
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

CoNICE: Consensus in Intermittently-Connected
Environments by Exploiting Naming With

Application to Emergency Response
Mohammad Jahanian and K. K. Ramakrishnan , Fellow, IEEE, ACM

Abstract— In many scenarios, information must be dissemi-
nated over intermittently-connected environments when the net-
work infrastructure becomes unavailable, e.g., during disasters
where first responders need to send updates about critical tasks.
If such updates pertain to a shared data set, dissemination consis-
tency is important. This can be achieved through causal ordering
and consensus. Popular consensus algorithms, e.g., Paxos, are
most suited for connected environments. While some work has
been done on designing consensus algorithms for intermittently-
connected environments, such as the One-Third Rule (OTR)
algorithm, there is still need to improve their efficiency and timely
completion. We propose CoNICE, a framework to ensure con-
sistent dissemination of updates among users in intermittently-
connected, infrastructure-less environments. It achieves efficiency
by exploiting hierarchical namespaces for faster convergence,
and lower communication overhead. CoNICE provides three
levels of consistency to users, namely replication, causality and
agreement. It uses epidemic propagation to provide adequate
replication ratios, and optimizes and extends Vector Clocks to
provide causality. To ensure agreement, CoNICE extends OTR
to also support long-term network fragmentation and decision
invalidation scenarios; we define local and global consensus
pertaining to within and across fragments respectively. We inte-
grate CoNICE’s consistency preservation with a naming schema
that follows a topic hierarchy-based dissemination framework,
to improve functionality and performance. Using the Heard-Of
model formalism, we prove CoNICE’s consensus to be correct.
Our technique extends previously established proof methods for
consensus in asynchronous environments. Performing city-scale
simulation, we demonstrate CoNICE’s scalability in achieving
consistency in convergence time, utilization of network resources,
and reduced energy consumption.

Index Terms— Consensus, Delay-Tolerant Networks (DTN),
disaster management, information-centric networks.

I. INTRODUCTION

AS THE world becomes more and more dependent on
network connectivity, it is also important to be resilient

Manuscript received December 24, 2020; revised June 24, 2021, September
26, 2021, and January 1, 2022; accepted February 6, 2022; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor H. Shen. This work
was supported in part by the U.S. Department of Commerce, National Institute
of Standards and Technology (NIST), under Award 70NANB17H188; and in
part by the U.S. NSF under Grant CNS-1818971. (Corresponding author:
Mohammad Jahanian.)

Mohammad Jahanian was with the Department of Computer Science
and Engineering, University of California, Riverside, CA 92521 USA.
He is now with Aruba, a Hewlett Packard Enterprise Company (e-mail:
mjaha001@ucr.edu).

K. K. Ramakrishnan is with the Department of Computer Science and
Engineering, University of California, Riverside, CA 92521 USA (e-mail:
kk@cs.ucr.edu).

Digital Object Identifier 10.1109/TNET.2022.3156101

to situations when connectivity is intermittent. A pertinent
example especially in the recent years, which we consider
in this paper as a use case, is emergency response, where
the networking infrastructure, e.g., cellular access, becomes
damaged and is thus unavailable [1]. The design and use
of protocols for information dissemination that tolerate inter-
mittent connectivity [2] become important. To address such
scenarios, Opportunistic Networks tolerate a disconnected
topology graph with mobile nodes [3]. They leverage Device-
to-Device (D2D) [4] message exchanges in mobile encounters
between nodes, as in Delay-Tolerant Networks (DTN) [2],
without relying on network infrastructure or the availability
of an end-to-end path.

Ensuring the consistency of updates that are disseminated
among participants and the ‘rest of the world’ is important.
It is challenging to support distributed applications, such as the
ones where multiple users are applying changes to a shared
common database, in intermittently-connected environments.
Continuing with the emergency response scenario, an example
of such distributed application, one which has gained a lot
of attention recently, is geo-tagging of key locations such as
disaster-impacted sites. First responders involved in search
and rescue missions may mark on a map on their smart
phones of such locations and have to be updated across all
the devices of group members as well as deliver a reliable,
consistent view to incident commanders and others that require
situational awareness. Many algorithms and techniques to
ensure consistency have been proposed [5]. Causal consistency
ensures updates get processed at users in accordance with their
causal relations [6]. Causal ordering provides a ’moderate’
degree of consistency [7] , which is stronger than best-effort
out-of-order delivery, as it orders “orderable” updates. It is
weaker than agreement-based total order delivery, as it is
ambiguous when it comes to ordering “un-orderable” updates.

Consensus methods, on the other hand, ensure agreement
and strong consistency. There are many proposals, most
notably Paxos [8]. Consensus is an important distributed
algorithm with many applications such as in datacenters [9],
banking systems [5], and Blockchains [10]. An issue with
the applicability of most of these consensus solutions is
that they are suited for connected and (partially) synchro-
nous environments. This has led to the design of consensus
algorithms and protocols for disconnected and asynchronous
environments, such as Paxos/LastVoting [11] and One-Third
Rule (OTR) [12] algorithms. However, these solutions assume
that the majority of users have “good periods” [13] throughout

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2593-4961
https://orcid.org/0000-0003-1849-5155

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

the whole network, not supporting scenarios with long-term
fragmentation in which two isolated groups of users conduct
independent consensus sessions for the same “ballot” and
decide differently. Also, they are often too slow to converge,
as they need to involve the whole network due to lack of
systematic topic-based clustering of users.

The advance of information-centric paradigms [14], inspired
by the content-oriented network usage of today, has led to the
proposal and design of widespread in-network naming frame-
works for information dissemination [15]–[17], that is better
organized, showing that with a proper naming schema [18],
we can achieve better accuracy and more scalable dissemina-
tion in terms of reducing end user and network load, compared
to the current address-oriented networking paradigms. Further-
more, the notion of naming provides a location-independent
forwarding capability with mobility [19], especially in highly
dynamic environments where users’ point of attachments
keeps changing very frequently.

In this paper, we propose CoNICE (Consensus in Name-
based Intermittently-Connected Environments), a framework
for consistent dissemination of updates of a shared database
among mobile users, in an intermittently-connected envi-
ronment. We assume no networking infrastructure, no geo-
graphical routing or synchronized physical clocks. CoNICE
uses graph-based naming [20] to systematically divide the
physical space (through region-ing) and the consensus space
(through user subscriptions) into hierarchically structured sub-
sets, optimizing the consensus participation to get higher
completion rate and faster completion times. CoNICE extends
existing name-based information dissemination schemes (such
as [15], [20]) by ensuring consistency, and resiliency in
infrastructure-less environments. CoNICE is inherently failure-
resilient, where disconnection is not just a corner case sce-
nario, but is rather a common case. Inspired by the multi-level
consistency requirements provided by cloud and database sys-
tems [21], [22], CoNICE provides the coexistence & flexibility
of the following three incremental consistency levels for the
network: replication (weakest consistency, lowest complexity),
causality, and agreement (strongest consistency, highest com-
plexity). All these consistency levels are integrated with a
topic-based hierarchical naming schema, through Name-based
Interest Profiles (NBIP). The consensus protocol of CoNICE
(running on top of D2D propagation protocols), provides
users with a strongly-consistent view that respects both agree-
ment and causality. CoNICE extends OTR with naming and
decision invalidation handling procedures, for a total and
causal ordering of updates. Its decision invalidation helps
with overcoming the consensus property violations in case
of long-term physical fragmentation in the network, mainly
since we define the complementary notions of local and global
consensus sessions, pertaining to being within and across frag-
ments, respectively. This invalidation is an important novelty
of CoNICE, as it allows the consistency to be achieved even
when many fragmented users connect after a long time (such
as users from disjoint and remote shelters, in the aftermath of
a natural disaster). Existing proof methods for asynchronous
consensus algorithms assume “good periods” throughout the
whole network (such as in [13]). We take a step further by

assuming that these good periods are within network fragments
which are disconnected for long periods, thus expanding the
scope of the asynchronous consensus problem, which is also
suitable for our application scenario.

A key novelty of CoNICE is its integration of consis-
tency and dissemination through naming. In other words, the
graph-based namespace works as a common interface across
the modules that take care of multiple levels of consistency,
as well as the protocols for content dissemination throughout
the users in the network. The benefit of this use of naming
is twofold: 1) it enhances the relevance of information dis-
semination (i.e., recipients can identify relevant content with
respect to their interests) in a decoupled pub/sub manner
(i.e., publishers and subscribers do not need to keep track
of each other); 2) it enhances the degree of information
consistency among relevant users (i.e., optimized by related
name-based groups, consensus can be reached faster, and to
a higher degree). We will demonstrate these benefits through
our results.

The major contributions of the paper are: 1) A framework
for consistent information dissemination in intermittently-
connected environments, considering the important case of
emergency response (our source code and data are avail-
able [23]); 2) Enabling different incremental consistency lev-
els (replication, causality, and agreement) for information
updates in intermittently-connected networks; 3) A system-
atic coupling of information flow organization with various
consistency preservation procedures, using naming graphs;
4) Extending the OTR consensus with a protocol that leverages
naming and supports recovery from invalidated decisions;
5) A rigorous proof of CoNICE’s consensus protocol using the
Heard-Of model formalism, extending the classic OTR proof
to cases supporting long-term fragmentation and decision
invalidations. 6) Simulation results that show our enhancement
leads to a higher degree of agreement among users, with
lower overhead; 7) Simulation experiments that demonstrate
how CoNICE is resilient to long-term fragmentation scenar-
ios through an effective procedure for decision invalidation,
extending existing work on asynchronous consensus solutions.

II. BACKGROUND AND RELATED WORK

Propagation in Intermittently-Connected Environments.
There have been a number of works on information propa-
gation in intermittently-connected networks [24]. Generally,
these solutions rely on nodes to store, carry, and forward
messages [2]. Most solutions rely on nodes taking advantage
of opportunistic encounters to exchange messages (i.e., gos-
siping), typically with high message delivery latency due to
disconnections [25]–[27]. Methods such as Bubble Rap [28],
dLife [29], SCORP [30], and EpSoc [31] use social data
regarding human interactions as the basis of such routing pre-
dictions. We use Epidemic Routing [25] in this paper because
of its simplicity for DTNs and the fact that it requires mini-
mum assumptions about network (no path/geography/social-
connection based decisions) which suits our scenarios, has
a high delivery ratio, achieves lower delays (relatively), and
is especially suitable for broadcast-oriented messaging [24]
(although we can replace it with the some of the other methods

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 3

mentioned if additional assumptions are reasonable and can
be accommodated). Epidemic routing uses message buffers
and performs store-and-forward [25]. Apart from its benefits,
it is observed that epidemic routing has high overhead [24].
We enhance it with the use of naming, to reduce load.

Causal Consistency. Causal consistency is a popular con-
sistency model which ensures ordering of events (e.g., network
messages) based on their causal relationship. Works such
as [32] propose the use of physical clocks for ordering.
However, physical clocks may have skews. The protocol for
clock synchronization may involve significant overhead, espe-
cially in a disconnected environment. Scalar logical clock [6]
defines the “happened before” relation. A message is said
to be causally delivered at a recipient user, if all the causal
prerequisites of that message have been delivered at the user
too [5]. The Vector clock method [33], [34] ensures causal
ordering using vectors carried as history in each message,
that represent the sender’s current state relative to every other
users’ progress. Work in [35] proposes differential clocks
as an optimization to vector clocks, only sending vector
differences. [36] proposes that explicitly specifying causality,
by sender, helps with scalability. Work in [37] proposes
a method for group causal ordering, and enabling causal
delivery to multiple groups of interested users. We use the
notion of vector clock but extend it to enable selectiveness
through hierarchically-structured naming and a reactive mode
for faster causal delivery, and capture both implicit and explicit
causality.

Consensus and Strong Consistency. There has been a
great deal of work on consensus, the most prominent of which
is Paxos [8]. Paxos achieves agreement among a number of
networked nodes, by election of a leader, majority voting, and
deciding on a value, through a number of rounds. Raft [9]
implements Paxos, designed for strong consistency in log
replication among servers in a cluster. It has been observed
that such solutions work well in connected environments. The
reason for that is they assume synchronous or partially syn-
chronous systems [13]; that it has an upper bound on latency of
message delivery between any two nodes. That assumption is
challenged in asynchronous systems, where there may be many
failures, leading to non-terminating consensus procedures. The
popular method to address this challenge is “augmenting”
asynchronous systems with external devices, most notably
Failure Detectors using oracle nodes [38]. While failure detec-
tors make consensus more failure resilient, they are limited to
node failures only, rather than link failures. Therefore, they are
not particularly efficient in a highly-transient DTN environ-
ment, such as ours, as they lead to too many timeouts when a
mobile node goes away for some time even if the node has not
crashed. To address this, the Heard-Of model [13] proposes
a benign fault model that tolerates link failure, and proves
that the consensus algorithms Paxos/LastVoting (P/LV) [11]
and One-Third Rule (OTR) [12] can tolerate loss and be
suitable for intermittently-connected and mobile environments.
The model demonstrates that rather than assuming eventual
synchrony, it is more realistic to assume “good periods” in
asynchronous systems, i.e., an epoch in which nodes can hear
of each other (receive their messages). Work in [39] proves

the one-third rule to reach correct consensus and possibly
finish in one round, as long as no more than one third of
the consensus participants crash. Another benefit of OTR
over P/LV is that it is coordinator-less, and thus does not
need to have the overhead and complexity of leader election.
We build on OTR, enhancing it with an integration of naming,
to optimize storage and energy consumption as well as faster
consensus completion time. We add support for cases where
decisions need to be invalidated e.g., due to long-term network
fragmentation. To that end, we enhance OTR by relaxing
its assumption of good periods across the whole network.
Instead, we consider these periods are only within temporarily
disconnected network fragments. Thus, we tolerate long-term
fragmentation in the network.

Name-based Information Dissemination. The use of net-
work naming for systematic organization of information for
better dissemination efficiency has been introduced as the inte-
gral part [40] of the Information-Centric paradigms, such as
in Named Data Networks (NDN) [15]. Work in [41] provides
name-based DTN-like dissemination frameworks. However,
extra steps are needed for ensuring consistent dissemination.
Some works [12] propose the use of interest profiling for
selective gossiping. We extend their ideas to implement the
content-oriented graph-based naming for profiling as well as
proposing a flexible multi-level profiling for various consis-
tency levels. Methods such as NDN Sync [42] and Secure
Scuttlebutt [43] propose log replication consistency in name-
based intermittently-connected environments. However, they
only guarantee causal consistency, but do not provide strong
consistency or total ordering, which are important when deal-
ing with multi-user updates on a single, shared database.
Naxos [44] proposes a name-based version of Paxos for NDN.
However, Naxos only supports request/response pull-based
communication pattern, and assumes connected environments
with centralized orchestration. We integrate name-based pub-
lish/subscribe push-based dissemination patterns, and aim at
ensuring strong total order consistency by supporting consen-
sus in dynamic intermittently-connected environments.

III. OVERVIEW OF CONICE
Emergency Response Scenario. During, and/or immedi-

ately after a disaster (e.g., a natural disaster such as a hurri-
cane, earthquake, or wildfire), many teams of first responders
are mobilized, especially for search and rescue. Such teams
move around different neighborhoods and mark locations with
various codes (based on marking standards of the Federal
Emergency Management Agency [45]). This was used in
several disasters, such as Hurricane Katrina [46]. We extend
the manual marking system with a map-based application
for more effective coordination and information dissemination
among first responders. We outline an example use case for
emergency response where first responders seek to individually
update map tags on their devices and then need to arrive at a
consistent, coherent view across users as they opportunistically
connect with each other. The map in CoNICE is made up
of a base layer and data layer, as shown in the example in
Fig. 1(a). The base layer is the map background, available
offline to each user. Informed by the geography pertaining

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Example namespace and scenario.

to the map, it is divided into hierarchically-structured regions
(e.g., county, city, etc.). For example, region R11 is part of R1,
and is made up of R111, R112, and R113. This hierarchical
structure is captured in a namespace, as shown in Fig. 1(b).
Users dynamically create updates on the map (i.e., pins or
other shapes with data on them), which updates the map data
layer; e.g., update ‘a’ as a point in R111, or ‘b’ as a shape
spanning regions R122 and R123 in Fig. 1(a). Users create and
are interested in receiving updates related to the regions they
are dealing with (or to a part of the region they are interested
in). As shown in Fig. 1(c), the environment we consider is one
without infrastructure-based communication and users rely on
D2D [4] communications, with frequent disconnections. Users
are equipped with mobile devices capable of D2D wireless
communication (e.g., Bluetooth or WiFi-Direct), and have the
CoNICE application on their device. In the example scenario
(Fig. 1(c)), user A (a first responder) creates a pin on region
R111 and propagates it at time t1. Users C and D, who are
both interested in R111 (through subscribed interest in regions
R11 and R111 respectively), have no path to A at t1. However,
thanks to user B moving between the two fragments and acting
as a mule doing store-carry-and-forward [2], the update gets
propagated to C and D, and they can add it to their view
of the map. Different users can create updates (on top of
their accumulated ’view’ of the data layer) and disseminate
them at any time, without any coordination. Considering the
example in Fig. 1(a), let us assume update ‘a’ has been (at least
partially) propagated among interested recipients of region
R111. If now two different users simultaneously create new
updates that modify ‘a’, they would both consider that as “the
next update in R111”. This may cause discrepancy in the order
in which different users apply the updates. This is an important
issue that we need to address for the effectiveness and correct
functionality of CoNICE in critical scenarios, such as disaster
management. Thus, our primary goal is to make sure all the
users converge to a consistent view of the updates on map data
layer as much as possible.

CoNICE Overview. An overview of the architecture of
CoNICE is depicted in Fig. 2. It consists of the integration
of multi-level consistency and multi-level naming. There are
three incremental levels of consistency. Consistency level 0,
namely Replication, suggests how much of the generated
updates have been delivered to individual users. The Gossip-
ing component in each user’s device is responsible for this
function, using Epidemic Routing [25]. Consistency level 1,
namely Causality, ensures that orderable updates are applied
according to their causal relationships and precedence. This

Fig. 2. Architecture overview of CoNICE.

is provided by the Causal Ordering component, which pro-
vides a moderately-consistent view (Moderate View) of the
map to the user in the application. CoNICE uses a Vector
Clock-based approach [33], [34], extended by a selective
and reactive repair mode for causal ordering. Consistency
level 2, namely Agreement, deals with achieving agreement
between different users’ views, even for un-orderable updates.
The Consensus component enables this, and provides the
user with a strongly-consistent view (Strong View). For this
component, CoNICE implements a solution based on the One-
Third Rule (OTR) consensus algorithm [12], extending it by
supporting selective participation and decision invalidations
for highly fragmented and intermittently connected scenarios.
Every user is equipped with a single, unified namespace; a
hierarchically structured graph pertaining to the regions in
the map. This namespace drives the various consistency level
components, achieved by Name-Based Interest Profiles (NBIP)
in CoNICE. There is a NBIP for every consistency level,
each pointing (as a subscription) to a particular subset of the
namespace. The use of NBIPs allows the various components
to achieve better efficiency and accuracy in dissemination.
More foundational details on naming and consistency levels
are in [47].

While we recognize security is important to make CoNICE’s
design robust and usable, we have to address it in detail in a
separate work complementary to this paper. Here we address
the basic protocol of CoNICE and its properties. To ensure
authentication and integrity, we can use hash chains, similar
to [43]; it complements CoNICE’s design, since it is based
on sequential updates, each update depending on (and cryp-
tographically linked to) the previous one. Further, to ensure
fine-grained access control, attribute-based encryption can be
leveraged, similar to [48]; it fits well with CoNICE, since it
incorporates a namespace, and each user’s access privileges
corresponding to their role-based subscription. Thus, CoNICE
can prevent malicious attacks such as impersonation and
forgery, via information-centric security [49], which secures

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 5

content itself, rather than the delivery channel. Additionally,
Machine Learning-based solutions, such as those proposed
in [50] can be used for malware detection and privacy
protection.

IV. PROTOCOLS FOR CONSISTENT DISSEMINATION

We describe the protocols for different consistency levels.

A. Gossiping Protocol

We use epidemic propagation [25] for gossiping; note
that it can be replaced with other information propagation
methods given particular system assumptions, as long as
they allow anycast propagation. Our assumption in CoNICE
is that each user has a unique user ID (UID), which can
be the mobile device’s IMEI or a number provided by the
CoNICE application at the time of installation. In CoNICE,
each message has a tag, specifying its type. Each message has
a message ID (MID) which is used to uniquely identify it in
the network. Users buffer messages for epidemic propagation
indexed by their MIDs. Users can create, relay (i.e., store,
carry, and forward), and receive messages. CoNICE makes this
propagation selective via interest profiling, namely NBIP0 for
gossiping. Typically, benevolent data mules help with relaying
any message, regardless of what they are about, while other
users (e.g., first responders) can have a more fine-grained
NBIP0 and only receive and relay messages matching their
interest, while discarding others. Updates contain the ID of
the region they belong to (RB) and the (set of) regions they
cover (RC). RB is integral across all levels, while RC is
only used at level 0 (i.e., can be compared against NBIP0),
and its purpose is to increase coverage. A user receiving
a message based on its RC , the RB of which he is not
subscribed to, can be considered to have subscribed to the
RB in the namespace hierarchy, to be able to also participate
in its level 1 & 2 procedures. This epidemic propagation can
potentially cause excessive overheads, causing two challenges:
1) a message may keep travelling too many hops, causing
unnecessary network & queuing overhead (e.g., a user may
receive the same content many times from multiple paths),
and 2) too many messages will stay in user device buffers for
excessive periods, causing unnecessary storage and processing
overhead. To remedy, CoNICE uses hop count limits and
cleaning buffers of obsolete messages (similar to [12]).

B. Causal Ordering Protocol

Different updates that belong to the same region can poten-
tially depend on each other. As an example, in Fig. 1(a), update
‘d’ may depend on ‘c’, as they both belong to R121, and
the creator of ‘d’ has seen ‘c’ (may be the same creator) ;
e.g., ‘d’ may remove some data that ‘c’ has added, or modify
the information provided by ‘c’ about a particular disaster
site. These dependencies need to be specified and considered
both when it comes to creating and publishing updates, and
receiving and processing them. The causal ordering component
in CoNICE takes care of this, which helps with consistency
level 1 (causality). We restrict Lamport’s “happened before”

relation [6] to only messages that belong to the same region,
calling it “happened before in the same region”, to capture
causality. This is possible since the region ID is already carried
in updates in CoNICE. Formally, we define it as the following:

Definition 1: For updates u1 and u2, belonging to the same
region, u1 causally precedes u2 (u1 → u2) if and only if
one of the following three conditions are true: 1) Some user
U creates and publishes u1, and then creates and publishes
u2 (FIFO order), 2) Some user U receives and delivers u1,
and then creates and publishes u2 of the same region (local
order or network order). 3) There is an update u3 such that
u1 → u3 and u3 → u2 (transitivity).

The procedure for update creation is shown in Alg. 1.
An update message in CoNICE is of the form shown in line
13. The update ID (UpID) consists of UIDA (user ID of
update creator A), RB (the region the update ‘belongs to’),
seqNum (sequence number), RC (set of leaf-node regions
‘covered’ by the update), and UpIDR (set of references for this
update, which we explain later). The data element contains
the map-related instruction for the update (e.g., “mark house
#1 as searched” or “need teams at building #2”). It is important
to also include dependency information in the update, on top
of basic gossiping, so that recipient will be able to order the
received updates (which can be potentially delivered out-of-
order), and achieve a consistent view across different mobile
users. CoNICE updates contain dependencies in two ways:
implicit dependency and explicit dependency. Implicit depen-
dency pertains to the dependency of the update on its creator’s
previous updates on the same region (thus ensuring the FIFO
ordering [5]). For a new update in region RB , the creating
user looks for the highest seqNum it has used for RB so far,
and assigns the next number to the update (line 8). Explicit
dependency pertains to the dependency of the update on other
users’ previous updates on the same region (lines 9–12), that
creator A has already causally delivered to higher layers The
helper function creators() (line 9) traverses through A’s level
1 queue and returns all the users who have contributed to it.
(thus ensuring the local ordering [5]). For each <user ,RB>
pair, only the update ID with the highest sequence number is
picked (line 10). To further reduce the message overhead, all
those updates u in UpIDR that precede an update u′ existing
in UpIDR, are removed from the references list (line 12).
As a result, the reference list in CoNICE updates will be
more compact than the full vector of VC, and also relieves
users from having to maintain a global vector of every user in
the network. Finally, the created update will be published by
sending it to the gossiping module, and will be added to the
creating user’s level 1 queue (lines 13–16).

The procedure for handling the receipt of updates and
causally delivering them is described in Alg. 2. The processing
of the incoming update u only proceeds at user A if the RB

‘belongs’ to its NBIP1 (line 13). Pending updates that get
satisfied, will be added to Q1 (lines 14–15), and all (implicit
and explicit) missing prerequisites of u will be collected in
missing (lines 16–17). If there are no missing prerequisites,
u will be causally delivered and applied to its ‘Moderate
View’ (line 18). In case of outstanding missing prerequisites,
the VC algorithm typically waits till they are received. In a

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 Update Creation With Causality
1 input:
2 RB : belongs-to region; RC : set of regions covered; data: update data
3 initialization:
4 UIDA ← id of this user A
5 MA ← set of updates created by A
6 MQ1 ← set of all updates at level 1 queues at A
7 UpIDR ← {} /* set of reference updates to be

included */
8 seqNum ← nextSeqNum(RB , MA)
9 foreach user B in creators(MQ1) do /* identify references */

10 UpIDR ← UpIDR ∪ latestUpdate(B)

11 foreach u ∈ UpIDR do /* make reference list more compact
*/

12 if ∃u′ ∈ UpIDR : u→ u′ then UpIDR ← UpIDR − {u}
13 msg ← 〈UPDATE , UIDA, RB , seqNum, RC , UpIDR, data〉
14 publish msg /* send to gossiping module */
15 MA ←MA ∪msg
16 MQ1 ←MQ1 ∪msg

Algorithm 2 Update Receiving and Causal Ordering
1 input:
2 RB , RC , data: as in Alg. 1; UIDC : user id of the update creator;
3 seqNum: update sequence number; UpIDR : set of update references;
4 UIDR : user id of requestor in the response msg
5 initialization:
6 UIDA ← id of this user A
7 MQ0 ← set of all updates at level 0 queue at A
8 MQ1 ← set of all updates at level 1 queues at A
9 missing ← {} /* update IDs of missing prerequisites

*/
10 Upon receive

(msg=〈UPDATE , UIDC , RB , seqNum, RC , UpIDR , data〉) do
11 procUpdate(UIDC , RB , seqNum, RC , UpIDR , data)

12 Procedure procUpdate(UIDC , RB , seqNum, RC , UpIDR, data)
13 if RB ∈ NBIP1A then
14 foreach u′ ∈ MQ0 ∧ u′ /∈ MQ1 do
15 if dependencies(u′) satisfied then MQ1←MQ1∪{u′}
16 missing ← missing ∪missingImplicit(u, MQ1)
17 missing ← missing ∪missingExplicit(u, MQ1)
18 if missing = {} then MQ1 ←MQ1 ∪ {u}
19 foreach UpIDi∈missing do publish〈REQUEST , UpIDi 〉
20 Upon receive (msg=〈RESPONSE , UIDR, UIDC , RB , seqNum,

RC , UpIDR , data〉) do
21 procUpdate(UIDC , RB , seqNum, RC , UpIDR , data)
22 if UIDR = UIDA then cancel msg

disconnected environment with gossiping, this may lead to
starvation and indefinite waiting, since “gossips may die out”
[26]. To remedy this, CoNICE adds a reactive recipient-driven
procedure of requesting for those missing updates (line 19).
The REQUEST message identifies the update ID requested
for, and the requester’s ID (UIDR). Any user, not necessarily
the creator of the update, who has that update buffered, can
respond with a RESPONSE message, sent for the requester.
When receiving a response, user A processes it in a similar
manner to a normal UPDATE message, with one difference
that if the response was meant for A, A will cancel the update
and not propagate it in the network further (lines 20–22).
CoNICE ensures the following key property (proof in §V):

Property 1: Causal Order of Moderate View. If user A
applies (and delivers) update u to its moderate view, then A
must apply every update causally preceding u before u.

Proof of Property 1: We can prove this property using
induction. Basis: If A applies (to its moderate view) no
updates, the property holds. If it applies only one update
u1 belonging to RB , per Alg. 1 and 2, u1 had no implicit refer-
ences (i.e., first update created by its creator B for RB) and no
explicit references (i.e., no other user C has created an update
for RB that B had applied before creating u1). Inductive step:
Let us assume A has applied n updates u1, . . . , un, preserving
the causal ordering property. An additional update un+1 will

Algorithm 3 Consensus: Contributions
1 input:
2 RS : region for this session S; sS : slot number to be decided for S;
3 nS : user A’s estimation of population for S
4 initialization:
5 QA

1 ← user A’s current level 1 queue
6 QA

2 ← user A’s current level 2 queue
7 UIDA ← id of this user A
8 contribss ← {} /* contributions multiset at A */
9 decS = 〈DECISION , UIDD , RS , sS , aD , nD , vD〉 ← {}

10 solvedS ← false /* as decS is empty initially */
11 vI ← QA

1 (RS , sS) /* Noop if null */
12 if vI �= Noop then startAttempt(1, 1, vI)
13 Procedure startAttempt(a, r, v)
14 vS ← v
15 aS ← a
16 startRound(aS , r)

17 Procedure startRound(r)
18 rS ← r
19 publish msg=〈CONTRIBUTION , UIDA, RS , sS , aS , rS , ns, vs〉
20 contribsS ← contribsS ∪msg

21 Upon receive (msg=〈CONTRIBUTION , UID, RS , sS , a, r , n, v〉) do
22 if RS /∈ NBIP2A then cancel msg
23 switch a do
24 case a > aS
25 foreach m ∈ contribsS do cancel and delete m
26 nS ← max(nS , n)
27 contribsS ← {msg}
28 startAttempt(a, r)

29 case a < aS publish DS

30 if solvedS then
31 publish DS
32 cancel and delete msg

33 switch r do
34 case r > rS
35 foreach m ∈ contribsS do cancel and delete m
36 ns ← max(nS, n)
37 contribsS ← {msg}
38 startRound(r)

39 case r < rS cancel and delete msg
40 case r = rS
41 contribsS ← contribsS ∪msg
42 ns ← max(nS, n)
43 if |contribsS| > (2/3)× nS then
44 vS ← smallest most frequent non-Noop in contribsS

45 if all equal to V in contribsS excluding Noop then
decide(RS , sS , aS , vS)

only be applied at A, if and only if all causal prerequisites
of un+1 are already in u1, . . . , un and there are no missing
updates (per lines 14–19 in Alg. 2), thus ensuring Property 1
holds.

C. Consensus Protocol

CoNICE provides a consensus procedure with the goal of
achieving agreement, so that users (e.g., first responders) have
the same consistent ‘Strong View’ of the situation (e.g., map).
The consensus solution in CoNICE builds on the One-Third
Rule (OTR) algorithm [12]. We extend OTR in several ways,
mainly with regards to naming and decision invalidations. The
naming integration in CoNICE, makes sure all the interested
users (even with overlapping interests) are involved in every
consensus session relevant to them, which also systematically
reduces the consensus participants to the interested ones,
helping with faster reaching of decisions. CoNICE’s deci-
sion invalidation procedures make sure to repair decisions if
long-term fragmentation cases happen in the network, and also
if the total and causal order of the final strong view are violated
even after the OTR-based agreement is reached.

The initialization and contribution procedures of CoNICE’s
consensus are described in Alg. 3. Each consensus session
is associated with a region-slot pair (<RS , sS>), deciding
the value v (i.e., the update to be placed at the slot) to be
inserted to Q2(RS , sS). To avoid scheduling complexities and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 7

Algorithm 4 Consensus: Decisions
1 Procedure decide(UID, RS , sS , a, n, v)
2 if ¬solvedS then
3 if ∃s′ �= sS ∧QA

2 (RS , s′) = v then
/* conflict with earlier existing decision

*/
4 if vI = v then startAttempt(aS + 1, 1, Noop)
5 else startAttempt(aS + 1, 1, vI)

6 solvedS ← true
7 vS ← v
8 foreach m ∈ contribsS do cancel and delete m
9 contribsS ← {}

10 publish msg = 〈DECISION , UIDA, RS, sS , a, n, vS〉
11 DS ← msg

12 else /* need to invalidate */
13 if msg �= DS then
14 if a = aD then
15 if n > nD then v′

D ← v
16 else if n < nD then v′

D ← vD
17 else if n = nD then
18 if UID ≥ UIDA then v′

D ← v
19 else if UID < UIDD then v′

D ← vD

20 decide(max(UIDD , UID), RS , sS , a, n, v′
D)

21 if a > aD then
22 startAttempt(a, 1, vI)
23 decide(UID, RS , sS , a, n, v)

24 QA
2 (RS , sS)← v

25 foreach v′ ∈ QA
2 (RS) that violates causality with v do

26 reorder locally through deterministic sort

27 Upon receive (msg = 〈DECISION , UID, RS, sS , a, n, v〉)do
28 if RS /∈ NBIP2A then cancel
29 decide(UID , RS, sS , a, n, v)

overhead, we run consensus sessions for individual slots rather
than the entire Q2 content. Each session comprises multiple
attempts, and each attempt comprises one or more rounds.
We add the notion of attempt, because we may need to run
another attempt of an already decided consensus session, due
to the nature of our environment. Users initiate consensus
with initial values (vI) equal to their Q1(RS , sS) content
(lines 11–12). If user A has no such content, its initial contri-
bution will be a ‘Noop’ (or null). Any non-‘Noop’ contribution
will be sent for round 1, containing the value (lines 13–20).
The CONTRIBUTION message identifies the region, which
will enable the subscribers of the region to participate in
the consensus. Most consensus algorithms (including OTR),
depend on knowing the consensus population (nS) a priori.
We enable a bootstrapping mechanism based on reachability
beaconing (similar to [51]), for a user to get an estimate of
the population; the number of users eligible to participate
for RS , are the number of total subscribers of RS and its
ancestor nodes in accordance with the namespace hierarchy,
e.g., Fig. 1(b). In a highly fragmented network environment
that we consider, there is a chance this estimation will be
incorrect. To remedy this, we allow the user to update its
estimation of nS , from the contributions it receives, to have
an upper bound estimate of nS .

It is important that users synchronize to be in the same
attempt and round as much as possible. Upon receiving a
contribution (lines 21–45), the user jumps to the attempt
and round number of the contribution message if it is larger
than its own (lines 24–28, 36–40). This helps users use the
good period fuller when it occurs. Users remove obsolete
contributions from the buffer, which helps with scalability and
reduces the number of messages circulating in the network.
Received contributions from older attempts and rounds will

be discarded, with a possible response providing the decision
that was already made. When the contribution is in the same
attempt and round that the user is in (line 40), the user
adds it to its contribution list (line 41). When user’s received
contribution set reaches the cardinality equal to 2/3×nS (one-
third rule, line 43), the user will either: 1) start a new round,
sending a contribution with the value equal to the smallest
(i.e., earliest in terms of causality) most frequently received
value (line 44), or 2) decided on a value, if all values in
the set are the same (line 45). The decision procedure is
described in Alg. 4. A decision message will be published
as a result of reaching a decision (line 10). The value in
the decision message, determines what value (update) should
be inserted into everyone’s Q2 in that particular region’s slot
(lines 24–26). Another way of reaching a decision is to receive
a decision message from someone who has already decided
(lines 27–29). CoNICE satisfies the following properties:

Property 2: Consensus. Every consensus session for a
<R, slot> pair in the Strong Views preserves the following:
1) C1: Termination. Every correct user (i.e., that does not
permanently crash or become unreachable) eventually decides.
2) C2: Agreement. No two users decide differently. 3) C3:
Validity. Any value decided is some user’s initial value.
4) C4: Update Validity. Any value decided is a valid update
that was created. 5) C5: Integrity. No user decides twice.

Property 3: Total and Causal Order of the Strong View.
If users A and B apply region R-bound updates u and u′ to
their strong views, the order of u and u′ is the same in both
A and B. This order also respect causality.

CoNICE also supports remedies in additional cases. These
cases include loss of causality, duplicate decisions, and long-
term fragmentation. The first two cases are elaborated in §V
of [47], and the third is discussed in §V.

V. PROOF OF CONSENSUS IN CONICE

This section provides proof for CoNICE’s consensus proto-
col against its properties described in §IV, using the formalism
of Heard-of model [13]. Since Property 1 is about basic causal
ordering and not directly on consensus, we presented it in
§IV-B instead. This section only focuses on consensus-related
properties. Note that agreement is the goal, and consensus
is the procedure to provide it. The major novelty of our
proof is extending the earlier proof methods for asynchronous
consensus algorithms [13] to cases by also including long-term
fragmentation among the users participating in the consensus.

A. Heard-Of Model

We use the Heard-Of (HO) model [13] for our proof formal-
ism, as it allows for both node and link failures in asynchro-
nous environments, which is appropriate for our system model.
The HO model evolves from one communication-closed round
to the next, where messages sent in each round are received
and used in the same round. A Heard-Of set, denoted by
HO(π, r), represents the set of users (or processes) from
whom user π “hears of” (i.e., receives messages that were
originated from) in round r. Communication predicates specify
the features and requirements of a system under the HO model.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

A consensus problem is solved in the HO model by a Heard-
Of machine defined as M = (Λ, P), where Λ is an algorithm
and P is a communication predicate. Work in [12] uses the
HO model to prove the correctness of classic OTR in DTN
environments; we extend that to also address invalidations and
long-term fragmentation in CoNICE.

The procedure to prove a consensus protocol in the HO
model is as follows: We first start by defining the system model
and basic assumptions in the environment. We then formally
specify communication predicates for network conditions that
are necessary and/or sufficient for the specific protocol to
work. Using various deductive or inductive reasoning methods,
we prove the theorem of the form “under the given predicate,
the given protocol solves consensus”.

B. System Model

Each run (i.e., attempt) of our consensus protocol pertains
to a particular region RS and a slot number sS (for a
consensus session S). The slot number for an update is the
next available empty slot in the queue associated with RS

across different users. Its participants are the subscribers of
region RS , in accordance with the namespace. An important
novelty of CoNICE is that it can solve consensus even in
the case of long-term fragmentation, within the same run
of the algorithm (§IV-C). Thus, we define two types of
consensus solutions for each user within the same run: 1) local
consensus (to reach local agreement), and 2) global consensus
(to reach global agreement). Users constrained within the
same long-term fragment (e.g., trapped in a shelter during
disaster) can reach local agreement amongst themselves for a
<RS , sS> pair through the one-third rule. Upon re-connecting
of the shelter to the rest of the network after some time, if there
are conflicts between the different values decided based on
local agreements and as a result of invalidations of all but one
of the values (as described in §IV-C), users can reach global
agreement throughout the whole network.

The basic assumptions of our system model are as follows:
• We assume each user in the network is equipped with

the CoNICE protocol stack and follows the protocols
honestly and correctly (performs reachability beaconing,
counts group population per region, etc.).

• In a network without long-term fragments, proving our
consensus is similar to that of [12]. Thus, we only focus
on the fragmented scenarios here.

• We assume that we have multiple disjoint long-term
fragments where each fragment Δi includes a set of users
Πi with ni members who are subscribers of RS . Π is
the set of all subscribers of RS throughout the whole
network.

• No more than ni

3 of users permanently crash. Also,
in each round, at least one user hears from at least 2

3
of the other users in the fragment:

∀r, ∃π ∈ Πi s.t. |HO(π, r)| ≥ 2ni/3 (1)

This is reasonable to assume for our environment, as we
use the gossiping protocol that leverages mobility and
buffering at users, and mules, to deliver messages with

a high delivery probability, especially within a shel-
ter. Furthermore, CoNICE’s reachability beaconing and
exchange of population counts makes sure that each user
has a good enough approximation of ni, which is needed
for the OTR-based calculations.

• After a significant period of time, paths (and connections)
appear among some of the fragments,

We first focus on solving local consensus within a fragment
(i.e., before there appears any paths between fragments).
In that fragment, there is a set of participants Πi running
CoNICE’s OTR-based algorithm for <RS , sS>:

Πi = {πi|πi ∈ Δi ∧ πi ∈ sub(RS)} (2)

We specify the following communication predicate Potr:

Potr : ∀r > 0, ∃r0 ≥ r : ∃Π0 ∈ Πi s.t. |Π0| ≥ 2ni/3
∧∀π ∈ Πi : HO(π, r0) = Π0 (3)

which says that infinitely often, there will be rounds in which
all the users will hear from a two-third majority subset of
members, which is Π0. If Potr holds, CoNICE solves consen-
sus since after several rounds, all users will deterministically
converge their contribution to the same value (lines 40–45 in
Alg. 3) and eventually agree on a value and decide. Similar
to what is discussed in [12], predicate Potr is a sufficient
condition to solve our consensus. Here, we complement that
specification, i.e., Potr, by specifying a simpler predicate PL1

which is the necessary condition to achieve agreement:

PL1 : ∃r0, v s.t. ∀πi ∈ Πi : |HO(πi, r0)| ≥ 2ni/3 ∧ vr0
i =v

(4)

where vr0
i is the value picked for either contribution or

decision at the end of round r0 at user πi. Predicate PL1 says
that in at least one round, all users will pick the same value,
and they hear it from at least 2

3 of the users, even if it is
not the same 2

3 subset across everyone. If v is the smallest
most frequent non-‘Noop’ value from received contributions,
but not V (as defined in line 45), another predicate is needed
(PL2) so that in the immediate next round, all non-crashed
users could exchange their contributions & hear from a 2

3 set:

PL2 : ∃r1 > r0 s.t. ∀πi ∈ Πi : |HO(πi, r1)| ≥ 2ni/3 (5)

In §V-C, we will show that with PL = PL1 ∧ PL2, CoNICE
solves consensus in this case. Alternately, if v is the received
decision value (lines 2–11 in Alg. 4), CoNICE will also solve
consensus (more details in §V-C).

To investigate global consensus, let us now assume that
after a significant period of time, paths appear among some
of the fragments, some of those Δi’s have potentially reached
their local decisions at round rd

i on their respective value vd
i .

To follow the model’s round-based specification, we define a
special round r∞, which involves every message exchange
after the re-connection of all these fragments (which have
reached local agreement), for <RS , sS> for the rest of the
lifetime of the whole network. All the invalidation procedures
of decisions previously reached within the same attempt
(line 13–20 in Alg. 4) occur in r∞. With respect to rd

i and r∞,
each user in Δi can be in one of the following four categories,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 9

which determines their status of whether or not they can decide
for local and/or global consensus:

1) user enters rd
i , and then enters r∞.

2) user never enters rd
i , but enters r∞.

3) user enters rd
i , but never enters r∞.

4) user neither enters rd
i nor r∞.

CoNICE’s global agreement only involves users in cate-
gories 1 and 2, i.e., those that enter r∞, as interaction and con-
tention between different decisions from different fragments
is needed, i.e., to further resolve to reach agreement. Users in
categories 3 and 4 are permanently isolated in their fragments,
and thus not relevant for global consensus, with the relative
advantage of users in category 3 over those in category 4 being
that the achievement of local consensus can be locally useful,
e.g., within a shelter, in category 3.

Among the different fragments that have reached local
agreement and entered r∞, let us define Δmax to be the
fragment with the highest population, namely nmax, i.e., the
“winning” fragment (line 15–16 in Alg. 4). The decided value
for Δmax’s local consensus is denoted by vd

max. If there is
more than one fragment with the highest population, i.e., “tie”
situations (lines 17–19 in Alg. 4), Δmax is the fragment with
the highest population and includes the non-crashed user with
highest UID , denoted by Umax. We define these predicates:

PG1 : ∀Δj �= Δmax : nj < nmax

=⇒ ∀π ∈ Π : ∃π′ ∈ Δmax s.t. π′ ∈ HO(π, r∞) (6)

PG2 : ∃Δj �= Δmax s.t. nj = nmax

=⇒ ∀π ∈ Π : Umax ∈ HO(π, r∞) (7)

Predicate PG1 says that if Δmax is the uniquely most
populated fragment, every other user will hear from some
user in Δmax in r∞. Predicate PG2 says that if population
of Δmax is tied, all users hear from Umax in r∞. It is worth
noting that PG2 does not necessitate the permanent existence
of the user Umax in the network; as long as Umax stays in
the round r∞ long enough to send its local decided value to
some other user, the gossiping protocol enables that message
to reach others through D2D relaying. As per Alg. 4, users
who receive a message, first check the population count, and
then the user ID carried in the decision message, to converge
towards the correct global decision value. Also, no additional
majority check or additional rounds are needed in the global
agreement phase (due to pair-wise comparison in lines 14–20
in Alg. 4). Thus, the communication predicate built by the
conjunction of the two, namely PG = PG1∧PG2, is necessary
and sufficient for CoNICE to ensure global agreement, which
we show in more detail in §V-C.

C. Proving Property 2: Basic Consensus Property
We now investigate if CoNICE’s consensus protocol, in par-

ticular Alg. 3 and 4, satisfy the consensus property 2, and
its sub-properties C1–5, under the communication predicates
explained in §V-B.

C1: Termination. For local consensus, assuming PL1

stands: 1) if all values v are mere contributions, then Alg. 3
ensures that each user reaches the decision mode in the next
round (assuming PL2), decides and terminates; 2) if at least

one of those v’s is a decision message, Alg. 4 (for the same and
different attempt, respectively) ensures that the user jumps to
the decision mode and terminates. For global consensus, if PG

stands and users do not permanently crash, Alg. 4 ensures that
CoNICE always favors the decision received from the winning
fragment/user; thus global consensus will eventually terminate
since PG ensures that the winning decision will be eventually
heard of in r∞ by all users.

C2: Agreement. Local agreement specifies that after some
round rd

i at Δi, the value for <RS , sS> at each user in Δi

(i.e., set of users Πi), will be the same, namely vd
i = v.

We assume PL holds at some round r0. We aim to prove local
agreement is preserved at any round r after r0. We prove that
proposition using induction on the value of r−r0:

Basis: r = r0 + 1. In this case, all users have picked value
v at r0; if v is the next contribution value that all users pick,
then in the next immediate round (r0 + 1), as long as a user
hears of “any” 2

3 set of users, the conditions in both lines 43
& 45 in Alg. 3 will be true. Thus, it ensures all users go to
decision, with value v; so at round r, all users agree on v.

Inductive step: Suppose that at r = r0+n, all users agree on
value v. In round r = r0+n+1, we assume users hear of each
other. Given that users receive a duplicate decision value v in
the same attempt, their decision does not change (line 13 in
Alg. 4). If users receive v as a contribution message, given that
they already made a decision, then the decision status does not
change, ensured by lines 30-32 in Alg. 3. As a result, in both
cases, the decision value v within the same attempt remains
unchanged, which proves the induction for r = r0 + n + 1,
proving CoNICE’s local agreement.

For global consensus, we assume predicate PG holds. As C1
shows, every user in the network terminates with the correct
final value v, which is vd

max, albeit possibly going through the
incremental changes, based on the “highest winner seen so far”
by a user (Alg. 4). Since all users converge to termination
on the same value (shown by C1), eventually every user in Π
will agree on vd

max. Any user that has not yet reached vd
max is

a user that has not yet terminated. Similarly, one that crashes
permanently is not considered in the agreement requirement.
This proves CoNICE’s global agreement property. Therefore,
any consensus run according to CoNICE’s protocol, i.e., all
consensus steps that do not require a new attempt or a whole
new session, preserves agreement.

C3: Validity. Alg. 3 ensures that every user starts a
consensus session with an initial value. If it is not ‘Noop’,
line 12 ensures that the initial value is then used to create
contributions that are disseminated. As we can see in Alg. 3,
no new value is created during the message exchange among
users; thus the final value picked for a decision is necessarily
some user’s initial value, guaranteeing the validity property.

C4: Update Validity. For update validity, every user starts
with an initial value that he has delivered in level 1, and thus is
a valid update. It can also be a ‘Noop’. Alg. 3 makes sure that
‘Noop’ would never pass the one-third rule test and proceed to
the decision. With this fact and also considering C3, CoNICE
ensures that update validity holds.

C5: Integrity. When there is no decision invalidation,
C1 ensures integrity is also guaranteed, as no user will make

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

a duplicate decision. In the case of invalidation, this property
still holds, since at any point in time, only one decision is
valid, even for the case of multiple attempts for a consensus
session. This is ensured by line 9 in Alg. 3, as the variable
decS by a user, only holds at most one value at a time, which
is its latest valid value.

D. Proving Property 3: Total and Causal Ordering Property

In Property 2, we proved the consensus properties of
CoNICE, regrading individual consensus sessions. Property
3 has two separate parts, both of which we will consider.
The first part of property 3 specifies total order. Suppose
two users π1 and π2 have established their final sequences
of updates for region R in their strong views, without any
holes in the sequence. By way of proof by contradiction,
let us also suppose that π1 has placed updates u and u′ in
slots s1 and s2 respectively (with s1 < s2), and user π2 has
placed updates u′ and u in slots s3 and s4 respectively (with
s3 < s4). In other words, we are supposing π1 placed u before
u′, while π2 placed u′ before u, thus violating total ordering.
We consider the following possible cases:

1. No invalidations are needed: This case would entail that
π1 decided u for <R, s1> while π2 decided some update u′′ �=
u for <R, s1> (with similar situation for u′). This would mean
that the consensus protocol reached two different decisions u
and u′′ for the same session <R, s1>, violating the agreement
property. Since there is no need for invalidation and CoNICE
ensures agreement, this case is impossible.

2. There has been loss of causality, thus invoking the
re-ordering procedure (invalidation case 1 in §IV-C): This
case would entail that update u was initially inserted into some
slot s5 at both π1 and π2 (with similar situation for u′), but
the re-ordering due to loss of causality changed that. This
would mean that the local re-ordering step (lines 25–26 in
Alg. 4) performed two different ordering outcomes at π1 and
π2. As the re-ordering module used in Alg. 4 is deterministic
(i.e., same input leads to same output), this is impossible.

3. There has been long-term fragmentation, thus invoking
the contention-breaking procedure for contention between
fragments (invalidation case 2 in §IV-C): This would mean
that the consensus protocol reached two different decisions u
and u′′ for the same session <R, s1>, after the re-connection
of fragments, violating the agreement property. Since the
invalidation procedure for long-term fragmentation picks one
single value to eventually converge to (i.e., value from the
winning fragment/user), and CoNICE ensures agreement even
in case of global consensus, this case is impossible.

4. There has been duplicate decisions and thus a
new attempt procedure is invoked (invalidation case 3 in
§IV-C): Similar to the previous case, this would require that
the consensus session for <R, s1> reach two different values
u and u′′ (with similar situation for u′), after a new attempt.
Given that CoNICE ensures agreement in each of its attempts
(no matter how many re-attempts happen), this is impossible.

Therefore, the initial hypothesis about lack of total order is
contradicted, and CoNICE’s total ordering is proved. As for
causal order, since the outcome of the decided sequences get
deterministically sorted (by the aforementioned sorting method

in case 2 above) and re-ordered for causal order if necessary,
causal order of the Strong view is also guaranteed.

VI. EVALUATION

To evaluate CoNICE, we perform a simulation based on a
partial map of the city of Helsinki (Fig. 3(a), [52], with more
details in [23]) using the ONE simulator [53]. The associated
hierarchically-structured namespace (Fig. 3(b)) follows the
“City→Major districts→Districts→Neighborhoods” structure.
Our simulation environment consists of the three districts
(and hierarchically, the neighborhoods in them) highlighted
in Fig. 3(a), and is 4500×3400 meters large. Our simulation
setup mimics the way first responders get mobilized and move
around neighborhoods for a search and rescue operation in
natural disasters, such as a hurricane. We model an emer-
gency response scenario where there are 30 pedestrian first
responder users (F-users), each dealing with one of the three
districts: they are moving in the area, indicate an interest
in events in them, and publishing updates for them. There
is no networking infrastructure, but all users are equipped
with D2D wireless capability. To increase message delivery,
we place additional benevolent mules, namely 500 pedestrian
civilians (C-users) and patrol vehicles (V-users). V-users move
faster, have higher buffer capacity and wireless range than
pedestrian users. Benevolent mules participate in relaying and
causal delivery of every message they receive (regardless of
region). However, they do not participate in any consensus
sessions. We assume all users in these scenarios, i.e., F-users,
C-users, and V-users, behave honestly and non-maliciously.
Mobility is based on map routes, with waiting times of at
most 2 min. Each F-user creates three updates in the first
half hour of the simulation (thus, total of 90 uniquely created
updates), randomly belonging to one of the neighborhoods in
their respective district. All messages are 1 KB. We report on
two sets of scenarios, one with 1 hour in simulated time and
another for 12 hours.

A. Experiments on Gossiping and Causal Ordering
To investigate level 0 and level 1 consistency, we use the

1-hour simulation scenario. There are a total of 59,558 D2D
contacts during this time, and the cumulative distribution of
contact durations is (partially) shown in Fig. 3(c). As Fig. 3(c)
shows, 95 percent of contacts lasted less than 1 minute and
70 percent less than 10 seconds, which demonstrates the highly
dynamic nature of the environment. The mobility and contact
distribution is the same for all experiments in this sub-section.

First, we focus on gossiping only (i.e., no causal ordering or
consensus). We define replication coverage (RC) as a metric
that shows how many of updates each node has received
(albeit out of order). Total RC (RCtot) denotes all updates
a user received, while relevant RC (RCrel) only considers
the relevant ones pertaining to the F-user’s tasks (can be at
most 30). Note that always RCrel≤RCtot, and with the right
interest profiling, it is expected that RCrel=RCtot. CoNICE’s
gossiping enhances epidemic routing. As Table I shows,
CoNICE achieves better RCrel than ‘epidemic routing+NR’
(NR is name-based region-ing for publications), as it adds
name-based interest profiling (NBIP). It also achieves better

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 11

Fig. 3. Simulation scenario.

Fig. 4. Results for level 1 (causal ordering).

TABLE I

RESULTS FOR LEVEL 0

TABLE II

RESULTS FOR LEVEL 1

latency with more relevant deliveries (RLrel), (at most can
reach 30 × 30.900). This is due to naming which makes
relays and queued messages more useful and relevant. Also,
basic epidemic routing that uses no naming (the notion of
‘relevancy’ not applicable), receives lower RCtot than when
enhanced with NR. Its total relays value is similar to the rest
while achieving less. CoNICE achieves higher coverage with
lower buffer and network cost. More results are in [47].

We then bring causal ordering into play. CoNICE’s causal
ordering enhances Vector Clock with the use of NR, NBIP, and
Reactive mode (R), in addition to other minor optimizations
such as variable-length vectors. Table II provides a compar-
ison summary. Fig. 4(a) shows the CDF of relevant causal
completeness (CCrel), which denotes how many of updates

have been causally applied at F-users. As Fig. 4(a) shows,
CoNICE achieves better CCrel compared to alternatives that
enable NR, since CoNICE allows more selective use of causal
ordering overhead (through NBIP) and requesting for unful-
filled prerequisites on demand using the reactive mode rather
than waiting. It also achieves better causal latency (CLrel) as
Fig. 4(b) shows, and reasonable network overhead in terms
of the number of relays (Table II). For cases without NR,
Table II shows that pure Vector Clock achieves the lowest
RCtot. This is because without name-based region-ing, every
update can potentially depend on all others, which results
in an extremely high number of references that have to be
fulfilled and processed. Name-based region-ing makes it more
selective, having to only depend on relevant updates. Fig. 4(c)
shows CoNICE achieves better buffer usage than most alter-
natives, except ‘VC+NR+NBIP’ which does not use reactive
mode and achieves lower completeness. As seen, using causal
ordering leads to slightly higher latency and buffer usage than
pure level 0, but achieves causal order consistency.

B. Experiments on Consensus

To investigate consensus, we extend our scenario to 12 hours
with the total of 683,876 D2D contacts. We now enable level 2,
i.e., consensus, on top of levels 0 and 1. After the passage
of approximately one hour, users start to initiate consensus
sessions for the slots they have content for. We compare
CoNICE with the basic OTR, and show the impact of adding
NR and NBIP. The agreement completeness (AC) metric
shows how many of level 2 queue slots of users have been
filled with agreed-upon updates. Just as before, we have ACrel

and ACtot. As Table III shows, basic OTR fails to reach
any decisions, and thus has zero AC. ‘OTR+NR’ is slightly
better but is still not satisfactory. As the Table, and Fig. 5(a)
(CDF of ACrel) show, CoNICE achieves a dramatically better

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Results for level 2 (consensus).

TABLE III

RESULTS FOR LEVEL 2

agreement completeness. Fig. 5(a) shows that with CoNICE,
90% of F-users agree on 26 or more updates, while with
‘OTR+NR’, 75% of F-users agree on zero updates, in the
entire 12-hour simulation period. This is due to the fact that
CoNICE uses NBIP, which limits the consensus participants
only to those that are relevant, namely F-users dealing with
neighborhoods within the same district. Table III also shows
that OTR and ‘OTR+NR’ initiate much higher consensus
sessions than CoNICE (2,049 and 2,101 vs. 853), but reach
significantly fewer decisions (0 and 28 vs. 858). CoNICE
even reaches more decisions than it initiates, which shows
the improvement contributed by level 2 over level 1. This is
because due to CoNICE’s faster consensus convergence, some
F-users can fill their slots in Q2 the corresponding of which
they do not have in Q1. Fig. 5(b) shows the cumulative latency
of reaching relevant agreement decisions (ALrel) across all
F-users. As shown, CoNICE achieves considerably more.
As can be seen (and previously shown in [12]), the latency
of reaching consensus decisions is on the scale of hours in
an intermittently-connected network, while CoNICE’s causal
order delivery is in the order of minutes (Table II). This
shows yet another benefit of going through level 1 first and
then level 2: users will have a somewhat useful moderate
view in the order of minutes while dealing with the incident,
while waiting for possibly hours to reach consensus and build
a strong view. CoNICE achieves far better agreement com-
pleteness, using the same level of relays as other alternatives
(Table III), and using much less buffer at F-users as shown
in Fig. 5(c). These results show that CoNICE significantly
improves on OTR, for achieving higher agreement complete-
ness among users, while also using less buffer capacity. These
improvements of CoNICE are greatly beneficial in practical
situations such as geo-tagging in emergency response, as first
responders can build their consistent strong views much faster

TABLE IV

ENERGY CONSUMPTION: WITH SUFFICIENT INITIAL ENERGY

and be able to deal with their critical tasks more effectively
and efficiently.

C. Energy Consumption

An important aspect in our application is energy con-
sumption. Using our simulation environment, we investigate a
first responder’s mobile device energy consumption resulting
from network-related operations: wireless scanning and data
transmission. We compare the use of CoNICE’s NBIP vs.
without NBIP. We consider two cases with regard to the initial
energy, whether it is sufficient or insufficient.

In the first case, we assume all user devices have suffi-
cient (battery) energy to begin with, so that they do not run
out of battery power during a 12-hour simulation duration.
Table IV shows the network energy consumption (NEC)
as well as relevant agreement completeness (ACrel), both
averaged among all F-users (first responders). We compare
for different values (and ratios) of scan energy (Escan) and
transmission energy (Etransmit). Escan is the amount of
energy used for a single request or response message in the
process of scanning/discovery a neighboring device. Etransmit

is the amount of energy used when transmitting a byte of
data per second. All energy-related values in the Table (i.e.,
Escan , Etransmit , and NEC) are measured in “simulated
energy units” (e.g., KJoules). As Table IV shows, CoNICE
achieves much better agreement completeness with less energy
consumption. This is due to fewer data transfers needed,
thanks to the selectivity brought about by NBIPs. This energy
reduction is more apparent when the Etransmit to Escan ratio
is higher. The scanning activity is the same regardless of the
consensus protocol, as it only depends on the mobility pattern.

In the second case, we focus on the initial energy. Limiting
it may cause insufficient energy for consensus sessions to
continue until the end of 12th hour. We consider different
initial energy values, with values of Escan and Etransmit set
to 1. Table V compares the use of NBIP in CoNICE vs.
not using it. The Table shows that while 50kJ is sufficient

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN AND RAMAKRISHNAN: CoNICE: CONSENSUS IN INTERMITTENTLY-CONNECTED ENVIRONMENTS BY EXPLOITING NAMING 13

TABLE V

ENERGY CONSUMPTION: INSUFFICIENT INITIAL ENERGY

Fig. 6. Average local and global agreement completeness.

initial energy for both approaches, reducing it to 40kJ causes
both approaches to not reach their full potential: ‘OTR+NR’
will result in zero completeness, while ‘OTR+NR+NBIP’
(CoNICE) achieves the completeness ratio of 28.3 out of 30.
As these results show, CoNICE achieves much better relevant
agreement completeness, even when running out of battery
energy during the consensus procedure.

D. Physical Fragmentation of Shelters During Disasters

We now conduct experiments to investigate the effect of
long-term fragmentation: we have two long-term fragmented
shelters each circular with radius of 50 meters, with 500 meters
distance between them. Each shelter contains 5 first responders
(F-users), all dealing with the disaster in the ‘Vironniemi’
district. These F-users are constrained (or trapped) with very
limited mobility within their respected shelters. Every F-user
creates 3 updates. Thus, we will have a total of 30 updates. All
benevolent mule activity is disabled during the first 8 hours
of the experiment, with no connection between members of
the two shelters. Due to this long-term fragmentation, the two
shelters do not hear from each other for the 8-hour period, and
we end up with 15 pairwise contentious consensus sessions,
i.e., same region-slot pair, from the two shelters.

Fig. 6 compares the use of basic OTR (without invalidation),
(a), and CoNICE (OTR with invalidation), (b), for achieving
both local and global agreement (as defined in §V). Local
agreement completeness indicates to what extent an average
F-user reaches the same decision for an update as the others in
the same shelter. Global agreement completeness, on the other
hand, represents to what extent an average F-user reaches the
“winning” global decision for an update just like the others in
the whole network. Both are shown as per-user average, and
each can be at most 15.

As Fig. 6(a) shows for the basic OTR approach, it is
easy for all the F-users to gradually reach complete local
agreement before the 8th hour. Since one shelter has the
winning advantage, at most half global agreement is reached
(i.e., those who are already in the winning shelter), with-
out any invalidation procedure. We also observe the same
outcome if we restart the whole consensus procedure with
all 10 participants. This occurs because there is insufficient
time to reach global agreement among all users. Thus, we do

not make progress in achieving global agreement even after
12 hours. Alternatively, as Fig. 6(b) shows, with the addition
of decision invalidation procedure, CoNICE achieves complete
global consensus among all F-users in the network, gradually
starting from the 8th hour, which is the time paths start to
appear between shelters. This feature of CoNICE helps ensure
that all first responders can get a chance to eventually get
on the same page regarding the ordering of updates for their
respective tasks, in a strongly consistent manner, even if they
have been isolated in separate shelters for a long time.

VII. CONCLUSION

We proposed CoNICE, a framework to ensure consis-
tent dissemination of updates among users in intermittently-
connected environments. It exploits naming and multi-level
consistency for more selective and efficient causal ordering
and consensus. We proved CoNICE guarantees consensus with
causal and total ordering properties. Additionally, we showed
that CoNICE can also solve consensus even in case of
long-term fragmentation. Our simulation experiments on an
application of map-based geo-tagging in emergency response
show that CoNICE achieves a considerably higher degree of
agreement completeness than the state-of-the-art asynchronous
consensus algorithm, OTR, as it exploits naming, showing the
applicability of CoNICE in practical, intermittently-connected
scenarios.

REFERENCES

[1] M. Jahanian, Y. Xing, J. Chen, K. K. Ramakrishnan, H. Seferoglu, and
M. Yuksel, “The evolving nature of disaster management in the internet
and social media era,” in Proc. IEEE Int. Symp. Local Metrop. Area
Netw. (LANMAN), Jun. 2018, pp. 79–84.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
2003, pp. 27–34.

[3] C. Boldrini, K. Lee, M. Önen, J. Ott, and E. Pagani, “Opportunistic
networks,” Comput. Commun., no. 48, pp. 1–4, Oct. 2014.

[4] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device communi-
cation in LTE-advanced networks: A survey,” IEEE Commun. Surveys
Tuts., vol. 17, no. 4, pp. 1923–1940, 4th Quart., 2015.

[5] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable
Secure Distrib. Programming, 2nd ed. Berlin, Germany: Springer, 2011.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[7] D. R. Cheriton and D. Skeen, “Understanding the limitations of causally
and totally ordered communication,” in Proc. 14th ACM Symp. Oper.
Syst. Princ., 1993, pp. 44–57.

[8] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[9] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.

[10] M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA,
USA: O’Reilly Media, 2015.

[11] F. Borran, R. Prakash, and A. Schiper, “Extending paxos/lastvoting with
an adequate communication layer for wireless ad hoc networks,” in Proc.
Symp. Reliable Distrib. Syst., Oct. 2008, pp. 227–236.

[12] A. Benchi, P. Launay, and F. Guidec, “Solving consensus in opportunistic
networks,” in Proc. Int. Conf. Distrib. Comput. Netw., Jan. 2015,
pp. 1–10.

[13] B. Charron-Bost and A. Schiper, “The heard-of model: Computing in
distributed systems with benign faults,” Distrib. Comput., vol. 22, no. 1,
pp. 49–71, Apr. 2009.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol., 2009, pp. 1–12.

[15] L. Zhang et al., “Named data networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 66–73, 2014.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[16] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“COPSS: An efficient content oriented publish/subscribe system,” in
Proc. ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst., Oct. 2011,
pp. 99–110.

[17] I. Psaras, L. Saino, M. Arumaithurai, K. K. Ramakrishnan, and
G. Pavlou, “Name-based replication priorities in disaster cases,” in Proc.
IEEE Conf. Comput. Commun. Workshops, Apr. 2014, pp. 434–439.

[18] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and
K. K. Ramakrishnan, “Comparison of naming schema in ICN,” in
Proc. IEEE Int. Symp. local Metrop. Area Netw. (LANMAN), Jun. 2016,
pp. 1–6.

[19] A. Venkataramani, J. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “MobilityFirst: A mobility-centric and trustworthy
internet architecture,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 74–80, Jul. 2014.

[20] M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based
namespaces and load sharing for efficient information dissemination
in disasters,” in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP),
Oct. 2019, pp. 1–12.

[21] J. R. G. Paz, “Introduction to azure cosmos db,” in Microsoft Azure
Cosmos DB Revealed. Berkeley, CA, USA: Apress, 2018, pp. 1–23.

[22] F. Houshmand and M. Lesani, “Hamsaz: Replication coordination
analysis and synthesis,” Proc. ACM Program. Lang., vol. 3, pp. 1–32,
Jan. 2019.

[23] CoNICE: Consensus in Name-Based Intermittently-Connected Envi-
ronments. Accessed: Jan. 1, 2022. [Online]. Available: https://github.
com/mjaha/CoNICE

[24] K. K. Ahmed, M. H. Omar, and S. Hassan, “Survey and comparison
of operating concept for routing protocols in DTN,” J. Comput. Sci.,
vol. 12, no. 3, pp. 141–152, Mar. 2016.

[25] A. Vahdat et al., “Epidemic routing for partially connected ad hoc
networks,” Duke Univ., Durham, NC, USA, Tech. Rep. CS-200006,
2000.

[26] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Trans. Netw., vol. 14, no. 3, pp. 479–491, Jun. 2006.

[27] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait:
An efficient routing scheme for intermittently connected mobile net-
works,” in Proc. ACM SIGCOMM Workshop Delay-Tolerant Netw.,
2005, pp. 252–259.

[28] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE rap: Social-based
forwarding in delay-tolerant networks,” IEEE Trans. Mobile Comput.,
vol. 10, no. 11, pp. 1576–1589, Nov. 2011.

[29] W. Moreira, P. Mendes, and S. Sargento, “Opportunistic routing based
on daily routines,” in Proc. IEEE Int. Symp. World Wireless, Mobile
Multimedia Netw. (WoWMoM), Jun. 2012, pp. 1–6.

[30] W. Moreira, P. Mendes, and S. Sargento, “Social-aware opportunistic
routing protocol based on user’s interactions and interests,” in Proc. Int.
Conf. Ad Hoc Netw., 2013, pp. 100–115.

[31] H. Lenando and M. Alrfaay, “EpSoc: Social-based epidemic-based
routing protocol in opportunistic mobile social network,” Mobile Inf.
Syst., vol. 2018, Apr. 2018, Art. no. 6462826.

[32] R. Koch, R. Moser, and P. Melliar-Smith, “Global causal ordering with
minimal latency,” in Proc. Int. Conf. Parallel Distrib. Comput. Netw.,
1998, pp. 262–267.

[33] J. Fidge, “TimesTamps in message-passing systems that preserve the
partial ordering,” in Proc. 11th Austral. Comput. Sci. Conf., 1988,
pp. 56–66.

[34] F. Mattern, “Virtual time and global states of distributed systems,” in
Proc. Parallel Distrib. Algorithms, 1989, pp. 215–226.

[35] M. Singhal and A. Kshemkalyani, “An efficient implementation of vector
clocks,” Inf. Process. Lett., vol. 43, no. 1, pp. 47–52, Aug. 1992.

[36] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “The
potential dangers of causal consistency and an explicit solution,” in Proc.
3rd ACM Symp. Cloud Comput., 2012, pp. 1–7.

[37] R. J. de Araújo Macêdo, “Causal order protocols for group com-
munication,” in Proc. Brazilian Symp. Comput. Netw. (SBRC), 1995,
pp. 265–283.

[38] E. Gafni, “Round-by-round fault detectors (extended abstract): Unifying
synchrony and asynchrony,” in Proc. 17th Annu. ACM Symp. Princ.
Distrib. Comput. (PODC), 1998, pp. 143–152.

[39] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal, “Consensus in
one communication step,” in Proc. Int. Conf. Parallel Comput. Technol.,
2001, pp. 42–50.

[40] M. Jahanian and K. K. Ramakrishnan, “Name space analysis: Verifi-
cation of named data network data planes,” in Proc. 6th ACM Conf.
Inf.-Centric Netw., Sep. 2019, pp. 44–54.

[41] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in Proc. 2nd ACM Conf.
Inf.-Centric Netw., 2015, pp. 9–18.

[42] T. Li, Z. Kong, S. Mastorakis, and L. Zhang, “Distributed dataset
synchronization in disruptive networks,” in Proc. IEEE 16th Int. Conf.
Mobile Ad Hoc Sensor Syst. (MASS), Nov. 2019, pp. 428–437.

[43] D. Tarr, E. Lavoie, A. Meyer, and C. Tschudin, “Secure scuttlebutt: An
identity-centric protocol for subjective and decentralized applications,”
in Proc. 6th ACM Conf. Inf.-Centric Netw., Sep. 2019, pp. 1–11.

[44] L. Wang et al., “Naxos: A named data networking consensus protocol,”
in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., 2018,
pp. 986–991.

[45] Urban Search and Rescue—Marking Systems. Accessed: Jan. 1, 2022.
[Online]. Available: https://en.wikipedia.org/wiki/Urban_search_and_
rescue#Marking_systems

[46] Katrina+5: An X-Code Exhibition. Accessed: Jan. 1, 2022. [Online].
Available: https://southernspaces.org/2010/katrina-5-x-code-exhibition/

[47] M. Jahanian and K. K. Ramakrishnan, “CoNICE: Consensus in
intermittently-connected environments by exploiting naming with appli-
cation to emergency response,” in Proc. IEEE 28th Int. Conf. Netw.
Protocols (ICNP), Oct. 2020, pp. 1–12.

[48] C. A. Lee, Z. Zhang, Y. Tu, A. Afanasyev, and L. Zhang, “Supporting
virtual organizations using attribute-based encryption in named data net-
working,” in Proc. IEEE 4th Int. Conf. Collaboration Internet Comput.
(CIC), Oct. 2018, pp. 188–196.

[49] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 566–600, 1st Quart., 2018.

[50] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use AI to enhance
security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41–49,
Sep. 2018.

[51] D. Cavin, Y. Sasson, and A. Schiper, “Consensus with unknown par-
ticipants or fundamental self-organization,” in Int. Conf. Ad-Hoc Netw.
Wireless, 2004, pp. 135–148.

[52] Wikipedia. Subdivisions of Helsinki. Accessed: Jan. 1, 2022. [Online].
Available: https://en.wikipedia.org/wiki/Subdivisions_of_Helsinki

[53] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for DTN
protocol evaluation,” in Proc. 2nd Int. Conf. Simulation Tools Techn.,
2009, pp. 1–10.

Mohammad Jahanian received the B.S. degree
from the University of Tehran in 2012, the M.S.
degree from the Sharif University of Technology in
2014, and the Ph.D. degree from the University of
California at Riverside, Riverside, in 2021. He is
currently a Systems Software Engineer at Aruba,
a Hewlett Packard Enterprise Company. His research
interests include networking, distributed systems,
and formal methods.

K. K. Ramakrishnan (Fellow, IEEE) received the
M.Tech. degree from the Indian Institute of Science
in 1978 and the M.S. and Ph.D. degrees in computer
science from the University of Maryland, College
Park, USA, in 1981 and 1983, respectively. He is a
Professor of computer science and engineering with
the University of California at Riverside, Riverside.
Previously, he was a Distinguished Member of Tech-
nical Staff at AT&T Labs-Research. Prior to 1994,
he was the Technical Director and a Consulting
Engineer in networking at Digital Equipment Cor-

poration. Between 2000 and 2002, he was at TeraOptic Networks Inc. as the
Founder and the Vice President. He has published over 300 papers and has
185 patents issued to his name. He is a Fellow of ACM and AT&T, recognized
for his fundamental contributions on communication networks, including his
work on congestion control, traffic management, and VPN services.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 04,2022 at 04:11:29 UTC from IEEE Xplore. Restrictions apply.

