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Abstract— Sampling-based motion planning algorithms such
as RRT* are well-known for their ability to quickly find
an initial solution and then converge to the optimal solution
asymptotically. However, the convergence rate can be slow
for high-dimensional planning problems, particularly for dy-
namical systems where the sampling space is not just the
configuration space but the full state space. In this paper,
we introduce the idea of using a partial-final-state-free (PFF)
optimal controller in kinodynamic RRT* [1] to reduce the
dimension of the sampling space. Instead of randomly sampling
the full state space, the proposed accelerated kinodynamic
RRT#, called Kino-RRT#*, only samples part of the state space,
while the rest of the states are selected by the PFF optimal
controller. We also propose a delayed and intermittent update
of the optimal arrival time of all the edges in the RRT* tree
to decrease the computation complexity of the algorithm. We
tested the proposed algorithm using 4-D and 10-D state-space
linear systems and showed that Kino-RRT* converges much
faster than the kinodynamic RRT* algorithm.

I. INTRODUCTION

Robotic motion planning with the goal of finding a dynam-
ically feasible and optimal trajectory for the robot through
an environment with obstacles, has gained much progress
over the past decades. As a fundamental problem in robotics
applications, it is still a very challenging problem to solve
when the environment is complex with irregular obstacles
and the dynamics of the robot are to be considered [2].

Sampling-based motion planning algorithms, such as
rapidly exploring randomized trees (RRTs) [3], have been
developed to solve planning problems in high-dimensional
continuous state spaces by incrementally building a tree
through the search space. The asymptotic optimal vari-
ant of RRT, namely RRT* [4], almost surely converges
asymptotically to the optimal solution. RRT* is well-suited
for planning in high-dimensional spaces and obstacle-rich
environments. Many applications of RRT* have been studied
in recent years [5], [6], [7].

One limitation of RRT* is that it requires any two points
sampled in the planning space to be connected with an
optimal trajectory. Thus, many works on RRT* consider
robots with simple dynamics [5], [8] or assume a holonomic
model and connect sampled points with straight lines [9].
For robots with differential constraints, the optimal trajec-
tory between two states is obtained by solving a two-point
boundary value problem (TPBVP), which is an non-trivial
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undertaking for complex nonlinear systems. The solution to
this local TPBVP is also referred to as the steering function.
A version of the RRT* algorithm that explicitly considers
differential dynamics is the kinodynamic RRT* [1], [8].

Solving TPBVPs is the computationally dominant compo-
nent of kinodynamic RRT#*, and thus researchers have looked
into more efficient ways to solve these TPBVPs. A steering
function based on LQR is used in [10]. A fixed-final-state
free-final-time controller that optimally connects any pair
of states is used in [1]. Learning-based RRT* algorithms
are introduced in [11], [12], [13], where the TPBVP is
solved using supervised learning [11], [12] and reinforcement
learning [13].

Another challenge of RRT* is the slow convergence rate
of the solution to the optimal one, which is especially evident
for the kinodynamic case where the sampling space is not
just the configuration space but the full state space. Heuristic
and informed sampling methods have been developed to
improve the convergence rate [9], [14], [15]. However, these
methods only consider the geometric planning problem. The
dynamics of the robot is not considered. Good heuristics for
improving the convergence of kinodynamic RRT* is an open
research problem [16], [17].

(a) (b)

Fig. 1: Motivation of the partial-final-state-free (PFF) opti-
mal controller. (a) Existing kinodynamic RRT* algorithms
sample the full state space, which results in inefficient
trajectories. (b) Kino-RRT* with a PFF controller samples
the reduced state-space to improve convergence performance.

In this paper, we build on previous work on the kinody-
namic RRT* [1] and propose a new algorithm, called Kino-
RRT#*, which shows faster convergence. We propose the idea
of using a partial-final-state-free (PFF) optimal controller
to reduce the sampling dimension of the state space. The
motivation is illustrated in Figure 1. Instead of randomly
sampling the full state space, the proposed Kino-RRT* only
samples part of the state space. The rest of the states are
selected by the PFF optimal controller. Because part of the
final states are computed by the PFF controller to optimize



the cost function, Kino-RRT* samples in the state space with
reduced dimension. The method can also be interpreted as a
heuristic for state-space sampling. Choosing the partial-free
final states by the PFF optimal controller is more efficient
than random sampling, and thus the resulting algorithm
achieves faster convergence. We derive an analytical solution
of the PFF optimal controller for the case of linear systems.
Note, however, that the idea of using PFF controller in
kinodynamic RRT* is not limited to linear systems. It can be
adopted similarly to [18], [11], [12] to deal with nonlinear
dynamics as well.

Finding the optimal arrival time for the TPBVP in the
kinodynamic RRT* requires solving a root-finding problem
of a high-order polynomial. Because the TPBVP is required
to be solved repeatedly, the root-finding procedure can be
computationally expensive. We therefore also propose a
delayed and intermittent update of the optimal arrival time
of all the edges in the tree to decrease the computation
complexity of the kinodynamic RRT* algorithm.

The remainder of the paper is organized as follows. Some
related works are given in Section II. The statement of the
problem studied in this paper is given In Section III. In
Section IV, the PFF optimal controller is derived. The PFF
controller is a key ingredient of the proposed Kino-RRT*
algorithm, which is outlined in Section V. The implemen-
tation of Kino-RRT* on different robot systems is given in
Section VI. Section VII concludes the paper.

II. RELATED WORKS

Incremental sampling-based motion planning algorithms
find a solution in high dimensional planning spaces by
incrementally improving the solution . For motion planning
of robot systems, considering the differential constraints is
necessary for generating feasible trajectories. The extension
of RRT#* to dynamic systems is studied in [8], where suffi-
cient conditions ensuring asymptotic optimality of the RRT*
for dynamic systems were established. Every local steering
and distance function in kinodynamic RRT#* requires the
solution of a TPBVP [8]. Assuming a solver of the TPBVP
is available, references [19], [20], [21] study the radius
of the neighbor nodes in kinodynamic RRT* to guarantee
asymptotic optimality.

Solving the TPBVPs is the computationally expensive
component of the kinodynamic RRT* algorithm. Infinite-
horizon and finite-horizon LQR controllers were used as
the steering function in kinodynamic RRT* for linear or
linearized systems in [10] and [22], respectively. However,
these methods cannot achieve the exact connection of two
states, which is required in the kinodynamic RRT* algorithm.
A fixed-final-state free-final-time controller is used in [1] to
achieve the exact connection of any pair of states for linear
or linearized systems. The optimal arrival time is computed
by solving a root-finding problem. To deal with nonlinear
dynamics, [18] directly uses a numerical solver to solve the
TPBVP online, and [23] uses discrete motion primitives.
Learning-based methods also have been studied to solve the
TPBVP in kinodynamic RRT*. References [11] and [12] use

offline generated optimal trajectories and supervised learning
to train neural networks to solve the TPBVP. In [13], the
steering function is realized by a local policy trained using
Deep Reinforcement Learning.

Other works solve the sampling-based kinodynamic mo-
tion planning problem without relying on TPBVP solvers
[24], [25]. These methods extended RRT-style shooting
methods to kinodynamic planning by randomly sampling
piece-wise constant control inputs of the system. However,
the convergence to high-quality trajectories in practice can
be slow by the use of random controls [26], [18], [27].

III. PROBLEM FORMULATION

The optimal kinodynamic motion planning problem is de-
fined as finding a dynamically feasible trajectory for the robot
to reach the goal state starting from an initial state, while
satisfying the state and control constraints and minimizing a
cost function [8], [1]. Specifically, given the planning domain
X, free space Xjee, goal region Xy, initial state xo, consider
the dynamics of the robot

X=Ax+Bu+c, (D

and the cost function,
T
J(u) = / (14u"Ru)dr, )
0

the goal of the motion planning problem is to find a control
u(t), t € [0,T], such that the solution x(¢) to (1) is obstacle-
free, i.e. x(¢) € X for all r € [0, 7], reaches the goal region,
i.e. x(T') € Xy0a1, and minimizes the cost functional (2).
RRT*-type algorithms try to solve this problem by grow-
ing a tree, which involves randomly sampling intermediate
states (nodes), and making optimal connections between
states (edges). This results in converging to the optimal
solution asymptotically. In kinodynamic RRT*, every edge
between two states is the solution of a TPBVP given by

u* =argmin J(u),
u

s.t. X(t) =Ax+Bu+c, )
x(0) = xq, x(tr) = xp,

where J is the same as in (2) but over the time interval [0, ],
and x, and x;, are the sampled initial state and final state of
this edge, respectively. The solution of (3) with free-final-
time #r is given in [1]. Besides this fixed-final-state free-final-
time controller, next we will present a partial-final-state-free
controller, which is the key ingredient of the proposed Kino-
RRT#* algorithm.

IV. PARTIAL-FINAL-STATE-FREE OPTIMAL
CONTROLLER

Rewrite the state x € R" as the concatenation of two
vectors x = [x{ xJ|', where x; € R and x, € R™ with
n1 +ny = n. The partial-final-state-free (PFF) optimal control



problem is given by

u* =argmin J(u),
u

s.t. x(t)=Ax+Bu-+c, “)
x(0) = xg, x1(tr) = xc.

First, we consider the case where the arrival time # is given.
Instead of fixing the states x(0) and x(#) as in (3), x(0) and
x1(t¢) are fixed, while x,(#) is free in (4).

A. The PFF Optimal Controller

We solve this PFF optimal control problem using Pon-
tryagin’s Maximum Principle [28]. The Hamiltonian of the
system is given by

H(x,u,t,A) =1+u'Ru+ 2" (Ax+Bu+c). (5)

The necessary conditions for optimality are

i=Ax+Bu+tc, (6)
== 4, )
ox
0= oH =2Ru+B'A, (8)
du
0= 22(t), 9

where A = [llT XQT}T, A1 € R™ is the costate of xj, and
A2 € R™ is the costate of xp. Solving for u using (8), we get

1

u= —ER_lBTA. (10)
Substituting (10) into (6), yields
1
x:Ax—ER*‘BR*‘BTAJrc. (11)

The analytical solutions for the differential equations (7) and
(11) are available and are given by

A(r) = DA (gy),
1) = M5(0) ~ 3GAw) + | " A g,

12)

> (13)
where G(t) = [} Al-DBR-IBT A (1-7) 4.

Note that if A(#) is known, then the problem can be
solved with the control given by (10) and (12), and the
state trajectory given by (13). Thus, the problem remains
to determine A;(f¢). To this end, evaluate (13) at # to obtain

x(tr) = (1) — ~Gi0)A (),

5 (14)

where

I
(1) £ Mx(0) + / Aledr, (15)
0
We may obtain xp(t;) and A;(#) by solving the linear
equations (14). Using (9), rewrite (14) as

|:f1 (1r) —x1 (tf)} _ 1 [Gn(ff) Gﬁ(‘ﬂ P‘ (tf)}, (16)

Bte) —x2(tr)| — 2 |Galty) Gnltp) 0

where )E(lf) = [)Eir(tf) xlT(l‘f)]T. Note that x; (l‘f) — X1 (l‘f) is
known and %, (tf) — x2(#) is unknown. Then, (16) becomes
(17)
(18)
Assuming (A,B) is controllable, it follows that G(#) is

invertible and hence G (¢) is invertible. From (17), we can
solve for A;(z) as follows

A (1) = 2G 1 (1) (% (1r) — x1 (1)),

Finally, from (10) and (12), the open-loop optimal control is
given by

19)

1
u(t) = —ER*‘BTeAWf*f)A(tf). (20)
The corresponding optimal cost is
1
Tw) =1+ 3 2.0) Gla)A (). @n

B. The Optimal Arrival Time

Next, consider the case when # is free. In this case, we
have the transversality condition [28]

H(l‘f) =0. (22)

Substituting (10) into (5) and evaluating (5) at #, then (22)
becomes

H(t) = 14 ) (Ax(i) +¢) — A () BRBTAw) =0
23)

We find the optimal arrival time # by solving (23), which
requires finding the roots of a polynomial [1].

C. PFF with Quadratic Terminal Penalty

In some cases, it may be desired to add implicit constraints
on the free-final-state. Here, we extend the PFF controller by
adding a quadratic penalty on the free-final-state to the cost
function. Consider the PFF optimal control problem with the
cost function,

J(u) = %xz(lf)Tsz(tf)Jr /O tf(lJruTRu) dr.  (24)

The necessary conditions for optimality for the PFF control
problem (4) with this new cost function are still given by
(6)-(8), except that (9) is now replaced by

Aa(te) = 9, (x(tr)) = Sxa(t),

where ¢(X(lf)) = %xZ(tf)TS)Cz(tf).

Following the same derivation as before, we get the same
expression given by (14). The problem remains to solve for
A(t). Substituting (25) into (14), we get

(25)

) -x) = 3600 | 0] e
which is equvalent to
Ty (1)) —xi(te) | _ 0 (A ()
[ 1@ z(rf)l f} _M[le (tf-)]’ 7)



where | /o 0 0
M= (ZG(ff) {0 S] + [0 ID . (28)

Note that M is invertible. Thus, we can calculate A;(#) and
x2(t¢) from (27). Along with (25), we obtain A ().

V. THE KINO-RRT* ALGORITHM

In this section, we present the details of the Kino-RRT*
algorithm, which is built on both the PFF controller and
the fixed-final-state free-final-time controller. First, we sum-
marize some primitive procedures used in the Kino-RRT*
algorithm. Some of these primitive procedures follow the
work in [4].

Sampling: The sampling procedure SamplePFF returns a
partial state that is randomly sampled in a reduced state
space and is collision-free in the corresponding reduced state
space. For example, for a robot whose state space includes
the position space and the velocity space, SamplePFF may
sample a position of the robot that is collision-free.
Parent: parent(x) returns the parent node of x.

Nearest Neighbor: Given a tree G = (V,E), where V is the
node set and E is the edge set, the procedure Nearest(V,x)
returns the node in V that is closest to the state x.

Near Nodes: The function Near(V, x,r) returns all the nodes
in V that are contained in a ball of radius r centered at x.
Collision Checking: The function CollisionFree(7)
takes a trajectory T (an edge segment) as an input and returns
true if and only if 7 lies entirely in the collision-free space.
The function CollisionPoint(x) returns true if and only
if the point x is collision-free.

Cost: The procedure Cost(x) returns the cost-to-come from
the root node to x.

Segment Cost: The procedure SegCost (x;,x;) returns the
cost to go from x; to x;. Depending on x;, this cost is obtained
by either solving the PFF control problem or the fixed-final-
state free-final-time control problem.

Shrink: The procedure Shrink(x;,x;) returns x; if the
distance between x; and x; is less than or equal to /.
Otherwise, it returns a new state x,ew that lies on the line
formed by x; and x; and is at a distance ¢ away from
x; towards x;. The Shrink procedure is consistent with
the RRT* algorithm dictates that segments should have a
maximum length . If one tries to connect two points that are
far away, this connecting segment will collide with obstacles
with a high probability.

Steering: The procedure SteerPFF(x;,x;) solves the TP-
BVP using the PFF optimal controller, and it returns a
trajectory T that starts from x; and ends at x;. The procedure
Steer(x;,x;) solves the TPBVP using the fixed-final-state
free-final-time controller, and it returns a trajectory T that
starts from x; and ends at x;. Note that x; in Steer(x;,x;) is
a point in the full state space, while x; in SteerPFF(x;,x;)
is a point in the reduced sampling space.

FreeState: The function FreeSate takes the trajectory 7
returned by SteerPFF(x;,x;) as input and returns the rest
of the state xgee at the endpoint of the trajectory that is not
specified by x;.

Algorithm 1: Kino-RRT*

1V {xinit}; E < 0; 4+ (V,E);
2 fori=1:N do

3 Zrand < SamplePFF;

4 Xnearest < NeareSt(V7 Zrand )}

5 Znew Shrink(xnearestazrand);

6 if CollisionPoint(zpew) then

7 T < SteerPFF (Xnearest; Znew )

8 if CollisionFree(t) then

9 Xfree < FreeState(7);

10 Xnear < Near(V, zZnew,7);

1 (xminvxfree) <~

ChooseParent(Xnear;xnearestaznew);

12 Xnew <= (Znew s Xfree )}

13 V VU {Xpew }

14 E < EU{(Xmin,Xnew) }

15 E + Rewire(Xnear; E, Xnew>Xmin )
16 4« (V,E);
17 return ¥,

Algorithm 2: ChooseParent

1 ChooseParent (Xpcar, Xnearest; Znew ) *

2
3
4
5

e e N &

11

Xmin € Xnearest>
Cmin < Cost (xnearesl) + SegCost (xnearestaznew)§
foreach X,ear € Xnear \ Xnearest 0
if COSt(xnear) + SegCOSt(xneathew) < Cmin
then

T <~ SteerPFF (Xnear; Znew);
if CollisionFree(t) then

Xfree ¢ FreeState(7);

Xmin € Xnear;

Cmin <

Cost(Xnear) + SegCoSt (Xnears Znew);

return (Xmin, Xfree);

Algorithm 3: Rewire

1 Rewire (Xnear; E,Xnew,Xmin) *

2
3

[--JNEN I- NEY IE N

foreach xpcar € Xnear \ Xmin do
if Cost(Xnew)+ SegCost(Xnew,Xnear) <
COSt(Xpear) then
T+ Steer(Xnew,Xnear)s
if CollisionFree(t) then
Xparent <— Parent (xnear);

E<E \ {(xparentaxnear)};
E+~FEU {(xnCWaxnCaI)};

return E;




The complete algorithm is given by Algorithm 1, Algo-
rithm 2, and Algorithm 3. We use z to denote a point in
the reduced sampling space. The rest of the state (free-
state) Xfee, Which comes from the endpoint of the state
trajectory, is decided by the PFF optimal controller. After
the ChooseParent step (line 11, Algorithm 1), the free-
state is found and is combined with the sampled state to form
a point in the full state space (line 12, Algorithm 1). Then,
this point is added to the tree as a node (line 13, Algorithm
1).

A. Delayed and Intermittent Update of the Arrival Time

For both the PFF controller and the fixed-final-state con-
troller, finding the optimal arrival time of the TPBVP requires
solving a root-finding problem of a high-order polynomial
(see (23)). This root-finding procedure will slow down the
kinodynamic RRT* algorithm, as the TPBVP is required
to be solved repeatedly. Here we propose a delayed and
intermittent update of the optimal arrival time, which is
shown in Figure 2. The planning algorithm first grows a tree
using a heuristic of the arrival time (for example, by setting
a desired average speed) without solving the root-finding
problem (Figure 2(a)). Then, we intermittently update all the
edges in the tree using the optimal arrival time (Figure 2(b)).
If the updated edge is in-collision, we will use the original
edge. We call this method KinoD-RRT*.

(a) (b)

Fig. 2: Delayed and intermittent update of the arrival time.
(a) Grow a tree using a heuristic of the arrival time (blue
lines). (b) Delayed update of the optimal arrival time (red
lines). If the updated edge is in-collision (red dash lines),
the original edge is used (blue lines).

VI. EXPERIMENTAL RESULTS

We tested the Kino-RRT* algorithm on three kinodynamic
systems: a 2D double integrator robot operating in a plane
environment and a linearized quadrotor robot with a 10-
dimensional state-space. We compared the Kino-RRT* algo-
rithm with a variant of the kinodynamic RRT* algorithm. The
only difference between the Kino-RRT* and the compared
algorithm (a variant of kinodynamic RRT¥*) is the utilization
of the PFF controller in Kino-RRT*. The compared kino-
dynamic RRT* algorithm samples the full state space and
uses the fixed-final-state free-final-time controller to solve
the TPBVPs. The gain of performance is solely due to the
PFF controller. Thus, this comparison is informative.

A. Implementation Details

In kinodynamic RRT*, the near nodes are found by using
the forward-reachable set or the backward-reachable set [1],
[21]. Specifically, in line 12, Algorithm 1, Near(V,x,r)
returns all nodes in V such that the cost J to go from these
nodes to x is less than r (backward-reachable set). Check
membership in the forward/backward reachable set for a set
of nodes can be computationally expensive.

We use Euclidean distance to find the near nodes and
the nearest node. In this case, the forward-reachable set and
the backward-reachable set are the same. This essentially
means that we do not use the true distance. For kinodynamic
motion planning, the true distance between two states is the
minimum cost J from the solution of the TPBVP [8]. Using
the true distance, the forward (or backward) reachable set
defines an &-radius sub-Riemannian ball centered at x. It
is showed in [25] that there always exists a certain size
Euclidean hyper-ball inside such sub-Riemannian ball under
mild conditions, which justifies the use of Euclidean norms.
Euclidean distance is also used in [25]. After the nearest
node and the near nodes are selected, the true distance is
used in the ChooseParent and Rewire algorithms. The
Euclidean distance is used only to pre-select relevant nodes
and to help with the computations.

We also used a constant radius for the Euclidean hyper-
ball for the near nodes, which implies a constant radius of
the sub-Riemannian ball with respect to the true distance.
Note that the kinodynamic RRT* is asymptotically optimal
with a constant neighbor radius. The implementation is the
same for the Kino-RRT* and the compared algorithm for
an informative comparison. All the experiment examples are
done on a laptop computer with an Intel Core 15-8250U 1.6
GHz CPU and 8 GB of RAM.

B. 2D Double Integrator

The state of the 2D double integrator is given by x =
[p" v, where p=[x; x5] " is the position and v = [x3 x4]
is the velocity. The control input is the acceleration. The
system matrices are given by

10 b 10 _
a0 8 =[], emo

The weighting matrix in the cost function is set to R = b.

For both Kino-RRT* and kinodynamic RRT* the position
is uniformly sampled within the boundary of the environ-
ment, that is, p € [0,20]* m. The free-final-state of the PFF
controller is the velocity. Thus, the Kino-RRT* algorithm
does not sample the velocity space. For the kinodynamic
RRT#* algorithm, the velocity is uniformly sampled in v €
[—2,2]?> m/s%. Note that a larger interval for the velocity
essentially requires searching in a larger state space, which
will result in slower convergence. However, if the sampling
velocity interval is too small, the search is confined to a small
state space that may not contain the optimal solution. Here,
the velocity interval is chosen to be small while containing
the optimal solution.

(29)
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Fig. 3: Kinodynamic RRT* results of the 2D double integra-
tor. The first figure corresponds to the first solution found.
From the upper left to bottom right, the nodes expanded are
94, 400, 2000, 4000. The corresponding time to generate
these trees are 0.053, 0.22, 2.38, 8.17 sec. The cost of best
trajectory in the trees are 86.76, 47.56, 27.99, 25.72.

2(m)

Fig. 4: Kino-RRT* results of the 2D double integrator. The
first figure corresponds to the first solution found. From the
upper left to bottom right, the nodes in the tree are 85, 400,
2000, 4000. The corresponding time to generate these trees
are 0.015, 0.14, 2.12, 7.64 sec. The cost of best trajectory
in the trees are 37.46, 25.97, 18.72, 16.42.

_oFi kinodynamic RRT*
60 AT Kino-RRT*

Fig. 5: Comparison of Kino-RRT* and kinodynamic RRT*
for the 2D double integrator case.
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Fig. 6: Delayed and intermittent update of the optimal arrival
time of the 2D double integrator

The results of the kinodynamic RRT* algorithm and the
Kino-RRT* algorithm are given in Figure 3 and Figure 4,
respectively. The comparison of the Kino-RRT* and the
kinodynamic RRT* is shown in Figure 5. In Figure 5, we
can see that our algorithm finds a better trajectory from the
beginning (the first solution). In fact, the solution found by
Kino-RRT* within 0.14 sec is comparable to the solution
found by kinodynamic RRT* that took 8 sec after expanding
4000 nodes. After the Kino-RRT* finds the first solution,
the cost enters a sharp decrease phase. For the kinodynamic
RRT#* algorithm, the cost curve is close to flat after 8 sec,
and the probability of sampling good states to decrease the
cost is low. Kino-RRT* is more than 50 times faster than
the kinodynamic RRT* to find a trajectory with the same
cost. By sampling in a reduced state-space, the solution
returned by Kino-RRT* is close to the optimal solution after
a few seconds of computation. However, for the kinodynamic
RRT* algorithm, it is difficult to sample good velocities that
are comparable to the ones chosen by the PFF controller,
which leads to slow convergence.

Figure 6 shows the results of the delayed and intermittent
update of the optimal arrival time. The Kinodynamic RRT*
combined with the delayed and intermittent update of the
optimal arrival time is called Kinodynamic RRT* with delay.
Four methods, Kinodynamic RRT*, Kinodynamic RRT*
with delay, Kino-RRT*, and KinoD-RRT*, are compared.
Kinodynamic RRT* with delay is 3 times faster than Kino-
dynamic RRT* when expanding the same number of nodes.
The planned trajectories have a similar cost for expanding
the same number of nodes.

Kino-RRT* with delay is also 3 times faster than Kino-
RRT#* when expanding the same number of nodes. We can
see that in Figure 6(b), KinoD-RRT* (blue dash line) finds
better trajectory in the beginning because it can expand more
nodes in a given time. However, Kino-RRT* outperform
KinoD-RRT* after some point. This is because the velocities
(free-final-state) chosen by KinoD-RRT* are not as opti-
mized as the velocities chosen by Kino-RRT*. The velocity
chosen by the PFF controller is affected by the arrival time.
Non-optimal arrival times (which is the case with KinoD-
RRT*) will result in a sub-optimal final velocity.
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Fig. 7: Kinodynamic RRT* results of the quadrotor. The first
figure corresponds to the first solution found.

C. Linearized Quadrotor

A linearized quadrotor model adopted from [1] is used.
The 10-dimensional state is given by x=[p" v rT w']T,
which consists of the three-dimensional position p and
velocity v, and the two-dimensional orientation r and angular
velocity w. The yaw rotation, which is a redundant degree of
freedom, is not considered in the model. The system matrices
are given by

0 L 0 0 0 0
0 ¢ 0
A0 0 |- 0 0732 (1) o)
0 0 L
0 0 0 b 0 0
0 0 0 0 0 f%
c=0,

where g is the gravitational acceleration, m is the mass of the
quadrotor, ¢ is the distance between the center of the vehicle
and the rotors, and J is the moment of inertia about the axes
coplanar with the rotors. The control input of the system is
u=[us uy uy)", where us is the total thrust of the rotors
relative to the thrust needed for hovering, and u, and u, are
the relative torques of roll and pitch, respectively.

The free-final-state of the PFF controller is v, r, and w.
Thus the Kino-RRT* algorithm only samples the position
space. Since the quadrotor is linearized at the hovering state
and the dynamics is sensitive to the roll and pitch angles, we
will use the PPF controller with quadratic terminal penalty
introduced in Section IV-C. The terminal penalty matrix
is § = diag(0,0,0,20,20,0,0). The weighting matrix of the
control is R = diag(15,30,30).

For both Kino-RRT* and kinodynamic RRT* the posi-
tion is uniformly sampled within the boundary of the 3D
environment. The sampling intervals of v, r, and w for the
kinodynamic RRT* are v € [-2,2]* m/s, r € [—1,1]? rad,
and w € [—4,4]? rad/s, respectively.

z(m)

2(m)

0 “ o0

s ;
y(m) 0 z(m) y(m) 0 x(m)

Fig. 8: Kino-RRT* results of the quadrotor. The first figure
corresponds to the first solution found.

_oFi kinodynamic RRT*
A Kino-RRT*

Cost

1
}VH“I“P*E*%
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Fig. 9: Comparison of Kino-RRT* and kinodynamic RRT*
for the linearized quadrotor.

The results of the kinodynamic RRT* algorithm and the
Kino-RRT#* algorithm are given in Figure 7 and Figure 8§,
respectively. In Figure 7, from upper left to bottom right,
the number of nodes in the tree are 159, 400, 1000, 2000.
The corresponding time to generate these trees are 0.147,
0.48, 1.92, 6.18 sec. The cost of the best trajectory in these
trees are 58.10, 30.92, 24.84, 24.61, respectively. In Figure 7,
from upper left to bottom right, the number of nodes in the
tree are 133, 400, 1000, 2000. The corresponding time to
generate these trees are 0.19, 0.84, 3.72, 11.35 sec. The
cost of the best trajectory in these trees are 20.31, 19.13,
15.56, 15.52, respectively. The comparison of Kino-RRT*
and kinodynamic RRT* is shown in Figure 9. The solution
of the PPF controller with quadratic terminal penalty is more
complex than the fixed-final-state free-final-time controller.
Thus, the Kino-RRT* algorithm takes more time to expand
the same number of nodes compared to the kinodynamic
RRT*. Because each node in Kino-RRT* is more optimized,
it still converges faster than the kinodynamic RRT*.

Figure 10 shows the results of the delayed and intermit-
tent update of the optimal arrival time. For the linearized
quadrotor example, the kinodynamic RRT* with delay is 2
times faster than the kinodynamic RRT* when expanding
the same number of nodes, and is also 2 times faster for
finding a trajectory with a similar cost. Similar performance
improvement is observed for the KinoD-RRT* compared to
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Fig. 10: Delayed and intermittent update of the optimal
arrival time for the linearized quadrotor example.

Kino-RRT*. This performance improvement depends on the
heuristic of the arrival time for KinoD-RRT*.

VII. CONCLUSION

In this paper, we developed the Kino-RRT* algorithm,
which utilizes a partial-final-state-free (PFF) optimal con-
troller to improve the convergence performance of sampling-
based motion planning of kinodynamic systems. Instead of
sampling the full state of the robot, Kino-RRT* only samples
part of the state-space and the rest of the states are optimized
by the PFF optimal controller. Although the algorithm is
demonstrated on linear systems, the idea of PFF can be used
as in [18], [11], [12] for nonlinear kinodynamic systems
as well. We tested the algorithm on robot systems with 4-
D and 10-D state-spaces. In all cases, Kino-RRT* showed
better convergence compared to the standard kinodynamic
RRT#*, achieving trajectories with better cost using much
less time to compute. The proposed Kino-RRT* algorithm
shows potential in real-time kinodynamic motion planning
for high-dimensional dynamical systems.
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