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Abstract— A new belief space planning algorithm, called
covariance steering Belief RoadMap (CS-BRM), is introduced,
which is a multi-query algorithm for motion planning of
dynamical systems under simultaneous motion and observa-
tion uncertainties. CS-BRM extends the probabilistic roadmap
(PRM) approach to belief spaces and is based on the recently
developed theory of covariance steering (CS) that enables
guaranteed satisfaction of terminal belief constraints in finite-
time. The CS-BRM algorithm allows the sampling of non-
stationary belief nodes, and thus is able to explore the velocity
space and find efficient motion plans. We evaluate CS-BRM
in different planning problems and demonstrate the benefits of
the proposed approach.

I. INTRODUCTION

Motion uncertainty and measurement noise arise in all
real-world robotic applications. When evaluating the safety
of a robot under motion and estimation uncertainties, it is
no longer sufficient to rely only on deterministic indicators
of performance, such as whether the robot is in collision-
free or in-collision status. Instead, the state of the robot
is best characterized by a probability distribution function
(pdf) over all possible states, which is commonly referred
to as the belief or information state [1]. Explicitly taking
into account the motion and observation uncertainties thus
requires planning in the belief space, which allows one
to compute the collision probability and thus make more
informed decisions. Planning under motion and observation
uncertainties is referred to as belief space planning, which
can be formulated as a partially observable Markov decision
process (POMDP) problem [2]. Despite some recent progress
in terms of more efficient POMDP solvers [3], [4], solving
POMDP in general domains is very challenging, especially
for long-horizon, global planning problem in continuous
domain. Planning in infinite-dimensional distributional (e.g.,
belief) spaces can become more tractable by the use of
roadmaps, that is, graphs constructed by sampling. Since
their introduction [5], such belief roadmaps (BRMs) have
increased in popularity owing to their simplicity and their
ability to avoid local minima.

Sampling-based motion planning algorithms such as prob-
abilistic roadmaps (PRM) [6] and rapidly exploring random
trees (RRTs) [7] can be used to solve planning problems in
high-dimensional continuous state spaces. through sampling
the search space. However, traditional PRM-based methods
only address deterministic systems. PRM methods have
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been extended to belief space planning using belief space
roadmaps (BRMs) [5], [8], [9]. One of the main challenges
of belief space roadmap (BRM) methods is that the cost of
the edge depend on the path taken to that edge, resulting in
the “curse of history” problem for POMDPs [8], [10]. This
problem arises from the unreachability of the belief nodes;
even if the robot has full control of its mean, it is difficult
to reach higher order moments (e.g., a specified covariance).
Since the nodes in BRM are sampled in the belief space,
the edges in BRM should ideally steer the robot from one
distribution to another. If reachability of BRM nodes is not
achieved, an edge in the BRM depends on all preceding
edges along the path.

The BRM algorithm proposed in [5] finds the minimum
estimation uncertainty path for a robot from any starting
position to a goal. Since the reachability of belief node is
not achieved, [5] requires a new search whenever the starting
position is changed. By taking into account the controller and
the sensors used, [9] computes the true a priori probability
distribution of the state of the robot and uses this true a
priori distribution along with the RRT algorithm for motion
planning. Reference [11] also uses the a priori distribution
and builds a belief tree. Searching over a roadmap is also
studied in [12] for localization uncertainty. However, the
independence between edges is not satisfied in [9], [11], [12]
and these tree-based methods can not be extended to PRM.

The state-of-the-art in terms of BRM methods is probably
[8], which tackles the “curse of history” problem. The pro-
posed SLQG-FIRM method achieves node reachability using
a stationary LQG controller. One limitation of this method
is that the nodes have to be stationary. That is, the nodes in
the BRM graph need to be sampled in the equilibrium space
of the robot, which usually means zero velocity. Thus, this
method cannot explore the velocity space and the resulting
paths are suboptimal. Secondly, a converging process is
required at every node. The robot will have to “wait” at each
node, which will increase the time required for the robot to
reach the goal. The method in [13] improves the online phase
by recomputing the local plans, while the offline roadmap
construction phase is the same as in FIRM [8].

Recent developments in explicitly controlling the covari-
ance of a linear system [14], [15] provide an appealing
approach to construct BRMs with guarantees of node reach-
ability. In particular, for a discrete-time linear stochastic
system, covariance steering theory designs a controller that
steers the system from an initial Gaussian distribution to a
terminal Gaussian distribution in finite-time [16], [17], [18].
In [16], the covariance steering problem is formulated as
a convex program. Additional state chance constraints are



considered in [18] and nonlinear systems are considered in
[19] using iterative linearization. The covariance steering
problem with output feedback has also been studied in [20],
[21], [22].

In this paper, we propose the CS-BRM algorithm, which
uses covariance steering as the edge controller of a BRM to
ensure a priori node reachability. Since the goal of covariance
steering is to reach a given distribution of the state, it is well-
suited for reaching a belief node. In addition, covariance
steering avoids the limitation of sampling in the equilib-
rium space, and thus the proposed CS-BRM method allows
sampling of non-stationary belief nodes. Our method allows
searching in the velocity space and thus finds paths with
lower cost. For nonlinear systems that are well approximated
by its linearization along a nominal trajectory, we also
develop a simple, yet efficient, algorithm to find suitable
nominal trajectories between the nodes of the BRM graph
to steer the mean states in an optimal fashion.

The contributions of the paper are summarized as follows.
First, a new belief space planning method, called CS-BRM,
is developed, to construct a roadmap in belief space. CS-
BRM achieves finite-time belief node reachability using
covariance steering and overcomes the limitation of sam-
pling stationary nodes. Second, the concept of compatible
nominal trajectory is introduced, which aims to improve
the performance of linearization-based control methods to
control nonlinear systems. The CNT algorithm is proposed to
compute nominal feasible trajectories for nonlinear systems.
Finally, the algorithm is tested in different environments.

II. PROBLEM STATEMENT

We consider the problem of planning for a nonholonomic
robot in an uncertain environment which contains obsta-
cles. The uncertainty in the problem stems from model
uncertainty, as well from sensor noise that corrupts the
measurements. We model such a system by a stochastic
difference equation of the form

xk+1 = f (xk,uk,wk), (1)

where k = 0,1, . . . ,N−1 are the discrete time-steps, xk ∈Rnx

is the state, and uk ∈Rnu is the control input. The steps of the
noise process wk ∈ Rnw are i.i.d standard Gaussian random
vectors. The measurements are given by the noisy and partial
sensing model

yk = h(xk,vk), (2)

where yk ∈ Rny is the measurement at time step k, and the
steps of the process vk ∈ Rny are i.i.d standard Gaussian
random vectors. We assume that (wk)

N−1
k=0 and (vk)

N−1
k=0 are

independent.
The objective is to steer the system (1) from some initial

state x0 to some final state xN within N time steps while
avoiding obstacles and, at the same time, minimize a given
performance index. This is a difficult problem to solve in its
full generality. Here we use graph-based methods to build
a roadmap in the space of distributions of the states (e.g.,
the belief space) for multi-query motion planning. In the

next section, we describe a methodology to design BRM
edge controllers that allow to steer from one node (i.e.,
distribution) to another. Similar to previous works [5], [8],
[9], we consider Gaussian distributions where the belief is
given by the state mean and the state covariance.

III. COVARIANCE STEERING

In this section, we give a introduction of covariance
steering and outline some key results. Some of these results
are explicitly used in subsequent sections. The derivation in
this section follows closely [20], [18].

Given a nominal trajectory (nk)
N−1
k=0 , where nk = (xr

k,u
r
k),

we can construct a linear approximation of (1)-(2) around
(nk)

N−1
k=0 via linearization as follows

xk+1 = Akxk +Bkuk +hk +Gkwk, (3)
yk =Ckxk +Dkvk, (4)

where hk ∈ Rnx is the drift term, Ak ∈ Rnx×nx , Bk ∈ Rnx×nu ,
and Gk ∈ Rnx×nx are system matrices, and Ck ∈ Rny×nx and
Dk ∈ Rny×ny are observation model matrices.

We define the covariance steering problem as follows.
Problem 1: Find the control sequence u = (uk)

N−1
k=0 such

that the system given by (3) and (4), starting from the initial
state distribution x0 ∼N (x̄0,P0), reaches the final distribu-
tion xN ∼N (x̄N ,PN) where PN ⪯ Pf , while minimizing the
cost functional

J(u) = E

[
N−1

∑
k=0

(xk−mk)
⊤Qk(xk−mk)+u⊤k Rkuk

]
, (5)

where (mk)
N−1
k=0 is a given reference trajectory of the states,

x̄k = E(xk) is the mean of the state xk, P0 and PN are the
covariance matrices of x0 and xN , respectively, the terminal
covariance PN is upper bounded by a given covariance matrix
Pf , and the matrices (Qk ⪰ 0) and (Rk ≻ 0) are given.

A. Separation of Observation and Control

Similarly to [20], we assume that the control input uk at
time-step k is an affine function of the measurement data. It
follows that the state will be Gaussian distributed over the
entire horizon of the problem. To solve Problem 1, we use a
Kalman filter to estimate the state. Specifically, let the prior
initial state estimate be x̂0- and distributed according to x̂0- ∼
N (x̄0, P̂0-), and let the prior initial estimation error be x̃0- =
x0− x̂0- and let its distribution be given by x̃0- ∼N (0, P̃0-).
The estimated state at time k, denoted as x̂k = E[xk|Yk], with
Yk denoting the filtration generated by {x̂0- ,yi : 0≤ i≤ k), is
computed from [23]

x̂k = x̂k- +Lk(yk−Ckx̂k-),

x̂k- = Ak−1x̂k−1 +Bk−1uk−1 +hk−1,
(6)

Lk = P̃k-C⊤k (CkP̃k-C⊤k +DkD⊤k )
−1,

P̃k = (I−LkCk)P̃k- ,

P̃k- = Ak−1P̃k−1A⊤k−1 +Gk−1G⊤k−1,

(7)

where Lk is the Kalman gain and where the covariances of
xk, x̂k and x̃k are denoted as Pk = E[(xk − x̄k)(xk − x̄k)

⊤],



P̂k = E[(x̂k− x̄k)(x̂k− x̄k)
⊤] and P̃k = E[(xk− x̂k)(xk− x̂k)

⊤],
respectively.

It can be shown that the cost functional (5) can be written
as

J(u) =E

[
N−1

∑
k=0

x̂⊤k Qkx̂k +u⊤k Rkuk

]
−2

N−1

∑
k=0

x̄⊤k Qkmk

+
N−1

∑
k=0

(trace(P̃kQk)+m⊤k Qkmk), (8)

where the last summation is deterministic and does not
depend on the control and thus it can be discarded.

By defining the innovation process (ξk)
N
k=0 as

ξk = yk−E[yk|Yk−1], (9)

and noting that E[yk|Yk−1] =E[Ckxk+Dkvk|Yk−1] =Ckx̂k- , the
estimated state dynamics in (6) can be rewritten as

x̂k+1 = Akx̂k +Bkuk +hk +Lk+1ξk+1, (10)

with x̂0 = x̂0- + L0ξ0. We can then restate Problem 1 as
follows.

Problem 2: Find the control sequence (uk)
N−1
k=0 , such

that the system (10) starting from the initial distribution
x̂0- ∼ N (x̄0,P0 − P̃0-) reaches the final distribution x̂N ∼
N (x̄N ,PN− P̃N), where PN ⪯ Pf , while minimizing the cost
functional

Ĵ(u) = E

[
N−1

∑
k=0

x̂⊤k Qkx̂k +u⊤k Rkuk

]
−2

N−1

∑
k=0

x̄⊤k Qkmk. (11)

To summarize, the covariance steering problem of the state
xk with output feedback has been transformed to a covariance
steering problem of the estimated state x̂k.

B. Separation of Mean Control and Covariance Control

We first separate Problem 2 into a mean control problem
and a covariance control problem, then give their solutions.

By defining the augmented vectors Uk = [u⊤0 u⊤1 · · · u⊤k ]
⊤,

Ξk = [ξ⊤0 ξ⊤1 · · · ξ⊤k ]⊤, and X̂k = [x̂⊤0 x̂⊤1 · · · x̂⊤k ]
⊤. We can

compute X̂k as follows

X̂ = Ax̂0- +BU +H +LΞ, (12)

where X̂ = X̂N , U =UN−1, Ξ = ΞN , and A, B, H, and L are
block matrices constructed using the system matrices in (10).
Defining x̌0- ≜ x̂0-− x̄0, X̄ ≜E[X̂ ], Ū ≜E[U ], X̌ ≜ X̂− X̄ , and
Ũ ≜U−Ū , and using (12), it follows that

X̄ = Ax̄0 +BŪ +H, (13)

X̌ = Ax̌0- +BŨ +LΞ. (14)

The cost functional in (11) can be rewritten as

Ĵ(u) =E[X̌⊤QX̌ +Ũ⊤RŨ ]

+ X̄⊤QX̄ +Ū⊤RŪ−2X̄⊤QMr,
(15)

where Q = blkdiag(Q0,Q1, . . . ,QN−1,0), R =
blkdiag(R0,R1, . . . ,RN−1), Mr = [m⊤0 m⊤1 · · · m⊤N ]

⊤.
Note that the cost function (15) can be separated into
two parts along with separated dynamics (13) and (14),

respectively. From (13), (14), and (15), the covariance
steering problem of the estimated state x̂ (Problem 2) can
thus be divided into mean control and covariance control
problems, which can be found in the extended version of
this paper [24].

The solution for the mean control problem to obtain the
mean trajectory (x̄k)

N
k=0 and (ūk)

N−1
k=0 is given by [18]

Ū∗ =W (−V + B̄⊤N (B̄NWB̄⊤N )
−1

(x̄N − ĀN x̄0−HN + B̄NWV )),
(16)

where W = (B⊤QB+R)−1, and V = B⊤Q(Ax̄0 +H−Mr).
The solution to the covariance control problem is given

by the controller of the form

ũk =
k

∑
i=0

Kk,ix̌i, (17)

equivalently, by Ũ = KX̌ , where the control gain matrix K
is lower block diagonal and is computed from K = F(I +
BF)−1, where F is obtained by solving the following convex
optimization problem [20]

min
F

trace[((I +BF)⊤Q(I +BF)+F⊤RF)PZ ], (18)

subject to

∥P1/2
Z (I +BF)⊤E⊤N (Pf − P̃N)

−1/2∥−1≤ 0, (19)

where PZ = AP̂0-A⊤+LPΞL⊤ is the covariance of Z ≜ Ax̌0- +
LΞ and PΞ = blkdiag(Pξ0

, · · · ,PξN ) is the covariance of the
innovation process. For more details on the construction of
the covariance steering controller, please see [20], [25].

IV. COMPUTING THE NOMINAL TRAJECTORY

In this section, we develop an efficient algorithm to find
nominal trajectories for nonlinear systems using the mean
controller (16). A deterministic nonlinear dynamic model,
i.e., with the noise wk set to zero,

xk+1 = f (xk,uk,0), (20)

is considered. Let (xr
k)

N−1
k=0 and (ur

k)
N−1
k=0 be a nominal tra-

jectory for this system. The linearized model (3) along this
nominal trajectory will be used by the mean controller (16) to
compute a control sequence (uc

k)
N−1
k=0 and the corresponding

state sequence (xc
k)

N−1
k=0 .

Definition 1: A nominal trajectory is called a compatible
nominal trajectory for system (20) if xr

k = xc
k and ur

k = uc
k for

k = 0, . . . ,N−1.
Linearizing along a compatible nominal trajectory ensures

that the nonlinear system is linearized at the “correct” points.
When applying the designed control to the linearized system,
the resulting trajectory is the same as the nominal trajectory,
which means that the system reaches the exact points where
the linearization is performed. On the other hand, there will
be extra errors caused by the linearization if the system is
linearized along a non-compatible nominal trajectory.

The iterative algorithm to find a compatible nominal
trajectory is given in Algorithm 1.



Algorithm 1: Compatible Nominal Trajectory

1 Initialize (xr
k)

N−1
k=0 and (ur

k)
N−1
k=0 ;

2 while NotConverged do
3 Linearize (20) along (xr

k)
N−1
k=0 and (ur

k)
N−1
k=0 ;

4 Compute the mean optimal control using (16) to
obtain the control sequence (uc

k)
N−1
k=0 ;

5 Compute the the controlled state trajectory
(xc

k)
N−1
k=0 using (13) ;

6 Set (xr
k = xc

k)
N−1
k=0 and (ur

k = uc
k)

N−1
k=0 ;

7 return (xr
k)

N−1
k=0 and (ur

k)
N−1
k=0 ;

When the algorithm converges, the nominal trajectory is
the same as the mean optimal trajectory, which, by definition,
is a compatible nominal trajectory. Note that (16) gives
the analytical solution of the mean control, which can be
quickly computed. Each iteration of the algorithm has a low
computational load and the overall algorithm may be solved
efficiently.

(a) (b)

(c) (d)

Fig. 1: Construction of the CS-BRM. Gray shapes denote obstacles.
(a) Node sampling. (b) Mean trajectories are computed for all
neighboring node pairs using the mean controller. Only mean
trajectories that are collision-free are preserved. (c) Kalman filter
updates are simulated for each possible edge; (d) Covariance control
is applied for each edge to execute the transition between the nodes.

V. THE CS-BRM ALGORITHM

The nodes in the CS-BRM are sampled in the belief space.
In a partially observable environment, the belief bk at time-
step k is given by the conditional probability distribution
of the state xk, conditioned on the history of observations
(yi)

k
i=0 and the history of control inputs (ui)

k−1
i=0 , that is, bk =

P(xk|(yi)
k
i=0,(ui)

k−1
i=0 ). In a Gaussian belief space, bk can be

equivalently represented by the estimated state, x̂k, and the
estimation error covariance, P̃k, that is, bk = (x̂k, P̃k) [11],
[8]. The state estimate x̂k is Guassian, and is given by x̂k ∼
N (x̄k, P̂k). Hence, the Gaussian belief can be also written as
bk = (x̄k, P̂k, P̃k).

Algorithm 2: Constructing CS-BRM

1 V = {nod1, . . . , nodn}← SampleNodes(n) ;
2 Vr←V , E← /0 ;
3 for i = 1 : n do
4 Vnear← Neighbor(Vr, nodi);
5 foreach nod j ∈Vnear do
6 (Ūi j, τi j, MCosti j)← MTraj(nodi, nod j) ;
7 if ObstacleFree(τi j) then
8 P̃N- ← KF(nodi, nod j) ;
9 if P̃N- ⪯ P̃nod j then

10 (Ũi j, CovCosti j)←
CovControl(nodi, nod j) ;

11 CollisionCosti j←
MonteCarlo(Ūi j, Ũi j) ;

12 Ei j← (Ūi j, Ũi j, EdgeCosti j) ;
13 E← E ∪Ei j

14 (Ū ji, τ ji, MCost ji)← MTraj(nod j, nodi) ;
15 if ObstacleFree(τ ji) then
16 Repeat line 8-13 with i and j swapped

17 Vr←Vr \nodi ;

18 CS-BRM← (V, E) ;
19 return CS-BRM;

An illustration of the steps for building the CS-BRM is
shown in Fig. 1. The algorithm for constructing the CS-BRM
is given in Algorithm 2. The following procedures are used
in the algorithm.
Sample Nodes: The function SampleNodes(n) samples n
CS-BRM nodes. A node in the CS-BRM is represented by
the tuple (x̄,P, P̃-). Since P = P̂- + P̃- , the node can also be
equivalently represented by (x̄, P̂- , P̃-). For constructing node
j, the algorithm starts by sampling the free state space, which
provides the mean x̄ j of the distribution. Then, P̂j- and P̃j- are
sampled from the space of symmetric and positive definite
matrix space. P̃j- is the initial condition of the Kalman filter
update for the edges that are coming out of node j. In
Fig. 1(a), for each node, x̄ is shown as a black dot, P is shown
as a solid ellipse, and P̃- is shown as a dashed ellipse.
Neighbor: The function Neighbor(Vr,nodi) finds all the
nodes in Vr that are within a given distance d1 to node nodi,
where Vr is a node set containing all nodes in the CS-BRM.
Mean Trajectory: Given two nodes nodi and nod j,
MTraj(nodi,nod j) uses the mean controller (16) and Al-
gorithm 1 to find the compatible nominal trajectory, which
is also the mean trajectory from nodi to nod j. The function
returns the mean control Ūi j, mean trajectory τi j, and the
cost of the mean control MCosti j.
Obstacle Checking: The function ObstacleFree(τi j)
returns true if the mean trajectory τi j is collision free.
Kalman Filter: Given two nodes nodi and nod j,
KF(nodi, nod j) returns the prior estimation error covariance
at the last time step of the trajectory from nodi to nod j.
Covariance Control: CovControl(nodi,nod j) solves the



covariance control problem from nodi to nod j. It returns the
control Ũi j and the cost CovCosti j.
Monte Carlo: We use Monte Carlo simulations to calculate
the probability of collision of the edges. For edge Ei j, the
initial state x0 and initial state estimate x̂0- are sampled
from their corresponding distributions. The state trajectory is
simulated using the mean control Ūi j and covariance control
Ũi j. Then, collision checking is performed on the simulated
state trajectory. By repeating this process, we approximate
the probability of collision of this edge. The collision cost
CollisionCosti j is taken to be proportional to the probability
of collision along the edge.

Algorithm 2 starts by sampling n nodes in the belief
space using SampleNodes (Line 1). Lines 3-17 are the
steps to add CS-BRM edges. Given two neighboring nodes
nodi and nod j, Lines 6-13 try to construct the edge Ei j
and Lines 14-16 try to construct the edge E ji. In addition
to the edge controller, the edge cost is computed for each
edge. The edge cost EdgeCosti j is a weighted sum of
MCosti j, CovCosti j, and CollisionCosti j. With covariance
steering serving as the lower-level controller, the higher-level
motion planning problem using the roadmap is a graph search
problem similarly to a PRM. Thus, the covariance steering
approach transforms the belief space roadmap into traditional
PRM with specific edge costs.

In CS-BRM, each edge is obtained by solving a covari-
ance steering problem and the planned path using CS-BRM
consists of a concatenation of edges. Next, we given some
results regarding the concatenation of edges. Let (P̃k-)N

k=1 be
the sequence corresponding to the initial condition P̃0- and
let (P̃

′
k-)N

k=0 be the sequence corresponding P̃
′
0- We have the

following results.
Lemma 1: If P̃

′
0- ⪯ P̃0- , then P̃

′
k- ⪯ P̃k- , for all k = 0, · · · ,N.

The proof of this lemma is omitted. A proof of a similar
result can be found in [11]. From Lemma 1, it is straight-
forward to show that, if P̃

′
0- ⪯ P̃0- , we also have P̃

′
k ⪯ P̃k for

all k = 0, . . . ,N.
Proposition 2: Consider a path on the CS-BRM roadmap,

where the initial node of the path is denoted by (x̄i, P̂i, P̃i) and
the final node of the path is denoted by (x̄ j, P̂j, P̃j). Starting
from the initial node and following this path by applying
the pre-computed edge controllers, the robot will arrive at a
belief node (x̄, P̂, P̃) such that x̄ = x̄ j, P̂⪯ P̂j, and P̃⪯ P̃j.

The proof of this proposition is straightforward and is
omitted. Proposition 2 guarantees that, when planning on
the CS-BRM roadmap, the covariance at each arrived node
is always smaller than the assigned fixed covariance at the
corresponding node of the CS-BRM roadmap.

VI. NUMERICAL EXAMPLES

In this section, we illustrate our theoretical results for the
motion planning problem of a 2-D double integrator, a 3-D
double integrator, and a fixed-wing aerial vehicle in three
environments.

A. 2-D Double Integrator
The environment considered is shown in Figure 2. There

are ℓ landmarks placed in the environment shown as black

stars. The black polygonal shapes represent the obstacles.
The agent observes all landmarks and obtains estimates of
its position at all time steps. The agent achieves better
position estimates when it is closer to the landmarks. Let the
Euclidean distance between the position of the 2-D double
integrator and the jth landmarks be given by d j. Then, the
jth position measurement corresponding to landmark j is

jy = [x(1) x(2)]⊤+ηpd jvp, j = 1,2, · · · , ℓ, (21)

where ηp is a parameter related to the intensity of the
position measurement noise that is set to 0.1, and vp is a two-
dimensional standard Gaussian random vector. The velocity
measurement is given by

yv = [x(3) x(4)]⊤+ηvvv, (22)

where ηv is a parameter related to the intensity of the
velocity measurement noise that is set to 0.2, and vv is a
two-dimensional standard Gaussian random vector. Thus, the
total measurement vector y is a 2ℓ+ 2 dimensional vector,
composed of ℓ position measurements and one velocity
measurement.

The sampled CS-BRM nodes are shown in Figure 2(a).
To show the advantage of sampling non-stationary nodes,
we sample multiple velocities at each position. Figure 2(b)
shows the roadmap from the CS-BRM algorithm. Only the
mean trajectories are shown (green lines). Note that each
position have multiple belief nodes because of the multiple
velocities.

(a) (b)

Fig. 2: (a) Planning environment and sampled CS-BRM nodes. (b)
CS-BRM roadmap by sampling multiple velocities at each position.
The green lines are the mean trajectories between the nodes. The
gray ellipses are the 3σ confidence intervals of the covariances of
the positions.

After the CS-BRM is built, the path planning problem
on CS-BRM is the same as the problem of planning using
a PRM, which can be easily solved using a graph search
algorithm. The difference between the CS-BRM and PRM
is that the edge cost in CS-BRM is specifically designed to
deal with dynamical system models and uncertainties, and
the transition between two nodes of CS-BRM is achieved
using covariance steering as the edge controller.

The planned path is given in Figure 3(a). For comparison,
SLQG-FIRM is used to solve the same problem. SLQG-
FIRM uses the same belief nodes as in Figure 3. However,



(a) (b)

Fig. 3: (a) Path planned using CS-BRM; (b) Path planned using
SLQG-FIRM.

the velocity at each node has to be zero. Each edge of SLQG-
FIRM is constructed by a time-varying LQG controller and
a stationary LQG controller The planned path is shown in
Figure 3(b). The red ellipses are the state covariances at
the last step of the time-varying LQG controller As seen
in this figure, the ellipses are larger than the sampled state
covariance (bold black ellipses). Thus, a converging step
(stationary LQG) is required at every intermediate node.
The time-varying LQG controller is switched to the SLQG
controller until the state covariance converges to a value
that is smaller than the sampled covariance. The cost of
the planned paths in Figures 3(a) and 3(b) are 104.87 and
240.47, respectively. The decrease in the path cost is due
to the decrease of the mean control cost. For SLQG-FIRM,
the robot has to stop at every intermediate node. While for
CS-BRM, the robot goes through each intermediate node
smoothly, which results in a more efficient path.

B. Fixed-Wing Aircraft
The discrete-time system model of a fixed-wing aerial

vehicle can be found in [24], [26]. The environment setting
is similar to the 2-D double integrator example. The jth

position measurement corresponding to landmark j is
jy = [x y z φ ]⊤+ηd jv, j = 1,2, . . . , ℓ, (23)

where η is set to 0.05, and v is a 4-dimensional standard
Gaussian random vector. The measurement vector y is a 4ℓ-
dimensional vector, where ℓ is the number of landmarks.

The planned path is shown in Figure 4. Instead of flying
through the narrow passage between the four obstacles,
which resulting a high probability of collision, the algorithm
chooses a path that trades off between control cost and
collision cost while minimizing the total edge costs.

C. 3-D Double integrator
The final example is a 3-D double integrator robot in

cluttered environment position cameras. The robot gets state
measurement only if it is in the line-of-sight of one of the
cameras. The planning environment along with the CS-BRM
roadmap are shown in Figure 5(a). The red triangles are
cameras. The gray polyhedron are obstacles. If the robot is
in a position where all cameras are blocked by the obstacles,
it receives no measurement and Ck = 0. The planed path is
shown in Figure 5(b).

Fig. 4: Planning results using the CS-BRM for the fixed-wing
vehicle. The four spheres are the obstacles. The black circles
represent the state mean (position) of the nodes.

(a) (b)

Fig. 5: Planning results of the 3-D double integrator

VII. CONCLUSION

A belief space roadmap (BRM) algorithm is developed
in this paper. The nodes in BRM represent distributions of
the state of the system and are sampled in the belief space.
The main idea is to use covariance steering to design the
edge controllers of the BRM graph to steer the system from
one distribution to another. Compared to [8], the proposed
method allows sampling non-stationary belief nodes, which
has the advantage of more complete exploration of the belief
space and finds low cost plans. For covariance steering of
nonlinear systems, we introduce the concept of compatible
nominal trajectories and propose an efficient algorithm to
compute compatible nominal trajectories. Compared to the
standard PRM, the additional computation load comes from
the computation of the edge controllers and edge cost eval-
uations, which, however, are done offline.
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