail in Section 4.

Design Structure Matrix (DSM). We use a DSM [28] to rep-
resent a DRSpace. Each element in the DSM is a source file,
and each cell represents the relationships between the file
on the row and the file on the column. For example, Fig. 1 is
a DRSpace with leading file ColumnParent. Each cell shows
the structural dependencies — “implement”, or “dp” —
between the file on the row and the file on the column, fol-
lowed by the conditional probability of change propagation.
In the original DRSpace [27], we used the number of times
two files changed together in the project’s revision history
to represent their history dependency. In this paper, we
replace this count with a probability. For example, cell[6,2]
contains “Implement”, meaning that the file on row 6, Cassan-
draServer, implements the interface on row 2, Cassandra; cell
[2,6] contains “48 percent”, meaning that when Cassandra
changes, there is a 48 percent probability that Cassandra-
Server will change with it.

In this paper, we use DSMs to model source files and
their relationships. In addition, instead of capturing an ATD
as one snapshot using a DSM, we use a sequence of DSMs
to reveal the growth of ATDs over time. In section 7, we will
show an example ATD from an open source project, Camel,
which evolves and grows over 11 releases. The snapshot of
this debt in each release is represented in a separate DSM.

Architecture Issues. Our recent work [26] defined, imple-
mented, and validated an algorithm for detecting recurring
architectural issues in software systems, which we call hot-
spot patterns, including: 1) unstable interface, where an influ-
ential file changes frequently with its dependents in the
revision history; 2) modularity violation, where structurally
decoupled files frequently change together in the project’s

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

revision history; 3) unhealthy inheritance, where a super-class
depends on its sub-class or where a client class depends on
both a super-class and its sub-class; 4) cyclic dependency,
where a set of files forms a dependency cycle. In the 9 proj-
ects we examined, we observed a strong correlation
between the number of flaws a file has and: 1) the number
of bugs reported and fixed in it, 2) the number of changes
made to it, and 3) the amount of cost spent on it (in terms of
committed lines of code to fix bugs and to make changes).
The four ATD patterns identified in this paper are gener-
alizations of the four structural anti-patterns—namely,
unstable interfaces, modularity violations, unhealthy inheritance,
and cyclic dependency. In addition, to identify true ATD that
incurs high maintenance costs over time, we developed a
novel technique—the history coupling probability (HCP)
matrix—to capture historical coupling among source files
based on the evolution history. The identification of ATD
relies on the combination of structural anti-patterns and his-
torical coupling connections, as introduced in Section 4.

3 ATD DEFINITION

In this section, we formally define Architectural Debt (ATD)
and illustrates an ATD example.

3.1 Definition

We define an Architectural Debt (ATD) as a group of architec-
turally connected files that persistently incur high mainte-
nance costs over time. Each ATD is defined as a tuple of two
elements:

ATD = <FileSetSequence, Debt Model>. (@)

The first element, FileSetSequence, is a sequence of file
groups, each extracted from consecutive project releases:

FileSetSequence = (FileSety, FileSets..., FileSet,,),
(2)

where m is the number of releases that ATD impacts, m <
R. Note that R is the total number of releases in a project.
The FileSet,, where m =1..m, is the snapshot of the
involved files in an ATD in release r. Note that the FileSet,
changes dynamically with the architecture evolution of a
project in different releases. However, the FileSet, in differ-
ent releases are all originated from a same core file, which is
called the Anchor File. We will explain the Anchor File in
detail when we introduce the different debt patterns. When
viewed (statically) in a release r, an ATD is a group of
source files with flawed architectural connections, denoted
as FileSet,; when viewed (dynamically) via the long-term
evolution of a system, an ATD is formed by the sequence of
file groups in different releases, namely FileSetSequence.

The second element, DebtModel, is a regression model
that describes the trajectory of the maintenance costs associ-
ated with each AT'D. We use four representative regression
models, namely the Linear, Logarithmic, Exponential, and
Polynomial models to capture four general kinds of debt
interests respectively: stable, decreasing, increasing, and
fluctuating. We will discuss the details about how the
DebtModel is calculated later.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

(Dcrawling: Select

@Indexing: Identify @ Modeling: Compute

3689

®Ranking: Identify ©Aggregate: Merging

Code DRSpaces debt candidates debt model costly ATD related ATDs
Repo -
“__T/_ >| Crawling |)\I Indexing | ,I Modeling | I Ranking | * Merging |
cesssaa [/ - f "
Und | . : ' : .
Lo 1 | “|-SelDRSpace Candidate ATD (Ranked Compound
| [_RitoRn FileSetSeq DebtModels ATD L
21 to | | Errorspace HB | | AS ATD_1 ATD 1
" |“"|_R1toRn J | <FileSetSe
— \ \ rilesetseq,
______ A \ AD Y DebtModel>
7K : RitoRn \
| - HCP ATD_x AT.IDJS
N\ Revision <FileSetSeq,
| log x DebtModel>

[_ o Input file
__J Input files r-

D New approach

1 Prior approach

Input

Output

Fig. 2. Approach framework.

The first element FileSetSequence identifies the location
of a debt, in terms of which files are involved in different
releases; while the second element Debt Model quantify the
maintenance interest of the debt over time.

4 ATD DETECTION

There are hundreds and thousands of source files in a proj-
ect. As the project evolves from release to release, the num-
ber of source files (in most cases) grows over time. To
identify an ATD, we need to identify the two elements,
namely FileSetSequence and DebtModel. We search for
FileSetSequence just like searching for web pages on the
Internet. Then we calculate the DebtModel for each debt.
The overall flow of our approach is illustrated in Fig. 2, with
the following five steps.

1) Crawling: this step collects the set of error-prone files
from each release r, r from 1 to R, similar to crawling
and collecting web pages.

2) Indexing: this step identifies (indexes) a specific file
group, FileSet, starting from each error-prone file in
each release, then locates sequences of related
FileSets in different releases as a FileSetSequence.

3) Modeling: this step quantify the maintenance costs
associated with FileSet, in each time-stamp, release
r. An ATD is identified as a FileSetSequence whose
costs gradually increase over time.

4) Ranking: this step ranks the identified ATDs
according to the amount of maintenance costs
they have accumulated in the project’s evolution
history.

5) Aggregating: this steps aggregates related ATDs into
compound ATDs based on their relationship to help
architects capture and examine the more compli-
cated connections among debts.

Each of the above steps is fully automated by mining and
analyzing the project repository, including the issue track-
ing system and revision history. In the following, we will
elaborate each step in a separate subsection.

4.1 Crawling: Select Design Rule Spaces
In this step, we crawl the architectural connections among
the error-prone files in a project, analogous to crawling
web-pages from the Internet.

First, we capture the software architecture of a system at
release r as a set of overlapping design spaces:

SoftArch, = {DRSpace;, DRSpaces, ..., DRSpace, },
3)

where n is the number of files in a project in release 7. Each
design space, namely DRSpace;, in SoftArch, is a subset of
the entire system in release 7, composed of a leading source
file, and all the other files that structurally depend on it
(directly or indirectly). Thus each DRSpace reveals a differ-
ent aspect of the architecture [27].

Meanwhile, we retrieve the set of error-prone files,
denoted as ErrorSpace,, in each release r by mining the proj-
ect revision history. Formally, ErrorSpace,={f1, fo, .., fu}-
Each file f; € ErrorSpace was revised to fix errors at least
once between release 1 and . By the definition: ErrorSpace,
is a subset of ErrorSpace, 1.

For each release r, we crawl DRSpaces from SoftArch,,
which are led by the files from the ErrorSpace,. More spe-
cifically, each selected space is led by a file in ErrorSpace,.

Selected DRSpace, = Crawling(SoftArch,, ErrorSpace,).
(@)

If there are n files in ErrorSpace,, there are n DRSpaces in
SelectedDRSpace, for each release as the output of this
Crawling step.

4.2 Indexing: Identify ATD Candidates

Now that for each release we have crawled a set of design
spaces led by each error-prone file. In this step, we search for
the FileSetSequences which are the debt candidates from the
Selected DRSpaces,, r=1..n. The FileSetSequences is a
sequence of architecturally connected file set that persis-
tently accumulate higher maintenance cost across multiple

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3690
Commitl: A, B 0.7
Commit2: A, B 3 11
Commit3: B, D <
Commit4: A, C —\ 07
1/3
03 1 03 1
3 3 3 1,
o — ©
" LA OlL0)

Fig. 3. Generate HPC matrix.

releases of a project. Thus, to identify the FileSetSequences,
1) we first calculate a simple history coupling model—HCP
matrix—to capture the history evolution; and 2) then we
match file groups using four indexing patterns to capture dif-
ferent architectural connection patterns in debts.

4.2.1 HCP Matrix

Previously, we used a symmetric DSM to represent how
source files co-change together in the revision history [27].
Each cell in the DSM shows the number of times two files
changed together. That is the number of times on cell[x,y] is
identical to cellly,x]. This model is not able to capture the
direction of change propagation among files. To overcome
this problem, we propose a new model: the history coupling
probability (HCP) matrix. In this model, each cell records the
conditional probability of changing the file on the column, if
the file on the row has been changed, i.e., the odds of
changes propagating from file to file.

Fig. 3 shows an example of the creation of a HCP. Part 1
shows that 4 files A, B, C, and D, that change in 4 commits:
Commitl{A,B} (Commitl changes A and B), Commit2{A,B},
Commit3{B,D}, and Commit4{A,C}. First, we compute the
pair-wise conditional change probabilities for any pair of
files. For example, the probability of changing file A, given
that file C has changed, denoted by Prob{A|C}, is the num-
ber of times A and C change in the same commits divided
by the total number of changes to C. Similarly, Prob{C|A} is
the number of times A and C change in the same commits
divided by the total number of changes to A. Hence,
Prob{A|C} is 1/1, indicating that A always changes with C,
and Prob{C|A} is 1/3, indicating a probability of 1/3 that C
changes with A. In this relation, we label C' as dominant and
A as submissive because Prob{A|C} > Prob{C|A}. We com-
pute the probabilities for every pair of files and get the
graph in part 2 of Fig. 3. It is the graph-representation of the
HPC matrix.

For each release r of a project, we compute a HPC matrix
(HPC,), consisting of files in ErrorSpace,, from the bug-fix-
ing revision history between release 1 to release r.

4.2.2 Indexing Patterns

We search for the FileSet, in each release r by matching four
patterns of prototypical architectural flaws. As mentioned
earlier, the FileSect, of a debt dynamically evolve with the
architecture evolution of a project. However, the FileSect,
in different releases all contain one source file, named the
Anchor File, from which the debt originate and accumulate
over time. As an intuitive example, a base class, which fre-
quently change with its child classes, could be the Anchor
File and the child classes are the Member Files in a FileSet,.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

We define FileSet, based on the notion of Anchor File and
Member Files as:

FileSet, = {a, M;|M, = {m; : i from 1 to n}|
Vm; € M,,m; architecturally connected with a in release r},

(5)

where FileSect, € FileSetSequence, a is the anchor file, and
the files contained in M, change with a in release r. We call
M, the member files of a in release 7.

To explain the four indexing patters, we first define two
boolean expressions to describe the relationships between
two files (z and y) in release r: S,(z — y) and H,.(x — y).
Sy(r — y) means y structurally depends on z in release r.
H,.(z — y) means z is dominant and y is submissive in their
co-changes between release 1 to release r. In HCP,,
HCP,[z,y] is the probability of changing y, given z has
changed. If HCP|z,y] > HCP,Jy, x|, then z is dominant and
y is submissive. HCP[z,y] = HCP,|y,z] means z and y are
equally dominant. Formally:

In release r,
Sy(z — y) is true if y € DRSpace,_x, otherwise it is false
H,(z — y) is true if HCP[z,y] >= HCP,[y, x|
A HCPlz,y] # 0, otherwise it is false
(6)

For any pair of ¢ and m in a FileSet,, we identify 4 rela-
tionships: S,(a — m), S,(m — a), H.(a — m), and H,(m —
a). Each relationship could be either true or false. We enu-
merated all 16 combinations of these 4 relationships. The 4
combinations with H,(a — m) and H,(a — m) false, which
indicates that and y are not likely to change together, are
irrelevant to our analysis, since we need history to measure
debt. From the remaining 12 possible combinations, we
defined 4 indexing patterns—Hub, Anchor Submissive,
Anchor Dominant, Modularity Violation. Each pattern corre-
sponds to prototypical architectural issues that proved to
correlate with reduced software quality [26].

Using any file a € ErrorSpace, as the anchor file, we can
identify its members to form the FileSet, ,. The members
are identified by matching the structural dependency in
SelectedDRSpace, and the evolutionary coupling in HCP,
through the lens of the 4 indexing patterns:

Hub—the anchor file and each member have structural
dependencies in both directions and history dominance in
at least one direction. The anchor is an architectural hub for
its members. This pattern corresponds to cyclic depen-
dency, unhealthy inheritance (if the anchor file is a super-
class or interface class), and unstable interface (if the anchor
file has many dependents). Informally such structures are
referred to as “spaghetti code”, or “big ball of mud”. A
FileSet,_, with anchor file a in release r that matches a hub
pattern is denoted by HBFileSet, _, and is calculated as:

HBPFileSet,_, = Indexyp(a, SelectedDRSpace,, HCP,)
= {a, M,|Vm € M,,S.(a — m) A S.(m — a) (7
A (H.(a — m)V H.(m — a))}.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

1 2 3 4 5 6 7

1 PDA*Line (1) ,100% ,100% dp,100% ,100% ,100% ,100%
2 PDA*SquareCircle ,100% (2) ,100% dp,100% ,100% ,100% ,100%
3 PDA*FileAtt* ,100% ,100% (3) dp,100% ,100% ,100% ,100%
4 PDA* dp,50% dp,50% dp,50% dp,50% dp,50% dp,50%
5 PDA*Text ,100% ,100% ,100% dp,100% (5) ,100% ,100%
6 PDA*Link ,100% ,100% ,100% Extend,dp,100% ,100% (6) ,100%
7 PDA*Widget ,100% ,100% ,100% Extend,dp,100% ,100% ,100% (7)

A* stands for Annotation

Fig. 4. Hub.

Fig. 4 is a Hub FileSet for the PDFBox project, anchored
by PDAnnotation. The dark grey cell represents the anchor
file (cell[4,4] for PDAnnotation). The cells showing the his-
torical and structural relationships between member files
and the anchor file are in lighter grey. In this HBFileSet, the
anchor file structurally depends on each member file, and
each member file also structurally depends on the anchor
file. When the anchor file changes, each member file has a
50 percent probability of changing as well. When a member
file changes, the anchor file always changes with it. A HBFi-
leSet is potentially problematic because the anchor file, like
a hub, is strongly coupled with every member file both
structurally and historically.

Anchor Submissive—each member file structurally depends
on the anchor file, but each member historically dominates
the anchor. This pattern corresponds to an unstable interface,
where the interface is submissive in changes. An Anchor Sub-
missive FileSet with anchor a in release 1t is:

ASFileSet, , = Index 45(a, Selected DR Space,, HCP,)
= {a, M,|Vm € M,,S,(a — m)A ®)
— S, (m — a) N H.(m — a).

Fig. 5 shows an ASFileSet with anchor AbstractType in
Cassandra. Each member file directly or indirectly depends
on the anchor file, but when the member files change, the
anchor file changes with each of them, with historical proba-
bilities of 33 to 100 percent. A ASFileSet is problematic
because history dominance is in the opposite direction to
the structural influences: the anchor should influence the
member files, not the other way around.

Anchor Dominant—each member file structurally depends
on the anchor file and the anchor file historically dominates
each member file. This pattern corresponds to the other type
of unstable interface, where the interface is dominant in
changes. An Anchor Dominant FileSet with anchor a in
release rt can be calculated as:

ADFileSet,_, = Index sp(a, Selected DRSpace,, HCP,)
= {a, M,|Vm € M,,S.(a — m)A 9
— S;(m — a) N H.(a — m)}.

1 2 3 4 5 6 7 8
1 AbstractType (1) I
2 UUIDSerializer ,100% |(2) ,50% ,100% ,50%
3 UUIDType ext,dp,33% dp, (3) ,33% ,50%
4 AbstractCell dp,50% (4)
5 TypeCast dp,33% ,33% (5) ,33% ,33%
6 IntegerSerializer ,100% ,100% ,50% (6) ,50%
7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Fig. 5. Anchor submissive.

3691
1 2 3 4 5 6
1 ColumnParent (1) ,100% ,50% ,41% ,50% ,100%
2 Cassandra dp, (2) ,48%
3 CliClient dp, dp, (3)
4 Column*Reader |[dp, dp, (4)
5 ThriftValidation dp, (5)
6 CassandraServer |dp, Implement, dp, (6)

Fig. 6. Anchor dominant.

Fig. 6 shows an ADFileSet calculated using anchor Col-
umnParent in Cassandra. Each member file (from row 2 to
row 6) structurally depends on (cell[2 to 6:1]) the anchor file
(row 1), and when the anchor file changes, the member files
change as well with probabilities from 41 to 100 percent
(cell[1:2 to 6]). A ADFileSet presents potential problems
where the anchor file is unstable and propagates changes to
member files that structurally depend on it.

Modularity Violation—there are no structure dependen-
cies between the anchor and any member, however they
historically couple with each other. In a modularity violation
the anchor and member files share assumptions (“secrets”)
that are not represented in any structural connection. A
MVTFileSet with anchor a in release r is calculated as:

MVFileSet,_, = Index v (a, Selected DRSpace,, HCP,)
= {a, M,|¥Ym € M,,— S,(a = m)A — S,(m — a)
A (H(m — a)V H(a — m))}.
(10)

Fig.7is a MVFileSet with anchor JMXCTPExecutor (row 8)
in Cassandra. The anchor file, on the bottom of the matrix, is
structurally isolated from the member files. However, when
the anchor file changes, there are historically 31 to 100 per-
cent probabilities that the member files change as well, and
when the member file [MXETPEMBean (on row 1) changes,
the anchor file has a 50 percent chance to change with it. This
pattern identifies potential problems where the anchor file
and the member files share common assumptions, without
explicit structural connections, and these assumptions are
manifested by historical co-change relationships.

For each release r, we use each a in ErrorSpace, as the
anchor file to calculate a FileSet for each of the 4 patterns: HB,
AS, AD, and MV FileSet, ,. The FileSetSequence in the Hub
pattern with anchor file @ is denoted by HBFileSetSequence,.
Similarly, for anchor a, we can identify AS, AD, and MV Fil-
eSetSequence,. Using any error-prone file as the anchor, we can
identify 4 FileSetSequences, each of which is an ATDCandidate.

As aresult, for each a € ErrorSpace, and for each release r,
we can exhaustively detect 4*| U"_, ErrorSpace,| candidates,

1 2 3 4 5 6 7 8
1 JMXETPEMBean (1) ,100% ,44% ,50% ,2100% ,100% |,50%
2 DebuggableTPExecutor (2) ,31%
3 StorageService (3) dp, dp,Use,
4 ColumnFamilyStore dp, (4)
5 MessagingService dp, (5) dp,
6 NodeProbe ,44% dp, (6)
7 StatusLogger ,50% dp,50%dp, ,50% (7)
8 JMXCTPExecutor ,50% ,100% ,31% ,100% ,50% ,50% ,50% [(8)

Fig. 7. Modularity violation.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3692

which equals 4*| ErrorSpace, | because ErrorSpace, is a super
set of all ErrorSpaces in earlier releases.

4.3 Modeling: Build Regression Model

Now that we have identified the first element of a potential
debt, namely ATDCandidate, which is a FileSetSequence
composed of the FileSet, with anchor a in different releases.
Now, we need to: (1) quantify the maintenance costs associ-
ated with each FileSet within a FileSetSequence to filter out
unqualified candidates, and (2) calculate the DebtModel that
can describe the cost trajectory of a debt over releases.

4.3.1 Quantify ATDCandidates

From each FileSetSequence, we first exclude any FileSet,, that
contains just 1 file, since this can not involve architecture
problems. Next, we define the age of a FileSetSequence as the
number of FileSets in it after singleton FileSets are filtered
out. Then, for each FileSet,, we measure the maintenance
cost, denoted by Cost_FileSet,, that associated with the
involved source files by the end of release r. For any file f €
FileSet,, we estimate the maintenance cost as the amount of
error-fixing churn expended on it by the end of release r
(i.e., between release 1 and release r). We denote the mainte-
nance cost for file f between release 1 and release r as
ErrorChurn, _y. Cost_FileSet, is the sum of maintenance
costs on each file in the set:

Cost_FileSet, = Zv p—— ErrorChurn, ;. (11)

Not every FileSetSequence qualify as a true debt. The key
characteristic of a debt is its long-lasting impacts. In other
words, a true debt should survive a long time and incur
increasing maintenance cost over time. Therefore, we exam-
ine the age of each FileSetSequence to filter out short-lived
sequence. Second, FileSetSequence should require increasing
maintenance cost over time. During each release window,
the debt should have incurred more maintenance cost. That
is, let FileSet; and FileSet; ., be two consecutive snapshots
of an AT'DCandidate, the cost on FileSet;,; should be higher
than the cost on FileSet;. Formally, the criterion for a
ATDCandidate to qualify as a true debt is:

age >=n/c;
Cost_FileSet; 1 > Cost_FileSet;,i = 1...age — 1.

The parameter c is a tunable. We use ¢=2, meaning that File-
SetSequence is persistent for at least half of the releases in a
project. A candidate in a younger age is not a meaningful
debt (at least not yet). The second condition requires that
the maintenance costs on FileSetSequence increase over time.

4.3.2 Formulate DebtModel

For each qualified FileSetSequence, we calculate a regression
model, denoted as DebtModel, to describe the trajectory of
its maintenance cost over time. The purpose is to capture
the “interest rate” of a debt. We employ four typical regres-
sion models that indicates different types of “interest”: lin-
ear, logarithmic, exponential, and polynomial (up to degree
10). Fig. 8 shows typical examples of these 4 models. Each

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

10000 - 2000 4

Linear

Logarithmic

1800 4
1600 4
1400 4
1200 4
1000 4
800 4

8000 +

6000 +
ebtModel(T) = 510.45In(T) + 875

4000 - R?=0,9351

Wicket

RequestParameters
o+ + . 600 4— B
o 2 4 B 8 10 o 2 4 & 8

2000 4
KeyValueHeap

12000 9 gxponential Palynarmial

10000 4
8000

DebtModel(T} = -37.523x4 + 719.82:
1 10471x + 35.778

6000 DebtMadel(T) = 29981e0,385T
4000

2000 Wicket

- TypelEncoding AttributeModifer
. 2 z 2 . B S

Fig. 8. 4 types of regression model.

model represents a typical “interest” type. The linear model
(part 1 of Fig. 8) indicates a stable interest rate. This means
that developers pay a stable amount of maintenance cost on
this debt in each release window. The logarithmic model
(part 2) indicates a decreasing interest rate. As show in the
example, the maintenance cost of a debt increase more
slowly over time. We conjecture that this could happen in
the scenario of a successful refactoring, which made it easier
to make the next change on the group of files. The exponen-
tial model (part 3) indicates an increasing interest rate. This
could happen when the group of files become extremely
tangled. It is especially likely to happen at the beginning of
a project when developers have not started to worry about
the architecture. Finally, the polynomial model (part 4) indi-
cates a fluctuating interest rate. This is likely to happen due
to uncontrolled factors, such as resource allocation.

Algorithm 1. ModelSelector (CostArray, T)

modely;, = LinearFit(CostArray, T)
R%m = modely;,.R?
if R%in >= R?hresh then

return modely;,
end if
modely,y = LogFit(CostArray,T)
R%Og = model 4. R?
modelg,, = ExpFit(CostArray,T)
9: R%_ = modelp,, R

]
. s — 2 2 _ P2
10: if RLog >= Rﬂu‘esh and RE{I?]} >= RthJ'esh then

11: if R}, >= Rj,, then
12: return modely,,,

13: end if

14: return model g,

15: endif

16: if R, >= R}, then
17: return modely,,,

18: endif

19: if R}, >= R}, then
20: return model g,

21: endif
22: modelyoy, = PolyFit(CostArray,T)
23: return model,

Following Equation (11), we calculate the maintenance
cost—Cost_FileSet, for each FileSet, in a FileSetSequence.
Thus, the cost associated with a FileSetSequence form an
array that we call Cost_Array. Cost_Array[i| = Cost_FileSet,,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

where FileSet, is the ith element of FileSetSequence. We
define an integer array T[] = r, where r is the release num-
ber of the ith element in FileSetSequence. Each release r is
numbered by its order in the release in history. In the
DebtModel of a FileSetSequence, the Cost_Array is the inde-
pendent value and 7 is the dependent value. We developed
a ModelSelector algorithm to select a regression model that
best describes the relationship between T" and Cost_Array.
The formula of the regression model are returned as
Debt Model:

DebtModel = ModelSelector(CostArray, T). (12)

The following figure shows the pseducode of the
ModelSelector algorithm.

To help us pick the best regression model, we introduce a
parameter R?, ., (R? threshold)' which ranges from 0 to 1
in the ModelSelector. A regression model can be selected
only if the R? associated with the regression model is higher
than R?, ., However, we do not pick the best model strictly
based on the highest R?. Our heuristic is to prioritize the lin-
ear regression model, as long as its R? reaches the threshold
R2, ..,- As shown in the pseudocode, between line 1 to line
5, we first calculate a linear regression model, and this
model is returned only if its R?,, is greater than R, ;. Oth-
erwise, we try both logarithmic and exponential models
(line 6 to line 9), and select the model whose R? reaches the
threshold line 16 to 21). If they both reach R, .., ModelSe-
lector returns the model with a higher R? (line 10 to line 15).
Finally, if none of the linear, logarithmic, or exponential
model fit, we calculate a polynomial model of degree up to
10 (line 22). A polynomial model where R?, >= Ry, or
the degree reaches 10, whichever is satisfied first, is selected.

The rationale of the heuristic in ModelSelector is that the
linear, logarithmic, and exponential models present three
typical types of penalty interest rate: stable, decreasing, and
increasing. The polynomial model, however, catches all the
fluctuations of the maintenance cost, which is very likely a
result of noise due to extraneous factors, and will always be
picked if based on the highest R?. For example, the debt in
part 1 of Fig. 8, intuitively a linear model (DebtModel(r) =
857 x4+ 1070 with R? of 0.98), can fit into a polynomial
model Debt Model(r) = —2 % 1% 4+ 59 % 7 — 680 * r* + 3874 *
3 — 11342 % 12 4 16538 % r — 6466, with a higher R? (0.99).
The polynomial model fits better (higher %), but the linear
model is more meaningful.

The selection of DebtModel completes the ATD identi-
fication.

4.4 Ranking: Identify High-Maintenance ATD

We have identified different ATDs following the first three
steps, however the identified debts have the varying sever-
ity, costing different amount of maintenance cost. Practi-
tioners should prioritize debts with higher maintenance
costs. Therefore, this step ranks all the identified architec-
tural debts according to their cumulative maintenance cost.

1. R? is a statistical measure of how close the data are to the regres-
sion line.

3693

We define a pair p; = (f, ErrorChurny), where f is an
error-prone file, and ErrorChurny is the maintenance cost
associated with f, approximated by error-fixing churn on f.
Let CostMap be the set of p;, such that Vf € ErrorSpace, (n
is the latest release), there exists a p; € CostMap. CostMap is
one of the inputs to the ranking algorithm. The other input is
the identified ATD:s.

RankedDebts = ranking(ATDs, Cost Map). (13)

In the ranking algorithm, we identify the most significant
ATDs according to CostMap iteratively. In each iteration, we
select maxATD that account for the largest portion of cost
for files in CostMap from ATDs. The cost for duplicate files
is excluded, and the iteration terminates when all ATDs are
ranked. The top debts returned account for the largest main-
tenance cost, and deserve more attention and higher prior-
ity for refactoring.

4.5 Aggregating: Merge Compound ATDs
In addition to ranking debts based on costs, practitioners
also need to investigate the relationship among debts to
effectively “pay-off” the debts. Thus, this step aims to ana-
lyze the relationship among debts and merge related debts
into compound debts which capture the complicated inter-
relationship among debts. We believe that this step is neces-
sary for the practitioners to develop an effective refactoring
solution for debts that form more complicated structural
patterns, and save duplicated effort on reviewing debts that
have significant overlap.

The identified ATDs may share two different types of
relationship between two debts D, = {a,,M,} and
Dy = {ay, M,}:

1) Transitive Anchors: The anchor file of a debt is a mem-
ber file of another debt. Formally,

Transitive_Anchor(D,, D,) is true, if a, € M,. (14)

This indicates that the change propagates from the
anchor of D,, a,, to its member files A, and then
through a, € M, to the member files of D,, M,. This
change propagation, through multiple debts, is analo-
gous to the well-known “ripple effect”. Fig. 9 shows
an example from Hadoop formed by three Anchor
Dominant debts. The related files and cells of each
debt are highlighted in a different background color
to facilitate understanding. The first debt contains
files on rows 1, 2, and 13. The second debt contains
files from rows 3 to 13. The third debt contains files
from rows 13 to 17. The member files in each debt
structurally depend on the anchor file and historically
change with the anchor file as well. For example, in
debt 2, the files on rows 4 to 13 all structurally depend
on the anchor fs.FSDatalnputStream (row 3). When
this anchor changes, there is a 16 percent chance that
these member files will change as well. These three
debts share Transitive Anchor relationships through
the member file, security.Credentials (row 13). security.
Credentials is the anchor of debt 3. This indicates that
the changes tend to propagate from two different

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 io.WritableUtils (Anchor1) (1) 25% 25% 25% 25%

2 delegation.DelegationKey dp,16% (2) 16% 33 16%

3 fs.FSDatalnputStream (Anchor 2) (3) 16% 16% 16% 16% 16% 16% 16% 16% 16%| 16% 16%

4 fs.FileSystem dp (4) 13% 13% 38% dp |11%

5 fs.AbstractFileSystem dp dp,42% (5) 42% 80%

6 fs.RawLocalFileSystem dp Ext,dp,26% (6) 32% 17%

7 fs.FilterFs dp,10% dp,40% Ext,dp,90% (7) 10% 80% 10% 10%

8 fs.shell.CopyCommands dp dp (8) 22%

9 fs.TestLocalFileSystem dp dp, dp,57% (9)

10 fs.FileContext dp dp,50% dp,32% 11% 15% (10)

11 fs.FSMainOperationsBaseTest dp,14% dp,42% dp,14% 14% (11)

12 fs.shell.Display dp dp, 26% (12)

13 security.Credentials (Anchor 3) dp dp dp (13) | 10% 10% 63% 18%

14 fs.TestFilterFileSystem dp dp,57% 14% 28% dp (14)

15 util.GenericOptionsParser dp (15) dp,16%

16 security.UserGrouplnformation dp (16) ,36%

17 security.TestUserGrouplnformation dp dp,82% (17)

Fig. 9. Transitive anchors in hadoop.

2)

anchors, io. WritableUtils (row 1) and fs.FSDatalnput-
Stream (row 3), to their member security.Credentials,
which further propagates changes to its members on
rows 14 to 17. Note that there exists non-trivial history
change coupling directly from the anchor and mem-
ber files of debt 1 to the member files of debt 3, as well
as from the anchor and member files of debt 2 to the
member files of debt 3. This is consistent with the
complicated Transitive Anchors relationship that we
have detected.

Compound Anchors: Two debts contain overlapping
member files, and thus the two original anchor files
should form compound anchors.

Compound_Anchors(D,, D,) is true, (15)
if M, N M,~0
This indicates that the two anchor files, a, and a,,
propagate changes to the same set of member files in
M, N M,. Therefore, these two anchor files, a, and
a,, should be treated as the compound anchor after
the aggregation. For example, Fig. 10 is an example
of such relationship between two HUB debts from
HBase. The first debt is composed of files from row 1
to row 7, with the anchor on row 1, namely Assign-
mentManager. The second debt is composed of files
from row 6 to row 9, with the anchor on tow 9,
namely Hmaster. This debt is featured by the cyclic
dependencies between each member file and the
anchor file. Meanwhile, whenever each member file

changes, there is a significant chance (44 to 100 per-
cent) that the anchor file will change with it. Simi-
larly, the files and related cells of the two debts are
highlighted in green and orange background colors
to help understanding. Similarly, whenever the
members file change, the anchor file has a 37 to 54
percent change to change as well. As we can see
from the view, there are two member files on row 6
and row 7, which are contained in both debts. There-
fore, we highlight the files and cells in blue back-
ground. The two anchors of the HUB debts form the
compound anchor for the two overlapping members.
Not only this makes the structure of this merged
debt more complicated, but also the files in debt 1
are also likely to propagate changes to the anchor file
of debt 2. Therefore, it is important for the practi-
tioners to capture this type of relationship among
debts.

In Step2—Indexing Patterns, each debt pattern is retrieved
from a single file as the anchor. The above aggregation strat-
egies capture the complicated relationship among the
anchors, which in turn form the compound ATDs. The Tran-
sitive Anchors capture the “ripple effects” among the four
atomic debt patterns. The Compound Anchors captures cases
where a debt originates from multiple files as the anchor.
On the one hand, it is necessary for developers to develop
an effective refactoring solution for eliminating the architec-
tural flaws underlying the compound debts. For example, if
two debts share the Transitive Anchors, the debts cannot be
eliminated completely if the developers only examine one

1 2 3 4 5 6 7 8 9
1 AssignmentManager (Anchor1) (1) dp dp dp dp dp dp 29%
2 handler.ClosedRegionHandler dp,81% (2) 63% 27% 45% 63%
3 handler.OpenedRegionHandler dp,78% 30% (3) 13% 21% 39%
4 AssignCallable dp,100% 50% (4) 50% 50% 100%
5 UnAssignCallable dp,100% 33% (5) 66%
6 handler.DisableTableHandler (Overlap) dp,46% 20% 20% (6) 86% dp,46%
7 handler.EnableTableHandler (Overlap) dp,44% 17% 17% 44% (7) dp,37%
8 HMasterCommandLine 20% (8) Extend,dp,54%
9 Hmaster (Anchor 2) dp,23% dp dp dp (9)

Fig. 10. Compound anchor with overlapping members in HBase.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

of the debts. On the other hand, if the compound anchors
share a large number of overlapping members, it is more
effective for the developers to treat the compound anchors
together to avoid repeated effort.

We define a Compound-ATD as being composed of multi-
ple related ATDs. We create a DebtMerger algorithm to
aggregate related debts into Compound ATD in two phases.

CompoundATDs = DebtMerger(ATDs). (16)

In the first phase, we merge debts based on the Transitive
Anchors relationship. We form a merge graph, G, ;,, where
the nodes are the original debts, and the edges are the Tran-
sitive Anchors relationship. If Transitive_Anchor(Dy, D,) is
true, there is a merge edge from D, to D,. This means that
D, should be merged into D,, since D, is at a higher propa-
gation hierarchy, i.e., its anchor propagate changes to D,’s
anchor. Next, we use a simple graph traversal algorithm to
find all the sub-graphs in G,, 4. Each sub-graph is a group
of debts that should be merged together due to the Transi-
tive Anchors relationship.

The second phase merges debts based on the Compound
Anchors. Similarly, we calculate another merge graph,
namely G, o, where the nodes are the output of phase 1
(or the original debts if the output of phase 1 is not appro-
priate), and the edges are the Compound Anchors relation-
ship. For any two debts, D, and D,, we calculate their
weighted relationship in two directions, namely Wp,.p, =

|DzNDy| _ | DznDy|

o and Wp,.p, = o, They measure the percentage

of overlapping files between D, and D, in D, and in D,
respectively. In G,,,_,.,,, there is a merge-edge from D, to D,,
indicating that D, can be merged into D, when the follow-
ing condition holds:

WDIHDy > WDyHDIand WDIHDy > Thred()vgrlar,.

17)

In our experiment, we pick Thredoyeriap = 0.5. The ratio-
nale of this heuristic is that if Wp,—p, > 0.5, it indicates
that the majority of files in D, are also member files in D,,
therefore D, should be merged into D,. However, if
Wp,—p, and Wp,—p, are both > 0.5, it indicates that these
two debts share mutually significant overlap with each
other. In this case, we merge the smaller debt into the
larger debt. For example, if Wp, .p, > Wp,.p,, we merge
D, to D,, since D, contains more source files besides the
overlapping part. We did not consider overlap less than 50
percent, since it is not significant for a merge. For example,
if two large debts only have one overlapping member file,
it does not make sense to merge them. In section 7.5, we
will discuss the impact of Thredoyerap on the merging
results.

For a particular note, we merge the same type of debts.
That is, we do not merge a AD debt and a MV debt even if
they share the two relationship. This is because debts in the
same type represents the same typical architectural flaws,
thus practitioners benefit from reviewing related, same type
of debts together.

3695

5 EVALUATION QUESTIONS AND SUBJECTS

5.1 Research Questions
We aim to answer the following research questions:

e RQI1: Can the proposed approach identify ATDsthat
deserve attention? This RQ aims to evaluate whether
our approach can identify file groups that cause sig-
nificant maintenance costs in software projects that
are worthy of attention. We will address the question
from different perspectives in three sub-questions:

— RQI-1: Do the file groups identified in ATDsgenerate
more maintenance costs than what one would expect
given their sizes? Here, we investigate whether
the ATDs identified by our approach account for
significant maintenance costs in a project’s evolu-
tionary history. If the identified file groups only
account for a small portion of the project’s over-
all maintenance cost, then they do not deserve
attention. Furthermore, we examine whether the
maintenance cost associated with the ATDs is
proportionally higher than the number of files
contained in the ATDs. If the identified file
groups contain a large number of source files, it
is not surprising that they account for a large
amount of maintenance costs. In either case, we
cannot claim that the ATDs identified by the pro-
posed approach worthy of attention.

- RQ1-2: Will the file groups identified in ATDsbased
on project history keep incurring significant mainte-
nance costs in the future? In this part, we investi-
gate whether the ATDs—identified using the
proposed approach based on a project’s revision
history from release 1 to release r — 1—will keep
incurring significant maintenance costs between
release r — 1 and release r. If the ATDs identified
based on history stop incurring substantial main-
tenance costs in the future, this indicates that the
ATD:s identified by our approach do not deserve
attention.

- RQ1-3: Is our approach simply identifying large files
as ATDs? Prior research has shown that file size
usually correlates with error-proneness and
churn. Therefore, large files tend to be identified
as ATDs. Here, we want to investigate whether
our approach simply identifies groups of large
source files. If so, it indicates that we can (much
more easily) identify ATDs using LoC. To answer
this question, we analyzed the size, in terms of
the Lines of Code (LoC), of files involved in debts
in each project, and investigate whether the iden-
tified debts are composed of files of varying
sizes. If so, it indicates that our approach is not
simply identifying large files.

e RQ2: Can a DebtModel accurately predict the future cost
of an ATD? A DebtModel is a regression model that
describes the trajectory of the maintenance costs
associated with an ATD. An accurate DebtModel
should not only characterize past costs, but it should
also be able to predict future costs. If the cost of a
debt in release n, estimated using the DebtModel

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3696

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

TABLE 1
Study Subjects

Subject(L) History #R #Cmt #lss # Files
Camel(]) 7/2008 to 7/2014 (72) 12 14563 2790 1838 to 9866
Cassandra(J) 9/2009 to 11/2014 (62) 10 14673 4731 311 to 1337
CXFE(]) 12.2007 to 5-2014 (77) 13 8937 3854 2861 to 5509
Hadoop(]) 8/2009 to 8/2014 (60) 9 8253 5443 1307 to 5488
HBase(]) 12/2009 to 9/2014 (53) 9 6718 6280 560 to 2055
PDFBox(]) 8/2009 to 9/2014 (62) 12 2005 1857 447 to 791
Wicket(]) 6/2007 to 1/2005 (92) 15 8309 3557 1879 to 3081
OpenJPA()) 8/2007 to 6/2018 (130) 17 4265 1779 1266 to 4487
HIVE()) 10/2010 to 2/2016 (76) 14 7309 11768 979 to 4424
Avro()) 5/2010 to 5/2016 (72) 15 1288 1066 156 to 506
Mesos(c++) 5/2014 to 1/2019 (56) 10 14368 4589 393 to 1294
Httpd(c) 6/2005 to 1/2019 (163) 28 17239 8091 327 to 462
Kudu(c++) 2/2016 to 10/2018 (32) 11 3918 1423 953 to 1223
Mahout(]) 5/2010 to 4/2017 (83) 11 3046 801 455 to 1217
Chemistry(J) 4/2011 to 4/2017 (72) 11 1786 589 652 to 1019
Jena(J) 6/2012 to 9/2018 (75) 18 7488 890 2552 to 4214
Ambeari(py) 5/2014 to 12/2019 (67) 19 15,549 15,777 682 to 1693
Allura(py) 8/2013 to 10/2019 (74) 14 7498 542 491 to 542

calculated from release 1 to n-1, is close to (e.g.,
within 10 percent deviation from) the actual cost in
release n, we can claim that the DebtModel is accu-
rate. If so then architects can confidently use the
DebtModel to predict the interest cost of each debt in
the next release. In particular, we plan to investigate
how the choice of the R? threshold influences the
accuracy of prediction.

e RQ3: Are compound ATDscommon in software projects,
and do they form cost-effective refactoring candidates?
This RQ investigate two aspects of the compound
ATD:s after the aggregation step. First, we evaluate
whether the merging process, based on Transitive
Anchors and Compound Anchors, is widely applica-
ble to debts across projects. If the ATDs are mostly
independent from each other, there will be few
meaningful merging opportunities. And it indicates
that the compound ATDs formed by multiple
atomic patterns are rare. Second, if merging is
widely applicable, we will examine whether the
compound debts after merging are cost-effective
for architects to inspect as refactoring candidates. A
compound debt tends to aggregate more files and
thus may become harder to review. Thus, we will
examine two important characteristic of each com-
pound debt: the percentage of files included in it,
and the percentage of maintenance cost associated
with it. A debt is more cost-effective to refactor if it
contains a small portion of the system’s files, but
these files account for a high proportion of the sys-
tem’s maintenance costs.

5.2 Study Subjects

We chose 18 Apache open source projects as our evaluation
subjects. These projects differ in scale, application domain,
length of history, and many other project characteristics.
They are: Camel—a integration framework based on

Enterprise Integration Patterns; Cassandra—a distributed
DBMS; CXF—a Web services framework; Hadoop—a
framework for reliable, scalable, distributed computing;
HBase—the Hadoop distributed, scalable, big data store;
PDFBox—a library for working with PDF documents; and
Wicket—a component-based web application framework.
OpenJPA—an object-relational mapping solution for simpli-
fying storing Java objects in databases. HIVE—a data ware-
house software project built on top of Apache Hadoop for
providing data query and analysis. Avro—a row-oriented
remote procedure call and data serialization framework
Mesos—an open-source project to manage computer clus-
ters. Httpd—an open-source cross-platform web server soft-
ware for Apache. Kudu—a column-oriented data store of
the Apache Hadoop ecosystem. Mahout—it produces free
implementations of distributed or otherwise scalable
machine learning algorithms Chemistry—it provides Con-
tent Management Interoperability Services in different pro-
gramming languages. Jena—a Semantic Web framework for
Java Ambari—a project for provisioning, managing, and
monitoring Apache Hadoop clusters. Finally, allura is an
open source implementation of a software forge, a web site
that manages source code repositories, bug reports, discus-
sions, wiki pages, blogs, and more for any number of indi-
vidual projects.

A summary of these projects is given in Table 1. The first
column is the project name and the main implementing pro-
gramming language. In particular, 13 projects are imple-
mented in Java, while the other 6 projects are implemented
in C/C++ or Python. The second column is the start to end
time and the total number of months (in parentheses) for
each project. The third column “#R” shows the number of
releases selected per project. We selected releases to ensure
that the time interval between two releases is approximately
6 months. The column “#Cmt” is the number of commits
happened over the selected history. The column “#Iss” is
the number of bug reports, downloaded from the project’s
bug-tracking system. The last column shows the size range,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

Error Churn Associated with Top ArchDebts
HBase

/8% 90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
HB A-AD S-A5 oMV -e-All

Fig. 11. Churn associated with ATDs in HBase.

measured as the number of files in the first and the last
selected release.

The rationale behind the selection of the evaluation sub-
jects is as follows. First, these projects have diverse character-
istics, in terms of age (from 32 to 163 months), domains, scale,
and programming language (Java, C/C++, and Python). The
diversity of the projects ensures that our approach is gener-
ally applicable to projects of different domains, age, scale,
and programming language. Second, since we aim at ATDs
that incur long-term maintenance consequences, the identifi-
cation and quantification approach relies on sufficient evolu-
tionary history in software projects. The selected projects all
have at least 9 releases to provide sufficient data. Projects
that are new, without sufficient releasing history, are not
appropriate for this study. Third, we select projects with
high quality maintenance revisions and issue tracking data.
This allows us to keep track and estimate the maintenance
costs using the error-fixing churn, mined from the project
repository.

6 EVALUATION RESULTS

6.1 Significance of ATDs

As discussed in Section 5, we evaluate whether the pro-
posed approach can identify significant ATDs that deserve
attention in three sub-questions:

RQ1-1: Do the file groups identified in ATDsgenerate more
maintenance costs than what one would expect given their sizes?
We will report the percentage of maintenance costs associ-
ated with the identified ATDs, as well as the percentage of
files that are contained in the ATDs. If the ATDs account for
a larger percentage of maintenance cost compared to the
size, it implies that they are causing extra cost in relative to
their size, and thus deserves attention.

We first use HBase as an example to illustrate our
detailed observations, and then we will summarize the key
information of the debts identified from different projects.
Fig. 11 shows the percentage of maintenance cost (approxi-
mated by the bug-fixing churn) associated with source files
that are involved in ATDs. The four trendlines represent the
maintenance cost of the four ATD patterns (from top to bot-
tom), namely Modularity Violations (MV), Anchor Dominant
(AD), Anchor Submissive (AS), and Hub (HB). The z-axis is
the rank of each ATD based on the associated maintenance

3697

cost. The y-axis indicates the accumulative maintenance
cost associated with the top x ATDs. We can make the fol-
lowing observations based on HBase:

1) The top 21 ATDsaccount for a significant portion (89 per-
cent) of maintenance cost in HBase. Source files
involved in ATDs tend to continuously accumulate a
significant amount of cost in the project history.
Therefore, to avoid paying excessively high mainte-
nance costs, architects and developers should try to
pay-off the “debts” by eliminating the underlying
architectural design problems through refactoring.
For instance, developers could encapsulate the
“shared secrets” among those files identified as hav-
ing Modularity Violations to separate the most
change-prone files from the less volatile parts of the
system [30]. Note that, as we look at more ATDs in
HBase, the maintenance cost associated with them
never reaches 100 percent. The reason is that not all
files in the project are associated with debts.

2) The top five Architectural Debtsaccount for a large por-
tion of maintenance cost. For example, the mainte-
nance cost of the top 5 MV debts take 74 percent of
all the error fixing churn. And the next 16 debts only
increase this to 89 percent of maintenance cost. Note
that the top 5 MV debts only contain 34 percent of
files in a project. Therefore, this small group of files
deserves attention. Similar observation can be made
for the other three types of debts. The four trendlines
flatten out after the top 5 debts. The implication is
that architects should prioritize the top five debts to
capture the majority of the maintenance interests
accumulated with debts.

3) Modularity Violations are the most common and expen-
sive type of debts. Hub is the least common debt pat-
tern. This is because Hub has the most complicated
structure in the four debt patterns: the anchor file is
both structurally and evolutionarily coupled with
each member file in both directions (from anchor to
member and vice versa). In comparison, AD debt
and AS debts account for comparable amounts of
maintenance cost: up to about 33 and 40 percent of
the error-fixing churn. Note also that the sum of the
maintenance cost associated with the four types of
debts is more than 100 percent. This is because some
source files are involved in multiple debts, thus the
cost associated with these files are counted multiple
times.

We have observed similar patterns in most of the 18 proj-
ects studied. Table 2 shows the summary of the top five
ATDs in each project. As we can see, the top five ATDs in
the projects on average account for 50 percent of error-fixing
churn, while they only contain, on average, 28 percent files
in a project. In other words, the maintenance cost associated
with the ATDs almost double compared to their size (in
terms of number of files). This indicates that the identified
ATDs cause non-trivial extra cost in relative to their size,
thus they deserve attention from the practitioners. This, as
discussed earlier, indicates that architects should prioritize
the top few debts for refactoring. Modularity Violations are
the most common and expensive type of debts compared to

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022
TABLE 2
Significance of Debts: The Percentage of Error-Fixing Churn (Ch%) and Number of Files (Fls.)
Subject #Debts Top 5 Debts
(Ch%) All 4 Types Modularity Vio. Anchor Sub. Anchor Dom. Hub
Fls. Ch% Diff Fls. Ch% Diff Fls. Ch% Diff Fls. Ch% Diff Fls. Ch% Diff
Camel 512 (74%) 1398 (19%) 32% 13% 1363 (19%) 30% 11% 32(0.4%) 2% 1.6% 42(0.6%) 5% 4.4% 26(04%) 3% 2.6%
Cassandra 124 (91%) 1021 (59%) 82% 23% 1012 (58%) 81% 23% 57 (3%) 5% 2% 3112%) 22% 20% 20(1%) 10% 9%
CXF 183 (64%) 490 (16%) 32% 16% 439 (14%) 29% 15% 40 (1%) 2% 1% 311%) 6% 5% 18(1%) 2% 1%
Hadoop 81 (58%) 261 (17%) 40% 23% 218 (15%) 35% 20% 90(6%) 17% 11% 28Q2%) 13% 11% 17(1%) 6% 5%
HBase 282 (95%) 980 (41%) 78% 37% 796 34%) 74% 40% 495Q21%) 26% 5% 77 B%) 29% 26% 18(1%) 7% 6%
PDFBox 29 (62%) 199 28%) 57% 29% 159 (23%) 48% 25% 84(12%) 34% 22% 25(A%) 14% 10% 11Q2%) 8% 6%
Wicket 100 (50%) 385 (14%) 29% 15% 352(13%) 28% 15% 66 (3%) 5% 2% 21 (1%) 6% 5% 12(04%) 4% 3.6%
HIVE 272 (75%) 1403 (35%) 62% 27% 1178 30%) 57% 27% 575(15%) 32% 17% 39(1%) 22% 21% 83Q2%) 6% 4%
Avro 29 (74%) 171 (39%) 63% 24% 164(38%) 61% 23% 22(0.5%) 6% 55% 82%) 4% 2% 4 (1%) 3% 2%
Mesos 9 (54%) 70 (29%) 54% 25% 70(29%) 54% 25% 15(6%) 9% 3% 3(1%) 6% 5% 2 (6%) 9% 3%
OpenJPA 91 (61%) 394 (15%) 35% 20% 352(14%) 35% 21% - - - 27 1%) 8% 7% 502%) 2% 1.8%
Httpd 17 (92%) 78 (67%) 91% 24% 77 (66%) 91% 25% - - - 12(1%) 48% 47% 11 09%) 31% 22%
Kudu 7 (31%) 55(18%) 31% 13% 46 (15%) 28% 13% 10B%) 5% 2% - - - - - -
Mahout 6 (23%) 185(14%) 23% 9% 185(14%) 23% 9% - - - - - - - - -
Chemistry 2 (18%) 68 (14%) 18% 4% 68 (14%) 18% 4% - - - - - - - - -
Jena 23 (29%) 236 (14%) 22% 8% 236 (14%) 22% 8% 704%) 1% 0.6% - - - - - - -
Ambari 29 (56%) 188 (35%) 49% 14% 188 ((35%) 49% 14% 5(1%) 3% 2% 122%) 7% 5% - - -
Allura 39 (89%) 96(3%) 84% 31% 92(551%) 83% 32% 19(11%) 21% 10% 24 (13%) 50% 37% 10(6%) 19% 13%
Min. 18% 14% 23% 4% 13% 28% 4% 0.5% 2% 1% 0.6% 4% 2% 0.4% 3% 1%
Max. 95% 67% 9% 37% 66% 81% 40% 21% 34% 22% 4% 48% 47% 9% 31% 22%
Avg. 61% 28% 50% 20% 28% 49% 19% 6% 11% 6.1% 6% 12% 14.7% 4% 6% 6.1%
the other three types in all the projects. In some cases proj- TABLE3
ects have only a few ATDs identified; this indicates that the %LoC versus %Churn in ATDs
error-prone fll.es in these projects tend to be structura.lly Pro All Debts Top 5 Debts
and/or evolutionarily decoupled and thus do not form sig-] - -
nificant debt patterns. In Section 7.3, we will explain more LoC% Churn% Diff LoC% Churn% Diff
about this phenomenon. Camel 52% 74% 22% 21% 32% 11%
Furthermore, we also compare the percentage of LoC Cassandra 85% 91% 6% 72% 82% 10%
(%LoC) versus the percentage of churn (%Churn) associ- gIXF 44% 64% 20% 18% 32% 14%
. . o . adoop 11% 58% 47% 6% 40% 34%
ated with the 1<.i§nt1f1ed ATDs. The goal is to test pp.co 88% 95% 7% 67% 78% 1%
whether the identified ATDs account for a larger percent- ppFBox 399, 62% 23% 33% 579 249,
age of Churn than would be expected given their LoC. Wicket 39% 50% 11% 19% 29% 10%
The results are shown in Table 3. In column 2 and col- HIVE 63% 75% 12% 49% 62% 13%
umn 3, we show the %LoC and the %Churn associated Avro 67% 74% 7% 53% 63% 10%
with all the identified debts. In column 4, we calculate Mesos 18% 54% 36% 17% 54% 37%
the difference—%Churn minus %LoC; the larger the dif- gﬁen}PA 53% 61% 8% 28% 35% 7%
. . i pd 26% 92% 66% 24% 91% 67%
ference, the greater the extent to which the identified 4y 15% 31% 16% 14% 31% 17%
ATDs account for a disproportionately large portion of Mahout 17% 239, 6% 17% 239, 6%
the churn. As we can observe from this table, the Chemistry 11% 18% 7% 11% 18% 7%
%Churn is always greater (typically more than 10 percent Jena 11% 29% 18% 8% 22% 14%
and up to 66 percent greater for the studied projects) Ambari 12% 56% 44% 11% 49% 38%
than the %LoC of the associated debts. However, the dif- Al}ura 36% 89% 53% 33% 84% 51%
ference is not as lar d to %files. Th Min. 11% 18% 6% 6% 18% 6%
: g€ as compared 10 7lIles. 1N Teason ., 88% 95% 66% 72% 9% 67%
is that, to a great extent, the total LoC in a file is the Avg. 389 61% 23% 28% 499, 219

result of the accumulation of churn over time. This indi-
cates that the identified ATDs account for a relatively
larger amount of churn, comparing to the LoC they con-
tain. This is consistent with the findings when compar-
ing the percentage of files versus the percentage of
churn. Columns 5 to 7 show similar information, but for
the top five ATDs in each project. The same observations
and conclusions hold here.

RQ1-2: Will the file groups identified in ATDsbased on a proj-
ect history keep incurring significant maintenance costs in the
future? Here, we report on two measures: 1) the percentage

of bug-fixing files and churn between release r —1 and
release r that are directly identified as ATDs based on
release 1 to release ~ — 1; and 2) the total percentage of bug-
fixing files and churn between release » — 1 and release r
that are directly identified as or “growing out” of the ATDs
based on release 1 to release r — 1 in each project. Here,
“growing out” means more files are involved in the identi-
fied ATDs through the four debt patterns.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

TABLE 4
Percentage of Bug-Fixing Files/Churn Between Release r-1tor
That are Directly in and Growing From ATDs Identified Based on
Release 1tor

Subject Direct in ATDs Plus Growing from
ATDs
%Files %Churn %Files %Churn

Camel 61% 74% 70% 76%
Cassandra 85% 90% 92% 95%
CXF 55% 57% 73% 72%
Hadoop 44% 46% 63% 68%
HBase 95% 99% 98% 100%
PDFBox 38% 62% 72% 89%
Wicket 35% 42% 42% 44%
OpenJPA 61% 38% 69% 79%
HIVE 72% 87% 80% 91%
Avro 78% 53% 85% 85%
Mesos 35% 18% 53% 48%
Httpd 87% 99% 87% 99%
Kudu 77 % 92% 87% 93%
Mahout 40% 54% 40% 54%
Chemistry 59% 63% 66% 66%
Jena 54% 33% 56% 40%
Ambari 61% 81% 67 % 86%
Allura 96% 98% 100% 100%
Avg 63% 66% 72% 77 %
Min 35% 18% 40% 40%
Max 96% 99% 100% 100%

As shown in Table 4, on average, a significant portion (63
percent) of the future bug-fixing files (between release r-1
and release r) are from ATD:s in the project history (between
release 1 to release r-1). Similarly, 66 percent of the future
bug-fixing churn, i.e., the maintenance costs, are spent on
ATDs in history. Furthermore, a higher portion of future
bug-fixing files (72 percent) and churn (77 percent) are
directly from or “growing from” ATDs in the project his-
tory. Therefore, we can conclude that the ATDs identified
based on history will keep incurring significant mainte-
nance cost (interest) in the future.

RQ1-3: Is our approach simply identifying files with large LoC
as ATDs? Are all files with large LoC identified as ATDsby our
approach? Here, we want to know if our approach simply
identifies groups of source files with large LoC; and
whether all the large files are identified by our approach as
debts. If so, we can much more easily identify ATDs by sim-
ply ranking source files using LoC, instead of the approach
proposed in this paper.

We analyze the LoC of files involved in ATDs in each
project, and found that the identified ATDs are composed of
files of varying sizes. For example, Fig. 12 shows the distri-
bution of the LoC of files involved in the top five debts in
HIVE. The z-axis shows the size range of files. For instance,
“<10%” stands for files that are ranked in the top 10 percent
percentile based on the LoC. The y-axis stands for the per-
centage of debt files that belong to the range indicated in
the z-axis. As we can see, 18 percent of the debt files are
ranked in the top 10 percent among all the source files in a
project based on the LoC. We observe from Fig. 12 that only
from 13 to 18 percent of files involved in debts are very large
files (i.e., reside in the top 10 percent, top 20 percent amd
top 30 percent bins) in HIVE. This is consistent with prior

3699
File LOC Distribution in Top 5 Debts (Hive)
20% 18% 18%
15% 13%
gy 10%
10% 8% 6% 6%
» | | 111+
m .
o S g A P
] D
Pt s o etn"p »\6 F &P

RO & & g
Fig. 12. Top 5 debits file LoC distribution (HIVE).

S 8

study that large files tend to be problematic. But files
involved in ATDs also appear in all size ranges—more than
half (51 percent) of the ATD:s files are ranked outside of the
top 30 percent.

Table 5 summarizes the LoC distribution of the ATDs
files from each project. As we can see, except for Allura, a
non-trivial (24 percent) to a significant (56 percent) portion
of the ATD:s files in each project are ranked below the top 30
percent based on the LoC. In many projects, a non-trivial
(up to 40 percent) of debts are led by source files that are
not ranked in the top 30 percent based on their LoC. In par-
ticular, based on our investigation of the identified debts, a
source file with a small number of LoC could also serve as
the central file of a debt and leads to non-trivial amount of
maintenance costs. For example, in Httpd, source file 0s.0s2.
o0s_h, whose LoC ranked in the 94 percent among other files
in the project, is the anchor of an Anchor Dominant debt with
4 other member files. This debt survived 19 releases in
Httpd, and account for 16 percent of the maintenance costs
in Httpd. Therefore, we can conclude that our approach is
not simply identifying large files.

We also investigate whether files with large LoC in a
project are all identified as ATDs by our approach. To
answer this question, we performed additional data analy-
sis to show that not all of the large files—i.e., files ranked in
the top 10, 20, and 30 percent percentile of LoC respec-
tively—are identified as debts by our approach. This result
is shown in Table 6. As we can see, in most projects only a
small portion (as low as 8 percent) of the top 10 percent larg-
est files are identified as debts. Similar observations hold for
the top 20 percent and the top 30 percent largest files. That
is, the majority of the large files in every project are not iden-
tified by our approach as debt. Therefore, LoC is neither a
sufficient nor a necessary condition to identify debts.

In summary, we observed that 1) our approach can iden-
tify expensive ATDs that generate, on average, 2X more
maintenance costs than what one would expect given their
sizes in a project’s evolutionary history; 2) the ATDs identi-
fied based on a project’s history will grow and keep incur-
ring significant maintenance costs (on average 77 percent)
in future release; 3) the ATDs identified by our approach do
not simply contain large files—non trivial (24 percent) to
significant (56 percent) portion of the ATD files have less
than the top 30 percent LoC. Only a small portion of files
with large LoC are identified as ATDs. This indicates that
LoC is neither a sufficient nor a necessary condition for our
approach to identify debts. Thus, we conclude that our
approach identifies ATDs, worthy of attention.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022
TABLE 5
LoC Distribution of ATDs Files
Proj LoC Bins, Each Bin is 10%
Top 10% (10%,20%] (20%,30%] Top 30% (30%,40%] (40%,50%] (50%,60%] (60%,70%] (70%,80%] (80%,90%] (90%,100%] (30%,100%]
Camel 22% 12% 10% 44% 11% 11% 7% 6% 7% 6% 8% 56%
Cassandra 18% 15% 12% 45% 11% 10% 8% 7% 7% 6% 6% 55%
CXF 32% 20% 12% 64% 11% 8% 5% 4% 2% 2% 4% 36%
Hadoop 41% 22% 13% 76% 6% 3% 5% 5% 2% 2% 1% 24%
HBase 19% 18% 15% 52% 12% 10% 9% 5% 4% 5% 3% 48%
PDFBox 32% 18% 13% 63% 12% 6% 5% 5% 4% 3% 2% 37%
Wicket 28% 17% 13% 58% 7% 12% 8% 6% 3% 3% 3% 42%
Open]JPA 39% 15% 12% 66% 8% 5% 5% 4% 4% 3% 5% 34%
HIVE 18% 18% 13% 49% 9% 9% 10% 8% 6% 6% 3% 51%
Avro 24% 14% 14% 52% 8% 9% 10% 6% 6% 5% 4% 48%
Mesos 33% 20% 9% 62% 6% 10% 5% 8% 6% 3% 0% 38%
Httpd 11% 20% 14% 45% 16% 5% 4% 7% 5% 14% 4% 55%
Kudu 35% 16% 14% 65% 8% 5% 3% 5% 0% 11% 3% 35%
Mahout 18% 13% 15% 46% 12% 8% 7% 8% 7% 7% 5% 54%
Chemistry 24% 22% 10% 56% 9% 8% 2% 16% 2% 5% 2% 44%
Jena 26% 20% 15% 61% 9% 8% 6% 7% 3% 3% 3% 39%
Ambari 14% 31% 12% 57% 14% 10% 8% 2% 2% 2% 5% 43%
Allura 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
Min 11% 0% 0% 44% 0% 0% 0% 0% 0% 0% 0% 0%
Max 100% 31% 15% 100% 16% 12% 10% 16% 7% 14% 8% 56%
Avg 30% 17% 12% 59% 9% 8% 6% 6% 4% 5% 3% 41%
TABLE 6 Actual_Cost_R,, in release n. Thus, PD is a percentage value.
% of Top LoC Files Identified in ATDs The lowest value is 0%, which means that the prediction is
completely accurate. The larger the PD, the less accurate is
Proj. Top 10% Top 20% Top30% the prediction. We calculate Predicted_Cost_R,—the pre-
Camel 289% 21% 18% dicted cost at release n based on the model built from previ-
Cassandra 78% 72% 65% ous n — 1 releases.
CXF 23% 19% 15% First, we evaluate the accuracy of prediction under dif-
Hadoop 8% 6% 5% ferent values of the R? threshold. If the majority of debts
Hbase 70% 69% 65% can be predicted with a small amount of PD, it indicates
PDFBox 22% 40% 34% hat the prediction i rate. Th investigate th
Wicket 239 19% 16% that the prediction is accurate. Thus, we investigate the
HIVE 46% 46% 409 percentage of ATDs whose models have < 10% PD
AvVTO 749, 58% 549, (because no prediction model can be 100 percent accurate).
Mesos 17% 14% 11% We vary the R? threshold from 0.6 to 0.9 to see whether a
OpenJPA 31% 21% 17% higher percentage of debts can be predicted with < 10 per-
Httpd 19% 26% 26% cent PD. The evaluation results are listed in Table 7: 1) pre-
Mahout 21% 18% 18% diction accuracy increases with the increase of R* threshold in
Chemistry 14% 13% 11% S . .
Jena 99, 3% 7% most (14 out of the 18) projects; anfi 2) in most projects (e'xce'pt
‘Ambari 8% 13% 1% PDFBox and Kudu), we can predict the costs of the majority
Allura 20% 20% 20% (between 64 to 100 percent) of debts with less than 10 percent

6.2 Debt Regression Models for Cost Prediction
RQ2: Can we use a DebtModel to predict the future cost of an
ATD? Specifically, we aim to investigate whether the regres-
sion models can accurately predict the cost of an ATD in
release n based on the model calculated from the previous
n — 1 releases. To do this we first define an accuracy mea-
sure—Prediction Deviation (PD)—as follows:

|Actual_Cost_R,, — Predicted_Cost_R,,|

Actual_Cost_R,, (18)

PD =

Prediction Deviation (PD) measures how far the predicted
cost Predicted_Cost_R,, deviates from the actual cost

PD. Take Camel as an example, only 65 percent of debts
can be predicted with less than 10 percent drift when R*
threshold is 0.6. As we increase the threshold, the percent-
age of debts with < 10 percent PD gradually increases to
68, 80, and 94 percent. In PDFBox, however, the percentage
drops from 52 to 51 and to 46 percent, when the threshold
increases to 0.8 and to 0.9 respectively. Similarly, in Kudu,
the percentage drops from 60 to 40 percent when increas-
ing the threshold from 0.8 to 0.9. We conjecture that there
are exogenous factors that cause fluctuations in debts in
these projects. Increasing the R? threshold to 0.9 in these
cases will lead to over-fitting that compromises the predic-
tion accuracy. For Mesos and Chemistry, the R? does not
impact the accuracy. Note that these two projects only con-
tain 9 and 2 debts, therefore the trends in these two proj-
ects are not reliable.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS 3701
TABLE 7 TABLE 8
Impact of R? Threshold on Prediction Drift Regression Model Cost Prediction Deviation (R> > 0.9)
Subject % of Debts with < 10% Prediction Trend Subject % of Debts with PD < X
Drift PD < +10% PD < 4+20% _ PD< +30%
R >06 R*>>07 R*>08 R®>0.9 RM BL Win RM BL Win RM BL Win
Camel 65% 68% 80% 94% up Camel 94% 95% 0% 99% 96% 3% 99% 97% 2%
Cassandra 83% 84% 84% 87% up Cassandra 87% 81% 6% 94% 86% 8% 97% 88% 9%
CXF 69% 69% 69% 72% up CXF 72% 74% -2% 88% 81% 7% 93% 84% 9%
Hadoop 81% 82% 82% 89% up Hadoop 89% 67% 22% 94% 83% 11% 95% 85% 10%
HBase 63% 63% 64% 64% up HBase 64% 47% 17% 79% 66% 13% 87% 73% 14%
PDFBox 52% 52% 51% 46% down PDFBox 46% 39% 7% 72% 39% 33% 82% 43% 39%
Wicket 83% 83% 84% 88% up Wicket 88% 93% -5% 98% 96% 1% 98% 99% -1%
Open]PA 73% 77% 89% 100% up OpenJPA 100% 97% 2% 100% 98% 2% 100% 98% 2%
HIVE 66% 66% 67% 70% up HIVE 70% 67% 3% 88% 72% 16% 94% 75% 19%
Avro 88% 88% 90% 96% up Avro 9% 70% 26% 100% 86% 14% 100% 90% 10%
Mesos 85% 85% 85% 85% - Mesos 85% 54% 31% 100% 85% 15% 100% 92% 8%
Httpd 73% 76% 76% 95% up Httpd 95% 100% -5% 100% 100% 0% 100% 100% 0%
Kudu 50% 50% 60% 40% down(") gydu 40% 40% 0% 100% 40% 60% 100% 40% 60%
Mahout 55% 55% 64% 82% up Mahout 82% 45% 36% 100% 100% 0% 100% 100% 0%
Chemistry ~ 100% 100% 100% 100% - Chemistry 100% 100% 0% 100% 100% 0% 100% 100% 0%
Jena 73% 76% 82% 82% up Jena 82% 33% 48% 88% 55% 33% 91% 70% 21%
Ambari 64% 64% 64% 74% up Ambari 74% 87% -13% 99% 94% 4% 100% 97% 3%
Allura 58% 59% 63% 96% up Allura 9%% 86% 10% 100% 96% 4% 100% 98% 2%
Min 50% 50% 51% 40% Min 40% 33% -13% 72% 39% 0% 82% 40% -1%
Max 100% ~ 100% 100% 100% Max 100% 100% 48% 100% 100% 60% 100% 100% 60%
Avg 71% 72% 75% 81% Avg 81% 71% 10% 94% 82% 13% 96% 85% 12%

Next, for the purpose of comparison, we also examine a
simple baseline prediction model, one which architects
could easily use to predict the cost without calculating a
regression model. In this simple model the cost of a debt in
release n is estimated based on the cost of the two prior
releases: n — 2 and n — 1. Specifically, Baseline_Prediction_
R, =Cost_R, 1 +6, where &= Cost_R, 1 — Cost_R, o,
which is the increment between the most recent two
releases. We want to investigate whether the regression
models can predict the future costs of debts better than this
simple model. Based on the data shown in Table 7, we make
the comparison by using an R? threshold of 0.9.

Table 8 shows the results. The first column is the project
name. The other columns show the percentage of debts
whose costs can be predicted with up to 30 percent PD,
using both the regression models (sub-column “RM”) and
the baseline (sub-column “BL”). We focus on PD up to 30
percent because 1) a majority of the predictions have less
than 30 percent drift; 2) there will always be a portion of
debt that cannot be predicted due to accidental reasons,
such as a change in project direction; and 3) a higher devia-
tion is not useful for architects. The sub-column “Win”
shows the percentage of debts in which the regression mod-
els outperform the baseline. We draw the following obser-
vations from Table 8:

e Regression models can predict the future costs of the
majority (72 to 100 percent) of debts with less than 20 per-
cent deviation from the actual costs. The regression
models outperform the baseline model in up to 60
percent of debts in the 18 projects.

e Except for PDFBox and Kudu, the regression models can
predict the the future costs of the majority debts with less
than 10 percent Prediction Drift. Regression models

provide poorer predictions of the cost, as compared to
the baseline model, in only 4 out of the 18 projects,
CXF, Wicket, Httpd, and Ambari (highlighted with
blue background). On average, however, the regres-
sion models outperform the baseline model by 10
percent.

In summary: 1) The regression models are effective in
predicting the future costs of the majority (72 to 100 percent)
of the debts with less than 20 percent Prediction Deviation.
They outperform the baseline model in most (up to 60 per-
cent) debts; and 2) As we increase the R? threshold, the
regression models can provide more accurate predictions.

6.3 Compound ATDs
RQ3: Can we aggregate related ATDsinto compound debts that
are cost-effective refactoring candidates? As discussed in Sec-
tion 4.5, we merge the identified ATDs in two phases based
on 1) the Transitive Anchors relationship and 2) the Com-
pound Anchors relationship. In this RQ, we first investigate
whether such a merge is broadly applicable to debts in dif-
ferent projects. If not, it indicates that the debts are mostly
independent and should be treated separately. If these
merges do apply then architects need to examine the more
complicated connections among these larger debts to devel-
oping effective refactoring solutions. Next, we investigate
whether the compound debts are cost-effective refactoring
candidates, since each compound debt is composed of mul-
tiple debts and thus contains a larger number of source files.
Table 9 shows how debts can be merged based on Transi-
tive Anchors. In column “#Debts”, for each debt type, we
listed the total number of debts of this type and the percent-
age (in parentheses) of debts that can be merged together
due to Transitive Anchors. In column “Merge”, we list the
number of debts that can be merged and the number of

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3702

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

TABLE 9
Prevalence of Transitive Anchors Merge

Subject AD AS HB MV

#Debts Merge #Debts Merge #Debts Merge #Debts Merge
Camel 100 (6%) 6—3 9 (0%) - 46 (4%) 2—1 357 (95%) 338—4
Cassandra 35 (37%) 13—-2 11 (18%) 2—1 21 (19%) 42 57 (100%) 57—1
CXF 27 (7%) 2—1 3(0%) - 3(0%) - 150 (96%) 144—2
Hadoop 16 (44%) 7—3 11 (36%) 4—-2 7 (57%) 4—-2 47 (62%) 29—4
HBase 107 (21%) 227 34 (88%) 30—1 30 (0%) - 111 (87%) 97—1
PDFBox 6 (33%) 2—1 3(0%) - 3 (67%) 2—1 17 (100%) 17—1
Wicket 12 (0%) - 2 (0%) - 9 (22%) 2—1 77 (71%) 55—2
HIVE 113 (7%) 8—4 9 (89%) 8—1 14 (79%) 11-3 136 (80%) 109—3
Avro 2 (0%) - 1(0%) - 1(0%) - 25 (96%) 24—2
Mesos 1(0%) - 2 (0%) - 1(0%) - 5 (80%) 41
OpenJPA 5(0%) - - - 2 (0%) - 84 (89%) 75—3
Httpd 3 (0%) - - - 4 (0%) - 10 (90%) 9—1
Kudu - - 1(0%) - - - 6 (83%) 5—1
Mahout - - - - - - 6 (83%) 52
Chemistry - - - - - - 2 (100%) 2—1
Jena 1(0%) - - - - 22 (86%) 19—2
Ambari 4 (0%) - 2 (0%) - - - 23 (96%) 231
Allura 10 (20%) 2—1 4 (0%) - 4 (50%) 2—1 21 (86%) 18—1

compound debts resulting from the merge. For example, in
Camel, there are a total of 100 AD debts, among these, 6 (6
percent) debts have Transitive Anchors, and they can be
merged into 3 compound debts. We make the following
observations from Table 9:

e Transitive Anchors are common in AD, AS, and HB
debts. In projects where Transitive Anchors are not
applicable, there are usually only a small number of
debts, thus the opportunities to merge are few. For
example, as highlighted in blue, there are just 1 to 12
AD debts in the seven projects where merge is not
applicable.

e Transitive Anchors are prevalent in MV debts. The
majority (62 to 100 percent) of MV debts share Tran-
sitive Anchors. In addition, the MV debts can be
merged into just a few (from 1 to 4) compound debts
based on Transitive Anchors. The implication is that
architects need to only review these few compound
MYV debts when exploring refactoring opportunities.
However, the downside is that each cluster contains
more files.

Similarly, Table 10 shows the application of the Com-
pound Anchors merge. We use an overlap threshold of 0.5
here. In Section 7.4, we will discuss how this threshold
impacts the merge results. As discussed in Section 4.5, we
perform the Compound Anchors merge as a second phase,
based on the results of the Transitive Anchors merge. How-
ever, as shown above, the Transitive Anchors merge is preva-
lent for MV debts. The majority of MV debts can be merged
into just a few compound debts. Thus the Compound Anchors
merge is not commonly applicable due to the small number
of debts resulting from the first phase. Therefore, for MV
debts, we apply the Compound Anchors merge directly on
the original debts. This will also help us to avoid very large
compound debts that aggregate all the original debts. We
now make similar observations:

e The Compound Anchors merge is generally applicable
to AD, AS, and HB debts. In particular, when there is
a large number of debts, the merge is likely to be
prevalent. For example, the merge is applicable to 82
percent of the 97 AD debts in Camel. In contrast, the
merge is less likely to occur when there is just a small
number of debts, as highlighted in blue cells.

e The Compound Anchors merge is also prevalent for
MYV debts. More specifically, 74 percent (in Hadoop)
to 100 percent (in Mesos, Httpd, and Chemistry) of
the MV debts can be merged into just 1 to 12 com-
pound debts.

As shown in the examples of Figs. 9 and 10, merging
debts based on the two relationships helps to capture the
complicated structural patterns among debts. However, as
mentioned above, the downside is that each compound
debt will contain more files and thus may be cumbersome
to review.

Therefore, we need to evaluate whether the compound
debts are cost-effective refactoring candidates. We capture
four kinds of information for this purpose, as shown in
Table 11. First, the original number of debts and the number
of compound debts in column “#Debts”. This shows the
reduction in the number of refactoring candidates for the
architects to review as the result of merging. Second, the
average size of the merged debts, in terms of the percentage
of files, in column “S.%”. If the size of the merged debts is
too large, they are difficult to review. Third, the average
amount of maintenance cost associated with the merged
debts, in terms of the percentage of bug-fixing churn, in col-
umn “Ch.%”. This measures how significant each com-
pound debt is. And finally, the ratio in column “R.”,
calculated as “Ch.%"” divided by “S.%”. This measures the
potential cost effectiveness of examining the merged debts.
To be effective refactoring candidates the merged debts
should contain a small portion of files but account for a
large portion of maintenance costs. We conjecture that the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS 3703

TABLE 10
Prevalence of Compound Anchors Merge (Threshold = 0.5)
Subject AD AS HB MV
#Debts Merge #Debts Merge #Debts Merge #Debts Merge
Camel 97 (82%) 80—8 9 (0%) - 45 (67%) 30—1 357 (91%) 324—12
Cassandra 24 (46%) 11—4 10 (0%) - 19 (68%) 13—2 57 (93%) 53—1
CXF 26 (69%) 18—6 3(0%) - 3 (0%) - 150 (84%) 126—8
Hadoop 12 (42%) 5-2 9 (0%) - 5 (60%) 3-1 47 (74%) 35—7
HBase 92 (77%) 71—4 5 (60%) 3—1 30 (53%) 16—2 111 (87%) 97—2
PDFBox 5 (40%) 2—1 3 (67%) 2—1 2 (0%) - 17 (88%) 15—3
Wicket 12 (92%) 11-3 2 (0%) - 8 (75%) 6—1 77 (97%) 75—2
HIVE 109 (85%) 93—1 2 (0%) - 6 (50%) 3-1 136 (96%) 130—2
Avro 2 (0%) - 1 (0%) - 1(0%) - 25 (80%) 20—3
Mesos 1(0%) - 2 (0%) - 1(0%) - 5 (100%) 5—-1
OpenJPA 5(0%) - - - 2 (100%) 2—1 84 (87%) 73—4
Httpd 3(0%) - - - 4 (100%) 4—1 10 (100%) 10—1
Kudu - - 1 (0%) - - - 6 (83%) 5—1
Mahout - - - - - - 6 (83%) 5-2
Chemistry - - - - - - 2 (100%) 2—1
Jena 1 (0%) - - - - - 22 (77 %) 17—3
Ambari 4 (0%) - 2 (0%) - - - 23 (87%) 20—1
Allura 9 (67%) 6—2 4 (0%) - 3 (100%) 3-1 21 (76%) 16—2
TABLE 11
Average Size-and-Churn Ratio for the Compound Debts (Threshold = 0.5)
Subject AD AS HB MV
#Debts S.% Ch.% R. #Debts S.% Ch.% R. #Debts S.% Ch% R. #Debts S% Ch% R
Camel 100—-25 02% 06% 5 9—9 01% 04% 4 46—16 01% 04% 7 357—45 18% 28% 3
Cassandra 35—17 03% 21% 7 11-10 05% 06% 2 21—-8 03% 14% 4 57—-5 188% 249% 2
CXF 27—14 02% 09% 4 3-3 04% 07% 2 3-3 02% 06% 3 150-32 21% 32% 2
Hadoop 16—9 05% 24% 5 11-9 11% 22% 3 7-3 04% 25% 4 47—-19 25% 49% 3
Hbase 107—25 0.6% 19% 1 34—-3 91% 103% 1 30—16 02% 07% 3 111—-16 69% 12.1% 2
PDFBox 6—4 11% 47% 6 3-2 65% 162% 2 3-2 08% 40% 5 17-5 101% 175% 2
Wicket 12—4 03% 16% 6 2-2 13% 19% 1 9-3 02% 12% 8 77—4 92% 12.7% 2
HIVE 113—17 04% 19% 4 9-2 68% 139% 2 14—4 06% 17% 3 136—8 85% 122% 2
Avro 2—-2 09% 21% 2 1-1 41% 60% 1 1-1 09% 27% 3 25—=8 98% 142% 2
Mesos 1-1 12% 64% 5 2-2 31% 45% 2 1-1 08% 89% 11 5-=1 29.1% 54.5% 2
OpenJPA 5-5 02% 22% 9 - - - - 2-1 02% 17% 9 84—15 35% 72% 3
Httpd 3—-3 49% 26.6% 5 - - - - 4-1 95% 318% 3 10—1 741% 923% 1
Kudu - - - - 1-1 33% 49% 1 - - - - 6—2 78% 142% 2
Mahout - - - - - - - - - - - - 6—3 49% 83% 2
Chemistry - - - - - - - - - - - - 2—1 13.7% 181% 1
Jena 1-1 04% 09% 2 - - - - - - - - 22—8 33% 4.6% 2
Ambeari 4—4 07% 22% 3 2=2 05% 17% 4 - - - - 23—4 148% 185% 1
Allura 10—5 45% 147% 4 4—4 27% 52% 2 4—1 56% 193% 3 21-7 157% 26.6% 2
Min 02% 0.6% 1 01% 04% 1 01% 04% 3 1.8% 28% 1
Max 49% 26.6% 9 91% 162% 4 9.5% 31.8% 11 741% 923% 3
Avg 11% 47% 5 30% 53% 2 1.5% 59% 5 131% 194% 2
higher the ratio the more effective it is for architects to number of debt instances after the merge. We
review and refactor a debt. highlighted cells where merge is not applicable in
Table 11 shows the average characteristics of the com- blue—there are usually just a small number of such
pound debts after the merging. We can make the following debts.
observations: e On average, the size-to-cost ratio of most debts is between
2 and 13. This means that the compound debts usually
» Merging can significantly reduce a large number of ATD- only contain a small portion of files in the system, but

sin a project to a much smaller number of compound
debts. For example, in Camel there are 100 original
AD debts that can be merged into just 25 compound
debts. Thus architects can review a much smaller

account for a relatively large portion of maintenance costs.
In particular, the sizes of the merged AD or HB debts
are below 1 percent for most projects. The size-to-
cost ratio of the AD and HB debts is, on average, 5

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3704

across the projects. The MV debts usually contain
more files, containing 13.1 percent of the files in a
project on average. And, the size-to-cost ratio of the
MYV debts is above 2 in most projects (except Httpd
and Chemistry). The implication is that these merged
debts are potentially cost-effective refactoring candi-
dates, since architects only need to focus on a few
groups of files to “pay off” a large amount of mainte-
nance cost.

o The ADand HBdebts offer the highest cost effectiveness
ratio in most projects, compared to the ASand the
MVdebts. For each project, we highlighted one of the
four types of debt with the highest size-to-cost ratio
with a yellow background. As we can see, the AD
and HB debts are the “winners” in most projects.
Thus architects should prioritize the AD and HB
debts as their refactoring candidates for even better
cost effectiveness.

7 DISCUSSION

In this section, we discuss how architects can benefit from
our approach, and some factors that may impact the results
of our approach.

7.1 ATD Evolution

As discussed in Section 3, our approach identifies an ATD
as a FileSetSequence, which is a sequence of file groups,
each extracted from consecutive releases. This provides a
dynamic view to examine the evolution of ATDs. We manu-
ally inspected the evolution of these debts, and now illus-
trate how architectural flaws evolve into debts over time.

Fig. 13 shows a debt we identified from Camel. We have
provided 3 snapshots (i.e., FileSet) of this debt—in release
2.0.0 (age 1), release 2.2.0 (age 2), and release 2.12.4 (age
11)—to show its evolution. Snapshots from age 3 to 10 are
similar to age 11. “Ext” and “Impl” stand for “extend” and
“implement”, “dp” denotes all other types of structural
dependencies.

In release 2.0.0, PDe f forms a dependency “hub” with 10
other files: 3 files are its subclasses, 7 files are its general
dependents, and PDef structurally depends on all of them.
We call these files a hub, which is a typical debt pattern as
we will introduce later. Note that in this snapshot, all files,
except InterceptStrategy, depend on RouteContext (column 5).
The 11 files in this hub structurally form a strongly con-
nected graph. According to the revision history, PDef
changes with all member files with probabilities from 50 to
100 percent (column 1). The dependents (on rows 5 to 11) of
PDef are highly coupled with each other. This is problem-
atic in 3 ways: 1) the parent class PDef depends on each
subclass and each dependent class (unhealthy inheri-
tance [26]); 2) the parent class is unstable and often changes
with its subclasses and dependent classes (unstable inter-
face [26]). 3) RouteContext forms cyclic dependencies with 9
files (cycles). Without fixing these flaws, we expect the
maintenance costs of this group to grow.

In release 2.2.0, the impacts of this hub have enlarged—
PDef has 3 more subclasses and 6 more general depend-
ents, and it depends on each of them as well. Each newly
involved file also depends on RouteContext (column 13). The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

revision history shows that PDef changes with its sub-
classes and dependents with probabilities of 33 to 100 per-
cent. Also, the subclasses and dependents (rows 5 to 11) of
PDef are highly coupled with each other—changing any of
them is likely to trigger changes to the rest. In following
releases, the hub grows further. Up to release 2.12.4, PDef
has 9 subclasses and 18 general dependents—the size of the
hub tripled compared to the start, and, as always, PDef
depends on each of them. In addition, 6 of the 18 general
dependents (rows 11 to 16) of PDef also become its grand-
children. The inheritance tree has increased in width and
depth. The revision history shows PDef still changes with
its dependents with probabilities from 33 to 100 percent.
The files in this snapshot are tightly coupled with each
other, and so changing any file is likely to trigger changes to
others.

The maintenance costs spent on this debt fit a linear
regression model: DebtModel(rt) = 158.75 % rt 4+ 509.35 with
R? = 0.89. This means that, in every release, developers con-
tribute 158.75 more lines of code to fix errors in the hub
anchored by PDef. Although this model can only be
obtained after the costs and penalty have accumulated, one
could use our approach to detect architecture flaw patterns
at any point (as described in [26]), monitor how file groups
grow, monitor the formation of debts, and prevent signifi-
cant costs by investing in proper refactorings [31].

In addition, we performed additional analyses to under-
stand how and “why” the debt in Fig. 13 accumulated. The
debt center file “ProcessorDefinition” has a large number of
dependents, which tend to change together with it over time.
This is the result of change propagation through the struc-
tural coupling—when “ProcessorDefinition” changes, its
dependents change accordingly. Throughout the project’s
history, more and more files are added and/or become
dependent on “ProcessorDefinition”. To further understand
why this happens from the perspective of LoC, we found
that the LoC of “ProcessorDefinition” increased from 923 in
release 2.0.0 to 1382 in release 2.12.4 (50 percent increase). In
addition, its member files, including “LoadBalanceDefinition”,
“ChoiceDefinition”, “RollBackDefinition”, “MarshallDefinition”,
and “UnmarshallDefinition” increased in LoC by 35 to 78 per-
cent during the releases. We believe this analysis suggests: 1)
large files are likely to be the center of a debt due to their
poor design—encompassing too many responsibilities and
thus causing a large amount of co-changes, so that their sizes
have to keep growing; 2) the member files, as defined in our
debt pattern, tend to grow and change with the anchor file.

7.2 ATD Patterns and Potential Refactoring
Guidelines

One of the key contributions of this work is to identify ATD
in terms of the four indexing patterns: hub, anchor submis-
sive, anchor dominate, and modularity violations. We man-
ually reviewed the debt patterns identified by our
approach, and summarized how each ATD pattern maps to
potential refactoring resolutions.

The hub pattern features a “hub” like central file, which
structurally depends on, and is also depended by, all the
member files in this pattern. Hub pattern instances are
likely to overlap with several design flaws that are formed

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS 3705
1 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ProcessorDef dp, dp, dp, dp, dp dp dp, dp, dp, dp, dp, dp, dp,
2 ChoiceDef Ext,dp,100% dp ,100%
3 LoadBalanceDef Ext,dp,100% dp
4 RollbackDef Ext,dp,100% dp 33%
5 OnCompletionDef [Ext,dp,67% 33% 33% |,33% ,33% dp 33% 33%
6 RouteDef Ext,dp,33% dp dp, 33%
7 OnExceptionDef |Ext,dp,100% 33% 50% |,33% ,33% dp ,100% 33%
1 23 4 6 7 8 9 10 11 8 Channel dp,50% @) [,50% |50% ,50% dp 50% dp
1 ProcessorDef Ty o T) @ b b b 9 Def) gp,44% _ Impl:,dp,33% [(9) _ ,33% ,33°/: jp _ _ 33% dp
2 Loadsaloncenes RN . 1 vesisoetLdp oo Taome awonovs a0 do0R[] ook 0w 1006
3 ChoiceDef Ext,dp,100% dp, ,100% 1 Re::i;\t;;t[)gf d:wrw o e S o - '
o ,100%
: §°IlbaékDef th:;;:om & 33% 67% 33% ,33% dp,33%| L RouteContext |dp,60% de, dp
outeContext P, :33% ,67% 33% , P,33%| 14 MarshalDef dp,100% 150% ¥y 1100% ,50% 1100%
6 MarshalDef dp,100% dp,67%) ,100% ,100%,50% ,100% 15 PolicyDef dp, 75% dp
7 PolicyDef dp,67% dp,44% ,33% ,33% ,33% ,33% 16 Tn ! o
yDef dp,100% ,100% dp
8 TryDef dp,100% ,100% |dp, 17 UnmarshalDef |dp,100% 50% dp,40% ,100% ,100% ,100%
9 UnmarshalDef |dp,100% dp,67% ,100% ,100% 18 Error*Ref dp,40% dp, dp, dp
10 Error*Ref dp,50% dp, 33% 19 MulticastDef dp,100% ,50% ,50% ,50% |,50% ,50% dp
11 InterceptStrategy |dp,50% ,33% ,50% ,50% ,50% 20 InterceptStrategy |dp,50% ,50% ,50% ,50%
(a) R-2.0.0, Age 1, #File 11, Churn 392 (b) R-2.2.0, Age 2, #File 20, Churn 771
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 ProcessorDef _dp dp
2 ExpressionNode Ext,dp,60% |(2) ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,30
3 CatchDef Ext,dp,40% |dp,40% (3) ,40% ,40% ,40% ,40% dp, ,40% dp, dp,60% ,30 ,40%
4 ChoiceDef Ext,dp,67% [dp, dp,33% dp, ,33%
5 LoadBalanceDef Ext,dp,50%
6 RecipientListDef Ext,dp,50% [dp, ,33% dp, dp, ,50%
7 WireTapDef Ext,dp,33% ,44% ,33% ,33% ,33% ,33% |dp,33%,33% dp,33% ,67%
8 AggregateDef Ext,dp,33% |,33% 33% ,33% ,50% ,50% ,33% |dp, ,33% dp, ,33% ,50%
9 ResequenceDef Ext,dp,50% |,50% ,50% ,50% ,50% dp, ,50% 37
10 OnCompletionDef |Ext,dp,44% |dp, ,44% ,33% |(10) dp, ,33% dp, ,33% dp, ,33%
11 LoopDef dp,100% Ext,dp,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% ,100%,100% ,100%,100%|,33% ,100% ,100% ,100%,100% ,100% ,100%,100% ,100% ,100%
12 ThrottleDef dp,40% Ext,dp,67% ,33% ,33% ,33% ,67% ,33% ,67% |,33% ,67% ,67% |dp,33%,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
13 I*ConsumerDef dp,50% Ext,dp,50% ,50% ,75% ,50% ,50% ,50% dp, ,50% ,50%
14 WhenDef dp,100% Ext,dp,50% ,50% ,100% ,50% ,50% ,50% ,50% ,50% ,50% .37
15 SplitDef dp,50% Ext,dp,50% ,50% ,50% ,75% ,50% ,75% ,50% ,50% ,50% |dp, ,50% dp, ,50% 5%
16 DelayDef dp,33% Ext,dp,44% ,33% ,33% ,33% ,67% ,33% ,67% |,33% ,67% ,33% ,67% ((16) |dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
17 Processor*Helper |dp,33% dp, dp, dp, dp, dp, dp, dp,
18 ThreadsDef dp,33% ,33% ,50% ,33% ,33% ,33% dp, ,50%
19 OtherwiseDef dp,100% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50%
20 RouteContext ,43% ,33% ,33% ,33% ,33% ,33% ,33% dp
21 PolicyDef dp,80% ,40% dp,100%
22 TryDef dp,60% ,40% dp,60% ,40% ,40% ,40% ,40% ,40% dp, ,40% dp, ,30 dp,40%
23 TransactedDef dp,56% dp, 71
24 PipelineDef dp,100% ,100% ,100% ,50% ,50% ,33% ,100%,100% ,100% ,100% ,100%,100% ,100%,100%|,33% ,100% ,100% ,100%,100% ,100%
25 SamplingDef dp,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33%
26 MulticastDef dp,43% A43% ,A43% A43% A43% dp, ,A43% dp,
27 FinallyDef dp,60% ,50% ,100% ,40% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% dp,100% ,50%
28 InterceptStrategy |,50% ,50% ,50%

(c) R-2.12.4, Age 11,

Fig. 13. Camel hub debt evolution—anchor ProcessorDefinition.

by a subset of the involved files. For example, the “hub”
file and its depends are likely to form unstable interface
or unhealthy inheritance. And each “hub” file also forms
cyclic dependencies with its members. However, an archi-
tect cannot treat a hub pattern as separate cyclic depen-
dencies or unstable interfaces to successfully refactor this
pattern. The reason is that the involved source files form
a more complicated whole. To successfully eliminate a
“hub”, an architect needs to analyze the internal elements
in the “hub” file, and decompose it into separate mod-
ules, which decouple files that originally depend on it
and that it depends on.

The anchor submissive features an anchor file that fre-
quently changes with files that structurally depend on it.
The anchor file in this pattern most likely defines a funda-
mental API or basic utility functions for its dependents.
Therefore, the anchor and its dependents form an unstable
interface. The anchor is a servant interface that frequently
accommodates the needs of its dependents and change its
interface. The guideline to refactor this pattern is two-fold:
1) identify the most change-prone interfaces in the anchor;
and 2) encapsulate the change-prone interfaces in a separate
class and/or stablize the interfaces following the “design-
by-contract” principle. The anchor dominate pattern is simi-
lar to the anchor submissive pattern. The difference is that
in the anchor dominate the interface changes, while its

#File 28, Churn 2134

dependents accommodate the change. The refactoring
guideline is therefore similar: identify the most change-
prone interfaces in the anchor and encapsulate or stablize
those interfaces.

The modularity violation pattern is different than the
above three patterns. The files involved do not share struc-
tural dependencies, however they frequently change
together due to latent dependencies. These latent connec-
tions could be the result of “share secrets”, such as the
semantic and/or structural similarity among the involved
files. The semantic similarity could be the usage of parame-
ters that represent the same concepts, such as time units [32],
or might simply be due to code cloning. The structural simi-
larity could be common dependencies on other interfaces;
when these interfaces change, the files with shared depen-
dencies often need to change together. To refactor the mod-
ularity violation, an architect needs to identify the “shared
secrets” among the involved files, and encapsulate these
secrets into an abstraction. A common example of eliminat-
ing a modularity violation is to encapsulate code clones into
separate methods or classes.

7.3 Why do Some Projects Only Have a Few ATDs?
As shown in Table 2, Kudu, Mahout, Chemistry, and Jena
contain debts that only account for a small percentage (up

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3706

Significance of Debt vs. Structural and History Coupling

09 et
08
07
0.6
05
04
03
0.2
01

T > ¥ @M - = @ T QO W X W 0O P w oo o m oo @
L3 [u
33353 §388x835E258¢88
G E&® "~ %= E T o © Tt §gTZFS5IE
2§ s = = B g g © @ X
3 + O o
[=} (&1
“Debt -=Structural Coupling -e-History Coupling

Fig. 14. Debt significance versus structural and history coupling.

to 31 percent) of maintenance costs. This section discusses
the underlying reason for this.

As described in Section 3, an architectural debt is a group
of connected files that keep incurring higher maintenance
costs over time. Based on this definition, the debts are iden-
tified based on two criteria: 1) the structural dependencies
and 2) the history coupling among files. Debts are matched
by the four indexing patterns (Section 4) combining struc-
tural and history couplings among files.

Thus, we should understand how the debts correlate
with both structural coupling and history coupling. We
measure the coupling using the Propagation Cost (PC) met-
ric proposed in [33]. PC is the density of the n-transitive clo-
sure of a dependency matrix. A P value ranges between 0
and 1; the larger the value, the more coupled the elements
in the matrix. For example, a PC of 1 indicates that every
element in the matrix is connected to every other element,
directly or indirectly. In Fig. 14, the z-axis lists the projects
and the three trend lines describe 1) the significance of debts
in each project (triangle marker); 2) the propagation cost cal-
culated based on the structural dependency DSM (square
marker); and 3) the propagation cost calculated based on
the HCP matrix (round marker). The projects are ranked by
the significance of debts in ascending order. The key obser-
vations are that:

e the significance of debts is not correlated with the
structural coupling, with a correlation coefficient of
0.1. The rationale is that a project can have very tan-
gled structural coupling, but there is no debt if the
project seldom changes (i.e, no maintenance
“interest”). For example, Kudu has one of the highest
PC values (0.6, based on structural dependencies)
among the 18 projects. However, the evolutionary
coupling (PC < 0.1) is almost the lowest. This indi-
cates that although Kudu has tangled structural
dependencies, the project is relatively stable, there-
fore no persistently change-prone architectural flaws
are identified.

e the significance of debts is only moderately corre-
lated with history coupling, with a correlation coeffi-
cient of 0.5. This is because our approach identify
debts based on persistent co-change file groups in the
evolution history. Note that high history coupling

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

does not always lead to debts, because a group of
files may change together for many reasons (e.g.,
new functionality, minor syntactic changes, new
coding or documentation conventions, etc.) that do
not impact architectural debt.

In addition low evolutionary coupling could be due to
missing links, in some projects, between bug reports and
the code commits that fix those bugs [34]. We acknowledge
that this is a potential limitation and threat to validity of our
approach in that it relies on the quality of history data. For
example, if developers regularly make fragmented commits,
only changing one source file a time, our approach will not
be able to identify meaningful debts. And if developers
“hoard” their changes on a private branch and then commit
large changes (with dozens of files), our approach will tend
to identify more debts. In our study, we attempted to miti-
gate this problem by only analyzing changes that involve
fewer than 30 files. This helps to eliminate the “noise” intro-
duced by very large commits.

7.4 How Does the R? Threshold Impact the
Regression Models?

For each Architectural Debt, we searched for a suitable

regression model to describe the trajectory of the associated

maintenance costs. We used an R? threshold as described in

Section 4. In this section, we investigate how the regression

models are impacted by the R? threshold.

Table 12 lists the distribution of the four regression mod-
els: Linear (Li), Logarithmic (Lg), Exponential (Ep), and
Polynomial (Pl). For each model we examined four R?
thresholds: 0.6, 0.7, 0.8, and 0.9. In general, a lower R?
threshold better captures the rough trend of maintenance
costs over time, while a higher R? threshold better captures
detailed maintenance cost fluctuations.

The first two columns show the project name and the
total number of Architectural Debts in each project. The fol-
lowing columns show the distribution of the four regression
models at each threshold. When using 0.6 for the R* thresh-
old, the majority (66.7 to 100 percent) of debts in each proj-
ect can be described as a linear model. On average, only 7.4,
0.9, and 1.1 percent of debts fit into Logarithmic, Exponen-
tial, and Polynomial models, respectively. This indicates
that the maintenance costs associated with most debts
increase linearly over time in general. However, as we
increase the R? threshold to 0.7, 0.8, and 0.9, more debts are
described by other regression models to capture the
detailed cost fluctuations. For example, when choosing 0.9
for the R? threshold, on average, 20.7, 10.6 and 22.7 percent
of the debts fit into Logarithmic, Exponential, and Polyno-
mial regression models, respectively.

Of particular note, when the R? threshold is 0.9, the cov-
erage of each regression model in different projects differs
substantially, compared to the dominance of the Linear
model when the R? threshold is 0.6 to 0.8. For example,
when the threshold is 0.9, 56.4 percent of Allura’s debts are
best fit by a Logarithmic model; PDFBox scores 27.6 percent
with an Exponential model; Mesos scores 100 percent with a
Linear model; while Mahout scores 66.7 percent with a Poly-
nomial model. We assume that the fit of different debt mod-
els is impacted by the trend of maintenance activities in

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS 3707
TABLE 12
Regression Model Types
Subject #Dts R?=0.6 R?=0.7 R*=0.8 R>=09
Li Lg Ep Pl Li Lg Ep P1 Li Lg Ep Pl Li Lg Ep P1
Camel 512 97.5% 21% 0.4% - 91.8% 74% 04% 04% 689% 28.5% - 25% 31.8% 508% 02% 17.2%
Cassandra 124 100.0% - - - 9.0% 32% 08% - 935% 5.6% 0.8% - 823% 73% 24% 81%
CXF 183 978% 11% 05% 05% 962% 05% 22% 11% 902% 22% 49% 27% 585% 98% 17.5% 14.2%
Hadoop 8 938% 37% - 25% 852% 49% 62% 37% 71.6% 74% 111% 99% 55.6% 3.7% 62% 34.6%
HBase 282 97.9% - 1.8% 04% 96.1% 04% 21% 14% 894% 18% 60% 28% 67.7% 57% 121% 14.5%
PDFBox 29 100.0% - - - 96.6% - 3.4% - 724% 3.4% 241% - 51.7% - 27.6% 20.7%
Wicket 100 99.0% 1.0% - - 95.0% 4.0% 1.0% - 85.0% 80% 50% 20% 57.0% 21.0% 3.0% 19.0%
OpenJPA 91 923% 6.6% 11% - 780% 17.6% 33% 11% 51.6% 39.6% 22% 6.6% 88% 53.8% 22% 352%
HIVE 272 99.3% - 0.7% - 96.7% - 29% 04% 926% 04% 55% 15% 665% 11% 243% 81%
Avro 29 100.0% - - - 100.0% - - - 89.7% - 69% 3.4% 44.8% 20.7% 172% 17.2%
Mesos 9 100.0% - - - 100.0% - - - 100.0% - - - 100.0% - -
Httpd 17 100.0% - - - 100.0% - - - 100.0% - - - 824% 59% 59% 59%
Kudu 7 100.0% - - - 100.0% - - - 85.7% 14.3% - - 71.4% 28.6% -
Mahout 6 667% 333% - - 66.7% - - 333% 50.0% 16.7% - 333% 167% 167% - 66.7%
Chemistry 2 100.0% - - - 100.0% - - - 100.0% - - - 100.0% - -
Jena 23 95.7% 43% - - 826% 43% 87% 43% 391% 304% 13.0% 174% 87% 21.7% 87% 60.9%
Ambari 29 100.0% - - - 100.0% - - - 96.6% 3.4% - - 82.8% 6.9% - 10.3%
Allura 39 100.0% - - - 974% 26% - - 923% 51% 2.6% - 359% 564% - 7.7%
Min 2 66.7% 1.0% 04% 04% 667% 04% 04% 04% 391% 04% 08% 15% 87% 11% 02% 59%
Max 512 100.0% 33.3% 1.8% 2.5% 100.0% 17.6% 8.7% 33.3% 100.0% 39.6% 24.1% 33.3% 100.0% 56.4% 27.6% 66.7
Avg 102 96.7% 74% 09% 11% 932% 50% 31% 57% 81.6% 119% 7.5% 82% 56.8% 20.7% 10.6% 22.7%

each project. For instance, Fig. 15 shows the trend of bug fix-
ing per release in Mesos, OpenJPA, PDFBox, and Open]JPA
respectively. The z-axis is the release number in each project
and the y-axis is the total number of bug fixes by the time of
each release.

We can observe that, for example, 53.8 percent of debts in
OpenJPA fit a logarithmic model. We see that OpenJPA sta-
bilized in later releases, and bug fixing activities were

#Bug Fixes Overtime —-Mesos #Bug Fixes Overtime-OpenlPA
300 3000
250 y=24.752x- 87333 2500 v = 961.08In(x) - 268.2
]
200 R = 0,595, 2000 =
150 1500
100 1000
50 500
0 0
1 2 3 4 5 € 7 8 9% 10 12345678 951011121314151617
(a) Mesos (b) OpenJPA
#Bug Fixes Overtime--PDFBox #Bug Fixes Overtime-Mahout
1200 1000
1000 y = 29.04¢5197% 200 ¥ =-6.2716x7 + 152,83 - 109.59
R? = 0.9677 R?
800 500
600
400
400
200 200
o 1]
1 23 45678 9210112 1 2 3 4 5 6 7 8 9 101

(c) PDFBox

(d) Mahout

#Bug Fixes Overtime--Camel

¥ =419.4x + 86,682
R = 0,985

1 2 3 45 6 7 8 9101112

(e) Camel

Fig. 15. Maintenance activity trend line.

slowing down. This could be the result of a refactoring that
improved the architecture of OpenJPA, or simply because
the project was not as active as in earlier releases. Similarly,
100 percent of debts in Mesos fit a linear model, as illus-
trated in Fig. 15a. PDFBox’s maintenance activities increase
with releases following a exponential model, thus, PDFBox
has the highest percentage of Exponential debts compared to
other projects. Finally, 66 percent of the debts in Mahout fit
a Polynomial model, as shown in Fig. 15d.

Camel is an interesting outlier. As seen in Fig. 15e, the
trend of maintenance activity of Camel follows a linear
model, indicating that developers invest a steadily increas-
ing amount of cost on fixing bugs over time. However, 50
percent of debts in Camel fit a Logarithmic model, indicating
that these debts are costing less maintenance cost over time.
We conjecture that this is because the 31 percent of debts fit-
ting the Linear model are incurring higher maintenance
costs, which offset the reduced “interest” from the 50 per-
cent of Logarithmic debts. In other words, although 50 per-
cent of debts are incurring lower interest, the other 31
percent of debts are incurring a higher interest, resulting in
a stably increasing trend line for the overall maintenance
costs.

Despite this one exception in Camel, we observe that, in
every other case, the best fitting debt model type is
impacted by the trend of the maintenance activities in a
project.

7.5 How Does the Compound Anchors Threshold
Impact the Characteristics of Compound Debts
After Merging?

As shown in Equation (17), we use an overlap threshold to

decide whether to merge two debts. In this section, we

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3708

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

TABLE 13
Impact of Overlap Threshold (0.1 to 0.9) on Merging

Overlap AD AS HUB MV

Thresh #MDebts S.% Ch.% R. #MDebts S.% Ch.% R. #MDebts S.% Ch.% R. #MDebts S.% Ch.% R
0.1 4 28% 10.3% 4 2 55% 93% 2 3 1.6% 6% 5 1 40% 53 %1
0.2 4 28% 10.3% 4 3 43% 8% 2 3 1.5% 6% 5 2 35% 45% 1
0.3 5 1.51% 6.11% 5 3 343% 641% 2 3 1.52% 591% 5 3 28.89% 37.83% 2
0.4 8 1.37% 5.70% 5 3 3.03% 5.25% 2 4 1.52% 5.90% 5 6 16.64% 23.13% 2
0.5 8 1.15% 5.03% 5 3 3.03% 5.25% 2 4 1.52% 590% 5 10 13.73% 20.25% 2
0.6 19 1.02% 4.65% 6 3 2.72% 4.76% 2 8 0.71% 3.55% 7 29 10.06% 16.26% 3
0.7 21 097% 4.54% 6 3 2.62% 4.64% 2 8 0.71% 3.56% 7 44 6.65% 12.43% 3
0.8 23 0.97% 4.55% 7 3 2.62% 4.64% 2 8 0.71% 3.56% 7 55 6.11% 11.64% 3
0.9 23 0.96% 4.52% 7 3 2.62% 4.64% 2 8 0.71% 3.56% 7 63 6% 11.2% 3
Trend 1 T — — T T T T

evaluate how this threshold impacts the characteristics of
the compound debts after merging with Compound Anchors.
In particular, we are interested in: 1) the number of com-
pound debts after merging; and 2) the average size (number
of files), the average maintenance cost (in terms of the churn
associated with those files), and the ratio between the two.
The first aspect determines the maximum number of debts
architects need to review, while the second aspect reveals
the potential cost-effectiveness of inspecting each debt. We
tested thresholds from 0.1 to 0.9, and the results are shown
in Table 13. We can make the following observations:

e As we increase the overlap threshold, the number of
compound debts increases for all four debt types.
This is consistent with the intuition that a higher
threshold poses a more strict criterion thus prevent-
ing some merges. Therefore, more distinct debts will
remain after merging. The implication is that the
architects can expect to review more debt instances if
the overlap threshold is high.

e As we increase the overlap threshold, the potential
cost-effectiveness of each compound debt increases
for the AD, HB, and MV debts across projects. For
example, the size-and-churn ratio of the AD debts
increases from 4 to 7 as the threshold increases from
0.1 to 0.9. In other words, as the threshold increases,
each compound tends to contain fewer source files,
but each debt still accounts for relatively higher
maintenance costs with respective to its number of
files. Therefore, the implication is that a higher over-
lap threshold helps architects focus on compound
debts with higher cost effectiveness. Of particular
note, the cost effectiveness of the AS debts remain
stable as we increase the threshold; we conjecture
that the reason is that merge is only applicable to 7
projects even when the threshold is 0.1. Therefore,
the cost effectiveness rate stays close to that of the
original debts (i.e., without merging) for AS debts.

8 RELATED WORK

8.1 Technical Debt
The concept of TD was first coined by Cunninghan [1]. It
refers to the trade-offs developers make between long term

benefits, such as maintainability, and short term goals, such
as meeting a deadline. Much research has focused on TD, to
understand the TD landscape, on practitioners’ perceptions
of TD, as well as best practices for managing TD. We have
observed several trends in TD research in recent years [2],
(3], [51, [6], [71, [71, [8], [9], [10], [11], [12], [13], [19], [20], [21],
[22], [23], [24], [25], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],
[55], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65],
[66], [67], [68], [68], [69], [70], [71], [72].

a) Self-Admitted Technical Debt. An important body of
work focuses on identifying and analyzing Self-Admitted
TD (SATD) [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58]. SATD refers to TD that is noted by develop-
ers in comments and issue reports, such as “TODO” items.
The key to this type of TD is that the developers inten-
tionally introduce these debts to strategically balance long-
term and short-term goals in software development. Most
work in this area has focused on detecting SATD using text
mining [49], [51], natural language processing [56] and deep
learning techniques [53]. Yan et al. [48] focused on identify-
ing changes that introduce SATD. Wehaibi et al. [50] investi-
gated the impact of SATD on software quality, revealing
that the introduction of SATD correlates with defectiveness
of the involved files, and files involved in SATD are more
difficult to change. Mensah et al. [54] proposed a prioritiza-
tion scheme for treating SATD in practice. Kamei et al.
focused on measuring the interest of SATD in terms of LoC
and Fan-In [55]. Maldonado ef al. [47] and Zampetti ef al.
[57] investigated how SATD is removed in practice. One
large-scale study revealed that SATD is mostly code debt
(30 percent), defect debt (20 percent), and requirement debt
(20 percent) [46]. In addition, Sierra et al. [52] evaluated
whether SATD can serve as an indicator of architectural
debt. The answer is that 14 percent of the architectural debt
can be traced through SATD, but the effort of doing so is
high and generally inefficient. Our paper specifically
focused on Architectural Debts, which are largely overlooked
by developers when documenting SATD. We conjecture
that Architectural Debts are more likely to be introduced acci-
dentally without developers’ awareness. Literature about
SATD focused on identifying debts that are admitted by
developers through code comments and issue reports. In
comparison, our study proposed an automated approach to

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

identify and quantify ATDs by mining project repository
and matching the architectural and evolutionary patterns.
Therefore, our work complements the existing work in
SATD by identifying potential ATDs that developers are not
aware of.

b) TD Survey/Interview. An important research methodol-
ogy for understanding TD is through surveys or interviews
involving practitioners [5], [19], [20], [21], [22], [23], [59],
[60], [61], [62], [63]. These studies focused on understanding
practitioners’ perceptions of TD and discovering current
practices of TD management. Rios et al. [22], [23] revealed
that TD is usually caused by a combination of factors in
project planning/management such as deadlines and inade-
quate planning, and the lack of problem domain and tech-
nology knowledge. Perez et al. [19] had similar findings in
another survey. They emphasized that the concept of TD is
well understood by practitioners, and that researchers need
to offer strategies and tools to support TD management. Yli-
Huumo et al. [20] interviewed 25 professionals from 8 devel-
opment teams to understand current practices in TD man-
agement of TD repayment, identification, measurement,
monitoring, prioritization, communication, prevention, and
documentation. They found that different teams have differ-
ent maturity levels and pointed out that one of the chal-
lenges in TD management is the lack of tools. Besker et al.
[59] conducted an interview with 16 professionals in soft-
ware startups, showing that startups intentionally use TD
as a strategy to achieve a “good enough” product with rapid
time to market. In addition, Besker et al. [5] conducted
another study, focusing on the impact of ATD on daily
development. They reported that ATD has the highest nega-
tive impact and impacts all roles in a development team
compared to other types of TD. In other studies, Besker et al.
[62], [63] found that TD cripples software development pro-
ductivity. Holvitie et al. [61] conducted a survey with 184
responses for understanding TD and agile development
practices. Their main finding is that agile practices and pro-
cesses help to reduce technical debt; in particular, techni-
ques such as coding standards and refactoring positively
affect technical debt management. Martini et al. [21] con-
ducted a survey with 226 respondents from 15 organiza-
tions. They found that TD Management requires substantial
dedication from developers, probably due to the lack of
effective tools. Currently, the most used and effective tools
are backlogs and static analyzers.

The main findings of these works reveal that practi-
tioners are aware of the negative impact of TD, but the most
challenging part is TD management. We believe that the
approach presented in this paper has the potential in facili-
tating TD management with its ability to automatically
detect, to quantify the interest, and to predict the future
costs of TD.

c) TD Secondary Studies. Due to the large volume of TD
research, a set of secondary studies has reviewed the status
of the TD research [2], [3], [6], [64], [65], [66], [67], [68], [69].
This helps researchers understand whether current research
aligns with the practitioners” expectation. Rios et al. [2] stud-
ied 13 studies of TD between 2012 and 2018. They identified
a taxonomy of TD types, including design debt, code debt,
architectural debt, test debt, documentation debt, defect
debt, infrastructure debt, etc. Among these, design, code,

3709

and architecture debt are the most cited types. Similar find-
ings have been reported by Alves et al. [3] and Li et al. [4].
Behutiye et al. [64] studied 38 papers about TD in the context
of Agile development and found that architectural and
design issues are the most common causes of TD in Agile
development. Verdecchia ef al. [65] studied 47 papers focus-
ing on architectural TD. They found that most studies
focused on architectural anti-patterns and smells, and mod-
ularity analyses, based on source code and evolutionary
data. Besker et al. [6] pointed out that there is a compelling
need for supporting tools and methods for system monitor-
ing and evaluating ATD. A key challenge in this area is to
quantify and predict the economic consequences of architec-
tural TD. Fernandez-Sanchez et al. [66]'s study concluded
that TD management should be context dependent, consid-
ering the history of product development, prospects, and
time to market. They also pointed out that quantifying and
visualizing TD is important for communication in the deci-
sion-making process. Lenarduzzia ef al. [68] noted, based on
44 studies of TD, that prioritization is preliminary and
researchers need to put more effort on determining the
important factors and how to measure them. Becker et al.
[69] suggested that more effort should be put on investigat-
ing the decision making process for TD management, in
particular the “intertemporal” choices in TD management.

d) TD Quantification and Prioritization. Some work specifi-
cally focused on quantifying the principle, interest, and
probability of interest of TD in software projects [24], [25],
[55], [68], [70], [71], [72]. Lenarduzzi et al. [68] summarized
ten different aspects of impacting factors considered during
debt prioritization in research and practice, based on 44 pri-
mary studies. The ten aspects of impact factors considered
for debt prioritization are 1) business factors, such as lead
time and market competitiveness; 2) customer factors, such
as satisfaction and expectations; 3) evolution, such as impact
on features; 4) maintenance, such as number of bugs and
maintenance cost; 5) system quality, such as security and
robustness; 6) quality debt—# of issues or their co-occur-
rence; 7) productivity, such as wasted development hours;
8) project factors, such as project size and complexity; 9)
social factors, such as developers’ morale and team culture;
10) other factors, such as user perception and number of
users affected. Martini et al. [24], [25] measured the negative
impact of TD in development speed, bugs, quality compro-
mised, extra costs, frequency of issues, and users affected.
These inputs were provided by developers working on the
studied projects. Kosti et al. [70] focused on estimating the
principal of TD by modeling seven structural metrics. The
rationale is that the higher the structural metrics, such as
coupling and cohesion, the higher the principle of a TD.
Codabux et al. [71] used the metrics of defect- and change-
prone classes to build a prediction model for debt proneness
of classes. This helps to prioritize debts. Amanatidis et al.
[72] considered developer characteristics, such as expertise
level, to estimate the principle of TD.

e) Architectural TD. [71, [71, [8], [9], [10], [11], [12], [13]. As
noted above, architectural TD is one of the most cited types,
due to its significant negative impacts on software develop-
ment [2], [3]. Li et al. [4] further categorized Architectural
TD into seven sub-categories, including architectural
smells [14], architectural anti-patterns [15], [16], complex

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3710

architectural behavioral dependencies [73], violations of
good architectural practices [17], architectural compliance
issues [74], system-level structural quality issues, and all
others. Martini et al. [18] conceptualized two patterns of
Architectural TD: contagious debt and vicious circle. Conta-
gious debt leads to ripple effects in projects. Vicious circle
refers to a more severe contagious debt where the ripple
effects form a loop. Martini ef al. [7] proposed a framework
to help practitioners decide if and when to refactor architec-
tural TD. Towards this end, the authors considered the cou-
pling among debt elements for estimating the interest, and
also collected data about the impact on development speed,
maintainability, learning, etc. Skiada et al. [8] explored the
relationship between modularity and TD, finding that a
lack of modularity often co-locate with TD. MacCormack
et al. [12] revealed that high coupling is an essential factor
that contributes to system architectural TD. Roveda et al.
[13] proposed an Architectural Debt Index to quantify the sig-
nificance of architectural smells based on existing tools,
including the approach proposed in our own prior
work [75], [76].

f) Industrial Application of the ATD Patterns. In our previ-
ous studies [31], [32], [77], [78], we specifically focused on
evaluating and verifying the harmfulness of the kinds of
ATD patterns identified in this paper, including extensive
user studies and interviews of developers. In each of these
empirical studies of industrial projects the architects and
developers were intensively involved, providing feedback
regarding the harmfulness of the identified debts and bene-
fits of identifying and fixing them. In particular, in
study [32], our analysis resulted in quantifiable evidence to
support a refactoring proposal, convincing the project man-
ager to invest in a major refactoring. In the other two stud-
ies [31], [77], the developers carried out long-term
refactorings following the suggestions provided by the
identified ATD patterns. These studies all provided real-
world evidence that the ATD patterns formalized in this
paper are truly harmful and deserve attention. The main
contribution of this paper is to provide a formalized, sys-
tematic approach to identify, quantify and predict the costs
of ATDs.

8) TD Management Tools/Platforms. There are several
tools/platforms developed for managing TDs in large-scale
systems, including CodeScene,” AnaConDebt’ and Arcan.*
CodeScene is an online platform providing code visualiza-
tion dashboard based on software repository [79]. It identi-
fies social patterns and hidden risks in code. More
specifically, CodeScene detects “hotspots”—complex code
that an organization has to work with frequently. It priori-
tizes TD based on the frequency [80]. In addition, CodeS-
cene also focuses on the team dynamics of the software
development team, such as their social networks and code
ownerships. AnaConDebt is a TD management tool that
consists of a TD-enhanced backlog, developed by Martini
et al. based on empirical experience with 6 software devel-
opment companies [7], [81]. The backlog allows the creation
of TD items and allows performing TD-specific operations

2. https://codescene.io
3. https:/ /anacondebt.com
4. http:/ /essere.disco.unimib.it/wiki/ arcan

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

on the item, including tracking TD items, assessing TD prin-
cipal and interest, comparing and ranking TD items, visual-
izing TD items, etc. These operations can aid decisions on
ATD refactoring. AnaConDebt provides a generalized
framework to track and manage TD items, but the identifi-
cation and assessment of the TD items requires project
expert’s input and experience. Arcan is a tool for architec-
tural smell detection [82]. It detects four smell patterns,
namely class level cyclic dependency, package level cyclic
dependency, unstable dependency, and hub like depen-
dency. In a recent study, Martini et al. [83] conducted a case
study using Arcan for identifying ATD in four industrial
projects with a questionnaire, interviews and thorough
inspection of the code with the practitioners. The goal is to
reveal whether and how practitioners could identify and
prioritize ATD through the architectural smells identified
by Arcan. Their study focused on three architectural smell
patterns, including unstable dependency, hub-like depen-
dency, and cyclic dependency. They found that using these
architectural smells to identify and prioritize ATD was con-
sidered useful to identify unknown problems by the devel-
opers. In addition, cyclic dependency and hub-like
dependency are considered more harmful and thus having
higher priority than unstable dependency. Our study also
investigate similar ATD patterns. We leverage the history
coupling as an additional layer of architectural connections
to pin-point ATDs that incur higher maintenance costs
(approximately by changes) compared to their size. And,
modularity violations is a unique pattern in our work. Fur-
thermore, the debt aggregation step in our approach
helps to identify compound structures that are composed
by “atomic” patterns. Lastly, our study focuses on the for-
malization and quantification of ATD identification and
prioritization; while Martini et al.’s work [83] is an empiri-
cal case study applying Arcan and taking practitioners’
opinion.

h) Comparison of Technical Debt Detection Tools. A recent
empirical study compares the technical debts identified by 6
well-known tools—including Structure 101, SonarQube,
Designite, DV8, Archinaut, and SCC [84]. One of the
selected tools, DV8, identifies the architectural debt patterns
in this work. The authors compared the consistency of the
identified results over 10 projects. The conclusion is that
DV8 identified significantly different debts than the other
tools. In addition, the debts identified by DV8 were strongly
associated with true maintenance difficulties across the
studied projects. Most importantly, the debts identified by
DV8 provide additional insights into the root causes of the
debt, that is, problematic structures among files, and hence
they have the potential to guide refactoring. For example,
the Modularity Violation and Anchor Dominant anti-patterns
that DV8 identifies give insight into not only what files are
problematic, but also how to refactor those files to remove
the root cause of the debt. This empirical study highlights
the necessity of leveraging change-based information in
technical debt detection.

While the main contribution of this paper is to formalize
the definition, identification, quantification, and prediction
of architectural debt. In particular, in RQ2 and RQ3, we
focused on architectural debt cost prediction, and aggregat-
ing pieces of architectural debts into compound debts based

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

https://codescene.io
https://anacondebt.com
http://essere.disco.unimib.it/wiki/ arcan

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

on their more architectural connections. We have not found
any existing work that addresses similar goals. Therefore,
we could not make any direct comparison of these parts
with existing studies.

8.2 Co-Change Analysis

Analysis of co-changes in software projects at the package,
class, method, and statement level has been used to gain
insight in and provide solutions for problems in software
development. Prior research has focused on analyzing co-
change patterns in software evolution for different purposes
such as predicting software change impact [85], [86], [87],
[88], predicting defects [89], [90], [91], revealing design
problems [92], [93], [94], [95], [96], [97], [98], [99], and visual-
izing co-changes to improve understanding [100], [101],
[102], [103].

Zimmermann et al. [104] applied data mining on revision
histories to predict likely changes given a change that has
already occurred. They contributed the ROSE tool to predict
files to be changed based on a given change [85]. Kagdi et al.
[105] proposed an approach to calculate the change impact
scope of a software entity by combining structural coupling,
reflected in source code, and change coupling, recorded in
the project’s revision history. Their approach improved the
accuracy of change impact analysis, compared with either
technique used independently. Gethers et al. [106] proposed
an integrated approach to identify the impact set of a
change request (e.g., a bug ticket in bug-tracking database),
based on data mining of past source code commits and run-
time traces. Others aimed at improving the accuracy of
impact analysis [86], [87], [88].

Analysis of co-changes has also been used in reverse-
engineering. Beck et al. [107] used co-change analysis to
compute clusterings. They used an Evolutionary Class Depen-
dency Graph to represent co-change coupling. They calcu-
lated three types of clusterings using (1) only co-change
coupling, (2) only structure dependencies, and (3) a combi-
nation of the two. They found that clustering based on the
combined approach yielded the best results.

Co-change analysis has also been applied to investigate
problems in software projects, such as bugs and code
smells. Wiese et al. combined historical data with social
metrics collected from developer interactions for defect
prediction [89]. Kouroshfar et al. [108], [109] investigated
how co-changes impact bugs. They found that co-changes
dispersed across different sub-systems are more likely to
result in bugs than localized co-changes. Girba et al. [110]
used co-change patterns to identify hidden dependencies
among different areas of a software system that reveal
bad smells. They defined history patterns at three granu-
larity levels: method, class, and package. These patterns
can reveal code smells, such as similar code, cloned code,
and shot-gun surgery. Code smells have also been used
as a heuristic for approximating TD. Zazworka et al. [111]
reported that not all TD approximated by code smells
will lead to high maintenance costs, and not all TD has
code smells. Zhou conducted a study of open-source sys-
tems employing 6 types of co-change relationships to
reveal design problems [92]. Wong proposed a approach
to identify modularity violations through co-change

3711

analysis, which reveal symptoms of poor design [93].
Mondal presented a study of co-change patterns in meth-
ods, which has the potential to pinpoint design defi-
ciency [98]. Silva classified co-change patterns into three
types and collected the perceptions of expert developers
on these patterns [99].

9 LIMITATIONS AND THREATS TO VALIDITY

We now explain the threats to the validity of this research.

First, we acknowledge that the consequences of ATDs
can include many other aspects of costs and issues, such as
availability, evolvability, scalability, reliability etc. How-
ever, the approach proposed in this paper specifically
focuses on detecting and quantifying ATDs that incur high
maintenance costs over time—approximated by the bug-fix-
ing churn associated with source files. The reason is that
other aspects of costs and issues are often not directly mea-
surable, or the measurements are not available in most soft-
ware project repositories. We acknowledge this limitation to
our approach.

Second, we have only examined 18 open source projects
from the Apache Software Foundation. We cannot guaran-
tee that our approach will be as effective for projects with
different cultures or conventions. We also cannot guarantee
that the same observations achieved in this paper will hold
for other projects. To mitigate this limitation, we selected
projects of different programming languages (c/c++, Java,
and Python) and from different domains. We believe that
our dataset is representative of a diverse set of projects.
However, we acknowledge that proprietary projects may
have different cultures and convention from the open
source projects. We plan to conduct case studies with our
industrial collaborators in the future to further evaluate our
approach.

Third, as discussed in Section 7.3, the debt identification
approach relies on history data since we mine the coupling
data from the code repository, version control systems, and
bug tracking systems. We need quality history data to iden-
tify how source files are revised due to bug fixing, and how
source files change together over time. This is both a limita-
tion and a potential threat to validity. If developers do not
commit changes following good project practices, the qual-
ity of the identified debts will be compromised. For exam-
ple, if developers frequently combine irrelevant changes
into big commits the identified debts may be connected by
“false positive” history coupling. Alternatively if developers
making frequent trivial commits, our approach may miss
some debts, as history coupling cannot be properly cap-
tured by the commits. We attempted to address these
threats by only analyzing commits that affected between 2
to 30 source files. We believe that this mitigation helps us to
eliminate trival changes as well as large changes that may
not have a cohesive purpose. In our future work, we plan to
employ pre-processing to untangle complicated commits
and merge relevant commits to improve the quality of his-
tory coupling.

Fourth, we used bug-fixing churn as a proxy for mainte-
nance costs. In open source projects, there is no good way to
track actual costs, such as person-hours. Therefore, code
churn has been commonly used as a surrogate for

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3712

maintenance cost in previous studies [112], [113], [114],
[115], [116], [117], [118], [119]. Sjeberg et al. [112] found a sig-
nificant correction between maintenance cost and code
churn. Their study suggested that, given the lack of real
effort data, code churn is a reasonable surrogate for mainte-
nance cost/effort in software development. While churn
may not be a perfect proxy for measuring cost, this bias, if it
indeed exists, should not significantly impact our debt iden-
tification. Our approach examines the trajectory of the churn
over time, instead of focusing on a specific release. Thus we
do not depend on the absolute value of churn. In future
work, we plan to explore other cost measures. In addition,
we plan to collaborate with industry partners to analyze
commercial projects, where more accurate cost estimation
may be available.

Fifth, ATDs are sub-optimal architectural design deci-
sions that cause “extra” maintenance effort. The mere
presence of architectural smell patterns does not qualify as
ATD if not causing extra maintenance effort. In this study,
we compare the difference between the percentage of
maintenance cost associated with ATDs (in terms of error-
fixing churn) with the size of identified ATDs. The size of
ATDs is measured in both the percentage of associated
files (Table 2) and the percentage of LoC (Table 3). This is
to estimate the potential “extra cost” of ATDs as the addi-
tional portion of maintenance cost compared to their size.
We acknowledge that this estimation does not capture the
exact amount of “extra cost” caused by ATDs. However,
there is no practical way to directly measure the exact
extra cost. This method of estimation for the “extra cost”
has been adopted in multiple previous studies [26], [31],
[77], [120]. We acknowledge that the problem of measur-
ing the interest of ATD is still open.

Lastly, we acknowledge that the regression models only
quantify the trajectory of maintenance costs associate with
each identified ATD. Based on the type of the trajectory, we
made conjectures to interpret the interest rate associated
with ATDs. That is, a linear regression model describes a
debt with stable interest over time. A logarithmic model
indicates flattening interest rate; while the exponential
model indicates ever-increasing interest rate. And polyno-
mial model indicates fluctuating interest rate. We acknowl-
edge that the interpretation of each regression model
instance might depend on many factors, such as project con-
straints, goals, and evolution. Our general interpretation of
different regression model types has not taken those factors
into considerations. We also acknowledge the limitation
that we only used the regression models to predict the
future cost of debts in the most recent future release (about
6 months of time). We have not evaluated whether the mod-
els can predict the costs of releases farther in the future. We
conjecture that the accuracy of the prediction will decrease
with the additional prediction distance. This applies to any
model that predicts the future. For example, it is common
sense that the weather forecast is more accurate for the next
three days than for the next month. In addition, it is most
important for practitioners to predict the cost of the most
recent release to develop a practical task prioritization plan.
In our future work, we plan to evaluate how far the models
can predict future costs of debts.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

10 CONCLUSION

This paper contributed an approach to automatically detect the
precise locations of ATDs, to quantify the “interest” rate of
each debt using four typical regression models, and to predict
the cost of each debt in a future release using these models.
Furthermore, our approach revealed the more complicated
connections among different debt instances that deserve to be
examined together for effective refactoring solutions.

We have evaluated the effectiveness of our approach in
identifying and quantifying ATDs in 18 real-world projects
of varying characteristics. First, our approach can identify
significant ATDs in software projects that deserve attention.
The identified debts usually only contain a small portion of
a project’s files, but account for a large portion of mainte-
nance costs. Therefore, by focusing on the identified debts,
the architects can potentially focus on cost-effective refactor-
ing opportunities. The debts identified by our approach will
keep incurring high maintenance costs in a project’s future.
Second, the regression models not only quantify the trajec-
tory of past maintenance costs on each debt, but also accu-
rately predict the cost of each debt in a future release.
Therefore, architects can use such regression models to
objectively prioritize ATDs based on estimates of future
costs. Finally, the compound debt aggregation method in
this approach can help architects focus on cost effective
refactoring candidates that capture the connections among
debt patterns.

We believe that this research represents a valuable and
novel addition to the existing literature in ATDs identifica-
tion, quantification, and prioritization.

ACKNOWLEDGMENTS

This work was supported in part by awards CNS-1823074,
CNS-1823177, CNS-1823214, CCF-1817267, CCF-1816594, and
OAC-1835292 from the National Science Foundation. We
would also like to thank the anonymous reviewers for their
valuable feedback, which helped us to improve this work.

REFERENCES

[1] W. Cunningham, “The WyCash portfolio management system,”
in Proc. Addendum tProc. ACM SIGPLAN Conf. Object-Oriented
Program. Syst. Lang. Appl., pp. 29-30, Oct. 1992.

2] N. Rios, M. G. de M. Neto, and R. O. Spinola, “A tertiary study
on technical debt: Types, management strategies, research
trends, and base information for practitioners,” Inf. Softw. Tech-
nol., vol. 102, pp. 117-145, 2018.

[3] N.S.R. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola,
F. Shull, and C. Seaman, “Identification and management of tech-
nical debt: A systematic mapping study,” Inf. Softw. Technol., vol.
70, pp. 100-121, 2016.

[4] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” J. Syst. Softw., vol. 101,
pp. 193-220, Mar. 2015.

[5] T. Besker, A. Martini, and J. Bosch, “Impact of architectural tech-
nical debt on daily software development work—a survey of
software practitioners,” in Proc. Euromicro Conf. Softw. Eng. Adv.
Appl. (SEAA), 2017, pp. 278-287.

[6] T. Besker, A. Martini, and]. Bosch, “Managing architectural tech-
nical debt: A unified model and systematic literature review,”
J. Syst. Softw., vol. 135, pp. 1-16, 2018.

[7]1 A. Martini and J. Bosch, “An empirically developed method to
aid decisions on architectural technical debt refactoring:
Anacondebt,” in Proc. IEEE/ACM Int. Conf. Softw. Eng. Compan-
ion, 2016, pp. 31-40.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P. Skiada, A. Ampatzoglou, E.-M. Arvanitou, A. Chatzigeorgiou,
and I. Stamelos, “Exploring the relationship between software
modularity and technical debt,” in Proc. Euromicro Conf. Softw.
Eng. Adv. Appl. (SEAA), 2018, pp. 404-407.

J. C. Carver, J. Cabot, R. Capilla, and H. Muccini, “Github, techni-
cal debt, code formatting, and more,” IEEE Softw., vol. 34, no. 2,
pp- 105-107, Mar./Apr. 2017.

T. Besker, A. Martini, and J. Bosch, “Impact of architectural tech-
nical debt on daily software development work - A survey of
software practitioners,” in Proc. Euromicro Conf. Softw. Eng. Adv.
Appl., 2017, pp. 278-287.

T. Besker, A. Martini, and]. Bosch, “Managing architectural tech-
nical debt: A unified model and systematic literature review,”
J. Syst. Softw., vol. 135, pp. 1-16, 2018.

A. MacCormack and D. Sturtevant, “Technical debt and system
architecture: The impact of coupling on defect-related activity,”
J. Syst. Softw., vol. 120, pp. 170-182, 2016.

R. Roveda, F. A. Fontana, I. Pigazzini, and M. Zanoni, “Towards
an architectural debt index,” in Proc. Euromicro Conf. Softw. Eng.
Adv. Appl., 2018, pp. 408—416.

R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, “Mapping architec-
tural decay instances to dependency models,” in Proc. Int. Work-
shop Managing Technical Debt, 2013, pp. 39-46.

L. Griffith and C. Izurieta, “Design pattern decay: The case for
class grime,” in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng.
Measurement, 2014, pp. 39:1-39:4.

L. Peters, “Technical debt: The ultimate antipattern - the biggest
costs may be hidden, widespread, and long term,” in Proc. Int.
Workshop Managing Technical Debt, 2014, pp. 8-10.

B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal
of an application’s technical debt,” IEEE Softw., vol. 29, no. 6,
pp. 3442, Nov./Dec. 2012.

A. Martini and J. Bosch, “The danger of architectural technical
debt: Contagious debt and vicious circles,” in Proc. Working
IEEE/IFIP Conf. Softw. Architect., May 2015, pp. 1-10.

B. Pérez et al., “Familiarity, causes and reactions of software
practitioners to the presence of technical debt: A replicated study
in the chilean software industry,” in Proc. Int. Conf. Chilean Com-
put. Sci. Soc., 2019, pp. 1-7.

J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software
development teams manage technical debt?-An empirical
study,” J. Syst. Softw., vol. 120, pp. 195-218, 2016.

A. Martini, T. Besker, and J. Bosch, “Technical debt tracking:
Current state of practice: A survey and multiple case study in 15
large organizations,” Sci. Comput. Program., vol. 163, pp. 42-61,
2018.

N. Rios, R. O. Spinola, M. G. de Mendonga Neto, and C. Seaman,
“A study of factors that lead development teams to incur techni-
cal debt in software projects,” in Proc. Euromicro Conf. Softw. Eng.
Adv. Appl., 2018, pp. 429-436.

N. Rios, M. G. Mendonga, C. Seaman, and R. O. Spinola, “Causes
and effects of the presence of technical debt in agile software
projects,” in Proc. Amer. Conf. Inf. Syst., 2019.

A. Martini, S. Vajda, R. Vasa, A. Jones, M. Abdelrazek, J.
Grundy, and J. Bosch, “Technical debt interest assessment:
From issues to project,” in Proc. XP2017 Scientific Workshops,
2017, pp. 1-6.

A. Martini and]. Bosch, “The magnificent seven: Towards a sys-
tematic estimation of technical debt interest,” in Proc. XP2017 Sci-
entific Workshops, 2017, pp. 1-5.

R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The
formal definition and automatic detection of architecture
smells,” in Proc. Working IEEE/IFIP Int. Conf. Softw. Architect.,
May 2015, pp. 51-60.

L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: A new form
of architecture insight,” in Proc. Int. Conf. Softw. Eng., 2014,
pp. 967-977.

C. Y. Baldwin and K. B. Clark, Design Rules, Vol. 1: The Power of
Modularity. Cambridge, MA, USA: MIT Press, 2000.

L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice. Boston, MA, USA: Addison-Wesley, 3rd edition,
2012.

S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proc. Int. Conf. Softw. Eng., May 2011,
pp. 411-420.

R. Kazman et al., “A case study in locating the architectural roots
of technical debt,” in Proc. Int. Conf. Softw. Eng., 2015, pp. 179-188.

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

3713

R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture qual-
ity by structure plus history analysis,” in Proc. Int. Conf. Softw.
Eng., May 2013, pp. 891-900.

A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code,” Manage. Sci., vol. 52, no. 7,
pp. 1015-1030, 2006.

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proc. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 97-106.

G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The
evolution of technical debt in the apache ecosystem,” in Anténia
Lopes and Rogério de Lemos, eds., Proc. Softw. Architect., 2017,
pp. 51-66.

R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm, “An
exploratory study on the influence of developers in technical
debt,” in Proc. Int. Conf. Technical Debt, 2018, pp. 1-10.

Md A. Al Mamun, A. Martini, M. Staron, C. Berger, and J. Hans-
son, “Evolution of technical debt : An exploratory study,” in
Proc. CEUR-WS, 2019, pp. 87-102.

M. Mohan, D. Greer, and P. McMullan, “Technical debt reduc-
tion using search based automated refactoring,” J. Syst. Softw.,
vol. 120, pp. 183-194, 2016.

G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and
A. Ampatzoglou, “How do developers fix issues and pay back
technical debt in the apache ecosystem?,” in Proc. IEEE Int. Conf.
Softw. Anal., Evol. Reeng., 2018, pp. 153-163.

A.-A. Tsintzira et al., “Technical debt quantification through met-
rics: An industrial validation,” in Proc. China-Eur. Int. Symp.
Softw. Eng. Edu., 2019.

V. Lenarduzzi, N. Saarimaki, and D. Taibi, “The technical debt
dataset,” in Proc. Int. Conf. Predictive Models Data Anal. Softw.
Eng., 2019, pp. 2-11.

G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evo-
lution of technical debt in the apache ecosystem,” in Anténia Lopes
and Rogério de Lemos, eds., Proc. Softw. Architecture, 2017, pp. 51-66.

R. O. Spinola, N. Zazworka, A. Vetro, F. Shull, and C. Seaman,
“Understanding automated and human-based technical debt
identification approaches-a two-phase study,” . Brazilian Com-
put. Soc., vol. 25, no. 1, 2019, Art. no. 5.

N. Ramasubbu and C. Kemerer, “Integrating technical debt man-
agement and software quality management processes: A frame-
work and field tests,” in Proc. Int. Conf. Softw. Eng., 2018, pp. 8-83.
Y. Guo, R. O. Spinola, and C. Seaman, “Exploring the costs of
technical debt management — a case study,” Empirical Softw.
Eng., vol. 21, no. 1, pp. 159-182, 2016.

G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proc. Int. Conf. Mining Softw. Reposi-
tories, 2016, pp. 315-326.

E. da S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebre-
nik, “An empirical study on the removal of self-admitted techni-
cal debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2017,
pp. 238-248.

M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE
Trans. Softw. Eng., vol. 45, no. 12, pp. 1211-1229, Dec. 2018.

K. Dai and P. Kruchten, “Detecting technical debt through issue
trackers,” in Proc. QuASoQ@ APSEC, 2017, pp. 59-65.

S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of
self-admitted technical debt on software quality,” in Proc. IEEE
Int. Conf. Softw. Anal., Evol., Reeng., 2016, pp. 179-188.

Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text min-
ing,” Empirical Softw. Eng., vol. 23, no. 1, pp. 418451, 2018.

G. Sierra, A. Tahmid, E. Shihab, and N. Tsantalis, “Is self-admitted
technical debt a good indicator of architectural divergences?,” in
Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng., 2019, pp. 534-543.

X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and]. Grundy, “Neural
network-based detection of self-admitted technical debt: From
performance to explainability,” ACM Trans. Softw. Eng. Methodol-
ogy, vol. 28, no. 3, pp. 1-45, 2019.

S. Mensah,]J. Keung,]J. Svajlenko, K. E. Bennin, and Q. Mi, “On
the value of a prioritization scheme for resolving self-admitted
technical debt,” . Syst. Softw., vol. 135, pp. 37-54, 2018.

Y. Kamei, E. da S. Maldonado, E. Shihab, and N. Ubayashi,
“Using analytics to quantify interest of self-admitted technical
debt,” in Proc. QuASoQ/TDA@ APSEC, 2016, 2016, pp. 68-71.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

3714

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 9, SEPTEMBER 2022

E. da S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted techni-
cal debt,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1044-1062,
Nov. 2017.

F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal? An in-depth perspective,”
in Proc. IEEE/ACM Int. Conf. Mining Softw. Repositories, 2018,
pp- 526-536.

S. Bellomo, R. L. Nord, I. Ozkaya, and M. Popeck, “Got technical
debt? Surfacing elusive technical debt in issue trackers,” in Proc.
IEEE/ACM Working Conf. Mining Softw. Repositories, 2016,
pp.- 327-338.

T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and]. Bosch,
“Embracing technical debt, from a startup company perspective,”
in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018, pp. 415-425.
J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Limiting
technical debt with maintainability assurance: an industry
survey on used techniques and differences with service-and
microservice-based systems,” in Proc. Int. Conf. Technical Debt,
2018, pp. 125-133.

J. Holvitie et al., “Technical debt and agile software development
practices and processes: An industry practitioner survey,” Inf.
Softw. Technol., vol. 96, pp. 141-160, 2018.

T. Besker, A. Martini, and J. Bosch, “Technical debt cripples soft-
ware developer productivity: a longitudinal study on devel-
opers’ daily software development work,” in Proc. Int. Conf.
Technical Debt, 2018, pp. 105-114.

T. Besker, A. Martini, and]. Bosch, “The pricey bill of technical
debt: When and by whom will it be paid?,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 13-23.

W. N. Behutiye, P. Rodriguez, M. Oivo, and A.e Tosun,
“Analyzing the concept of technical debt in the context of agile
software development: A systematic literature review,” Inf.
Softw. Technol., vol. 82, pp. 139-158, 2017.

R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical
debt identification: The research landscape,” in Proc. IEEE/ACM
Int. Conf. Technical Debt (TechDebt), 2018, pp. 11-20.

C. Fern andez-Sanchez, J. Garbajosa, A. Yaglie, and]. Perez,
“Identification and analysis of the elements required to manage
technical debt by means of a systematic mapping study,” J. Syst.
Softw., vol. 124, pp. 22-38, 2017.

F. A. Fontana, R. Roveda, and M. Zanoni, “Technical debt
indexes provided by tools: A preliminary discussion,” in
Proc. IEEE Int. Workshop Managing Technical Debt (MTD),
2016, pp. 28-31.

V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana,
“Technical debt prioritization: State of the art. a systematic litera-
ture review,” 2019, arXiv:1904.12538.

C. Becker, R. Chitchyan, S. Betz, and C. McCord, “Trade-off
decisions across time in technical debt management: a sys-
tematic literature review,” in Proc. Int. Conf. Technical Debt,
2018, pp. 85-94.

M. V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas, I. Sta-
melos, and L. Angelis, “Technical debt principal assessment
through structural metrics,” in Proc. Euromicro Conf. Softw. Eng.
Adv. Appl., 2017, pp. 329-333.

Z. Codabux and B. J. Williams, “Technical debt prioritization
using predictive analytics,” in Proc. IEEE/ACM Int. Conf. Softw.
Eng. Companion (ICSE-C), 2016, pp. 704-706.

T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and L. Sta-
melos, “Who is producing more technical debt? A personalized
assessment of TD principal,” in Proc. XP2017 Scientific Workshops,
2017, pp. 1-8.

J. Brondum and L. Zhu, “Visualising architectural depend-
encies,” in Proc. Int. Workshop Managing Technical Debt, 2012,
pp- 7-14.

R. Kazman and S. J. Carriere, “Playing detective: Reconstructing
software architecture from available evidence,” Automat. Softw.
Eng., vol. 6, no. 2, pp. 107-138, Apr. 1999.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proc. IEEE/JACM Int. Conf.
Softw. Eng. (ICSE), May 2016, pp. 488-498.

R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The
formal definition and automatic detection of architecture
smells,” in Proc. Working IEEE[IFIP Conf. Softw. Architect., May
2015, pp. 51-60.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

M. Nayebi et al., “A longitudinal study of identifying and
paying down architecture debt,” in Proc. IEEE/ACM Int. Conf.
Softw. Eng.: Softw. Eng. Practice (ICSE-SEIP), 2019, pp. 171-
180.

D. Reimanis, C. Izurieta, R. Luhr, L. Xiao, Y. Cai, and G. Rudy,
A replication case study to measure the architectural quality of
a commercial system,” in Proc. ACM/IEEE Int. Symp. Empirical
Softw. Engineering Meas., 2014, pp. 1-8.

P. Caron, “Creating and using quality software delivery measure-
ments and metrics.” [Online]. Available: https:/ /petercaron.de/wp-
content/uploads/2018/10/Creating-Quality-Metrics-v.8.23.pdf

A. Tornhill, “Prioritize technical debt in large-scale systems
using codescene,” in Proc. Int. Conf. Technical Debt, 2018,
pp- 59-60.

A. Martini, “Anacondebt: A tool to assess and track technical
debt,” in Proc. IEEE/JACM Int. Conf. Technical Debt, 2018,
pp. 55-56.

F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni,
and E. Di Nitto, “Arcan: A tool for architectural smells
detection,” in Proc. IEEE Int. Conf. Softw. Architecture Workshops,
2017, pp. 282-285.

A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells:
A case study in a large software company,” in Proc. Eur. Conf.
Softw. Architecture, 2018, pp. 320-335.

J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang, “On the
lack of consensus among technical debt detection tools,” in Proc.
Int. Conf. Softw. Eng., Softw. Eng. Practice, 2021, pp. 121-130.

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw.
Eng., vol. 31, no. 6, pp. 429-445, Jun. 2005.

S. Wong and Y. Cai, “Generalizing evolutionary coupling with
stochastic dependencies,” in Proc. IEEE/ACM Int. Conf. Automat.
Softw. Eng., 2011, pp. 293-302.

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Bink-
ley, “Generalizing the analysis of evolutionary coupling for soft-
ware change impact analysis,” in Proc. IEEE Int. Conf. Softw.
Analysis, Evol., Reeng., 2016, pp. 201-212.

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard,
“Blending conceptual and evolutionary couplings to support
change impact analysis in source code,” in Proc. Working Conf.
Reverse Eng., 2010, pp. 119-128.

1.S. Wiese, R. T. Kuroda, R. Re, G. A. Oliva, and M. A. Gerosa, “An
empirical study of the relation between strong change coupling
and defects using history and social metrics in the apache aries
project,” in Proc. IFIP Int. Conf. Open Source Syst., 2015, pp. 3-12.
M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb,
“Software dependencies, work dependencies, and their impact
on failures,” IEEE Trans. Softw. Eng., vol. 35, no. 6, pp. 864-878,
Nov./Dec. 2009.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proc. Int. Conf. Softw. Main-
tenance, 1998, pp. 190-198.

D. Zhou et al., “Understanding evolutionary coupling by fine-
grained co-change relationship analysis,” in Proc. IEEE/ACM Int.
Conf. Program Comprehension, 2019, pp. 271-282.

S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proc. Int. Conf. Softw. Eng., 2011,
pp- 411-420.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Proc. IEEE/ACM Int. Conf. Auto-
mat. Softw. Eng., 2013, pp. 268-278.

R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture qual-
ity by structure plus history analysis,” in Pro. Int. Conf. Softw.
Eng., 2013, pp. 891-900.

G. Canfora, L. Cerulo, and M. Di Penta, “On the use of line co-
change for identifying crosscutting concern code,” in Proc. IEEE
Int. Conf. Softw. Maintenance, 2006, pp. 213-222.

B. Adams, Z. M. Jiang, and A. E. Hassan, “Identifying crosscut-
ting concerns using historical code changes,” in Proc. ACM/IEEE
Int. Conf. Softw. Eng.-Vol. 1, 2010, pp. 305-314.

M. Mondal, C. K. Roy, and K. A. Schneider, “Insight into a
method co-change pattern to identify highly coupled methods:
An empirical study,” in Proc. Int. Conf. Program Comprehension,
2013, pp. 103-112.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

https://petercaron.de/wp-content/uploads/2018/10/Creating-Quality-Metrics-v.8.23.pdf
https://petercaron.de/wp-content/uploads/2018/10/Creating-Quality-Metrics-v.8.23.pdf

XIAO ETAL.: DETECTING THE LOCATIONS AND PREDICTING THE MAINTENANCE COSTS OF COMPOUND ARCHITECTURAL DEBTS 3715

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

L. L. Silva, M. T. Valente, M. de A. Maia, and N. Anquetil,
“Developers’ perception of co-change patterns: An empirical
study,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2015,
pp- 21-30.

D. Beyer, “Co-change visualization,” in Proc. ICSM (Ind. Tool
Vol.), 2005, pp. 89-92.

M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change
information with the evolution radar,” IEEE Trans. Softw. Eng.,
vol. 35, no. 5, pp. 720-735, Sep./Oct 2009.

D. Beyer and A. E. Hassan, “Animated visualization of software
history using evolution storyboards,” in Proc. Working Conf.
Reverse Eng., 2006, pp. 199-210.

A. Vanya, R. Premraj, and H. van Vliet, “Interactive exploration
of co-evolving software entities,” in Proc. Eur. Conf. Softw. Main-
tenance Reeng., 2010, pp. 260-263.

T. Zimmermann, P. Weifigerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proc. Int. Conf.
Softw. Eng., May 2004, pp. 563-572.

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard,
“Blending conceptual and evolutionary couplings to support
change impact analysis in source code,” in Proc. Working Conf.
Reverse Eng., Oct. 2010, pp. 119-128.

M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
impact analysis for managing software changes,” in Proc. Int.
Conf. Softw. Eng., 2012, pp. 430-440.

F. Beck and S. Diehl, “Evaluating the impact of software evolu-
tion on software clustering,” in Proc. Working Conf. Reverse Eng.,
2010, pp. 99-108.

E. Kouroshfar, “Studying the effect of co-change dispersion on
software quality,” in Proc. Softw. Eng. (ICSE), Int. Conf., May
2013, pp. 1450-1452.

E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and
Y. Cai, “A study on the role of software architecture in the evolu-
tion and quality of software,” in Proc. Working Conf. Mining
Softw. Repositories, 2015, pp. 246-257.

T. Girba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel,
“Using concept analysis to detect co-change patterns,” in Proc.
Int. Workshop Principles Softw. Evol.: In Conjunction ESEC/FSE Joint
Meeting, 2007, pp. 83-89.

N. Zazworka et al., “Comparing four approaches for technical
debt identification,” Softw. Quality |., vol. 22, pp 1-24, 2013.

D. I. K. Sjeberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dyba, “Quantifying the effect of code smells on main-
tenance effort,” IEEE Trans. Softw. Eng., vol. 39, no. 8§,
pp. 1144-1156, 2012.

M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of
design flaws on software defects,” in Proc. Int. Conf. Quality
Softw., 2010, pp. 23-31.

B. C. D. Anda, D. I. K. Sjeberg, and A. Mockus, “Variability and
reproducibility in software engineering: A study of four compa-
nies that developed the same system,” IEEE Trans. Softw. Eng.,
vol. 35, no. 3, pp. 407-429, May./Jun. 2008.

I. Deligiannis, M. Shepperd, M. Roumeliotis, and I. Stamelos,
“An empirical investigation of an object-oriented design heuris-
tic for maintainability,” J. Syst. Softw., vol. 65, no. 2, pp. 127-139,
2003.

H. Wu, L. Shi, C. Chen, Q. Wang, and B. Boehm, “Maintenance
effort estimation for open source software: A systematic litera-
ture review,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), 2016, pp. 32—43.

F. Fioravanti and P. Nesi, “Estimation and prediction metrics
for adaptive maintenance effort of object-oriented systems,”
IEEE Trans. Softw. Eng., vol. 27, no. 12, pp. 1062-1084, Dec.
2001.

J. H. Hayes, S. C. Patel, and L. Zhao, “A metrics-based software
maintenance effort model,” in Proc. Eur. Conf. Softw. Maintenance
Reeng., 2004, pp. 254-258.

F. Niessink and H. V. Vliet, “Predicting maintenance effort with
function points,” in Proc. Int. Conf. Softw. Maintenance, 1997,
pp- 32-39.

Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao, “Towards an
architecture-centric approach to security analysis,” in Proc. Work-
ing IEEE/IFIP Conf. Softw. Architect., 2016, pp. 221-230.

Lu Xiao received the PhD degree in computer
science from Drexel University in 2016, advised
by Dr. Yuanfang Cai. She is currently an assistant
professor with the School of Systems and Enter-
prises, Stevens Institute of Technology. Her
research interests include software architecture,
software evolution, maintenance, modeling and
analyzing software architecture and its evolution
for addressing quality problems, including main-
tenance quality and performance.

Yuanfang Cai is currently a professor with Drexel
University, USA. Her research interests include
software design, software architecture, software
evolution, and software economics. Her recent
work investigates architecture issues that are the
root cause of software defects, and the quantifi-
cation of architectural debt. She is currently serv-
ing on program committees and organizing
committees for multiple top conferences and the
editorial board of top journals in the area of soft-
ware engineering. The tools and technologies
from her research have been licensed and adopted by multiple multina-
tional corporations.

Rick Kazman is currently a professor with the
University of Hawaii and a visiting scientist with
the Software Engineering Institute, Carnegie Mel-
lon University. He is the author of more than 200
publications, and the coauthor of several books,
including Software Architecture in Practice,
Designing Software Architectures: A Practical
Approach, Evaluating Software Architectures:
Methods and Case Studies, and Ultra-Large-
Scale Systems: The Software Challenge of the
Future. His primary research interests include
software architecture, design and analysis tools, software visualization,
and software engineering economics. He has created several highly
influential methods and tools for architecture analysis, including SAAM
(Software Architecture Analysis Method), ATAM (Architecture Tradeoff
Analysis Method), CBAM (Cost-Benefit Analysis Method), and Dali and
Titan tools.

Ran Mo received the PhD degree in computer
science from Drexel University, in 2018, advised
by Dr. Yuanfang Cai. He is currently an associate
professor with the School of Computer Science,
Central China Normal University. His research
interests include analyzing the quality of software
based on software architecture, how to measure
software architecture in terms of maintainability?
what are the architecture problems which incur
high maintenance costs? and when and how to
fix these problems to reduce maintenance effort?

Qiong Feng received the PhD degree in computer
science at Drexel University in 2019, advised by
Dr. Yuanfang Cai. He is an assistant professor at
the Nanjing University of Science and Technology.
Advised by Dr. Yuanfang Cai. Her research interest
include analyzing the evolution of software
architecture.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 03,2022 at 22:56:15 UTC from IEEE Xplore. Restrictions apply.

