Class-Ordered LPA*: An Incremental-Search
Algorithm for Weighted Colored Graphs

Jaein Lim

Abstract— Replanning is an essential problem for robots
operating in a dynamic and complex environment, when the
robot model of the environment changes continuously. Pre-
vious incremental-search algorithms efficiently reuse existing
search results to facilitate a new plan when the environment
changes. Yet, they rely solely on geometric information of the
environment encoded in an edge-weighted graph. However,
semantic information often provides valuable insights that
cannot easily be captured quantitatively. We encode both
semantic and geometric information of the environment in a
weighted colored graph, in which the edges are partitioned
into a finite set of ordered semantic classes (e.g., colors),
and we incrementally search for the shortest path among the
set of paths with minimal inclusion of inferior classes using
information from the previous search using ideas similar to
LPA*. The proposed Class-Ordered LPA* (COLPA¥*) algorithm
inherits the strong theoretical properties of LPA*, namely,
optimality and efficiency, but optimality is with respect to
the total path order. Numerical examples show that semantic
information helps reduce the relevant search space in a dynamic
environment.

I. INTRODUCTION

Replanning is a fundamental problem for robots operating
in a complex and dynamic environment, where obtaining
accurate models of the environment is difficult and the
models themselves become quickly out of date [1]. Plans
made on these models need to be quickly updated to resolve
any relevant inconsistencies with the environment.

Consider, for example, a robot-navigation problem in a
partially-known environment, where a robot having limited
sensing plans for the shortest route. The robot must update its
route when obstacles in the unknown region become known
as the robot gathers more information about the environ-
ment [2]-[5]. Fast replanning is crucial for safe and efficient
navigation while avoiding collisions with previously-unseen
obstacles.

The significance of replanning becomes even more obvi-
ous when there are multiple robots navigating in the same
environment. Unlike the previous example in which the
obstacles are assumed to be static, multi-robot path finding
problems involve dynamic obstacles induced by the robots’
trajectories. Typically, more replanning is required to reach

J. Lim is a graduate student at the School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0150, USA, Email:
jaeinlim126 @ gatech.edu

O. Salzman is an Assistent Professor at the Henry and Marilyn Taub
Faculty of Computer Science, Technion, Haifa 3200003, Israel, Email:
osalzman@cs.technion.ac.il

P. Tsiotras is the David and Andrew Lewis Professor at the Daniel
Guggenheim School of Aerospace Engineering and the Institute for Robotics
& Intelligent Machines, Georgia Institute of Technology, Atlanta, GA
30332-0150, USA, Email: tsiotras@gatech.edu

Oren Salzman

Panagiotis Tsiotras

ol LW
Sty

C e

Fig. 1: Semantic segmentation of outdoor environment.

consensus for the team of robots to find a feasible path [6],
[7].

Replanning is necessary to resolve reoccurring inconsis-
tencies of the models with the underlying uncertain envi-
ronment. Incremental-search methods are well known tech-
niques to quickly replan using previous results [8]-[10].
These methods use previous search results to facilitate a
new plan by only replanning for the inconsistent part of
the previous search, and hence they often show a significant
speedup compared to searching from scratch, especially
when the inconsistent part is small and close to the goal.

The previous incremental-search methods find efficiently a
new plan based on previous search result when the environ-
ment is uncertain. However, they all rely on a fundamental
assumption: the current information about the environment
which identifies the “inconsistency” of the previous search
is always accurate. Hence, the new plan found is optimal
with respect to the most current information. However, this
assumption may not always be true in uncertain environments
where attaining accurate information is not always possible.
For example, noisy sensors can contaminate the current
information about a certain region of the environment, and
hence the most-current information about that region may
not be reliable. So, it would be prudent to plan a path that
avoids these regions.

In addition, the environment often contains certain seman-
tic information that is important for planning besides a binary
classification of the environment such as known/unknown
or reliable/unreliable. Consider, for example, an outdoor
navigation problem where each part of the environment can
be classified as road, grass, mud, and trees (see Figure 1).
One may then want to find the shortest path with minimal

inclusion of trees, then mud, then grass, and then road.
The question we address in this paper is how to replan
in such environments, where both semantic and geometric
information are imperative.

A. Related Work

A notion of optimality that incorporates semantic in-
formation was introduced by Wooden and Egerstedt [11]
in the context of planning on a weighted colored graph,
where the edges of the graph are partitioned into a finite
set of classes with a total order, and the edges are also
associated with numerical weights. They designed a new
weight function based on the semantic (color) and geometric
(weight) information of all the edges in the graph, so that
the new weight function assigns to each edge a numerical
cost. The shortest path with respect to the new weight is
guaranteed to be the shortest path among the set of paths with
minimal inclusion of edges of lower-quality classes [11]. For
example, in the outdoor navigation problem in Figure 1 one
may want to find the shortest path among the set of paths
that includes the least number of edges that correspond to
trees, then to mud, then grass, and then road. Once this
weight map is found, and the original weights of all edges are
modified accordingly, then a standard search algorithm such
as Dijkstra [12] or A* [13] can find the optimal solution.
However, to obtain the weight function, one needs to know
the original weight and the color of all the edges in the
weighted colored graph, which may not be possible for most
applications.

In our previous work [14], we addressed this issue by
generalizing A* to directly use the total order of paths
defined in [11]. The Class-Ordered A* (COA*) in [14]
finds the optimal path in a weighted colored graph, using
an abstract queue to order the expansions of optimal path
candidates. The COA* algorithm lazily and incrementally
builds an optimal search tree, and hence only the edges along
the optimal candidate path are evaluated (that is, the class and
the weights of the edges are revealed). COA* is proven to be
complete and correct, such that the algorithm terminates by
finding the shortest path among the set of paths with minimal
inclusion of inferior edges. However, COA* is a one-time
planner which does not use previous search results. In this
paper, we use the notion of optimality defined in COA* to
incrementally search in a dynamic environment where both
geometric and semantic information are important.

Incremental search methods are widely used technique to
replan using geometric information of the environment. For
example, when the environment is too complex, sequentially
approximating the environment with samplings has been
shown to be very effective for planning. Sampling-based
planners densify the graph representation of the environment
with incremental sampling, and then they plan sequentially
on the sequence of graphs with increasing density to refine
the solution [15]-[19]. The choice of replanning strategy
dictates their convergence rate to the optimal solution.

Lifelong Planning A* (LPA¥*) is a well-known algorithm
that uses a consistent heuristic to efficiently restrict replan-
ning only to the relevant portion of the current search [9]. The

inconsistent and relevant part of the search is repaired to find
the new optimal solution. The provable efficiency of LPA*
(that is, no vertices are expanded more than twice given a
graph change) has made the LPA* algorithm the backbone
for numerous applications where replanning is necessary [3],
[16], [17], [20].

D*-Lite [3] uses LPA* to quickly replan in a partially-
unknown terrain. Anytime Dynamic A* [21] finds a subop-
timal solution quickly using an inflated heuristic and then
replans based on LPA* with a decreasing inflation factor.
RRT# [16], LBT-RRT [20] and BIT* [17] use ideas similar
to LPA* to update the (near-) optimal plan efficiently using
a sequence of graphs with increasing density based on the
previous search tree. ABIT* [22] uses the ideas of Truncated-
LPA* [10] to truncate the inconsistency propagation of LPA*
as soon as the current solution is guaranteed to be bounded
suboptimal. This reduces the graph operations further. These
methods have been shown to be very effective for planning
in uncertain or complex environments.

In this paper, we extend COA* and propose the Class-
Ordered LPA* (COLPA¥*) for lifelong planning in dynamic
weighted colored graphs to find the shortest path among the
set of paths with minimal inclusion of inferior edges. The
main observation is that the regular numerical ordering of
LPA* to prioritize the repairing of inconsistent sub-paths
can be generalized to an abstract total order. Conveniently,
the proposed COLPA* algorithm inherits all the theoretical
properties of LPA* in terms of efficiency and optimality, but
as in the case of COA* the optimality is with respect to the
total order on the set of paths.

II. PROBLEM FORMULATION

In this section, we introduce some notation and the nec-
essary assumptions that will be used through the rest of this

paper.

A. Weighted Colored Graph

Let G = (V,E) be a graph with vertex set V and edge
set E. Let ¢y : V. — L be a vertex perception function
that classifies each vertex v € V to an element in a finite
integer set £ = {1, ..., L}, such that ¢y partitions the set V,
namely, V' = |J,c . Ve where V; = {v € V : ¢y (v) = £} and
ViNV; = @ for i # j. Similarly, define ¢5 : E — K to be
an edge perception function that classifies each edge e €
to an element in a finite integer set L = {1,..., K}, such
that B = (J, cxc Ex where each Ey = {e € E: ¢p(e) = k}
and E; N E; = @ for ¢ # j. We will assume that the edge
class set is larger than the vertex class set, i.e., L < K,
and that, for each edge, ¢ = (u,v), it holds that ¢g(e) >
max{¢y (u), dv (v)}. This assumption allows us to quickly
underestimate the edge class by classifying the end vertices
first. Also, for each edge e € FE, a weight function w : E —
R, assigns a non-negative real number, e.g., the distance to
traverse this edge. We say that an edge e is evaluated when
both the values ¢ (e) and w(e) are computed.

B. Optimal Paths

Define a path 7 = (v1,v2,...,v,,) on the graph G =
(V,E) as an ordered set of distinct vertices v; € V, ¢ =
1,...,m, such that for any two consecutive vertices v;, vVjt1,
there exists an edge e = (v;,v;41) € E. We will inter-
changeably denote a path as the set of such edges throughout
this paper. Let vs,v; € V be the start and goal vertices,
respectively. Denote by I1(vg, v) (or II(v) in short when there
is no danger of ambiguity) the set of all paths from v to some
vertex v in G. Let II;(v) be the subset of II(v) in which the
worst (greatest) edge class included in each path in II;(v)
is exactly k. That is,

Iy (v) = {7 € I(v) : d(m, k) > 0 and d(m, ¢) = 0,V¢ > k},

where d(m,k) = > ¢ cripp(e)=ry w(€) is the sum of edge
weights that are of class & in path 7. Furthermore, define

I (v) = {7 € Mg (v) : d(m, k) =i},

to be the set of class-k paths which have exactly i-long edges
of class k. We shall impose a total order on the set of paths
from v to any vertex v with II} (v) < IIj(v) for any 4, j
whenever k& < ¢ and IIi (v) < IIj (v) for all i < j. Hence,
we define the optimal path set IT*(v) as the nonempty set
of paths to v having best worst-class edge with the shortest
worst-class edges, that is,

II*(v) = min min{IT; (v)},

where the minimum is defined with respect to the total path
order. The optimal path problem is to find the path 7* from vg
to vy which is the shortest path in II*(v,), that is,

7* = argmin E w(e).
weIl* (vg) een

III. THE COLPA* ALGORITHM

Before we describe our algorithm, we start by detailing
the subtle-yet-important different data structures it uses,
namely, the search tree (Section III-A) and the priority queue
(Section III-B). We then show (Section III-C) how these are
used to define COLPA*.

A. Search Tree

In typical search algorithms, such as A*, each path stores
the so-called cost-to-come, namely, the accumulated cost
along the path edges. However, as we will see, in our setting
it will be beneficial to store the accumulated cost for each
color individually. Thus, in our setting, the values of cost-
to-come are not real numbers but vectors in IR"q, where the
k-th index stores d(m, k), the sum of edge weights along
the path m whose class is k. We denote this vector value
by 0(7) = (d(m,k))rexc € RIFI. Note that the total order
defined over two paths 7, and 7o from the same start vertex
to the same goal vertex induces a total order on the vector
values, that is, 0(m;) < 6(ma), if m1 < mo. The other
direction is also true, when a pair of cost-to-come values for
the paths from the same start and goal vertices are compared.
That is, 6(71) < O(ma) implies m; < 7o if both 71 and 79
have the same goal vertices.

Each node in the search tree that COLPA* constructs
corresponds to a path to a given vertex. It stores two cost-
to-come values for this vertex, namely, the g-value and the
right-hand-side value or rhs-value [9]. The g-value is the
accumulated cost-to-come by traversing the previous search
tree, whereas the rhs-value is defined as

rhs(v) := {O’

minyepred(v)19(w) + 0(u,v)}, otherwise.

if v = v,

Here the addition is a vector addition in RI*!, the minimum
is defined with respect to the path-induced total order, and
pred(v) is the predecessors of the vertex v in the graph G.
Hence, the rhs-value is an one-step better informed estimate
of the cost-to-come than the g-value.

Additionally, each node stores a backpointer for the cor-
responding vertex. The backpointer of a vertex v is the
predecessor vertex which minimizes the rhs-value of v, and
it is denoted by

i = {2

argming e, eq(v)19(w) + 0(u,v)}, otherwise.

if v = v,

Hence, the path to v is easily retreived by following the
backpointers of v to the start vertex vs.

A vertex v is called overconsistent if rhs(v) < g(v) and
underconsistent if g(v) < rhs(v). Otherwise, a vertex v
is consistent, in which case we write rhs(v) = g(v). In
other words, a vertex v is overconsistent if the cost-to-
come of this vertex was overestimated previously, and v
is underconsistent if the cost-to-come of this vertex was
underestimated previously.

B. Priority Queue

We use an edge queue () to prioritize the expansion (i.e.,
evaluation) of inconsistent vertices in the same way LPA*
sorts the inconsistent vertices, except the key component
values are not real numbers but they are vectors. We assume
that there exists a consistent heuristic cost-to-go function 5 :
V — RI®l which assigns to a vertex an admissible estimate
cost-to-go to the goal vertex vy with h(u) < 6(u,v) + h(v)
for any u € V and v € succ(u), the successors of u. A
trivial consistent heuristic function maps to 0 € RI*!.

The key k(v) of vertex v contains two components :
k(v) := [k1(v); k2(v)], where k1 (v) = min{g(v),rhs(v)}+
h(v) and ko(v) = min{g(v),rhs(v)}. Keys are sorted with
lexicographic ordering, that is k(v) < k’(v) if and only if
either k1 (v) < k1 (v) or (k1(v) = Kkj(v) and ka(v) < k5(v)).

C. Details of the Algorithm and Main Procedures

The Class-Ordered LPA*(COLPA¥*) is similar to the reg-
ular LPA*, except that COLPA* obeys the total order hereto
defined in the vector space RIX!. All the vertices of the
graph G are implicitly initialized with the cost-to-come
values set to infinity. Also, we denote g(v) = rhs(v) if and
only if two vectors are equal componentwise. The rest of the
algorithm is identical to LPA* [9], but for completness of the
discussion, we give a brief description of the algorithm.

Algorithm 1 Class-Ordered LPA*(G, vs, vg)

1: procedure CALCULATEKEY(v) return
2: [min{g(v),rhs(v)} + h(v) ; min{g(v), rhs(v)}];
3: procedure UPDATEVERTEX(v)

4 if v # vs then

5: bp() - argmlnuEpred(v) (g(u) (u U));
6: rhs(v) = g(bp(v)) + 0(bp(v), v);

7 if v € then Q.REMOVE(v);

8 if g(v) # rhs(v) then

9: Q.INSERT((v, CALCULATEKEY (v)));

10: procedure COMPUTESHORTESTPATH()

11 while Q. TOPKEY < CALCULATEKEY (v,) or
12: g(vg) # rhs(vg) do

13: u = Q.Pop();

14: if rhs(u) < g(u) then

15: g(u) = rhs(u);

16: for all v € succ(u) do UPDATEVERTEX(v);
17: else

18: g(u) = oo

19: for all v € succ(u) U {u} do

20: UPDATEVERTEX(v);

21: procedure MAIN()

22: Q +

23: rhs(vs) = 0;

24 UPDATEVERTEX (vs);

25: while true do

26: COMPUTESHORTESTPATH();

27: Wait for changes in Ej

28: L <+the set of edges that changed;

29: for all e = (u,v) € L do

30: UPDATEVERTEX (v);

We begin the search by initiating a search tree T with
the start vertex as the root by setting rhs(vs) = 0. Then,
we put the start vertex in the priority queue by updating
this vertex. The operation UPDATEVERTEX(v) finds a new
optimal parent for a vertex v, and then puts this vertex
according to its key values if the cost-to-come of the path up
to this vertex has become inconsistent. Since all vertices are
initialized with an infinite cost-to-come, all the vertices that
are updated during the first search with a finite cost-to-come
become inconsistent, and consequently they will be put in
the priority queue. This makes LPA*/COLPA* equivalent to
A*/COA* [14] during the first search.

In the main search loop, COMPUTESHORTESTPATH() re-
moves the top vertex from the priority queue, and then ex-
pands it. The expansion of a vertex consists of the following
procedures. If the top vertex in the priority queue is over-
consistent, then the algorithm makes this vertex consistent by
assigning the g-value of this vertex to its rhs-value. Then,
the algorithm updates all the successors to propagate the
inconsistencies that may have arisen due to this assignment.
If the top vertex of the priority queue is underconsistent,
then the algorithm makes this vertex either overconsistent or

consistent (if it was already infinity) by assinging a value
of infinity. Then, the algorithm updates this vertex and all
its successors. Note that the g-value of a vertex can only
be changed during the COMPUTESHORTESTPATH operation
when the vertex is expanded.

Since the operation UPDATEVERTEX puts the vertex in the
priority queue only if the vertex is inconsistent, the priority
queue contains only the inconsistent vertices. The priority
queue prioritizes the expansion of inconsistent vertices in
the same manner the A* algorithm prioritizes the expansion
of optimal path candidates, and hence the key values of the
expanded vertices is monotonically non-decreasing within
the COMPUTESHORTESTPATH operation. Hence, when the
goal vertex becomes consistent, or there does not exist any
inconsistent vertices that could possibly improve the goal
cost-to-come, then the current path to the goal is the optimal
path, terminating the search. The algorithm then waits for
any graph changes. When there are changes in the graph,
either geometrically or semantically in any of the edges of
the graph, the algorithm updates the end vertices of these
changed edges in order to propagate the repairing of any
relevant inconsistencies accordingly.

COLPA* inherits the theoretical properties of LPA* in
terms of optimality and efficiency. That is, when the CoM-
PUTESHORTESTPATH terminates, the path from vy to v, ob-
tained by following the backpointers is no worse than 7, the
shortest path among the set of paths with minimal inclusion
of inferior edges. Also, during the COMPUTESHORTEST-
PATH operation, no vertices are expanded more than twice.
Note that when the graph is unicolored, COLPA* reduces
to LPA*. In that case, the same number of vertices will be
expanded in the same order.

Figure 2 shows the search instances of COLPA* in a
partially-known 2D environment after the COMPUTESHORT-
ESTPATH operation terminates, where new sensor readings
update the map. A graph is constructed by sampling vertices
using a Halton sequence [23], and then the same graph is
used throughout without additions or deletions of vertices
and edges. When a vertex v is updated during the UPDAT-
EVERTEX(v) procedure, each of the neighboring edges is
evaluated, that is, the value of 0(u,v) for all u € pred(v)
is computed. All the evaluated edges in this example belong
to a class in K = {feasible, unknown, infeasible}. COLPA*
always finds the shortest path with minimal inclusion of the
edges in collision (red), then the edges that are unknown
(gray), then the feasible edges (blue). In our implementation
we used a straight-line path from a vertex to the goal vertex
as the heuristic cost-to-go of that vertex.

In another example, depicted in Fig. 3, COLPA* finds the
optimal solution in a dynamic environment where a certain
region of the environment is known to be hazardous. The
edges of the graph can be classified into six colors depending
on the intensity level. COLPA* finds the shortest path among
the set of paths that include shortest edges in the hazardous
region, in the order of high intensity to low intensity.

Note that COLPA* finds the optimal solution that COA*
would find it in the same environment. The differences

N\
SIS

(b) Second Search

(a) First Search

Fig. 2: COLPA* search on Halton-sequence graphs in a
partially-known environment, where new sensor reading up-
dates the map over time. Blue, gray and red are feasible,
unknown, and infeasible edges respectively. Light, semi-
bold, and bold edges are, respectively, the evaluated edges,
the edges in the current search tree, and the edges in the
solution path from @ to e.

(a) First Search

(b) Second Search

Fig. 3: COLPA* search on Halton sequence graphs in a
dynamic environment with known hazardous region (red).
COLPA¥* finds the shortest path among the set of paths which
have the shortest edges in the hazardous region.

between the two algorithms are that COLPA* uses the search
tree constructed in the previous iteration to selectively repair
only the relevant inconsistent part of the current search,
whereas COA* builds a new search tree from scratch. Also,
COLPA¥* evaluates all the incident edges when it expands a
vertex, whereas COA* uses an edge queue with heuristically-
estimated edge values to lazily construct the search tree. This
results in fewer edge evaluations at the expense of more
vertex expansions [24], [25].

IV. NUMERICAL EXAMPLES

We compared the solution cost and the number of vertex
expansions required to find the optimal solution for both of
the COLPA* and LPA* algorithms in a dynamic environ-
ment. Note that COLPA* on a unicolor weighted graph is
equivalent to LPA*, and hence the same number of vertices
will be expanded and the solution cost will be also the
same. The solutions of both algorithms become qualitatively
different only when the graph has more than one color. We
show some examples where the semantic information of the

environment is utilized by COLPA* to find a solution faster
compared to LPA* by reducing the relevant search space.

Suppose we have some prior knowledge about the envi-
ronment that some region of the environment contains the
shortest path from a point A to point B. Then, coloring that
region with high-level class will make the rest of the region
one class inferior. Hence, COLPA* searches in a reduced
search space, expanding a fewer number of vertices to find
the optimal solution. Figure 4 shows the search instances of
COLPA* with two different semantic guidance in compari-
son to LPA*. The top row shows the search trees constructed
by COLPA* over three consecutive search episodes in a
dynamic environment without any prior knoweldge, which is
equivalent to LPA*. The middle and the bottom rows show
the search trees of COLPA* in the same environment with
two different priors, colored in green and blue, respectively.

We denote by COLPA*-G, the version of COLPA* which
considers the green region as the top class, hence making
the other regions relatively one class inferior. The optimal
path is the shortest path among the set of paths that has
the shortest edges in collision, then outside of the green
region, and then inside the green region. Likewise, COLPA*-
B is the version of COLPA* that takes the blue region to
be the top class, and replans for the shortest path within
the blue region. The blue region is the subset of the green
region containining the optimal solution. Hence, COLPA*-B
exploits better information than COLPA*-G, resulting in a
fewer number of verex expansions. The number of vertices
expanded for each search episode, and the solution length
are shown in Table I (First Experiment).

In the second experiment, we consider two different priors
for a dynamic environment: one with an “aggressive” prior
that guides the search close to obstacles, and the other with
a “conservative” prior which leaves a larger clearance from
the obstacles. These priors are colored in green and blue
respectively, and we denote the version of COLPA* with
the aggressive prior COLPA*-G and the version of COLPA*
with the conservative piror COLPA*-B. The aggressive prior
allows COLPA* to find shorter paths than the conservative
prior, while the conservative prior yields longer paths which
need not be replanned upon environment changes. This is
depicted in Figure 5. The number of vertices expanded for
each search episode and the solution lengths are shown in
Table I (Second Experiment).

Note that if there exists a solution within the top class
region, then COLPA* will find the shortest path within this
top class region. If no solution exists within this region, then
COLPA* will still try to find the shortest path in the next
best set of paths.

V. CONCLUSION

Replanning is crucial for many robotics applications,
where the environment is dynamic or too complex to be
captured in a single model. Consequently, when the model
of the environment changes, the plan needs to be updated
accordingly. Incremental-search methods efficiently use pre-
vious search results to facilitate a new plan when the model

(€9) (b ®

Fig. 4: LPA* (top), COLPA*-G (middle), and COLPA*-B
(bottom) search on a dynamic environment from @ to e,
where COLPA*-G favors the green region during the search,
and COLPA*-B favors the blue region during the search. The
green region contains the blue region, and the blue region
contains the optimal solution.

changes, and yet they rely solely on geometric information of
the environment that is encoded as numerical weights on the
edges of the graph. Semantic information of the environment,
on the other hand, can provide crucial insight for good plans.

We have extended LPA* to operate on weighted colored
graphs, by generalizing the numerical order of the regular
LPA* algorithm to the total order defined on the set of paths.
The proposed Class-Ordered LPA* (COLPA*) algorithm
finds the shortest path among the set of paths with minimal
inclusion of inferior colors. COLPA* inherits the theoretical
properties of LPA*, namely, the optimality and efficiency,
except that the notion of optamality is based on the total
order on the set of paths with colored edges.

Our numerical examples illustrate that semantic informa-
tion can benefit planners to find the shortest path faster. This
is because COLPA* expands a fewer number of vertices
as the semantic information effectively reduces the relevant
region of the search space.

Finally, it should be pointed out hat COLPA* can also be
used to guide a robot’s search by a human operator. This is
similar in nature to the work by Ranganeni et al. [26] who
showed that rough human guidance can be used to speed up
a planner’s capabilities. Alternatively, this information can be
learned by the robot from previous experiences and used to

(a) COLPA*-G First Search

(b) COLPA*-G Second Search

(c) COLPA*-B First Search (d) COLPA*-B Second Search

Fig. 5: COLPA* search with two different priors : aggressive
(green) and conservative (blue). COLPA*-G finds shorter
paths than COLPA*-B, while COLPA*-B does not replan
when the environment changes.

search in relevant regions of the environment first. Obtaining
such good semantic information about the environment is a
good topic for future investigation.

ACKNOWLEDGEMENT

This work has been supported by ARL under DCIST CRA
WO11NF-17-2-0181 and NSF under award IIS-2008686.

REFERENCES

[1] L. Janson, T. Hu, and M. Pavone, “Safe motion planning in unknown
environments: Optimality benchmarks and tractable policies,” in Pro-
ceedings of Robotics: Science and Systems, Pittsburgh, PA, June 26-30
2018.

[2] A. T. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of 14th International Joint Conference on Artificial
Intelligence, Montreal, Canada, August 20-25 1995, p. 1652 — 1659.

[3] S. Koenig and M. Likhachev, “D* lite,” in 18th National Conference
on Artificial Intelligence, Edmonton, Canada, July 28—Aug 1 2002, p.
476-483.

[4] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
354-363, 2005.

[5] M. Likhachev and A. Stentz, “PPCP: Efficient probabilistic planning
with clear preferences in partially-known enviornments,” in AAAI,
Boston, MA, July 16-20 2006, p. 860-867.

[6] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-
agent teams in complex environments using rapidly-exploring random
trees,” in IEEE International Conference on Robotics and Automation,
Shanghai, China, May 9-13 2011, pp. 4956-4961.

[7]1 G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015.

[8] G. Ramalingam and T. Reps, “An incremental algorithm for a general-
ization of the shortest-path problem,” Journal of Algorithms, vol. 21,
pp. 267-305, 1996.

[9]1 S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*”
Artificial Intelligence, vol. 155, no. 1, pp. 93 — 146, 2004.

[10] S. Aine and M. Likhachev, “Truncated incremental search,” Artificial
Intelligence, vol. 234, pp. 49 — 77, 2016.

TABLE I: Number of vertex evaluations and solution length
for LPA* and COLPA* with different semantic information
recorded over consecutive search queries in a dynamic envi-

ronment.
First Experiment LPA* COLPA*-G COLPA*-B
First Query
Vertex Expansion 91 67 54
Solution Length 1.039 1.039 1.039
Second Query
Vertex Expansion 7 7 7
Solution Length 0.465 0.465 0.465
Third Query
Vertex Expansion 9 9 9
Solution Length 1.039 1.039 1.039
Total # V-Expansion 107 83 70
Second Experiment LPA* COLPA*-G COLPA*-B
First Query
Vertex Expansion 91 63 41
Solution Length 1.039 1.039 1.232
Second Query
Vertex Expansion 29 29 0
Solution Length 0.996 0.996 1.232
Total # V-Expansion 120 92 41

[11] D. Wooden and M. Egerstedt, “On finding globally optimal paths
through weighted colored graphs,” in Proceedings of the 45th IEEE
Conference on Decision and Control, San Diego, CA, December 13—

15 2006, pp. 1948-1953.
E. W. Dijkstra, “A note on two problems in connexion with graphs,”

[12]

Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[21]

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,

“Anytime search in dynamic graphs,” Artificial Intelligence, vol. 172,
no. 14, pp. 1613 — 1643, 2008.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July
1968.

J. Lim and P. Tsiotras, “A Generalized A* Algorithm for Finding
Globally Optimal Paths in Weighted Colored Graphs,” arXiv e-prints,
December 2020.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846-894, 2011.

O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE International
Conference on Robotics and Automation, Karlsrithe, Germany, May
6-10 2013, pp. 2421-2428.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in IEEE Inter-
national Conference on Robotics and Automation, Seattle, WA, May
26-30 2015, pp. 3067-3074.

M. P. Strub and J. D. Gammell, “Adaptively informed trees (AIT*):
Fast asymptotically optimal path planning through adaptive heuristics,”
in IEEE International Conference on Robotics and Automation, May
31-Aug 31 2020, pp. 3191-3198.

O. Salzman and D. Halperin, “Asymptotically-optimal motion plan-
ning using lower bounds on cost,” in IEEE International Conference
on Robotics and Automation, Seattle, WA, USA, 26-30 May 2015, pp.
4167-4172.

, “Asymptotically near-optimal RRT for fast, high-quality motion
planning,” IEEE Trans. Robotics, vol. 32, no. 3, pp. 473-483.

M. P. Strub and J. D. Gammell, “Advanced BIT* (ABIT*): Sampling-
based planning with advanced graph-search techniques,” in /EEE
International Conference on Robotics and Automation, Paris, France,
May 31-Aug 31 2020, pp. 130-136.

J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point
sequence,” Communications of the ACM, vol. 7, no. 12, pp. 701-702,
December 1964.

B. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm
manipulations with n-arm robots,” in Proceedings of Robotics: Science
and Systems, Berkeley, CA, July 12-16 2014.

A. Mandalika, O. Salzman, and S. Srinivasa, “Lazy receding horizon
A* for efficient path planning in graphs with expensive-to-evaluate
edges,” in Proceedings of the International Conference on Automated
Planning and Scheduling, Delft, Netherlands, 2018, pp. 476-484.

V. Ranganeni, S. Chintalapudi, O. Salzman, and M. Likhacheyv, “Effec-
tive footstep planning using homotopy-class guidance,” Artif. Intell.,
vol. 286, p. 103346, 2020.

	Introduction
	Related Work

	Problem Formulation
	Weighted Colored Graph
	Optimal Paths

	The COLPA* Algorithm
	Search Tree
	Priority Queue
	Details of the Algorithm and Main Procedures

	Numerical Examples
	Conclusion
	References

