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Abstract
A new algorithm is developed to jointly recover a temporal sequence of images from noisy
and under-sampled Fourier data. Specifically we consider the case where each data set is
missing vital information that prevents its (individual) accurate recovery. Our new method
is designed to restore the missing information in each individual image by “borrowing” it
from the other images in the sequence. As a result, all of the individual reconstructions yield
improved accuracy. The use of high resolution Fourier edge detection methods is essential to
our algorithm. In particular, edge information is obtained directly from the Fourier data which
leads to an accurate coupling term between data sets. Moreover, data loss is largely avoided
as coarse reconstructions are not required to process inter- and intra-image information.
Numerical examples are provided to demonstrate the accuracy, efficiency and robustness of
our new method.
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1 Introduction

We are interested in jointly recovering a temporal sequence of images from noisy and under-
sampled Fourier data. We assume that each data collection is obstructed in some way, for
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example by some occlusion in the image scene or by the sensor not being able to access some
Fourier bandwidths of data, either of which can prevent accurate individual image recovery.
It is intuitive to suggest that complementary information from other images in the sequence
may be “borrowed” to improve any of the individual recoveries. Change, however, such as the
insertion, deletion, translation or rotation of an object within the scene, may have occurred
between the sequential data collections. In this case the “borrowed” information would be
incompatible with the missing information we are seeking to replace, which may lead to
greater error in recovering each individual image.

From the above discussion it is evident that joint recovery of a temporal sequence of images
requires incorporating (1) an accurate and robust individual image recovery process; (2) a
coupling term that provides essential missing information from other data collections; and
(3) a technique to determine change within the sequence of images so that the coupling term
is appropriately used. This investigation proposes a new joint recovery method for a temporal
sequence of images given noisy and under-sampled Fourier data that effectively incorporates
these three critical components. To ensure accuracy, efficiency, and robustness, our new
technique uses the Fourier concentration factor edge detection method, first developed in [1],
to both improve the individual recovery process as well as to determine any internal changes
to the image over time. Moreover, our method avoids significant data loss by directly using
the given Fourier data to determine the edges. Specifically, no initial image reconstruction is
needed to determine change in the underlying image. This is especially pertinent in our data
acquisition model, in which bands of Fourier data might be unobservable. Furthermore, we
employ the variance based joint sparsity (VBJS) method, [2–4], for each individual image
reconstruction. The VBJS method is a weighted �1 regularization method which uses the
concentration factor edge detection method to determine the spatially varying weights in the
image recovery. It was shown in [3] to be robust to noise andmissing (even false) information.

Aswill be demonstrated in our numerical results, combining these three components yields
a joint recovery process that reduces the effects of data loss while simultaneously enhancing
each individual reconstruction. Our method is furthermore computationally efficient and
robust to both occlusion and missing information.

The rest of this paper is organized as follows. Section 2 provides necessary background
information for the problem set up. Our new algorithm is introduced in Sect. 3. A series
of numerical experiments in Sect. 4 demonstrates the efficacy and robustness of our new
method. Finally, some concluding thoughts are offered in Sect. 5.

2 Background Information

Let f1, . . . , f J be a sequence of two-dimensional images taken at times t1, . . . , tJ of the
same scene in [0, 1]2. The corresponding (2N + 1)2 Fourier samples are given by

f̂ j
k,l =

∫ 1

0

∫ 1

0
f j (x, y)e

−i2π(kx+ly) dx dy, −N ≤ k, l ≤ N , j = 1, . . . , J . (1)

As noted in the introduction, we are interested in applications where the data are collected
in the Fourier domain. We seek to simultaneously recover each f j ∈ R

(2N+1)×(2N+1), the
values of f j at uniform grid points

xμ = μ�x, yν = ν�y, �x = �y = 1

2N
, 0 ≤ μ, ν ≤ 2N . (2)
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We further assume that each of the J data sets contains additive independent and identically
distributed (iid) zero-mean complex Gaussian noise given by

η j = (ηk,l)
N
k,l=−N s.t. ηk,l ∼ CN

(
0, σ 2

j

)
, j = 1, . . . , J ,

where σ 2
j is the variance. Finally, for modeling purposes, we will employ the discrete Fourier

transform which we denote by F . Hence we obtain the data model relating the Fourier
coefficients in (1) to each underlying image as

b j = Ff j + η j , j = 1, . . . , J . (3)

We will also consider the case where different symmetric bands of Fourier data are missing
from the acquired data. That is, for each j there is a band K j for which b j (k, l) is not
available. In each of our numerical experiments we chose J = 6 with the zeroed out data
corresponding to the symmetric intervals given by

K j = [±(10 + J ( j − 1)),±(35 + J ( j − 1)]. (4)

The forward model in (3) is accordingly modified as

b j = Fj f j + η j , j = 1, . . . , J , (5)

where Fj contains only zeroes in the columns and rows corresponding to (4).

2.1 Edge Detection

Images are often assumed to be sparse in their corresponding edge domain. Compressive
sensing (CS) algorithms, see e. g. the classical papers [5–8], are designed to exploit such
sparsity. In this investigation we use the weighted �1 regularization CS algorithm, see e. g. [9–
13], realized by the VBJS method, [2–4], as the main reconstruction tool for each individual
image. The weights are constructed so that the �1 penalty is spatially dependent, with a
heavier penalty where one can reasonably assume that the underlying image is close to zero
in the sparse domain. By contrast, a small penalty is applied where the image is presumably
supported in the sparse domain. In this way we see that edge detection is critical to produce
the proper spatially varying weights for the penalty term in each individual recovery.

When data are acquired in the image domain, classical edge detection methods such
as Canny’s operator, [14], or Sobel’s method, [15–17], are commonly used to generate edge
maps, which can then subsequently be used to detect change between images. As is illustrated
in Fig. 1 for Sobel’s method, these methods may not perform well when the data are acquired
indirectly, especially when occlusions are present in the underlying images. The substantial
information loss visible in the middle row for the standard CS recovery, (19) is mainly due
to the missing Fourier data in each bandK j given in (4). This makes accurate edge detection
difficult for the Sobel method (bottom row). As expected, losing information in the interval
K1 is most problematic since it causes significant blur in the image reconstruction.

We will return to this example in Sect. 4 and demonstrate how using the concentration
factor edge detectionmethod described in Sect. 2.2 which works directly on the given Fourier
data prevents information loss in the construction of the edge maps. As already stated this
is needed both for the spatially dependent weights in each individual image recovery as
well as to calculate the difference between images necessary to determine what inter-image
information is to be “borrowed”.
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Fig. 1 True underlying sequence of images. Objects that translate or rotate between the sequential data
collections are added to the underlying structure (top row); Individual CS recovery for each sequential image
using (19) (middle row); Edge masks determined using Sobel’s method on the CS reconstruction (bottom
row). In each case we are given under-sampled noisy Fourier data in (5) with SNR = 2dB. There is also an
obstruction in each of the images (see Fig. 3)

2.2 Concentration Factor Edge Detection

The concentration factor edge detection method determines the edges of piecewise smooth
functions from finitely sampled Fourier data, [1, 18]. The method can be thought of as a
bandpass filter approximation that “concentrates” at the singular support of the underlying
image. We briefly describe it below.

For ease of presentation, we first consider the method for one-dimensional data. Let f :
[0, 1] → R be a piecewise analytic function withM distinct jump discontinuities located at
{ξμ}Mμ=1. Suppose we are given the first 2N + 1 continuous Fourier coefficients,

f̂k =
∫ 1

0
f (x)e−i2πkxdx, k = −N , . . . , N .

The corresponding jump function of f is defined as1

[ f ](x) = f (x+) − f (x−), (6)

where f (x+) and f (x−) denote the right- and left-hand side limit of f at x , respectively. An
equivalent formulation is given by

[ f ](x) =
M∑
μ=1

[ f ](ξμ)Iξμ(x), (7)

1 We will use jump function and edge function interchangeably throughout our exposition.
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where the indicator function Iξμ(x) has value 1 at x = ξμ and 0 everywhere else. Given

{ f̂k}Nk=−N we can now define the concentration factor edge detection method as

Sσ
N f (x) = i

∑
1≤|k|≤N

sgn(k)σ

( |k|
N

)
f̂ke

i2πkx . (8)

It was shown in [1, 18] that Sσ
N f (x) → [ f ](x) for admissible concentration factors σ

( |k|
N

)
.

2.2.1 Edge Detection for Images

Defining a jump in two dimensions is not as straightforward. The number of discontinuities is
infinite, which would make the sum analogous to (7) undefined. Specifically, if we consider
the parameterized function gu(t) = f (x+ tu) and then use the jump height [gu](0) to define
the jump height [ f ](x), we could obtain different values depending on the direction of u. To
circumvent this issue, a reasonable alternative for imaging problems is to consider only the
normal direction with respect to the edge curve, yielding

Definition 1 Assume the discontinuities of f form a finite number of closed and smooth
edge curves 	μ, 1 ≤ μ ≤ M. For a discontinuity point (x, y) ∈ 	μ, we let n(x, y) be the
normal direction at (x, y) with respect to the edge curve 	μ, and consider the corresponding
one-dimensional function g(t) = f ((x, y) + tn(x, y)), t ∈ R. We then define the jump
function

[ f ](x, y) = [g](0), (x, y) ∈ 	μ, 1 ≤ μ ≤ M. (9)

We seek to compute a corresponding matrix G j ∈ R
(2N+1)×(2N+1) for the edge function

[ f j ](x, y) defined in Definition 1 for each underlying image f j , j = 1, . . . , J .

Remark 1 In some applications it is sufficient to apply a line-by-line approach of (8) to two-
dimensional functions to obtain an approximation to [ f ](x, y), [19]. Here, however, the noise
and obstruction in (5) cause too much loss of accuracy when using the line-by-line approach.
In particular, in the extreme case, where edges in the underlying image are parallel with the
Cartesian coordinates, an edge may be missed completely since in one direction the image is
smooth. A more detailed discussion of this issue is provided in [20] where the problem was
mitigated by first rotating the image some small amount to ensure that the edges did not “line
up” with the Cartesian coordinates. A dimension by dimension approach was then used in the
rotated coordinate system. In this investigation we employ the procedure introduced in [2],
which also employs rotation but does not use a line-by-line approach. It is briefly described
below.

2.2.2 Concentration Factor Method Using Rotation

Suppose we are given uniformly spaced Fourier samples (1) for a piecewise constant image
with smooth edge curves. Based on (9), we seek to recover [ f ](x, y)I	(x, y) such that
I	 is the indicator function defined over a single edge curve.2 Following [2] we begin by
parameterizing the curve 	 as

x = u(s), y = v(s), s ∈ [a, b],
2 As in the one-dimensional case, it is straightforward to show that the final approximation of the edge mask
given in (17) holds for multiple edge curves, see e.g. [2, 21, 22].
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where u and v are smooth functions defined over an arbitrary region [a, b]. If we then let
θ(s) denote the normal direction of each point (u(s), v(s)), we can parameterize the points
around 	 as

x = u(s) + r cos θ(s), y = v(s) + r sin θ(s), (10)

where r ∈ [−ε, ε] and ε > 0 is sufficiently small.
Since the indicator function I	 has support of measure zero, we regularize it as h( r

ε
)which

is narrow in [−ε, ε] and satisfies h(0) = 1. While there are various choices for h( r
ε
), based

on its simplicity and success shown in [21], here we use

h
( r

ε

)
= exp

(
−5

( r
ε

)2)
. (11)

We can now write the corresponding regularized edge function to [ f ](x, y)I	(x, y) as

H(x, y) = [ f ](u(s), v(s))h
( r

ε

)
. (12)

To relate the given Fourier data in (1) for each image in the sequence to the regularized
edge function in (12), we define the partial sum approximation of H(x, y) as

H j (x, y) =
N∑

k=−N

N∑
l=−N

Ĥ j (k, l)e2π i(kx+ly), j = 1, . . . , J . (13)

From (12) we are able to approximate the coefficients Ĥ j (k, l) in (13) (after discarding
higher order terms) as

H̃ j (k, l)≈
∫ b

a
[ f j ](u(s), v(s))e−2π i(ku+lv)(v′ cos θ − u′ sin θ)εĥ(ε(k cos θ + l sin θ))ds,

(14)

where ĥ(·) are the Fourier coefficients of h( r
ε
). Substituting (10) into (1) and again eliminating

higher order terms we obtain

f̂ j (k, l) ≈
∫ b

a

[ f j ](u(s), v(s))(v′ cos θ − u′ sin θ)

2π i(k cos θ + l sin θ)
e−2π i(ku+lv)ds. (15)

There is no linear relationship between f̂ j (k, l) and H̃ j (k, l) since θ = θ(s). However, we
can fix θ = θm for each j , yielding

H̃ j
θm

(k, l) = 2π i(k cos θm + l sin θm)εĥ(ε(k cos θm + l sin θm)) f̂ j (k, l).

Hence to construct M edge masks for each image in the sequence from given Fourier data
we define M rotation angles

θm = π(m − 1)

M − 1
, m = 1, . . . , M, (16)

and compute M Fourier partial sum approximations,

H j
θm

(x, y) =
N∑

k=−N

N∑
l=−N

H̃ j
θm

(k, l)e2π i(kx+ly), m = 1, . . . , M, j = 1, . . . , J . (17)
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Finally, the temporal sequence edgemasks G̃ j ∈ R
(2N+1)×(2N+1) are generated by averaging

the results in (17), yielding

G̃ j (xμ, yν) = 1

M

M∑
m=1

H j
θm

(xμ, yν), μ, ν = 0, 1, . . . , 2N , j = 1, . . . , J . (18)

We note that (18) is used to recover inter-signal information, in particular to determine
differences (or change) in the sequential images. The approximations H j

θm
(x, y) in (17) are

also used to extract intra-signal information, specifically to improve the accuracy of each of
the individual reconstructions. In this regard we employ a weighted �1 regularization which
we now describe.

2.3 Individual Image Recovery

At the core of our new image recovery method is the import of “missing” information from
other parts of the time sequenced data acquisitions, which will be incorporated into each
individual image recovery. The initial recovery only uses intra-image information, and is
designed to exploit the presumed sparsity of the image in the edge domain. For this purpose
we use the weighted �1 regularization method, see e.g. [9–12, 23], as realized by the VBJS
approach, [2–4].3

2.3.1 Compressive Sensing

As already discussed, since the underlying image is sparse in the edge domain, it is appropriate
to useCSalgorithms, [5–8], for each individual recovery.Using the forwardmodel given in (5)
for each j = 1, . . . , J , the standard CS approach is to solve the unconstrained minimization
problem

f̃ j = argmins
{‖Fj s − b j‖22 + μ‖Ls‖1

}
. (19)

The first term measures the difference between the forward model and the given data and is
often referred to as the fidelity term. The second term is known as the penalty or regularization
term and expresses the prior belief that the underlying signal is sparse in some domain, for
example the edge or gradient domain. Thus the sparsifying transform matrix L is designed to
promote such sparsity. As the images considered in our investigation are piecewise constant,
we choose L as the first order difference (TV) operator.

The choice of regularization parameter μ in (19) has been the subject of many investi-
gations, and is inherently problem dependent, [24–27]. As we are primarily concerned with
being able to compare our newmethod to the “best” case scenario for (19), we use Algorithm
1 to experiment with various choices for μ and then pick the best solution according to the
mean squared error (MSE), (see e.g. [28] for precedent). The algorithm requires us to choose
the number of experiments to conduct, Kmax , and a way to sample regularization parameter
μ. To this end we note that typically μ is chosen to reflect both the SNR given in (39) and the
regularity in the signal. For instance, μ might be chosen to approximate σ

ξ
, where σ is the

the standard deviation of the complex noise η in (5) and ξ is the standard deviation of data in
the transformed domain under L is used in [29]. Since σ and ξ are explicitly known in our

3 To be clear, the methods cited here are primarily re-weighted �1 regularization methods (and often referred
to as such), since the weights are iteratively adapted. By contrast the VBJS method does not iteratively adapt
the weights, so it is a weighted �1 regularization scheme.
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test problems, to obtain the “best” case scenario we simply pick samples from N
(

σ
ξ
, σ

)
.

For convenience we use Kmax = 10, and note that larger Kmax did not improve the results
in any of our experiments.

Algorithm 1 Image recovery via standard �1-regularization

Input: Measurements {b j }Jj=1, forward operators {Fj }Jj=1, variances σ 2 and ξ2 for the model (5), and
the sparse transform operator L.

Choose: Number of iterations Kmax .
Output: Reconstructions f̌ j , j = 1, . . . , J .

1: for j = 1 to J do
2: for i = 1 to Kmax do
3: Sample candidate regularization parameter μk fromN ( σ

ξ , σ ).

4: Calculate f̃ ji from (19).

5: Compute b̃ ji = Fj f̃ ji .

6: Determine the MSE E ji = MSE(b̃ ji − b j ).
7: end for
8: Choose i∗ = argmini E ji and set f̌ j = f̃i∗ .
9: end for

2.4 Weighted �1 regularization

Assuming that the model (5) correctly describes how the data are acquired, any single mea-
surement b j should be sufficient to reconstruct the underlying image using (19). Indeed the
main goal of compressive sensing is to reconstruct images from noisy and under-sampled
data. As noted previously and particularly apparent in the first image in the second row of
Fig. 1, the accuracy of CS algorithms deteriorate for severely under-sampled data with low
SNR, [30, 31], a problem which may be further exacerbated when the acquisition method
is obstructed in some way. Such difficulties persist even for optimally chosen regularization
parameters. This is because as designed, the regularization term in (19) has global impact. The
solution would potentially be more accurate if the regularization term varied spatially, specif-
ically to be more heavily penalized in true sparse regions (in the sparse domain) and much
less so in regions of support in the sparse domain. As already discussed, the (re-)weighted �1
regularization method is designed to accomplish this task. In its most basic form, the method
is written as

f̃ j = argmins
{‖Fj s − b j‖22 + ‖WLs‖1

}
, (20)

where (in the re-weighted form) the entries w j of the diagonal weighting matrix W =
diag(w j ) are often constructed iteratively, yielding significant computational expense. A
more serious concern is that the noise and incompleteness of the acquired data may yield
poor choices for the weights being fed into (20). The resulting reconstruction error will prop-
agate with the penalty possibly being enhanced at edge locations while being simultaneously
reduced in the smooth regions (which are sparse in the edge domain). As a consequence,
using (20) may yield worse results than the original (global) approximation in (19). These
issues are discussed in more detail in [2–4, 32].
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2.4.1 Variance Based Joint Sparsity (VBJS)

The VBJS method was developed in [2–4] to mitigate the issues inherent to the itera-
tive weighted �1 method. Although originally designed for multiple measurement vectors
(MMV),4 the method can also be employed to a single measurement vector that is numeri-
cally processed multiple times to form MMVs.

Unlike the typical re-weighted �1 regularization schemes that update the weights at each
iteration, the VBJS procedure constructs the weighting matrix in (20) once and then uses it
for all subsequent iterations. Assuming an image is sparse in its edge domain, to construct the
weightingmatrixW we seek first to determine the edges of the image from the given data. The
VBJSmethod is based on the intuitive observation that because edge approximation methods
produce smaller errors in sparse regions away from edges but larger errors near them, [18,
33], it follows that multiple measurements in the edge domain yield correspondingly small
variance in sparse regions while producing larger variance in regions of singular support. The
values in theweightingmatrixW are thus accordingly constructed to be inversely proportional
to the variance in the sparse domain. Finally, we reiterate that the edge information needed
to determine the weighting matrix W can be computed directly from the given Fourier data,
as is discussed in Sect. 2.1, rather than by first obtaining a coarse recovery in the physical
domain. As is illustrated in Fig. 1, having to recover the images before obtaining the edges
can lead to significant information loss.

To illustrate how the VBJS method works, we first define G j ∈ R
(2N+1)×(2N+1) as the

corresponding sparse domain matrix to each image f j ∈ R
(2N+1)×(2N+1), j = 1, . . . , J .

Observe that the non-zero entries of G j correspond to the singular support in the sparse
domain. There are no inherent restrictions on how to approximate G j from b j , and we
employ the concentration factor edge detection method to approximate each G j in the edge
domain directly from the given measurements b j in (5). Specifically, we use (18) directly
and define

G̃m
j := H j

θm
≈ G j , j = 1, . . . , J , m = 1, . . . , M . (21)

Remark 2 We note that G̃m
j in (21) could be computed in multiple ways. For example, we

could apply M different regularizations for the indicator function in (9). For simplicity
here we fix the regularization h in (11) and use M evenly spaced rotation angles {θm}Mm=1,
θm ∈ [0, π], as is done in (17).

To construct W in (20) for each j = 1, . . . , J , we require spatially varying weights

w j = {w j (i)}(2N+1)2

i=1 that will effectively penalize the pixel-values that are zero in the sparse
domain while allowing nonzero values to pass through. Ideally, this means

w j (i) =
{
0, i ∈ E j ,

const, i /∈ E j ,
(22)

for some arbitrary const > 0. Here E j = {i ∈ [1, (2N + 1)2] | g j (i) 
= 0} is the set of
indices for nonzero pixel values in the sparse domain and g j = vec(G j ), where vec(·) shapes
the elements of input into a column vector. However since G j is not explicitly known, we

4 To be clear, the typical MMV reconstruction process uses multiple observations at a single snapshot in
time, that is, when there is no change in the underlying scene. This is in contrast to the problem of interest in
this investigation, which considers a sequence of observations over time during which the underlying scene
changes.
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first must determine an approximation to E j . In this regard, for each image f j , we use the
edge domain approximations in (21) to compute the matrices

P̃ j = [g̃1j , g̃2j . . . , g̃Mj ] ∈ R
(2N+1)2×M , j = 1, . . . , J .

Here g̃mj = vec(G̃m
j ) ∈ R

(2N+1)2 . Based on the above discussion, the VBJS method uses the
pointwise variance across the column vectors, given by (we have dropped the subscript j for
ease of notation)

vi = 1

M

M∑
m=1

(
P̃i,m

)2 −
(

1

M

M∑
m=1

P̃i,m

)2

, i = 1, . . . (2N + 1)2, (23)

to determine the set E j in (22). Specifically, from (23) we define a vector r ∈ R
(2N+1)2

element-wise as

ri = |g̃ivi |
maxi |g̃ivi | , i = 1, . . . (2N + 1)2, (24)

and then replace (22) with

w j (i) =
{

(1 − ri )/c, ri > τw,

1, ri ≤ τw,
j = 1, . . . , J , (25)

where c = |{i | ri > τw}| (| · | refers to the cardinality of a set) means the number of pixels
that are considered to contain an edge location. Observe that (25) scales theweights according
to the magnitude of the nonzero component in the sparse domain instead of using a constant
value, as in (22). This is to prevent false edges, which would typically yield small nonzero
values, from having undue influence on the optimization.5 Following [4], and consistent
with (2), we choose τw = 1

2N+1 for each sequential image. Further details describing the
construction of (25) can be found in [4], while Algorithm 2 summarizes the VBJS recovery
process for each image in the temporal sequence.

Algorithm 2 Variance Based Joint Sparsity (VBJS) method

Input: Measurements {b j }Jj=1 in (5) with forward operators {Fj }Jj=1, variances σ 2 and ξ2, and sparse
transform operator L. Here we use TV.

Output: Image reconstructions {f̃ j }Jj=1.

1: for j = 1 to J do
2: Compute M edge maps G̃m

j for m = 1, . . . , M rotation angles {θm }Mm=1 using (18).
3: Calculate the spatially adaptive weight w j in (25).

4: Determine f̃ j from (20).
5: end for

5 Standard weighted �1 regularization schemes typically scale the weights to be inversely proportional to the
magnitudes of the components in the sparse domain of the solution at each iteration. Numerical experiments
in [2] demonstrate that the VBJS approach is more robust, especially in low SNR environments.
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3 Incorporating Inter-Image Information

As described above and demonstrated in [2–4], assuming there is enough information to
generate the weighting matrix W , the weighted �1 regularization method (20) yields more
accurate image recovery than the standard CS approach in (19). If intra-image information is
inaccurate or insufficient, the reconstructionmay not yield significant improvement, however.

The problems considered in this investigation not only result in under-determined systems
of noisy data, but also contain obstacles in each sequential image that further complicate the
reconstruction process. The question then becomes how information from other images in
the sequence might be used to improve each individual image reconstruction. To this end,
we note that supplementary data sets have been used to develop techniques such as joint
sparse coding, [34, 35], which uses coupled dictionaries to recover multi-spectral (infrared)
data. Multi-channel data was jointly recovered via the penalized weighted least-square with
a chosen reference channel in [36, 37], while a cross modal regularization was employed in
[38]. Finally, we note that in [39, 40], edge features extracted from supplementary data sets
were specifically used to improve gradient regularization in each individual recovery.

These aforementioned techniques typically do not extract edge information as a pre-
processing step for the purpose of joint recovery, however, with edge information used only
to improve an individual recovery, if at all. By contrast here we develop a method that
incorporates the edge information from each individual image, realized directly from the
acquired data, which allows us to accurately determine the common inter-image information
needed to compensate for the missing information in each image recovery. It also allows us
to correctly identify structures that are not common across images.

With this in mind, our new joint recovery method can be written as

f̃ = argmins
{‖Fs − b‖22 + ‖WLs‖1 + β‖�s‖22

}
, (26)

wherewehave stacked theb j ’s, j = 1, . . . , J , into a longvectorb ∈ C
J (2N+1)2 .Accordingly,

F ∈ C
J (2N+1)×J (2N+1) and W ,L ∈ R

J (2N+1)×J (2N+1) are respectively given by

F = diag(F1, . . . , FJ ), W = diag(W1, . . . ,WJ ), L = diag(L, . . . ,L).

The inter-image information matrix � is defined as

� =

⎛
⎜⎜⎜⎝

C̃1 −C̃1

C̃2 −C̃2
. . .

. . .

C̃J−1 −C̃J−1

⎞
⎟⎟⎟⎠ ∈ R

(J−1)(2N+1)2×J (2N+1)2 . (27)

Here each change mask C̃ j ∈ R
(2N+1)2×(2N+1)2 , j = 1, . . . , J − 1, is a diagonal matrix that

highlights the changed and unchanged regions along the diagonal entries and is given by

C̃ j (k, k) =
{
0 if (k, k) lies in a region of change,

1 otherwise.
(28)

By defining (28) in this way we are able to “borrow” information from sequential data sets
in regions that presumably remain the same, that is, where we expect the difference between
two sequential images to mainly stem from noise or missing data.
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3.1 Construction of the ChangeMask

Broadly speaking, change detection requires two ingredients: (1) determining the unit of
analysis,whichdefines ameans for comparison, and (2) choosing thatmethod for comparison,
[41–43]. The idea is then to identify the state change of an object in the scene by comparing
the chosen unit of analysis.

There are two general approaches for selecting a unit of analysis. At a fundamental level,
change is determined by calculating the difference at a single pixel or in a neighborhood of a
pixel, [44–46]. By contrast, an object-based approach compares adjacent frames to determine
change in local features of that object, [43, 47].While pixel-based techniques typically require
less pre-processing (e.g. no image segmentation is needed), object-based change detection
methods are less sensitive to misalignment error, [48].

Because change detection in local features is critical to the coupling term in (26), our
change mask construction approach, as defined in (28), falls under the category of object-
based techniques. To this end we must identify all closed contour regions which requires
several processing steps. To begin, we create a sequence of J binary edge maps,

Ũ j (k, l) =
{
1 if G̃ j (k, l) > τ uj ,

0 otherwise,
(29)

where G̃ j is defined in (18). The parameter τ uj should be proportional to the maximum

value of G̃ j for each j = 1, . . . , J , and in general depends on the SNR. To demonstrate the
robustness of our new method, in all of our numerical experiments we fix the threshold as

τ uj = 1

2
max
k,l

(G̃ j (k, l)), k, l = 1, . . . , 2N + 1, (30)

and note that it may be possible to improve performance with some additional tuning, specif-
ically if some prior information regarding the magnitude of the non-zero entries in the sparse
domain is given. Although we assume that all objects within the scene are rigid bodies with
closed boundaries, due to noise or low resolution, the binary edge masks defined in (29)
might contain only parts of the edge curves or scattered subsets of the actual edge points.
Hence more processing is needed to identify the closed contour regions and subsequently
construct the change masks in (28). These tasks are accomplished using the following four
steps:

C.1 Clustering: All edge points belonging to the same object are clustered, and gaps in
potential objects are bridged. The edge points belonging to each individual object are
then clustered into sequences that contain only edges of a single object.

C.2 Ordering: The centroid for each cluster is computed and the edge points are ordered in
a counter-clockwise manner.

C.3 Filling closed regions: The ordered edge points are connected in each cluster via
piecewise-linear interpolation to form closed edge curves. The enclosed region for each
single object is then filled with points inside the curve having the value of 1 and all other
points being asigned the value 0.

C.4 Comparison of filled single objects: Completion of steps C.1–C.3 allows us to construct
the change mask C̃ j of two sequential images as the union of all filled single objects that
are otherwise not accounted for in both images.6

6 Note that the change mask, as defined in (28), assigns nonzero values only when there is no change in the
underlying image, which is consistent with the proposed optimization model (26).
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Below we provide more detailed descriptions for each step in the above procedure.

C.1 Clustering

Given a binary edge mask Ũ j , defined in (29), we seek to first determine the edge points that
enclose unconnected regions belong to i = 1, . . . , I distinguishable objects in the image and
then store the corresponding set of edge points as their own (binary) single object edgemasks,
given by Ũ (i)

j , i = 1, . . . , I , which satisfy the following properties for i, i ′ = 1, . . . , I :

(i) Ũ j = Ũ (1)
j + · · · + Ũ (I )

j .

(ii)
∑2N+1

k,l=1

(
Ũ (i)

j (k, l) + Ũ (i ′)
j (k, l)

)
= ∑2N+1

k,l=1 Ũ (i)
j (k, l) + ∑2N+1

k,l=1 Ũ (i ′)
j (k, l), i 
= i ′.

Moreover, we assume that none of the objects can embedded inside another. This is
critical for Step C.2 and is explained in more detail in Remark 4.

(iii) For a given integer d > 0, the number of nonzero entries in Ũ (i)
j is greater than d .

Remark 3 The first property ensures that the union of all of the single object edge masks
recovers the binary edge mask given by (29). The second guarantees that there is no overlap
and no embedding of enclosed regions in the single object edge masks. Finally, the third
property ensures that the distance between the edge points belonging to a particular object is
guaranteed to be no greater than the distance between any two objects, which prevents two
objects from being inadvertently combined and recognized as a single object.

To generate closed form curves, any small gaps must first be bridged between the scattered
edge points. In this regard, we assume that there exists an integer d ∈ N such that a gap in a
single edge curve is no larger than d while the distance between any two distinct edge curves
is always greater than d . Morphological dilation can then be used to connect the scattered
edge points that belong to the same edge curve, followed by morphological erosion to “thin”
the dilated boundary, see e.g. [49–52]. To ensure that each of the I closed contours is smooth
and contains no sharp corners, we use the MATLAB function imclose.

To proceed with the segmentation, we start with any edge point in any of the I closed
contours. We then consider all points in the 8-directional neighborhood and gradually locate
every point belonging to that closed contour in the binary edge mask Ũ j in (29). Once we
run out of candidate edge points for the 8-directional neighborhood, the resulting cluster is
identified as the contour of a single object and then stored in the single object edgemask Ũ (i)

j .
The same boundary tracking technique is sequentially performed on edge points that have
not yet been assigned to any previously constructed Ũ (�)

j , � = 1, . . . , i , to form Ũ (i+1)
j and

so on until all I single object edge masks are generated. This tracking step is accomplished
using the MATLAB function bwboundaries.

C.2 Ordering

After all edge points have been clustered such that Ũ j = Ũ (1)
j + · · · + Ũ (I )

j , we proceed to

order the edge points in a counter-clockwise manner for every single object edge mask Ũ (i)
j .

To this end, let us denote the sequence of edge points contained in Ũ (i)
j by

X = (xm)Mm=1 , xm = (km, lm), m = 1, . . . ,M. (31)
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Our goal is to determine an ordered sequence of M̃ ≤ M points from X ,

Xord = (x̃m)M̃m=1 , x̃m = (k̃m, l̃m), m = 1, . . . ,M̃, (32)

whose elements are ordered in a counter-clockwise manner. To do so, we assume that the
underlying object O is star-shaped. That is, there exists a point x0 in the object O such that
for all x ∈ O the line segment from x0 to x is in O . Furthermore, we assume that this point
x0 can be approximated by the centroid or geometric center of O ,7 which is given by

xc = (kc, lc), kc = 1

M
M∑
m=1

km, lc = 1

M
M∑
m=1

lm . (33)

We then compute the angle ϕm ∈ [0, 2π) and radius rm ≥ 0 of xm with respect to xc for each
m = 1, . . . ,M as

rm = ‖xm − xc‖2, ϕm =

⎧⎪⎪⎨
⎪⎪⎩

arccos
(
km−kc
rm

)
if lm − lc ≥ 0 and rm 
= 0,

− arccos
(
km−kc
rm

)
if lm − lc < 0,

0 if rm = 0.

(34)

Note that multiple edge points might have the same angle (but different radii). In this case, we
only use the edge point with the largest radius.8 Thus, in general, the ordered sequence (32)
might contain fewer elements than the unordered sequence of edge points (31), i. e. M̃ < M.
Algorithm 3 describes how the ordered sequence of points is generated for each single object
mask.

Algorithm 3 Generating an ordered sequence of edge points

Input: X = (xd )Dd=1 as in (31). � unordered edge points.

Output: Xord = (x̃d )D̃d=1 in (32). � ordered edge points.
1: Compute the centroid xc using (33).
2: Compute the vectors r = (r1, . . . , rD)T and ϕ = (ϕ1, . . . , ϕD)T in (34).
3: Construct the matrix A = [ϕ, r, XT ].
4: Sort the rows of A in ascending order based on the first column ϕ.
5: while A is nonempty do
6: Find the top block submatrix B of A that has constant first column. � points with the same angle.
7: Sort the rows of B in descending order based on the second column r.
8: Store the last two columns of the first row of B, x̃ = (k̃, l̃), in Xord. � point with the largest radius.
9: end while
10: return Xord

Remark 4 Property (ii) for the single object masks Ũ (i)
j is necessary for accurate construction

of Xord. Specifically, the objects in the single object masks must neither overlap other objects
nor be contained within another object. If this assumption does not hold, then (34) would
produce a sequence of ordered points that encloses a larger region “covering” the particular
region of interest. Note that Fig. 1 shows a violation of this assumption, as the internal objects

7 These are reasonable assumptions inmany applications, such as the cars and tanks considered in our synthetic
aperture radar (SAR) data example.
8 Using the smallest or average radius would cause the reconstructed edge curve to sometimes lie inside the
actual edge curve, resulting in an inaccurate change mask, C̃ j in (28).
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of interest are embedded in the skull of the phantom. Here, however, because it is readily
apparent where the skull is, we can simply extract it before proceeding to Step C.1, that is
to generate clusters of the edge points belonging to the interior individual distinguishable
objects.Wenote that extracting the skull in thisway is commonpractice inMRI reconstruction
since it is much larger in magnitude from the internal features, see [53, 54]. The synthetic
aperture radar (SAR) image example in Sect. 4.2 demonstrates that no initial extraction is
neededwhen Property (ii) holds for the single object masks. Other change detectionmethods,
such as those previously mentioned and others specifically designed for remote sensing
images, e.g. [44, 55–57], may include strategies for overlapping and embedded images.9 But
as this is not the primary focus of our paper, we assume that Property (ii) holds.

C.3 Filling Closed Regions

We now use piecewise linear interpolation to construct closed edge curves for each sequence
of ordered edge points Xord. In a second stepwe “fill” the resulting closed curves by assigning
the value 1 to pixels within the closed edge curve and 0 to those outside. In this way we obtain
the (binary) filled single object masks, Q̃(i)

j for each Ũ (i)
j , defined as

Q̃(i)
j (k, l) =

{
0 if (k, l) lies outside of the reconstructed edge curve,
1 otherwise.

(35)

Note that using piecewise linear interpolation results in polygon shaped reconstructed edge
curves. In our implementation we have combined the two steps (reconstructing and filling)
by using the MATLAB function inpolygon.

C.4 Comparison of Filled Single Objects in Two Images

Now consider two consecutive data sets, b j , b j+1, from (5) for which we have constructed

the filled single object masks Q̃(i)
j and Q̃(i ′)

j+1, 1 ≤ i ≤ I and 1 ≤ i ′ ≤ I ′, respectively, where
I and I ′ correspond to the number of distinguishable objects in each image.

To determine regions of change we must identify filled single object masks that do not
have a corresponding counterpart in the other image. This is accomplished by using the
least-squares measure, given by

diff(A, B) =
∑2N+1

k,l=1 (A(k, l) − B(k, l))2∑2N+1
k,l=1 A(k, l) + ∑2N+1

k,l=1 B(k, l)
, A, B ∈ {0, 1}(2N+1)×(2N+1). (36)

It is easy to verify that the difference measure (36) provides us with a value between 0 and
1. In particular, we get

diff(A, B) =
{
0 if A = B,

1 if A and B are disjoint.
(37)

To allow for small differences between the matrices, we say that two matrices A, B are
equal if their difference measure lies below a certain small threshold τdiff > 0.10 Here we

9 To the best of our knowledge, however, these procedures all use pixelated reconstructed images to detect
the change, where as in our approach we use edge maps generated from the Fourier data to avoid data loss.
10 Comparing two matrices by simply checking the relation for all elements (A = B ⇐⇒ A(k, l) = B(k, l)
for all k, l) is not appropriate since any single misidentified edge point, for example, due to noise, may cause
the objects in two single object edge masks of the same object, say at corresponding times j and j + 1, to be
determined as different.
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choose τdiff = 10−3 to be consistent with our discretization in (2) and the amount of noise
in the acquired data, although our experiments indicate that this could be chosen smaller.
Based on the calculation of diff(A, B), we characterize the regions of change by pairwise

comparing the filled single object masks Q̃(i)
j and Q̃(i ′)

j+1 for i = 1, . . . , I and i ′ = 1, . . . , I ′.
This procedure is described by Algorithm 4.

Algorithm 4 Determining the Change Index Sets

Input: {Q̃(i)
j }Ii=1, {Q̃(i ′)

j+1}I
′

i ′=1, and threshold τdiff . (We choose τdi f f = 10−3.)

Output: Ĩ j ⊂ {1, . . . , I } and Ĩ ′j+1 ⊂ {1, . . . , I ′} � new index sets

1: Initiate Ĩ j = {1, . . . , I }, Ĩ ′j+1 = {1, . . . , I ′}
2: for i = 1, . . . , I and i ′ = 1, . . . , I ′ do � compare all filled single object masks

3: if diff(Q̃(i)
j , Q̃(i ′)

j+1) < τdi f f then � there is no change for this pair

4: Ĩ j = Ĩ j \ {i} � remove the indices from the index sets

5: Ĩ ′j+1 = Ĩ ′j+1 \ {i ′}
6: end if
7: end for
8: return Ĩ j , Ĩ

′
j+1

Algorithm 4 returns two new index sets, Ĩ j ⊂ {1, . . . , I } and Ĩ ′
j+1 ⊂ {1, . . . , I ′}, which

contain only the indices of the filled single object masks corresponding to change, such as
those due to translation, rotation, insertion or deletion of objects in the underlying scene.
We stress once again that the coupling term in (26) assumes that any differences over the
unchanged regions between each pair of adjacent images stem either from noise or other
sources of error. The coupling term therefore aims to minimize such difference over the
unchanged regions via �2-norm to enhance the recovery of the shared features.

With Steps C.1–C.4 completed, we are now able to construct the change mask C̃ in (28)
that constitutes � in (26) as

C̃ j = diag (1 − vec(R j )),

where

R j = �∗�1
2

⎛
⎜⎝�∗� 1

| Ĩ j |
∑
i∈ Ĩ j

Q̃(i)
j + �∗� 1

| Ĩ ′
j+1 |

∑
i ′∈ Ĩ ′

j+1

Q̃(i ′)
j+1

⎞
⎟⎠. (38)

Here |·| denotes cardinality and 1 ∈ R
(2N+1)2 is a vector with value 1 for every entry.We also

use �∗�· to denote the ceiling operator and note that the summation and ceiling operators are
performed element by element. From (38) we observe that C̃ j is constructed by comparing

the filled single object masks Q̃(i)
j and Q̃(i ′)

j+1, with i ∈ Ĩ j and i ′ ∈ Ĩ ′
j+1 respectively.

3.2 Coupling Term Regularization Parameter

The coupled term in (26) boosts the accuracy in each image recovery by promoting the
emphasis on the unchanged regions (inter-image information). As discussed previously, each
of the time sequenced data collections may be missing vital information for independent
signal recovery, due to obstacles or occlusions in the scene, and/or missing bands of Fourier
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f3 (ground truth) f3 (with occlusion) SNR = 10; β = .06. SNR = 2; β = .5.

Fig. 2 Recovery f̃3 using (26) for SNR = 10, 2 and β = .06, .5 respectively

data. To improve each reconstruction, information is “borrowed” from other images in the
sequence. It is important that this information comes only from common features that remain
unchanged in the adjacent data sets. This information is captured using Steps C.1–C.4 and
then inserted into (27). What remains is to choose the regularization parameter β in (26),
which represents how much information is borrowed from the neighboring time frames.
Several factors must be taken into account, as we now describe.

First, as is the case for parameter selection ofμ in the standard �1 regularization approach
given in (19), the choice of β depends on the level of noise. Specifically, a higher SNR
value would suggest less regularization is needed and vice versa. Figure 2 illustrates that
this intuition seems to hold. Supplemental information becomes very important when data
from any individual image is either missing, e.g. in the case of missing bands of Fourier
samples, physical obstacles, or blur. Similar to the low SNR case, in these situations it is also
reasonable to choose β to increase the influence of the borrowed information. That is, we
essentially want to more heavily penalize inter-image similarity.

Howeverwemust also consider the amount of changeoccurringbetween adjacent temporal
frames. In particular, the coupled term in (26) increases accuracy by borrowing information
from unchanged regions, that is, those that presumably share the same features in consecutive
frames. In applicationswhere significant changeoccurs between images, or equivalentlywhen
there are relatively few unchanged regions in adjacent frames, a small β should be chosen
so less emphasis is put on shared information. In general using the coupled term in (26)
can be seen as most beneficial when objects move slowly compared to temporal resolution.
Finally, although we can heuristically determine the coupling parameter β, more work is
needed to choose it robustly, which will be the subject of future work. One possible option
is to iteratively determine β using some threshold, or, similarly to the approach described
in Sect. 2.4.1, to choose β to be spatially varying. A probablistic approach such as sparse
Bayesian learning may also be useful, see for example [58–60]. Here, in order to demonstrate
the robsutness of our approach we simply choose β = .5.

We now have all of the necessary ingredients for computing (26), which are described in
Algorithm 5.

4 Numerical Experiments

We consider two numerical experiments to validate the robustness and accuracy of our new
joint recoverymethod as detailed inAlgorithm5. Following [3], to solve the convex optimiza-
tion problem in (26) we employ the Alternating Direction Method of Multipliers (ADMM),
see [61]. In all experiments we assume we are given data as in (5), that is, noisy Fourier
data where bands are missing from each set in the temporal sequence. To approximate the
continuous Fourier samples in (1) we use highly resolved image data and then apply the
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Algorithm 5 Recovering a temporal sequence of images using (26).

Input: Measurements {b j }Jj=1, forward operators {Fj }Jj=1, variances σ 2 and ξ2 for the model (5) and
sparse transform L, respectively. (We employ the T V operator, but others may be used.) We also in advance
choose parameters τw = 1

2N+1 in (25) and β = .5 in (26).

Output: Reconstruction {f̃ j }Jj=1.

1: for j = 1, . . . , J do
2: Determine each weighting matrix Wj from (25) using the edge map G̃ j in (21).
3: Define threshold parameter τuj according to (30).

4: Form the binary edge masks Ũ j in (29) from the edge maps G̃ j in (21).

5: Form the single object edge masks {Ũ (i)
j }Ii=1 using Step C.1.

6: Form the filled single object masks {Q̃(i)
j }Ii=1 using (35).

7: for j < J do
8: Construct change masks C̃ j in (28).
9: Construct inter-image information matrix � in (27).
10: end for
11: end for
12: Solve for the joint recovery {f̃ j }Jj=1 by (26) using the ADMM method, [61]

discrete Fourier transform. In this way we can include noise and obstructions in the image
domain into our calculated Fourier samples while also ensuring that the data fidelity errors
in (19), such as aliasing, are properly accounted for.

Our new method will be tested for different signal to noise ratio (SNR) values calculated
as

SNRdB j = 10 log10

(
b̄ j

σ j

)2

, (39)

where b̄ j is the mean over the data b j given in (3).
In our first example we generate a synthetic image so that we may analyze the efficacy

of our method with respect to SNR and data resolution. In the second experiment we use
a pre-formed synthetic aperture radar (SAR) image given in [62]. As in the first case, we
consider various levels of SNR and introduce deletions, insertions, rotations and translations
of objects. We also include occlusions (obstructions) in the physical domain. We note that
in this second experiment, since we are starting from a given SAR image, we assume the
Fourier data are acquired using a discrete Fourier transform, that is, we do not simulate the
integral transform to obtain the data. We compare our new algorithm to individual recovery
via the standard �1 regularization (19) using Algorithm 1 and the VBJS method (20) using
Algorithm 2.

4.1 Experiment 1: Synthetic MRI Phantom

Figure 3 (first row) displays a sequence of ground truth images f j , j = 1, . . . , 4.11 The
image background is zero-valued and each of the static structures have magnitude 0.3. Each
image also has two ellipses ofmagnitudes 0.8 and 0.9, respectively, that rotate and/or translate
in time.

The third row in Fig. 3 displays the individual recoveries using the standard �1 reconstruc-
tion, (19) as obtained usingAlgorithm 1, while the fourth row shows the individual recoveries

11 Although we incorporate information from J = 6 data sets, for better visualization we display only four.
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f1 f2 f3 f4

Obstacle1 Obstacle2 Obstacle3 Obstacle4

f̃1 f̃2 f̃3 f̃4

f̃VBJS
1 f̃VBJS

2 f̃VBJS
3 f̃VBJS

4

f̃ joint
1 f̃ joint

2 f̃ joint
3 f̃ joint

4

Fig. 3 (first row) Temporal sequence of MRI phantom images of hydroiodic acid, MnCl2, and rGNP-HI
using a GE HTXT 1.5T clinical MRI scanner, [63]. (second row) Physical images in scaled color with phys-
ical obstructions in yellow. (third row) Individual reconstruction by standard �1-regularization. (fourth row)
Individual reconstructions by VBJS �1-regularization. (bottom row) Joint recovery (last row)

using the VBJS method, (20) as obtained by Algorithm 2. Finally, the results using our new
joint recovery method (26) as realized by Algorithm 5 are displayed in the fifth row. The
parameters are all chosen as described in each of the given algorithms. Observe that only the
method provided by (26) is able to recover information from the obscured region while still
enhancing the recovery in the rest of the domain. In particular we see that when the edges of
the static objects are not well detected, the performance of (20) is poor. Indeed, falsely iden-
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0

0.2

0.4

0.6

0.8

1

W1 W2 W3 W4

Ũ1 Ũ2 Ũ3 Ũ4

Q̃1 Q̃2 Q̃3 Q̃4

C̃1 C̃2 C̃3 C̃4

Fig. 4 (first row) Weighting mask W calculated for each temporal image using (25). The color bar given in
the first column applies to all subsequent columns. (second row) Single object edge masks Ũ in (29). (third
row) Filled single object masks Q̃ in (35). (fourth row) Change mask C̃ in (28). Observe from (38) that C̃4
requires construction of W5, Ũ5, and Q̃5, which are not pictured

tified edges may cause the VBJS recovery method to yield worse results than those obtained
using standard �1 reconstruction, since the weighting matrixW does not accurately penalize
smooth regions.

The image recovery given by (26) and realized in Algorithm 5 requires the construction
of weight mask W , given in (25), and the inter-image coupling term �. To construct � we
need the single object edge masks, Ũ in (29), followed by the filled single object masks, Q̃
in (35), and finally the change masks, C̃ in (28). As they are vital to the process, we include
Fig. 4 to show how each is respectively formed. We note that in order to satisfy property (ii)
for constructing (29) (see Remark 4), it is necessary to extract the skull once the edges in the
image are determined. In this particular example, since all of the background structures have
the samemagnitude as the skull, they are simultaneously removed. Our second experiment in
Sect. 4.2 illustrates the case where all of the single edge mask properties are initially satisfied
so that no initial extraction is needed. Once again we point out that W , and subsequently
�, are determined from the given data in (5), that is, images were not pre-formed in their
construction.
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Fig. 5 (top) Horizontal cross sections intersecting obstructed regions in the sequential regions. (bottom)
Horizontal cross sections intersecting y = .7519, where each of the sequential image contains a portion of
the two moving ellipses. The legend is provided in the bottom right figure

Figure 5 displays some one-dimensional cross sections of the images. The top row shows
the horizontal slices that intersect the zero-valued occlusions in the first four of the sequenced
images. In this case we observe the benefit of using inter-image information to recover each
sequential image. The results displayed in the bottom row correspond to a horizontal slice
that intersects portions of the two moving ellipses. Here we see the importance of accurately
constructing the inter-image information matrix � in (27), specifically to avoid sharing
inconsistent information between sequential data sets.

Numerical Convergence Comparison

To compare the numerical convergence of the three tested methods, we consider the log-
scale mean squared error (MSE)

MSElog = log10

(
‖f − f̃‖2
size(f)

)
, (40)

where f is the pixelated underlying image and f̃ is the recovered image. Here size(·) denotes
the number of entries considered in (40).We are particularly interested in evaluating the error
in background regions that are object free as well as in regions containing occlusions. We
also measure the log of the pointwise error given by

Elog = log10 | f − f̃ | . (41)

The log error of the entire image f j for j = 1, . . . , 4 is displayed in Fig. 6. It is evident
that only the proposed method is able to recover the obstructed regions.

Figure 7 displays the log-scale mean square error calculated in (40) over different regions
as a function of 2N + 1, the number of Fourier samples. As shown in Fig. 7(middle), as long
as information is reliable, the results for the VBJS and the joint methods are comparable in
smooth regions, and both perform better than standard �1 regularization. By contrast, inter-
image information becomes critical once regions are occluded in any of the images in the
temporal sequence, as is illustrated in Fig. 7(right). All methods demonstrate convergence
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Fig. 6 Error plots corresponding to image recoveries in Fig. 3. The gray scale and color legend in the top and
bottom rows apply to all plots shown
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Fig. 7 Comparison of the error in (40) for the standard �1 recovery (blue), VBJS (green), and joint recovery
(orange) corresponding with increasing the number of Fourier samples, 2N + 1, where N = 16n with
n = 1, . . . , 7. Error taken over (left) the entire image; (middle) the smooth regions; and (right) regions
containing occlusions
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Fig. 8 Comparison of the error in (40) for the standar �1 recovery (blue), VBJS (green), and joint recovery
(orange) for increasingSNR in the data (Fourier) domainwith afixednumber of Fourier samples, 2N+1 = 129.
The points of interest, labeled as “1” through “4”, in the first two plots, correspond to different aspects of
image recovery
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Fig. 9 Reconstruction when a moving object is obscured

with increasing number of Fourier samples. Next we fix the number of Fourier samples,
2N + 1 = 129, and analyze the error for varying SNR values, 1.2, 2, 6, 10 and 20, in the
data (Fourier) domain. The first two plots in Fig. 8 show four points of evaluation: The “1”
is located inside an obstacle, the “2” is inside a nonzero smooth region, the “3” is chosen to
be close to an edge, and the “4” is placed in the zero-valued background. The MSE is then
computed on 5 × 5 neighborhoods centered at the respective sample points. Once again we
observe that the new joint recovery approach yields better accuracy in all cases for all levels
of SNR, and is particularly effective in regions of occlusion.

Finally, as our new method relies on accurate change masks to capture moving objects in
adjacent images of the scene, it is important to consider the case when a moving object is
obscured in one of the data acquisitions. This case is shown in Fig. 9, where we observe that
even when the moving ellipse is obscured the image recovery using our new approach is no
worse than either of the two individual recovery methods discussed.
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Fig. 10 (first row) The underlying scene is the SAR image of a golf course, [62]. (second row) Physical images
in scaled color involving zero-valued blocks (first three images) and added zero-mean Gaussian noise with
standard deviation 3 (last image). (third row) Separate reconstructions by standard �1-regularization. (fourth
row) Recovery using VBJS. (bottom row) The new joint recovery

4.2 Experiment 2: Synthetic Aperture Radar (SAR)

Our second experiment considers a temporal sequence of six SAR images depicting a
golf course, [62], displayed in Fig. 10. Observe there is no “ground truth” in this case. We
then add cars and boats, each of magnitude 1, and a building of magnitude 1.5, on top of the
scene to simulate respectively moving and background objects. In our experiment one car is
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Q̃1 Q̃2 Q̃3 Q̃4

C̃1 C̃2 C̃3 C̃4

Fig. 11 (first row) Weighting mask W calculated for each temporal image using (25). (second row) Partial
edge masks Ũ , (29). (third row) Edge region masks Q̃, (35). (fourth row) Change mask C̃ , (38). Observe from
(38) that C̃4 requires construction of W5, Ũ5, and Q̃5, which are not pictured

inserted into the third image and a different car is deleted in the fifth image (not shown). As
displayed in the second row of Fig. 10, we also introduce several obstacles in the physical
domain. Instead of using zero values in these locations across the sequence, as was done in
the MRI experiment, here we use a zero-mean Gaussian distribution with standard deviation
3 in each of the latter (4-6) part of the sequence. For viewing purposes we have only depicted
this added noise in the fourth image (last column, second row). As in the MRI experiment,
the last three rows in Fig. 10 respectively compare image recovery using the standard �1
regularization (19) using Algorithm 1, the VBJS technique (20) using Algorithm 2, and our
new joint recovery method (26) as realized by Algorithm 5. It is evident that our new method
yields improved results for all images, in particular in places of obstruction. We note that the
number of pixels, the noise level, and the missing frequencies are the same as in Sect. 4.1.

As before, we also extract edge information directly from the given Fourier data (5),
although as previously noted in this case we start from discrete data. We then construct
M = 10 edge masks for each rotation angle θ in (16) and then follow Steps C.1–C.4
to construct the inter-image matrix � used in (26). Figure 11 illustrates each step of this
procedure.
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Fig. 12 Horizontal cross sections intersecting obstructed regions in Fig. 10 (top row). Horizontal cross sections
at y = .6899, which intersects the moving ellipses in Fig. 10 (bottom row). The legend in the bottom right
plot is shared in other subplots. Here f true refers to the original SAR image with the addition of the boats
and cars, since the ground truth is not available

One dimensional cross sections comparing the performance of each method are displayed
in Fig. 12. The horizontal slice is chosen to intersect an obstacle in each image of the temporal
sequence (first row). The effects of occlusions is apparently similar to what is observed for the
MRI phantom in Sect. 4.1, with the joint recovery method being able to effectively recover
information in obstructed regions. The bottom row compares the image recoveries at cross
sections that intersect moving objects. In this case there should be no contribution from the
coupled term, which implies that the results for VBJS and our newmethod should be similar.
Error comparisons cannot be made since there is no ground truth image available.

5 Concluding Remarks

In this work we developed a new technique that jointly recovers a set of images from a
temporal sequence of under-sampled and noisy Fourier data. There are furthermore physical
obstructions that prevent the data acquisitions from “seeing” parts of each underlying image
in the sequence. Our method combines both intra- and inter-image information to enhance
the recovery for each image. In particular, the method builds on the VBJS method, developed
in [2–4], which effectively uses intra-image information to resolve each static image, with
a coupling term that incorporates inter-image information from neighboring images. This
coupling term is important because it allows vital missing information to be borrowed from
other data acquisitions in the temporal sequence. By design, the coupling term requires
an accurate depiction of shared information, which is accomplished by generating highly
resolved edge masks for each image in the sequence, followed by Steps C.1–C.4 to construct
the inter-sequence “change masks”, which are then explicitly placed in the coupling term.

Our numerical experiments demonstrate that our new joint recovery algorithm yields
improved accuracy over both the standard �1 regularization technique as well as the VBJS
method, neither of which incorporates information from other data sets. A main advantage
of our approach is that we are able to avoid significant data loss by directly using the given
Fourier data to determine the edge masks needed both for high resolution individual recovery
as well as an accurate coupling term.
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A Fourier transform forward model served as a prototype in this investigation. This is
not a limitation for our method, however, and in future investigations we will consider other
models as well as data fusion problems. In this regard our initial investigations indicate that
it is still useful to use the Fourier based concentration factor method (after employing the
discrete Fourier transform), although other high order edge detection methods, for example
the polynomial annihilation edge detection method designed in [33] and employed in [2, 3,
64], may also be effective at preventing data loss.
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