
Articles
https://doi.org/10.1038/s41567-022-01747-0

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Department of Physics, Northeastern University, 
Boston, MA, USA. 3Department of Physics, University of Ottawa, Ottawa, Ontario, Canada. 4Center for Regenerative Medicine of Boston University and 
Boston Medical Center, Boston, MA, USA. 5The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA. 
6Harvard T. H. Chan School of Public Health, Boston, MA, USA. 7Department of Pathology & Laboratory Medicine, Boston University School of Medicine, 
Boston Medical Center, Boston, MA, USA. 8Present address: Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada. 
✉e-mail: guom@mit.edu

Collective cellular migration has been widely observed in 
embryonic development1–3, wound healing4,5 and tumour 
invasion6,7. From the perspectives of both biophysics and 

signalling, collective cellular migration8–11 and the associated issues 
of packing geometry12–15 and cell jamming and unjamming16–21 on 
two-dimensional (2D) flat surfaces have been widely explored. For 
example, epithelial cells growing on flat substrates approach a jam-
ming transition during maturation, exhibiting an increasing veloc-
ity correlation length9, decreasing cell speed9,22 and decreasing cell 
aspect ratio23. In contrast, most biological structures, such as alveoli, 
bronchi and intestines, are naturally curved in three dimensions. 
Even for inert materials, it is known that curvature fundamentally 
changes basic processes such as crystallization24,25, yet it remains 
unclear to what extent the cellular collective responds to curvature.

At the subcellular scale, previous studies have shown that cer-
tain proteins, such as clathrin and dynamin 2 on cell membranes, 
can sense curvatures with radii <200 nm (ref. 26). Yet many biologi-
cal systems have radii of curvature that vary from tens to hundreds 
of micrometres, corresponding to cellular and multicellular levels. 
Interestingly, curvatures in this range have recently been shown 
to affect a variety of cell behaviours27–30. In particular, when cell 
monolayers are cultured on a tubular surface, tube diameters on the 
order of several cell lengths have been shown to promote cell align-
ment and migration longitudinally along the tube axis27,28. Cells 
cultured on wavy structures with curvature radius of less than five 
cell lengths exhibit an obvious change of cell height depending on 
the sign of substrate curvature29,30. These results highlight the influ-
ence of curvature on cell behaviour, but do not determine whether 
cells are sensitive to inherent curvature or differential curvature. All 

surfaces are defined locally by two principal radii of curvature. In 
tubular and wavy geometries, these radii are discordant, and cells 
necessarily exist in an anisotropic environment. Take tubular geom-
etries as an example: as the radius of curvature in the axial direction 
is fixed, curvature changes in the other dimension, and both the 
inherent and differential curvature change in concert. Using geom-
etries with uniform curvature in all directions—spherical geom-
etries—would allow the effect of curvature on cellular migration to 
be directly measured.

Here we investigate the role of curvature in regulating collec-
tive cellular behaviour on spherical three-dimensional (3D) sur-
faces using a combination of experiments and in silico modelling. 
Our results reveal that the migratory speed of the individual cell is 
largely unaffected by curvature, whereas the collective migration of 
the cells becomes more dynamic, less coherent and more heteroge-
neous. Conversely, as curvature decreases cells become hexagonally 
coordinated into progressively larger spatial packs. On the basis 
of results from simulations and in vitro experiments, we propose 
that this behaviour is a direct consequence of hexagonal cells being 
more solid-like whereas non-hexagonal cells are more fluid-like. 
Moreover, due to their solidity, the hexagonal clusters on a curved 
surface incur an elastic bending energy. Together, the interplay of 
the energetic cost of bending and the energetic preference towards 
solidification gives rise to the observed organization of cellular 
packs, leading to a series of curvature-dependent collective cellular 
behaviours.

To mimic the typical size of curved biological structures in situ, 
we fabricated hemispherical structures with both positive and 
negative radii of curvature (125, 225 and 325 μm; Fig. 1a,b) using 
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polydimethylsiloxane (PDMS); this hemispherical structure has 
isotropic curvature everywhere on the surface, thus allowing us to 
isolate the effect of curvature on cell behaviour. Onto this PDMS 
substrate, we coated a layer of collagen I, and then cultured a mono-
layer of Madin–Darby canine kidney (MDCK) epithelial cells with 
stably expressed green fluorescent protein-tagged nuclear localiza-
tion signal (NLS-GFP). After cell monolayers reached confluency, 
we imaged these cells in 3D every 15 min using confocal microscopy 
(SP8, Leica) (Fig. 1d,e and Supplementary Video 1; cross-sectional 
views are shown in Supplementary Fig. 2c); this allowed us to track 
cell positions over time, and then calculate migration velocities of 
each cell in 3D (Supplementary Fig. 1a–d). To avoid any bound-
ary effect (Supplementary Fig. 1f,g), we excluded cells that were 
too close to the boundary of these hemispheres in our analysis 
(Methods).

Consistent with previous studies on flat surfaces9, on these curved 
surfaces the average migration speed of individual cells decreased as 

cell density increased (Fig. 1f). We found that the dependence of 
individual cell speed on cell density did not vary with the magnitude 
of substrate curvature, whether positive or negative. To confirm this 
result, we quantified individual cell speed within a cell density (ρ) 
range of 2,300 ± 300 mm−2; we found that cells had a similar speed 
on all tested curvatures (Supplementary Fig. 1e).

Intriguingly, even though individual cell speeds in this sys-
tem were insensitive to curvature, collective behaviour responded 
dramatically to curvature. A standard way to quantify the degree 
of collectiveness is to compute the spatial cross-correlation func-
tion in the velocity field, Cvv(rθ, t0) = 〈(v(x + rθ, t0/|v(x + rθ, 
t0)|) · (v(x, t0)/|v(x, t0)|)〉 (Methods), where v is velocity vector for 
cells in 3D and x is the position vector of cells in 3D, rθ is the 
geodesic distance for radius r and angle θ defined in Fig. 1c; this 
metric measures the velocity vector correlation of all cell pairs 
separated by a distance rθ at a certain time t0. To avoid the influ-
ence of cell density on collective behaviour, we used the same cell 
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Fig. 1 | MDCK cells grown on different curvatures and their individual and collective cellular behaviours. a,b, Schematics of cells grown on 3D PDMS 
hemispheres with negative/concave (a) and positive/convex curvatures (b). c, Schematic showing the sphere, r, θ and rθ. d, Side view of 3D reconstructed 
images (using Leica LAS X) of MDCK cells grown on flat surfaces and wells with 650 μm, 450 μm and 250 μm diameters (left to right) (curvatures κ of 0, 
−1/325 μm−1, −1/255 μm−1 and −1/125 μm−1). Scale bars, 100 μm. e, Top view (maximum intensity projection) of NLS-GFP-labelled MDCK nuclei on PDMS 
hemispheres. Scale bars, 100 μm. f, Average cell speed as a function of cell density for different κ. Each point is an average of 10–20 consecutive frames 
(15 min per frame) from the same well. Error bars show 1 s.d. Each frame contains several hundred cells. g, Representative group Cvv and ζ0 (inset) values 
for cells with ρ = 2,300 mm−2 for different κ (the x-axis labels of the inset act as a legend for the curves). Inset: each point is the average of 10 frames with 
ρ = 2,300 mm−2 for 3 different wells with 1 s.d. error bars.
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density (~2,300 mm−2) on all hemispherical structures. For all cur-
vatures examined, we observed that Cvv decreased as rθ increased 
(Fig. 1g), indicating that cells become less coherent with increased 
distance. Moreover, Cvv is always marked by a distinct minimum at 
intermediate distances; this is consistent with previous studies on 
flat surfaces, and indicates the existence of a swirling pattern of the 
collective cell migration with velocity vectors on the opposite side 
of the swirl being anticorrelated22. The correlation function invari-
ably exhibits this well-defined minimum corresponding to the size 
of the swirls22, and its position allowed us to determine a correla-
tion length, ζ0, characterizing the length scale of collective migra-
tion. Regardless of positive or negative curvatures, as the curvature 
magnitude increased, the correlation function decreased faster and 
reached a minimum at a shorter geodesic distance rθ, suggesting a 
smaller ζ0 (inset in Fig. 1g). These results suggest that cell migration 
becomes less collective as surfaces become more curved. In contrast 
to cells cultured in tubes showing F-actin alignment along the tube 
direction27,28, we observed no such change in F-actin or E-cadherin 
as isotropic curvature changed (Supplementary Fig. 3a,b). We also 
observed no obvious change in focal adhesion proteins such as 
vinculin (Supplementary Fig. 3d) and tight junction protein ZO-1 
(Supplementary Fig. 3e). However, zyxin seemed to localize at cell–
cell contacts for the higher curvature, whereas it was more cytoplas-
mic for flat or weakly curved substrates. This could be related to 
the observation that zyxin could relocalize from focal adhesions to 
actin filaments due to mechanical forces31–33.

To further investigate collective cell migration on different 
curvatures, we decomposed the cell velocity field into divergence, 
curl and shear, which form a complete descriptor of a multicellular 
flow field (Methods). Divergence describes swelling and shrinking 
of cell clusters, while curl quantifies rotational motion and shear 
describes transvection, as illustrated in Supplementary Fig. 4a–c. As 
the spatial correlation of velocity directions is already captured by 
Cvv and ζ0, here we only considered the magnitude of curl and shear. 
We found that divergence, curl and shear all had larger values but 
smaller characteristic pattern sizes on smaller hemispheres (Fig. 2a 
and Supplementary Fig. 4d,e,j–l). To quantify this trend, we plotted 
the probability density function (PDF) of divergence values calcu-
lated on every grid of a hemisphere (Methods); we found that the 
distribution of the PDF was wider on smaller hemispheres (Fig. 2d), 
indicating a more heterogenous system response. Additionally, as 
we plotted the divergence values along longitudinal lines on each 
hemisphere, we observed that the divergence values showed more 
pronounced fluctuations on smaller hemispheres (Fig. 2c). As we 
computed the spatial frequency spectrum of these fluctuations, we 
found a higher characteristic spatial frequency on smaller hemi-
spheres (Fig. 2e), which confirmed the observed smaller patterns 
of the divergence field. Similar trends were also observed for curl 
and shear fields (Supplementary Fig. 4m–n). These results are also 
in agreement with the observed shorter velocity cross-correlation 
length on smaller hemispheres (inset in Fig. 1g). Taken together, 
these analyses of multicellular flow field demonstrate that collective 
migration of multicellular systems is strongly influenced by curva-
ture in 3D; specifically, on smaller hemispheres with larger curva-
tures the collective cellular migration becomes less cooperative and 
less stable.

To test whether this curvature-dependent behaviour can be gen-
eralized to more physiologically relevant systems, we used the lung 
alveolospheres derived from human induced pluripotent stem cells 
(iPSCs) in 3D cell culture34 (Fig. 3a). This alveolosphere system 
contained a monolayer of human iPSC-derived alveolar epithelial 
type II cells (iAEC2s) cultured in 3D Matrigel. These cells expressed 
a global transcriptome and ultrastructure that resembled primary 
adult alveolar epithelial type 2 cells, thus serving as a useful in vitro 
model of human lung development and diseases in these cells. In 
Matrigel, these alveolospheres undergo spontaneous expansion 

driven by continuous cell division, and maintain a spherical shape 
with an isotropic negative curvature on the surface (Fig. 3a). As the 
size of an alveolosphere increases, its surface curvature decreases 
(Fig. 3b), thus allowing us to investigate the impact of curvature on 
the behaviour of the constituted iAEC2s in these alveolospheres.

To visualize the structure and dynamics of cells in alveolospheres, 
we transfected these iAEC2s with a lentiviral vector to stably express 
NLS-GFP, and imaged the entire alveolosphere using confocal 
microscopy at a frame rate of 15 min per frame over 5 h (Fig. 3b and 
Supplementary Videos 2–7). We thus tracked the positions of indi-
vidual cell nuclei and obtained their trajectories and velocities in 
3D. Similar to the fabricated hemispheres, trajectories and velocities 
of individual iAEC2s on these spherical alveolospheres of different 
radii allowed us to calculate multicellular flow field components, 
including divergence, curl and shear, and compare them with values 
for alveolospheres with different curvatures (Fig. 3c).

Consistent with results on fabricated hemispheres, we observed 
more heterogeneous and more dynamic flow fields on smaller alve-
olospheres, where the PDFs of different flow field components were 
indeed more widely spread (Fig. 3d). To further quantify the char-
acteristic size of these flow patterns, we identified local peak values 
and took the surrounding area with values above 50% of the local 
peak as a pack and measured the size of these packs (Supplementary 
Fig. 4g). We found that the average pack size decreased as the alveo-
losphere curvature increased (Fig. 3e and Supplementary Fig. 4h,i). 
These results show that the multicellular flow field of iAEC2s migra-
tion is more pronounced on smaller alveolospheres and becomes 
more collective, yet less dynamic, as alveolospheres grow larger.

Within epithelia, the shape of cells has been shown to be an 
important feature for understanding various normal and pathologi-
cal processes3,12,23,35,36. Using nuclear positions in both cell systems, we 
obtained cell shapes and the cell–cell contact network in the live cell 
system by performing Voronoi tessellation (Supplementary Fig. 6a).  
By comparison with immunofluorescent staining on a fixed sam-
ple, we found that the Voronoi boundaries agreed reasonably with 
the actual cell boundaries; there was a slight underestimation on 
the cell shape index calculated from Voronoi tessellation because 
Voronoi tessellation has no edge tortuosity compared with the 
actual cell edges (Supplementary Fig. 6a,b). Previous analysis of ani-
mal tissues has shown a wide distribution of polygonal cell shapes, 
with hexagonal cell shape being the most frequent in simple epi-
thelia12,37, a topology commonly thought to reflect a tendency for 
cell sorting towards optimally packed (but nonetheless imperfect) 
honeycomb-like arrays38. Indeed, when we used Voronoi tessella-
tion to examine cell–cell networks in alveolospheres, we found that 
cells with six neighbours also formed packs in all samples we exam-
ined (Fig. 4a) and they agreed reasonably well with the hexagon 
packs identified using cell boundaries (Supplementary Fig. 6c,d). 
To investigate the behaviour of these packs, we followed them over 
time and found that the constituent cells maintained their shape 
over the timescale of ~1 h (Supplementary Fig. 7a,b). The relative 
persistency of these cellular hexagon packs enabled the character-
ization of their sizes. When we measured the average size of the 
largest three packs on each alveolosphere, we found that the largest 
pack size increased as the alveolosphere expanded (Fig. 4a,f), sug-
gesting that curvature sets a critical pack size for cell clustering. In 
addition, when we traced the shape of individual cells on different 
alveolospheres, we found that cell shapes became more persistent as 
alveolospheres grew bigger (Supplementary Fig. 7c,d). These results 
also suggest that cell groups on small spheres with large curvature 
surfaces are less stable, consistent with our flow field analyses.

To better understand the origin of the curvature-dependent 
behaviour of cells, we used numerical simulations to analyse the 
emergence of dynamic correlations in cell motion. Here we adapted 
the dynamic vertex model (DVM)20,36 to model a confluent cell 
monolayer embedded on a spherical surface (see the Supplementary 
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Information for details). Commensurate with experimental obser-
vations, in the DVM we related the total number of cells to the radius 
of curvature of the spherical surface (R); that is N = 4πR2 such that 
the curvature κ is represented by cell number N in the simulation: 
κ = 1/R =

√

4π/N . In this model, cells generate motile forces with 
a magnitude v0 that propels the cell to move along the spherical sur-
face. This motile force also serves as the source of active fluctuations 
in the DVM, which gives rise to an effective temperature T ∝ v20 
(ref. 39). Using the DVM, we first observed a velocity correlation pro-
file that adopted a very similar shape to the experiments (Fig. 4b).  
The velocity correlation length grew as the curvature decreased 
(inset in Fig. 4b), in the same manner as our experimental observa-
tion (Fig. 1g). These results suggest that the cell motion becomes 
more cooperative for spheres with lower curvature. Indeed, the 
variation in the velocity correlation length is commonly associated 
with changes in cooperativity among individuals22,40. These results 
indicate that the spatial curvature plays a direct role in controlling 
collective behaviour of the cell monolayer.

Consistent with the experiments, in the DVM the hexagonal 
cells also tended to organize into large clusters (Fig. 4a), and the 
maximum size of these clusters Nc always increased as curvature 
was reduced. Furthermore, Nc decreased as the cell motility-driven 
T increased (Fig. 4e). These results suggest that cellular hexagon 

clusters are energetically favourable in the absence of other factors. 
To gain a physical insight into the clustering of hexagonal cells, we 
used a simple mean-field lattice gas Blume–Emery–Griffiths (BEG) 
model41 to study the distribution of cells with different coordination 
numbers (see the Supplementary Information for details). Briefly, 
in the BEG model the hexagonal configuration is treated as the 
ground state for a cell while the non-hexagonal state is treated as 
an excited state. This is analogous to treating non-hexagonal cells 
as topological defects42–44 inside a mostly crystalline (hexagonal) 
structure. This model predicted that the total fraction of hexa-
gons f6(T, N) was dependent on the temperature as well as the total 
cell number and would increase when the curvature decreased. 
Additionally, f6 decreased rapidly if the effective temperature was 
raised (Supplementary Fig. 8b). These predictions show excellent 
agreement with the DVM simulation (Supplementary Fig. 8a). The 
BEG model also gave a value of the Gibbs free energy difference 
between a hexagonal cell and a non-hexagonal cell:

μhex (T,N) = −∆+ β
−1 log

[

2f6
1− f6

]

. (1)

Here, Δ is a positive constant that corresponds to the energy dif-
ference between a non-hexagonal cell and a hexagonal one. The 
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second term containing β = 1/(kBT) is the entropic (finite tempera-
ture) contribution to the Gibbs free energy, and kB is the Boltzmann 
constant. Here μhex depends on T and N through f6(T, N). As μhex is 
negative for low temperatures, equation (1) confirms that hexagons 
are favoured and could suggest that these packs are more stable. 
Indeed, an overlay of the experimental flow field from the alveo-
losphere with the location of hexagonal clusters revealed that the 
highly dynamic flow field always occurred at the boundary of or out-
side hexagon clusters (Fig. 4c); the same trend was also observed in 
DVM (Fig. 4d). Therefore, cells that are part of a hexagonal pack are 
less dynamic compared with the ‘bath’ of cells outside these packs. 
To further test this conclusion, we measured the cell shape index in 
the DVM, a quantity that has successfully predicted the degree of 
fluidity of cells in flat cell layers23,35. The DVM shows that regardless 
of the spatial curvature, hexagonal cells are always more solid-like, 
while the non-hexagonal cells are fluid-like (Supplementary Fig. 8c).  
Interestingly, the stabilization of larger hexagonal clusters as cur-
vature decreases is reminiscent of the nucleation and growth of 
crystals on curved surfaces24,45–47, where the crystal must bend as 
it grows because it is constrained by the curvature of the surface. 
Adapting this concept of crystallization, our hypothesis here is that 
the less dynamic and more solid-like hexagonal cells would have 
a lower free energy and therefore may be regarded as a solid-like 
state analogous to a crystalline ground state. When hexagonal cells 
aggregate to form a cluster on a spherical surface, we expect a bend-
ing energy to arise due to deformation of the solid-like clusters. In 

contrast, no bending energy is incurred by the non-hexagonal cells 
due to their fluidity. Taken together, we can then write the total 
energy to form a circular hexagon pack24:

ΔG(a) = μhex
πa2
4 +

π

24567Y
a6
R4 (2)

where a is the characteristic linear size of hexagon packs and Y is the 
2D Young’s modulus of the cell pack. By minimizing ΔG we obtain 
a critical pack size ac as:

ac = 4

√

−

2048μhex
Y R (3)

which is linearly proportional to R. Indeed, we found that the exper-
imentally measured dependence of the largest hexagon pack size on 
alveolosphere radius was fitted well by a linear function (Fig. 4f).  
Furthermore, simulations showed that the linear relationship 
between Nc and N existed for a range of cell speeds (Fig. 4e); this lin-
ear relationship was expected and can be derived from equation (2) 
by taking an assumption used in the DVM simulation: N = 4πR2. In 
addition, the largest hexagonal cluster size decreased as the effective 
temperature in DVM increased (Fig. 4e). This is explained by the 
theory prediction given by Nc

N ∝

√

−μhex  where |μhex| decreases as T 
increases (Fig. 4e and Supplementary Fig. 8d); therefore, the forma-
tion of hexagonal clusters becomes less favourable as cell velocity 
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consecutive frames (15 min per frame) for the same well. Each frame contains several hundred cells.
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increases. This result confirms that the free energy difference fitted 
from ΔG(a) is reflective of a two-phase model in the alveolosphere 
system. Taken together, these results suggest that multicellular-scale 
curvature influences collective cell migration by introducing an 
elastic bending energy associated with the formation of hexagonal 
cell packs; this elastic energy penalty and free energy reduction 
associated with hexagonal cell pack formation compete to deter-
mine the critical pack size on different curvatures. For spheres that 
are small, the elastic bending energy is high and as a result the for-
mation of hexagon clusters is supressed. As hexagons have a lower 
free energy, their suppression leads to a more unstable monolayer. 
We thus observe less collective cell migration, a stronger multicel-
lular flow field and more dynamic multicellular flow patterns as 
curvature increases.

Discussion
Using MDCK cells on fabricated hemispherical geometries and 
human iPSC-derived lung alveolospheres in 3D, we demonstrate 
that curvature plays a pivotal role in regulating collective cell migra-
tion. Unlike nano-scale26 and single-cell-scale48,49 curvature sensing, 
multicellular-scale curvature sensing in cell monolayers is achieved 
through not an individual, but instead a collective, manner. For 
example, we did not observe obvious changes in the single-cell 
speed and height, F-actin cytoskeleton, or adhesion and junction 
proteins (Supplementary Figs. 1e, 2 and 3). Instead, cells on large 
curvatures reduce their collectiveness and demonstrate highly 
dynamic multicellular flow, owing to the fact that the cells bear a 
larger elastic bending energy when forming solid-like hexagonal 
packs. This bending energy has also been previously acknowledged 
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when highly curved curls form spontaneously at the free edge of 
epithelial monolayers devoid of substrate in vivo and in vitro50,51. 
Furthermore, when we linearly extrapolated the relationship 
between correlation length and curvature to a single-cell size, we 
found a critical curvature radius where collectivity disappears, at 
about 9 to 10 cell lengths in both systems (Supplementary Fig. 9); 
this critical curvature may represent an intrinsic characteristic of 
multicellular-scale curvature sensing. Our results also suggest that 
cells sense the inherent curvature of the monolayer, instead of the 
curvature of the substrate: we found that collective cell migration 
responded to the magnitude of substrate curvature in the same fash-
ion regardless of whether the surface was concave or convex.

Our numerical simulation and the mean-field model were suc-
cessful in capturing the velocity correlations during multicellular 
migration. They also provided a quantitative explanation for the 
curvature-dependent organization of hexagonal cellular packs. 
These theoretical methods apply to cells moving on the spherical 
surface, which has a constant Gaussian curvature. To fully appreci-
ate the role of substrate curvature in directing multicellular behav-
iour it will be necessary to extend these ideas to cells constrained 
on cylindrical or other non-spherical curved substrates. This would 
involve modifications to the BEG model and equation (2), where 
the energy terms for forming hexagonal packs are dependent on the 
local geometry and the orientation of the pack with respect to the 
local principal curvatures. It would also be informative to conduct 
further experimental measurements to investigate the mechan-
ics and bending energy difference of hexagons compared with 
non-hexagons on curved surfaces.

Although we focused on collective cellular migration, our 
study raises questions about the broader impact that curvature 
may have on a variety of functional and morphological behav-
iours, such as cell packing during development. For example, in 
Drosophila morphogenesis the cell shape change and cell align-
ment become obvious during ventral furrow folding, where the 
tissue curvature changes dramatically23,52. This indicates a strong 
correlation between cell packing and curvature that remains to 
be explored. Besides proposing a new perspective on understand-
ing lung alveolosphere expansion, the universal understanding 
showed here could be applied to many multicellular systems, such 
as embryonic development and cancer invasion. Evidence has 
shown that positive or negative tissue curvature is related to two 
types of tumour neoplastic growth morphogenesis53, yet a more 
detailed biophysics understanding of how curvature causes the 
different morphology is still lacking.
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Methods
Fabrication of PDMS hemispheres. Glass beads (Polysciences) with three 
diameter ranges, 200–300 μm, 420–500 μm and 600–700 μm, were placed on 
clean silicon wafers and a layer of SU-8 2000 with the thickness of roughly 
the radius of beads was subsequently applied using soft lithography to obtain 
the hemispherical shapes. Briefly, we exposed a SU-8 2000 photoresist to a 
conventional UV radiation with wavelength in the range of 350–400 nm. Upon 
exposure, cross-linking proceeds in two steps: (1) the formation of a strong 
acid during the exposure step, followed by (2) acid-catalysed, thermally driven 
epoxy cross-linking during the post exposure bake step. As a result, the beads 
with different sizes are fixed onto the silicon wafers. Then PDMS (SYLGARD 
184 silicon elastomer base) and cross-linker (SYLGARD 184 silicon elastomer 
curing agent) (volume 10:1) were mixed together following a well-established 
method and placed in a vacuum chamber to get rid of the bubbles at room 
temperature. A thin PDMS layer (~3 mm) was poured onto the fabricated silicon 
wafer. The sample was placed into a 60 °C constant-temperature oven (Thermo 
Scientific) overnight to cure into an elastomer. Concave PDMS wells with 
different diameters can be obtained by peeling the PDMS layer off the silicon 
wafer. Convex geometries were made by fixing glass beads inside a very thin 
PDMS layer, followed by the same procedures.

MDCK cells and iAEC2 cluster culture. Before seeding cells, a 0.1 mg ml−1 
collagen solution (diluted in 1× PBS, Advanced BioMatrix) was coated onto 
the surfaces of wells overnight in a refrigerator at 4 °C. We then placed the 
MDCK cells (ATCC) on the precoated PDMS. MDCK cells were cultured in 
DMEM medium (Corning), supplemented with 10% fetal bovine serum (ATCC) 
and 1% penicillin-streptomycin (ThermoFisher). To subculture cells, a 0.25% 
Trypsin-EDTA solution (Corning) was used to detach and separate cells. After 
neutralizing with culture medium, the cell suspensions were then centrifuged at 
800 r.p.m. for 5 min. After pouring the liquid out, 5 ml complete culture medium 
was added and pipetted several times to fully mix and separate cells.  
The cell solutions were then ready to use. The PDMS geometries were first 
pressed onto the bottom of 35 mm petri dishes. Then one droplet of the cell 
solution was added to each small PDMS sheet; the sheets were then put into 
incubator for 1 h to allow cells to attach to the PDMS substrate. Then 2–3 ml 
of the complete culture medium was added into each petri dish. MDCK 
cells formed confluent monolayer after 2–3 days under 5% CO2 at 37 °C in a 
humidified incubator.

iAEC2s with a tdTomato reporter targeted to the endogenous surfactant 
protein C (SFTPC) locus (SPC2-SFTPCtdTomato-B2 line) were generated via 
directed differentiation as previously described34,54. SFTPC+ cells were 
maintained in 3D Matrigel (Corning) as alveolospheres at 400 cells μl−1 Matrigel, 
and passaged every 10–14 days. A lentiviral vector with constitutively and 
ubiquitously active long EF1a promoter (EF1aL) driving the expression of 
nuclear localized GFP (nlsGFP) was engineered by cloning an NLS in front of 
GFP. The resulting construct (pHAGE EF1aL-nlsGFP-W) with full plasmid 
map and sequence is available from Addgene (plasmid no. 126688). Lentiviral 
infection of iAEC2s was performed in suspension culture at a multiplicity of 
infection of 20, as previously detailed54, and NLS-GFP-expressing cells were 
purified by a subsequent culture passage through fluorescence-activated cell 
sorting and replated for serial sphere passaging in 3D culture. For imaging, 
NLS-GFP-expressing iAEC2s were seeded in 3D Matrigel droplets in 35 mm 
glass-bottom petri dishes at 100 cells µl−1. These cells would naturally grow 
into alveolospheres in 3D driven by spontaneous cell division. As these 
alveolospheres grew bigger, the cell layer thickness remained nearly constant 
(Supplementary Fig. 2b), while the cell number density changed (Supplementary 
Fig. 5a).

The boundary condition of MDCK cells on hemispheres. For PDMS wells, 
the place where the curved surface and flat surface meet creates a boundary. 
To check for potential boundary effects in our analysis, we calculated the 
mean squared displacement of cells near the boundary and compared to 
the mean squared displacement of cells near the centre of a well as shown 
in Supplementary Fig. 1. We found that there was no obvious difference in 
the mean squared displacement of cells near the boundary versus those at 
the centre. However, a boundary did affect the divergence, curl and shear 
calculations, as we needed a kernel radius to obtain an average; the value at the 
boundary was averaged among fewer pixels, which may introduce some error. 
Therefore, we only used the data for cells that were far from boundaries in the 
PDMS wells. An effective boundary region could be defined as the correlation 
length that we calculated for different curvatures. We then avoided using the 
data in such boundary regions.

Cell density changes in alveolospheres. Unlike that for MDCK cells on 
fabricated wells, the cell density of alveolospheres cannot be externally 
controlled. There is an increase in density as a function of sphere radius r 
(Supplementary Fig. 5a), especially when r < 100 μm. To determine whether 
the increase in cell density had an effect on the collectiveness and pack size, we 

selected r > 100 μm where the cell density remained constant. When the cell 
density was constant, the velocity correlation and correlation length showed 
the same trend as MDCK cells on fabricated PDMS wells (Supplementary Fig. 
5b). To test the effect of density change on divergence, curl and shear pack size 
Nhexmax, we used the fabricated well data to control the curvature to be the same 
while changing only the cell density. This showed that there was no obvious 
divergence, curl and shear pack size change as density increased  
(Supplementary Fig. 5c,d). Similarly, there was also no obvious change in 
terms of the largest hexagon pack size when density increased. Therefore, we 
concluded that cell density does not play a role in determining the trend we 
observed in collectiveness, hexagon pack size and multicellular fluidity in 
alveolospheres.

Cell layer thickness of MDCK cells and alveolospheres. Cell layer thickness was 
measured from the confocal fluorescent images for MDCK cells and bright-field 
images for alveolospheres. For MDCK cells, both F-actin and cell nuclei were 
fluorescently labelled, indicating the top and bottom of the cell, respectively. For 
alveolospheres, cell height was directly measured from the bright-field images of 
cross-sections.

Immunofluorescence staining. For immunohistochemical staining, the MDCK 
cell confluent monolayers on different curvatures were first washed with 1× 
PBS and then fixed with 4% formaldehyde at room temperature for 30 min, then 
rinsed three times in 1× PBS for 5 min each. To block the cells, the cell layers 
were immersed in blocking buffer composed of 1× PBS supplied with 0.3% 
Triton X-100 and 3% BSA (Cell Signaling). While blocking, primary antibody 
was diluted (1:200) inside in antibody dilution buffer, which is composed of 1× 
PBS with 1% BSA (Cell Signaling) and 0.3% Triton X-100. The sample was then 
covered with diluted primary antibody and incubated overnight at 4 °C. The 
corresponding secondary antibody diluted in antibody dilution buffer (1:350) 
was added for 2 h at room temperature in the dark. E-cadherin (24E10) rabbit 
monoclonal antibody no. 3195 (primary) and Alexa Fluor 568 goat anti-rabbit 
IgG (h + l) (secondary) were used for E-cadherin; ZO-1  
monoclonal antibody (Invitrogen) (primary) and anti-rabbit Igg 
(h + l) (secondary) were used for ZO-1; Anti-zyxin developed in rabbit 
(Sigma-Aldrich) (primary) and CF568 (Sigma-Aldrich) (secondary) were used 
for zyxin; anti-vinculin mouse monoclonal antibody (Sigma-Aldrich) (primary) 
and anti-mouse-Igg - ATTO 647 antibody (Sigma-Aldrich) (secondary) were 
used for vinculin. To stain F-actin, samples were immersed in Phalloidin 633 nm 
(1:400 diluted in 1× PBS) for 1 h. To stain cell nuclei, DAPI (ThermoFisher) was 
added for 4 h. After each step, the samples were washed with PBS three times for 
5 min each.

Image acquisition. To visualize the cell nuclei, cells with NLS-GFP were used. 
During imaging, MDCK cells grown on PDMS substrate were cultured in a 
35 mm petri dish in a customized incubator (5% CO2, 37 °C, 95% humidity) on 
a confocal microscope (Leica, TCL SP8). The images were taken every 15 min 
in 3D for ~8–12 h for MDCK cells and alveolospheres. A ×10/0.4 numerical 
aperture air objective, a ×25/0.95 numerical aperture water objective and a 
×63/1.20 numerical aperture water objective were all used for imaging. Confocal 
microscopy was used to record the cell nuclear positions in 3D over time. 
Cell nuclear positions were then tracked using the Trackmate plugin in Fiji 
(2.3.0/1.53q). Immunofluorescence images were taken by a ×25/0.95 numerical 
aperture water objective. Imaging of alveolospheres and analyses was performed 
using the same method.

Correlation and correlation length. To calculate 3D spatial velocity correlation, 
we first moved one velocity vector along the geodesic line to the same 
coordinate as the other velocity vector. Then velocity cross-correlation was 
calculated as a function of rθ by Cvv(rθ, t0) = 〈(v(x + rθ, t0)/|v(x + rθ, t0)|) · (v(x, 
t0)/|v(x, t0)|)〉 at a certain time t0, where the angle brackets signify an average 
over all velocity vector positions x. Because cell density can change over time, 
we chose a particular density (~2,300 mm−2) for calculating Cvv when comparing 
curvatures. Correlation length was defined as the distance where the correlation 
function reaches the first minimum and each data point was calculated by an 
average of at least five datasets.

Grid generation for spheres. Grids were divided first in spherical coordinates 
Δθ = Δφ =

8
r ·

180
π

 in units of degrees to make sure that the grids had the same 
size for spheres of different sizes. Therefore, Δφr=125 μm = Δθr=125μm = 3.67◦, 
Δφr=225 μm = Δθr=225 μm = 2.04◦, ... Then the spherical coordinates were 
converted to Cartesian coordinates. A schematic of how the grids were divided is 
shown in Fig. 2b.

Decomposition of the velocity field. The velocity field in 3D can be decomposed 
into:
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where r = (x, y, z) and v = (u, v, w). We defined the magnitude of div, curl and 
shear based on the velocity decomposition, and they are shown in the following 
equations:

div (x, y, z, t) =
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We defined curl to be positive when the angle between ∇×v and the local 
outer radial direction is less than 90°, where ∇×v is the vorticity corresponding 
to the anti-symmetric part of the velocity gradient. Divergence, curl and shear 
convey useful information for describing the multicellular flow field. For each 
grid on hemispheres, the calculation was done on the tangential small area of 
the grid (that is, locally assuming the curved surface as a small flat surface). 
Cells that were used to calculate each grid were found within a ring of the kernel 
radius. For flat surfaces, the kernel ring radius was set to be 70 μm (±30 μm) 
to avoid single-cell fluctuations55. For curved surfaces, the kernel ring radius 
was set to be 50 μm (±20 μm). Next, divergence, curl and shear for each cell 
within the kernel ring were computed from the first-order derivatives of the 
flow at every grid (x, y, z) for every frame. The local divergence, curl and shear 
for each grid were obtained by averaging the values for all cells within the 
kernel ring. The divergence, curl and shear pattern sizes were defined as the top 
50% of the peak or valley values. In each frame, these sizes were calculated by 
averaging the pattern sizes of the top three peaks. In the main text, a stronger 
multicellular flow field refers to a higher strength of divergence, curl and shear, 
which were defined as max {|divmax| , |divmin|}, max {|curlmax| , |curlmin|} and 
max {|shearmax| , |shearmin|}, respectively.

Voronoi tessellation. Voronoi tessellation was performed on a unit sphere by 
projecting cell positions onto the unit sphere without changing the relative 
positions.

Cell shape index. In both the DVM simulations and experimental images, the cell 
shape index q =

⟨

p/√a
⟩

 was computed by taking the average over all cells. The 

perimeter of a cell was obtained by summing the spherical arc lengths of all edges 
adjacent to it. The area of the cell was the area of the spherical polygon subtended 
by it.

Statistics. For comparison between multiple groups, single-factor ANOVA 
tests and non-parametric Kruskal–Wallis tests were performed using Excel. The 
non-parametric Kendall’s tau test was performed to determine whether there were 
correlations between two parameters.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings are available from the corresponding author 
upon reasonable request. Source data are provided with this paper.

Code availability
MATLAB scripts used in this paper are available from the corresponding author 
guom@mit.edu upon reasonable request.
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Figure S1. Velocity of cells on varies curvatures. a-d, Representative velocity vector field (top 
view) on concave wells at the same cell density ~2300 mm-2. (a) |𝜅| = 0, (b) |𝜅| = 1 325⁄ 	µm!", 
(c) |𝜅| = 1 225⁄ µm!",  (d) |𝜅| = 1 125⁄ µm!" . Blue dots: cell nuclei center positions; black 
arrows: velocity vectors. e, Velocity box plot for different curvatures at the same cell density range, 
2300±300 mm-2. Each box includes individual cell speed of several hundred cells from 2 
fabricated wells averaged over 8 hrs. A non-parametric Kendall’s tau test is performed and 𝜏 =
0.2381 suggests that there is no obvious trend of velocity magnitude as a function of curvature. f, 
Representative cell trajectories from 50 continuous frames (15min/frame). Blue circle: well 
boundary. Orange circle: the region used to calculate the center cell MSD in panel g. The boundary 
is defined as velocity correlation length 𝜁# labeled in the figure. For this representative well with 
curvature  |𝜅| = 1/225	µm!", the correlation length is ~70 µm. g. Mean squared displacement 
(MSD) of cells near boundary and cells at the center of well show similar trend and magnitude. 
Error bar represents standard deviation calculated from several hundred cells in each condition. 
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Figure S2. Cell height measurement of both MDCK cells cultured on PDMS wells and 
alveolospheres in 3D. a, Cell height as a function of different curvatures for MDCK cells on 
PDMS wells. Each box represents measurements of at least 4 different wells. In each well, cell 
height is measured for at least 20 cells. b, Cell height as a function of alveolosphere radius. Error 
bars show the standard deviation measured from at least 20 cell heights. Inset: bright-field cross-
sectional images of alveolospheres with different sizes showing the cell layer thickness. Scale bar: 
50 µm. c, Representative cross-sectional images of cell layer on concave and convex wells with 
different curvatures. Scale bar: 20 µm. 

 



 

 

 
Figure S3. Immunofluorescent staining of E-cadherin, F-actin, zyxin, vinculin and ZO-1 in 
MDCK cells culture on different curvatures. Images are the maximum projections of z stacks. 
Scale bar: 100 µm.  



 

 

 



 

 

Figure S4. Curl, shear and their pattern analysis on fabricated wells and alveolospheres. a-
c, Schematics of (a) divergence, (b) curl and (c) shear. Divergence describes the swelling and 
shrinking of cells, curl denotes the rotation and shear represents the transvection. d-e, (d) curl and 
(e) shear colormap on different curvatures, |𝜅| = 0 , |𝜅| = 1 325⁄ µm!" , |𝜅| = 1 225⁄ µm!" , 
|𝜅| = 1 125⁄ µm!". f, The divergence patterns with color scales optimized for each plot to show 
the full range of divergence values. The max and min values of color bar are defined as the 
maximum and minimum divergence values that appear in each plot. Images are taken at 
15min/frame. Scale bar: 100 µm. g, Identification of local peak values in divergence field. Patterns 
are defined as area with values above 50% of the local peak values. Yellow: source; blue: sink. h-
i, Characteristic length scale and peak value of curl 𝑆$%&' , |𝐶𝑢𝑟𝑙|	()*	 (h), and shear 
𝑆+,-)& , |𝑆ℎ𝑒𝑎𝑟|./0	 (i). Scale bars represent standard deviations, and each point is averaged over 
20 frames on the same alveolosphere. j-l, Divergence, curl and shear largest pack size and peak 
value as a function of curvature magnitude for MDCK cells. Scale bars represent standard 
deviation; each point is averaged over 30 frames, and each frame contains several hundred cells. 
m-n, Single-sided magnitude spectrum for (j) curl and (k) shear, calculated on representative 
samples of different curvatures. Standard deviation is calculated from 180 geodesic lines on each 
frame and over 20 frames for each sample; each sample contains several hundred to a thousand 
cells. 
 

 



 

 

 
Figure S5. Effect of cell density on collective cell migration in alveolospheres and MDCK 
cells cultured on fabricated wells. a, Cell density of alveolospheres as a function of radius of 
alveolospheres. Error bars represent the standard deviation across 25 frames. b, Velocity cross-
correlation function 𝐶22 as a function of geodesic distance 𝑅𝜃 for alveolospheres with radius range 
100 to 200 µm. c, Divergence, curl, and shear colormap for three representative densities 𝜌 =
1400	mm!3, 2400	mm!3, 3400	mm!3 of MDCK cells cultured on fabricated PDMS well with 
curvature 𝜅 = −1 125⁄ µm!". d, Quantification of the divergence, curl and, shear pattern size 
𝑆452, 𝑆6%&', 𝑆7,-)& as a function of cell density shows that there is no obvious dependence on cell 
densities. Non-parametric Kruskal-Wallis test is used to test if there is significant difference 
between the median pattern size of different densities. Results suggest that there is no clear 
dependence of divergence, curl, and shear pack size on cell density. Over 15 measurements of 
pattern sizes from 5 different wells are presented for each density. 

 



 

 

 



 

 

Figure S6. Comparison of Voronoi boundaries and cell boundaries. a, The overlay of Voronoi 
boundaries (light green) with cell boundaries (green). b, Shape index of cell and Voronoi polygons 
for 𝜅 = 0. 133 cells and 128 Voronoi polygons are analyzed in one representative well. b’, Shape 
index of cell and Voronoi polygons for 𝜅 = −1 325⁄ 	µm!". 176 cells and 181 Voronoi polygons 
are analyzed in one representative well. b’’, Shape index of cell and Voronoi polygons for 𝜅 =
−1 225⁄ 	µm!". 153 cells and 150 polygons are analyzed in the representative well.  b’’’, Shape 
index of cell and Voronoi polygons for 𝜅 = −1 125⁄ 	µm!" . 89 cells and 91 polygons are 
analyzed in one representative well. c-e, Quantification of the hexagon packs error for Voronoi 
tessellation compared to fluorescently labeled cell boundaries for  |𝜅| = 1 325⁄ 	µm!" ,  |𝜅| =
1 125⁄ 	µm!" and  |𝜅| = 1 225⁄ 	µm!" . Left hand side shows cell boundaries identified using 
Voronoi tessellation with (blue lines) and hexagons labeled in blue (filled in shapes). Right side 
shows a maximum z projection of cells with fluorescently labeled F-actin. Hexagons in the 
fluorescently labeled cell boundary images that match those identified in the Voronoi tessellations 
are labeled in white. Scale bar: 20 µm. 
 
 

 
Figure S7. Persistence of hexagon packs. a-a’, The evolution of the largest hexagon packs over 
time on representative alveolospheres with radii 𝑅 = 55	µm  and 𝑅 = 77	µm , respectively. b, 
Tracing number of cells, 𝑁,-* , within representative hexagon packs over time in four 
alveolospheres with radii 𝑅 = 55	µm	(𝑁 = 82), 𝑅 = 77	µm	(𝑁 = 	249), 𝑅 = 100	µm	(𝑁 =
702), 𝑅 = 167	µm	(𝑁 = 1594). Inset: Representative cell number at time t divided by initial cell 
number at 𝑡 = 0 in hexagon packs over time. c, Temporal changes of the shape of representative 
individual cells (hexagon vs. nonhexagon) on different alveolospheres with radii: 𝑅 = 55	µm, 𝑅 =
77	µm, 𝑅 = 100	µm, 𝑅 = 167	µm . This reveals that hexagons are more persistent on larger 
alveolospheres. d, Quantitative analysis of hexagon-nonhexagon shift frequency as a function of 
alveolosphere radius R. Hexagons are persistent for at least 1 hr. Shift frequency increases as 
curvature increases. Standard deviation is calculated using 10 to 20 frames.  
 



 

 

 
Figure S8. Collective organization of hexagonal cells in dynamic vertex model (DVM). a, 
Hexagon cell fraction 𝑓8 as a function of cell number N for various effective temperatures in the 
DVM, corresponding to 𝑣# = {0.22, 0.26, 0.3, 0.34, 0.38, 0.42, 0.46, 0.5}. Here c=1.85 is the 
proportionality constant that relates the effective temperature to 𝑣#, which is obtained through 
fitting DVM to the BEG model. b, Hexagon fraction 𝑓8 as a function of cell number N for various 
temperatures using the BEG model, corresponding to the same 𝑣# values as panel a. c, Shape index 
for hexagons, nonhexagons and overall. d, Hexagon cluster fraction as a function of temperature 
for DVM simulation and the BEG meanfield theory (Eq. S17). 
 
 
 
 
 
 
 



 

 

 
Figure S9. Linear fitting and extrapolation of correlation length (normalized by cell length) for (a) 
MDCK cells on fabricated PDMS wells and (b) alveolospheres in 3D. Extrapolating the linear fit 
to a correlation length of 1 cell length suggests a critical curvature where collectiveness disappears. 
We find this critical curvature radius being 10 cell length in MDCK cells on fabricated wells and 
9 cell length on alveolospheres in 3D. For both MDCK and alveolospheres data, we take the 
characteristic cell length 𝑑# as 10 µm. 
  



 

 

Simulation model for collective dynamics in a confluent cell monolayer on a spherical 
surface 

 
Two dimensional (2D) vertex-based models1-3 capture realistic cell shapes in developing embryos4-

7, and jamming/unjamming epithelial sheets8-11. In recent years several attempts have been made 
to extend the 2D picture by modeling cells in 3D12-14 and even looking at packing of cells under 
geometrical constraints, like ellipsoidal15 and spherical16 geometries. However, these studies do 
not address the impact of the direction and magnitude of curvature on collective cellular dynamics. 
Here we adapt the recent dynamic vertex model (DVM) from two of us to study cellular dynamics 
in a confluent cell monolayer embedded on a spherical surface. This model captures the 
fundamental collective features observed in alveolospheres grown in-vitro and allows a systematic 
study of the effects of curvature on the stability of elastic epithelial cell sheets on a spherical 
surface. 
 
Elastic energy of the tissue: The standard version of the DVM17 considers an epithelial cell 
monolayer as a polygonal tiling on a flat surface. This is derived from the experimental pictures 
taken for 2D cross section and the apical surfaces of epithelial sheets. In the current version, a set 
of vertices, constrained to move on the surface of the sphere (Fig S10), and a set of edges, defined 
by the geodesic curve connecting two adjacent vertices, then fully define the apical surface of an 
epithelial monolayer in a spherical geometry. This provides a good approximation of the cell 
arrangements in an alveolosphere where confluent cells move on a spherical surface. 
The energy Hamiltonian of the DVM is based on two different energy contributions. Epithelial 
cells typically maintain a columnar structure and any change in the apical area, or the volume of 
the cells costs energy. This gives rise to an energy term that depends on fluctuations of individual 
cell area from the equilibrium mean area. Another energy contribution comes from the elastic 
energy required to deform the cell cortex and the contractile elements embedded within the cell. 
This gives rise to an energy term that is associated with fluctuation of the cell perimeters from the 
equilibrium cell perimeter. Thus, the mechanical energy of the tissue is written as function of cell 
area (𝐴9) and perimeter (𝑃9) of the 𝛼-th cell: 

 
𝐸 = O[𝐾:(𝑃9 − 𝑃#)3 + 𝐾;(𝐴9 − 𝐴#)3]

<

9="

	 
 
(S1) 

where 𝑃# and 𝐴# are the effective equilibrium perimeter and apical area of the cells (considered 
homogeneous here for simplicity), respectively. 𝐾:  and 𝐾;  are the respective elastic constants. 
The cell perimeter and area are calculated based on geodesic polygons. This also leads to a 
dimensionless preferred cell shape index 𝑝# =

:!
>;"

 which has been useful to describe a rigidity 

transition in epithelial tissues at zero cell motility18 and reliably capture the cell shapes in lung 
epithelial cells17,19. 
 
Implementation of active cell motility: To describe cellular migration, the rate of change of position 
of the 𝑖-th vertex, 𝑟5 , at time 𝑡 is represented by the overdamped equation of motion,  

 
𝛤
𝑑𝑟5
𝑑𝑡 = 𝐹⃗55?@ + 𝑣#𝑛5 

(S2) 

where, 𝛤  is the frictional damping. 𝐹⃗5ABC  describes those forces that arise due to cell-cell 
interactions and set by a spatial gradient in tissue mechanical energy: −𝜕𝐸 𝜕𝑟5⁄ . The last term 



 

 

represents an active motility force 𝑓D\\⃗  on vertex 𝑖 which has a magnitude 𝑣#. Its direction is set by 
the vector sum of the polarization vectors of cells adjacent to vertex 𝑖. We choose the individual 
cell polarization vectors in spirit of recent models of self-propelled particles20-25: The polarization 
vector of 𝛼-th cell is given by, 𝑛9 = (cos𝜃9 , sin𝜃9) where the angle of polarization 𝜃9 follows 
over-damped dynamics according to: 

 EF#
E@

= 𝜂G , 〈𝜂G(𝑡)𝜂H(𝑡I)〉 = 2𝐷J𝛿GH𝛿(𝑡 − 𝑡I).  (S3) 

This description models the front-back polarity that drives motility in migrating cells26-28. Each 
polarization vector is subjected to a Gaussian random noise 𝜂G with zero mean and variance 2𝐷J. 
Here 𝐷J  has units of inverse time and provides a measure of the persistence time for the 
polarization vector. In addition, to ensure all the cells always remain constrained on the spherical 
surface (Fig. S10), the instantaneous displacements and the polarizations of the vertex positions 
are subjected to the following projection operator defined at any point 𝑥 on the sphere29, which 
brings any vector 𝑦⃗ on the tangent plane at that point:  

  	𝑃\⃗K(𝑥⃗, 𝑦⃗) = 𝑦⃗ − (𝑥i ⋅ 𝑦⃗)𝑥i                                                         (S4) 
 

 
 
Simulation details: In order to study the effect of curvature in the DVM, the radius of curvature of 
the surface is varied by varying the sphere radius 𝑅 constraining each cell to have unit area on 
average, i.e. 

 
 	𝑅	 = k <

LM
                                                                  

(S5) 

In this way, systems with smaller number of cells 𝑁 have higher radius of curvature. For each 𝑁, 
the original positions of cells are chosen from Voronoi tessellation on a set of uniformly random 
points on the spherical surface. Then, we minimized tissue energy (Eqn. S1) to find a state with 
energy close to the ground state energy at zero motility (𝑣# = 0) using the conjugate gradient 
protocol with respect to the vertex locations. Next, we allow finite motility 𝑖. 𝑒.  𝑣# > 0  and 
performed the dynamical simulations. The vertex locations are updated by the Euler method using 
Eqn. S2 with a timestep of Δ𝑡 = 0.02𝜏 where 𝜏 = 𝛤 𝐾:⁄ , the unit of time in the DVM. All lengths 
in DVM were expressed in unit of n𝐴# where we use 𝐴# = 𝐴̅, the mean area of the cells which is 
maintained at unity throughout any simulation. The rotational noise on the direction of cell 
polarizations is given by Eqn. S3.  
 
In a confluent epithelial sheet the basic mode of migration is T1 transitions30 in which cells swap 
positions with their local neigbors31,32. We allow T1 rearrangements with a fixed time period of 
0.2𝜏 and a threshold length for T1 edge swap 𝑙$ = 0.05 in simulation length unit. 

 

 
 
 
 
Figure S10: The instantaneous velocity 𝑣⃗5  
and polarization 𝑛\⃗ 5  for vertex i always live 
on the tangent plane at position 𝑟5. 
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We determined the effects of independently varying 𝑁 and the magnitude of active cell motility 
force, 𝑣#, keeping a fixed preferred cell perimeter, 𝑝# and a fixed reasonably high rotational noise 
strength 𝐷J = 1 , so that the persistence time remains small to render the dynamics almost 
Brownian. All our simulations were implemented using the Surface-Evolver program33. Note that 
each of our simulations depend on a single set of 𝑣# and 𝑁 values which do not change during the 
simulation. Moreover, for each parameter set we ran 10 different simulations from independent 
initial configurations. Thus, all the error bars associated with data from the simulations are 
standard errors of the mean generated from these different independent trajectories. 
 
Effective temperature due to motility: It was shown previously26 that when the cell motility on 
individual cells has a random polarity, i.e. when the rotational noise 𝐷J ≥ 1 (Eqn. S3), then the 
fluctuations in the tissue can be described by an effective temperature  

  	𝑇 = 𝑐	𝑣#3,                                                          
where c is a constant. We use this effective temperature to characterize the magnitude of 
fluctuations in the tissue. 
 
A lattice gas-based model for cells on a sphere. To understand the formation of cell shapes and 
organization of clusters, we begin with a lattice-gas approach based on the Blume-Emory-Griffith 
model. Since the cellular collective is always confluent, we begin with a lattice of sites where each 
site is always occupied by a cell. The number of neighbors for each cell is given by the coordination 
number 𝑧5.  Following convention34-36, we define a topological charge based on 𝑧5  

  	𝑞5 = 6 − 𝑧5                                                                  (S6) 
Hence hexagonal cells will be “neutral". Pentagons (𝑧5 = 5), squares (𝑧5 = 4) and triangles (𝑧5 =
3) will be positively charged. Heptagons (𝑧5 = 7) or higher-coordinated cells will be negatively 
charged. It has been shown that in spherical crystals, these topological charges act similarly to 
electrical charges, i.e. like-charges repel while opposite charges attract 37-40. Also, we know that in 
the vertex model hexagons have lower interaction energy per cell than polygons with a non-zero 
charge41. Based on these observations, we write a simple lattice-gas Hamiltonian to capture the 
effective interactions between cells with different coordination numbers 

 
𝐻 = 𝛥O𝑞53

<

5="

− 𝐽O𝑞5
⟨5G⟩

𝑞G . 
 
(S7) 

The first term accounts for the energy of creating a nonhexagonal cell. Here 𝛥 > 0 is chemical 
potential difference (in the limit of zero temperature) between a non-hexagonal cell and a 
hexagonal cell. The second term in Eqn. S7 sums over nearest-neighbors cells ⟨𝑖, 𝑗⟩ and accounts 
for the interactions between cells. Since “like” charges are repel and “opposite” charges attract, 
we assume 𝐽 < 0.  
Most cells in our experiment and numerical simulations are comprised of pentagons, hexagons and 
heptagons. Therefore, we take a simplified approach and assume that these are the only topological 
charges in the model, given by 

 
𝑞5 = |

+1,		 corresponding to pentagons,
0,	 corresponding to hexagons,
−1,	 corresponding to heptagons.

 
 

We also assume the model is meanfield and the cells are uncorrelated in the sums of Eqn. S7.  
There are two important order parameters in this model. First, the net topological charge given by 



 

 

  𝑚 = ⟨𝑞5⟩ = 6 − ⟨𝑧5⟩.                                                                  (S8) 
Since cells form a confluent (tiling) network of vertices (V), edges (E) and facets (N), Euler’s 
characteristic formula always applies 𝜒 = V − E + N. Since cellular rosettes are rare, each vertex 
has exactly three edges emanating from it or 𝑉 = 3P

Q
. Therefore, solving for the net topological 

charge (Eqn. S8) we find that it is not free to fluctuate due to topological constraints and must obey 
 m = 8R

<
= "3

<
. (S9) 

Where we have used the Euler characteristic of a spherical surface 𝜒 = 2. Independently, the order 
parameter that can fluctuate is the fraction of hexagons  

 𝑓8 = 1 − �𝑞53�.                                                                  (S10) 
We can evaluate the partition function of Eqn. S7 in the meanfield limit and obtain 

 
𝑍 = O … O exp �−𝛽𝛥O𝑞53
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Which becomes 
 𝑍 = �2𝑒!UV cosh(𝛽𝜀<) + 1�

<
.                                                          (S11) 

Here 𝛽 = 1/𝑇	and in the DVM we have 𝑇 = 1/(c	𝑣#3).	In Eqn. S11, we have defined a constant 
𝜀< which is dependent on the curvature (through the system-size N). It is given by 

𝜀< =
1
2
|𝐽|〈𝑧5〉〈𝑞5〉 = 36|𝐽| �

1
𝑁 −

2
𝑁3�. 

Where we have used  
 ⟨𝑧5⟩ = 6 −

12
𝑁 	

⟨𝑞5⟩ =
12
𝑁 . 
                  

 

 
The value of 𝑓8 can be calculated from the partition function (Eqn. S11) 

 𝑓8 = 1 − 𝑁!" WlnX
W(!UV)

= -'(

-'([3 \]^_(U`$)
.                                                                  (S12) 

The behavior of 𝑓8 depends on both the number of cells N and the effective temperature T. Since 
the number of cells is just a proxy for the sphere curvature (via the relation 𝑁 = 4	𝜋	𝑅3), 𝑓8  
depends on the curvature for small N. This prediction is directly tested against DVM simulations, 
where we compute the time-averaged fraction of hexagons (shown in Fig. S8a) and find that it is 
accurately predicted by the theory (Fig. S8b). 
 
In the meanfield lattice-gas model, the free energy per cell is given by 



 

 

 a)*

<
= −𝛥 ∗	𝑓8 + 𝛽!"(1 − 𝑓8)log �

"!b+
3
� + 𝛽!"𝑓8 log 𝑓8                                                                  (S13) 

This allows us to compute the chemical potential difference (equivalent to free energy difference) 
between a hexagon and a non-hexagon. Using the thermodynamic relation 𝜇,-* =

ca)*

c<,-.
,  

 𝜇,-*(𝑇, 𝑁) = −𝛥 + 𝛽!"log ¡ 3b+(K,<)
"!b+(K,<)

¢.                                                                  (S14) 

In the limit of 𝑇 → 0, we have 𝑓8 → 1 and 𝜇,-* = −𝛥, which is consistent with the assumptions 
in Eqn. S7. More importantly, Eqn. S13 predicts that the as the effective temperature increases the 
magnitude 𝜇,-* would decrease, indicating that the free energy difference between a hexagonal 
and non-hexagonal cell also decreases.  
 
Homogeneous nucleation theory. Next, we combine use the predictions of the lattice gas model in 
a classical nucleation theory argument, as introduced in Eqn. 1 of the main text 

 ∆𝐺 = 𝜇,-* ∙ �
M)/

L
� + M

3Ld8e
𝑌 ∙ )

+

J0
.                                                                   

In Eqn. 1, the first term accounts for the free-energy cost of creating a hexagonal cluster of linear 
size a. Alternatively we can also express the free energy in terms of the number of cells inside 
the largest hexagonal cluster  

 ∆𝐺 ∝ 𝜇,-*𝑁$ + 𝐾
<12

</
.                                                                  (S15) 

where we have used 𝑁$ ∝ 𝑎3 and  𝐾 ∝ 𝑌.  Then the stable hexagonal cluster size obeys the 
scaling relation 

 <1
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	 ∝ n−𝜇,-*                                                                  (S16) 

Here we can estimate 𝜇,-* with the help of the lattice gas model results and use Eqn. S14 in the 
limit of 𝑁 → ∞ to get 𝜇,-* =	−Δ + 𝑇	log ¡

3b+
"!b+

¢, resulting in  
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(S17) 

Treating Δ as a fitting parameter, we compare the prediction of the nucleation theory (Eqn. S16) 
with the DVM simulations in Fig. S8. We find an excellent agreement which shows that the size 
of the hexagonal cluster decays as a function of the temperature.  

 

 

 

 

 

 

 

 



 

 

Captions for Supplementary Movies 

Supplementary Movie 1. Cell migration on fabricated curved and flat surfaces. 

Supplementary Movie 2. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
38	µm. 
Supplementary Movie 3. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
53	µm. 
Supplementary Movie 4. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
75	µm. 
 
Supplementary Movie 5. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
96	µm. 
Supplementary Movie 6. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
116	µm. 
Supplementary Movie 7. Cell migration in human iPSC-derived lung alveolosphere, 𝑅 =
144	µm. 
Supplementary Movie 8. Migration trajectories of MDCK cells on a fabricated concave well 
with a curvature radius of 225 µm. 
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