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Rigid tumours contain soft cancer cells
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Palpation utilizes the fact that solid breast tumours are stiffer than the
surrounding tissue. However, cancer cells tend to soften, which may
enhance their ability to squeeze through dense tissue. This apparent
paradox proposes two contradicting hypotheses: either softness emerges
from adaptation to the tumour’s microenvironment or soft cancer cells are
already presentinside a rigid primary tumour mass giving rise to cancer

cell motility. We investigate primary tumour explants from patients with
breast and cervix carcinomas on multiple length scales. We find that primary
tumours are highly heterogeneous in their mechanical properties onall
scales from the tissue level down to individual cells. This resultsin a broad
rigidity distribution—from very stiff cells to cells softer than those found
inhealthy tissue—that is shifted towards a higher fraction of softer cells.
Atomic-force-microscopy-based tissue rheology reveals that islands of rigid
cellsare surrounded by soft cells. The tracking of vital cells confirms the
coexistence of jammed and unjammed areas in tumour explants. Despite
the absence of a percolated backbone of stiff cells and a large fraction of
unjammed, motile cells, cancer cell clusters show a heterogeneous solid
behaviour with a finite elastic modulus providing mechanical stability.

Early on, tumour biology recognized that cancer cells undergo dedif-  or complete epithelial-mesenchymaltransition®’; these cells migrate
ferentiation towards amore disordered and thus softer cytoskeleton'.  more efficiently through dense environments®, until nuclear jamming
Evidence for soft cells already inside primary tumours is, however,  hinders further movement®°. For metastatic cells extracted from extra-
only circumstantial and cell lines differ from clinical samples®™. Cell  cellular fluids such as pleural effusions, softness correlates with clinical
softening is associated with the downregulation of keratin after partial  pathology’. Similarly, cytobrushes indicate cancer cell softeningin oral
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cancer™. In contrast, circulating breast cancer cells are slightly stiffer
than the surrounding white blood cells™. Fine-needle aspirations of
breast tumours show that solid tumours contain well-defined soft
regions™", although it remains unclear if these soft areas are composed
of cancer cells or extracellular matrix (ECM).

Our recent research indicates that the fluid or solid behaviour of
cancer cell clusters in breast and cervical tumours is modulated by
cell unjamming®. Cell proliferation requires a cell cluster resistant
enough to divide against a typically firm surrounding stroma'®”, yet
proliferation fluidizes tissues'". Cancer cell spheroids can spread
like a fluid droplet®, and yet their shapes and sorting behaviours are
notsolely governed by surface tension®. Many cell aggregates exhibit
features of glassiness or jamming, suggesting the mechanicalimpact of
solid-fluid transitions on tissue bulk behaviour**, Because fluid-like
and solid-like tissues have different mechanisms for proliferation®,
migration, self-organization and cohesion (that s, cancer cell escape)?,
these uncertainties prevent us from fully understanding the initial
metastatic cascade.

Nonetheless, a breast tumour is undoubtedly a rigid mass, as
already stated in the ancient Egyptian medical text Ebers Papyrus.
Neoplastic tissue, composed of cancer cell clusters surrounded by
enhanced, stiffand often fibrotic stroma, appears as arigid mass* with
respect to the healthy surrounding tissue. Pathologists use excessive
ECM deposition as a marker for poor prognosis, since it is a strong
tumour promoter??%, Tumour progression seems to simultaneously
require rigid and soft properties of cancerous tissue and individual
cancer cells. This apparent paradox, as discussed recently", is solved by
us by unique multiscale mechanical measurements on patient-derived
tumour explants.

Moreover, cancer cells are highly mechanosensitive and mechani-
cally adapt to their microenvironment. Mechanical changes may be
directly caused through mechanosensitive responses of the cytoskel-
eton or through expression changes by cellular mechanotransduc-
tion”~., This may cause cell stiffening after the cancer cell hasleft the
tumour cell mass into the stiff ECM. Moreover, fluid unjammed cancer
cell clusters may induce cancer cell softening or softening may be the
cause of unjamming. The question remains if mechanical changes
already start in the tumour mass or rather occur only when the cells
leave into the stroma.

Multiscale tumour mechanics

Starting on the bulk-tissue level, we quantified macroscopic viscoe-
lasticity with tabletop magnetic resonance elastography (MRE)*>*on
centimetre-sized vital tumour explants, from cervical and mammary
carcinomas (Figs. 1and 2). Soft tissues and cells often exhibit a dis-
tinctive power-law viscoelastic response®, described by the complex
shear modulus derived from the fractional Maxwell model. We extract
the stiffness/elastic resistance (u) and its power-law exponent (a) as a
measure for fluidity/dissipation. The cells and tissues are highly com-
plex compound materials, and no analytic constitutive model exists
to describe their multiscale mechanical behaviour. Thus, mechanical
constants measured with diverse techniques on different scales cannot
be quantitatively compared™. Nevertheless, the measured mechanical
behaviours can be compared and correlated.

The MRE data confirm the medical practice that breast cancer can
beidentified by palpation; breast tumour explants (n = 5) withamedian
mechanical resistance of pyc = (2.9 +1.9) x 10° Paare clearly (p = 0.021,
Kolmogorov-Smirnov (KS) test) stiffer than healthy breast tissue with
Hgn = (163 + 77) Pa(n=3), whereas the fluidity is similar (Fig. 1b). In the
tumour explants, the fibrotic stroma may contribute to an increase
in stiffness, whereas healthy epithelial breast tissue is surrounded by
connective tissue and very soft fat tissue, which may dominate the
averaged bulk stiffness measured by MRE.

In contrast, for the cervix samples, tumours (4.4 +1.4) x 10* Pa
are not significantly (p = 0.53, KS test) stiffer than healthy tissue

((1.4 £1.3) x10° Pa) and have similar fluidity (for both, n=4). The cer-
vical epithelium is primarily surrounded by rigid connective tissue
and smooth muscle cells. For effective cancer cell proliferation, it is
sufficientifthe tumour just matches or slightly exceeds the resistance
of the surrounding microenvironment'®. Moreover, cervical tissue is
highly active showing functional and structural changes, for example,
during the menstrual cycle, whichisreflected in variably altered viscoe-
lastic properties®. This demonstrates that carcinomas do not have to
be drastically stiffer than the healthy surrounding tissue®.

Withthe atomic force microscopy (AFM) technique, we measured
the elasticity maps of the same live tumour explants with cellular reso-
lutionto capture thelocal, heterogeneous distribution of stiffness. We
seealog-normaldistributionin stiffness (Fig.1e), also seeninsingle-cell
AFM measurements®**°, For breast cancer, we observe a stiffening in
the median Young’s Modulus from Egy =132 Pa (n =16) to E;. =288 Pa
(n=13) moving from healthy to cancerous tissue. In the cervix, we see
a drop in median stiffness from £ =570 Pa (n =5) for healthy cervix
to E..=385Pa (n=7) in cervical cancer. These values integrate over
the differences between stroma and cancer cell clusters. Within the
cancer cell clusters, we observe smaller stiff regions surrounded by
softer cells, both spanning several hundreds of micrometres (Fig. 1c).
The regions of soft cells are percolated within the observed sections.
Moreover, the stiff regionsremaininisolated areas. Since we have only
sections of the tumour, it remains unclear whether the rigid regions
are percolated or remainislands in three dimensions. The soft and stiff
regions withinthe cell clusters show asolid behaviour with finite elastic
moduli. This mechanically stable behaviour permits the understand-
ing that fibrotic stroma does not solely contribute to the rigidity of a
solid tumour.

Carcinomas contain cells that are softer than
healthy cells

Suspended cells lose all stimuli from their microenvironment and enter
anunperturbed ground state, so that changes must be due to expres-
sion changes. This ground state was characterized in step-stress experi-
ments with an optical stretcher (0S)* (Fig. 3). For cervical tumours,
neighbouring normal epithelial tissue was used as a reference. For
breast cancer, it was benign lesions (fibroadenoma, FA) and primary
human mammary epithelial cells (HMEpC) from breast reductions.
Allthe samples were in culture for ashort time, as primary cells soften
withtimein culture (Extended DataFig.1). Asthe HMEpC controls were
in culture longer than the tumour samples, the observed differences
underestimate the relative softening of cancer cells.

The relative deformation of measured cells also follows a
log-normal distribution. From the cumulative distribution of 13 breast
cancer samples (n =6,526), compared with two FA samples (n =186)
and one HMEpC sample (n = 358), we find that the breast cancer cells
arethesoftest withamedianrelative deformation of MDg. = 0.024 (FA
cells, MDg, = 0.015; healthy cells, HMEpCMD g, = 0.018) (Fig. 3 and
Extended Data Fig. 2). All the differences are significant.

Anincrease in soft cancer cells with respect to healthy cells char-
acterizes both breast and cervical tumours (Extended Data Table 1).
The cells from tumours are more heterogeneous, that is, they display
abroader log-normal distribution, with alarge fraction of cells that are
justasstiffasthose in normal tissues. Primary carcinoma contains soft
aswellasrigid cells, which could stem from cancer deregulation or the
broad spectrum of epithelial and mesenchymal states may cause the
variability in cytoskeletal expression that cause this heterogeneous
behaviour. In cancer cell clusters, these cells separate in regions of
soft and rigid cells, as shown by our AFM measurements. The stiffen-
ing of breast tissue felt by palpation can be attributed to the different
compositions of healthy and cancerous breast tissue, as soft fat cells
getreplaced by large volumes of cancer cells. These cancer cells are a
lotstiffer than fatcells, evenif they are softer than the healthy epithelial
cells that they originate from in the first place.
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Fig.1]| Viscoelasticity of breast cancer tissue. a, Haematoxylin and eosin

stain of invasive breast cancer growth: regions of desmoplastic reaction (1),
intraductal tumour growth (2) and fatty tissue (3) can be identified. b, MRE

of breast tumours. Centimetre-sized vital pieces of primary breast tumours
(n=5) and healthy breast tissue (n = 3) were measured. The bulk stiffness y of
tumours is higher compared with healthy tissue, as expected from palpation
(p=0.021,KS test), and the difference in fluidity a is not significant. c,f, AFM
maps of local tissue elasticity for breast tumour and healthy breast tissue. Tissue
elasticity maps measured for 0.5 x 0.5 mm?areas in vital tissue explants with

10 pmresolution reveal domains of several hundreds of micrometres in size

Position (um)

with distinctively higher or lower local elasticity leading to a heterogeneous
structure. d, Median breast tissue stiffness; the median Young’s modulus rises
from Egy =132 Pa (n =16) to Ey. = 288 Pa (n = 13) moving from healthy to cancerous
tissue (p < 0.01, MWU test). e, Distribution of local Young’s moduli of breast
cancer tissue (dark blue) and control tissue (light blue) from the maps shown
incand f. Both tissues show alog-normal distribution in stiffness (red fit lines),
with the tumour showing a much wider, heterogeneous distribution in stiffness.
The box plots show quartiles 1,2 and 3 (box) and 5%/95% (whiskers); n.s., not
significant; *p < 0.05, *p < 0.01.

Cancer cell unjamming modulates stiffness of cell

clusters

Intumour explants, we have found unjammed as well asjammed regions
by vital cell tracking. To understand how such regions affect the global
tumour behaviour, we use cell spheroids to illustrate the mechani-
cal properties of jammed and unjammed tissues. We have recently
shown that MDA-MB-436 spheroids, a model for breast cancer, con-
sist of unjammed cells that can move, whereas MCF-10A spheroids,
amodel for epithelial cells, consist of jammed, non-moving cells®.
Spheroid fusion experiments demonstrate that spheroids with motile
cells behave like a fluid and jammed cell clusters have properties of
an amorphous solid”. This exemplifies the fact that tissue fluidity,
as an emergent collective cell behaviour, is a key modulator of tissue
stiffness. We performed force-indentation experiments on spheroids
withan AFMinstrument. MCF-10A spheroids have an elastic modulus
of 88(+63) Pacompared with135(+38) Pa for single cells. MDB-MB-436
spheroids dropped from asingle-cell elastic modulus of 570(+300) Pa
to 111(+72) Pafor spheroids (Fig. 4). The motile cells in MDB-MB-436

spheroids oppose much less external loads compared withindividual
cells. The jammed MCF-10A spheroids also lose some of their individual
strength but only 36% compared with the 80% value of MDA-MB-436.
We tracked the fusion of nine pairs of MCF-10A spheroids and ten pairs
of MDA-MB-436 spheroids. The fusion progress rate—measured as
A(cosB)/At—between 24 and 36 h after fusion start, was significantly
different between the two fusion experiments. Qualitatively, MCF-10A
fusionsvirtually arrest, in contrast to the ongoing MDA-MB-436 fusions
(Fig. 4). Together withthe AFM measurements, this establishes the fact
that tissue fluidity rather than direct individual cell stiffness impacts
the mechanical stability of cell clusters. Single-cell stiffness may be
more of adeterminant of tissue fluidity. Already, the two celllines show
broad log-normal distributions for their cell stiffness. Furthermore, the
primary tissue samples are even more heterogeneous. Our AFM-based
cellelasticity maps of cervix and breast carcinomadisplay rigid and soft
regions. The soft areas are unjammed and therigid ones arejammed. If
the rigid cells do not form a percolated backbone, how can the tissue
maintain amechanically stable behaviour with afinite elastic modulus?
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Fig. 2| Viscoelasticity of cervix cancer tissue. a, Haematoxylin and eosin stain
of squamous cell carcinoma of the uterine cervix; the tumour (1) is confined

to the cervix. The vaginal cuff (3) and ectocervix (2) are not affected. b, MRE of
cervical tumours. Centimetre-sized pieces of vital primary tumour explants of
cervical tumours (n =4) and healthy cervix tissue (n = 4) were measured. On the
bulk-tissue level, tumours are similar compared with healthy tissue. The tumour
is not significantly stiffer or more fluid than the surrounding tissue (n.s.; KS test).
¢ f, AFM-based map of local tissue elasticity of cervix carcinoma and healthy
control tissue. Tissue elasticity measured for patches of 1 x 1 mm?with 10 pm
resolution from vital tissue explants reveals that the cancer cell clusters are

Position (um)

heterogeneously divided into domains of several hundreds of micrometres with
high or low local elastic strength. d, Median cervix tissue stiffness; in the cervix,
we see adrop in median stiffness from E.y = 570 Pa (n = 5) for healthy cervix to
E..=385Pa(n=7)incervical cancer (p < 0.01, MWU test). e, Histogram of the
distribution of local Young’s moduli from AFM measurements of cervix cancer
tissue and control tissue, from the maps shown in cand f. Both tissues show a
log-normal distributionin stiffness (red fit lines), with the tumour only displaying
softer cells than the cells from the healthy tissue. The box plots show quartiles 1,2
and 3 (box) and 5%/95% (whiskers). n.s., not significant; **p < 0.01.

Regions of rigid cells surrounded by soft, motile
cells
We used the measured stiffness distribution from patient samples
and a vertex-based model*>** used for the unjamming transition**~*8
to disentangle the influence of a stiff and soft fraction of cancer cells
on tissue mechanics (Fig. 5)*. Our qualitative simulations show—in a
reductionistsituation only—how the interplay of soft and rigid cells can
assume different states of tissue fluidity depending on the distribution
of soft and rigid cancer cells. For a tissue of mechanically homogene-
ouscells, the collective fluidity is controlled by the cell shape index P,
whichdescribes the interaction between cellular cortical tension (that
is, effective cell stiffness) and cell adhesion. Cells with large tension tend
towards a stiff, round shape, whereas whenitis low, cells tend towards
asofter, elongated shape'**°°'. Thus, round, stiff cells with a shape
parameter smaller than the critical P, collectively assume the state of
anamorphous,jammed solid, whereas elongated, soft cellswith alarger
shape parameter are motile in a cooperative fluid, unjammed state.
We have stratified the fraction of soft and stiff cancer cells in our
model* based on the measured stiffness distributions, since the elastic

modulus of asingle cellis linearly proportional to P, for small deforma-
tions™. Since carcinoma shows a mixed epithelial and mesenchymal
phenotype’ and different cadherins canbind to each other*’, we assume
that differences in P, between the cancer cells are predominantly
caused by changesinthe cancer cell’s cortical tension and differences
in cell-cell adhesion are less important. Cancer cell unjamming is
further modulated by mechanical effects of the nucleus” and other
effects. We have recently identified the mechanism of ‘second-order
rigidity’ as akey driver****, which works in the same fashion in two and
three dimensions. Since all our results are verified by experimental
data, we visualized the mechanism in a qualitative two-dimensional
model for clarifying how mechanical heterogeneity influences the
tissue mechanics. In our model, the mechanical bulk property of
the cell collective is determined by computing the shear modulus G
(ref.>®). In terms of mechanical stability, G is finite in a fully jammed,
solid tissue, but vanishes in a completely unjammed, fluid one.

We computed G as a function of the mean and standard devia-
tion (s.d.) of P, and found three distinct mechanical phases (Fig. 5a):
afully unjammed (fluid) phase where the shear modulus of the tissue
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Fig.3|Single-cell mechanics of carcinomas. a, Relative deformation and
relaxation curves of single measured cells from a breast carcinoma (tumour,
n=613) compared with primary HMEpC cells from healthy epithelial breast tissue
from breast reductions (n = 358). The cells are deformed by the laser during the

2 sstretch period (orange band) and relax afterwards. b, Cumulative distribution
over 13 breast cancer samples (n = 6,526), compared with the two FA samples
(n=186) and one HMEpC sample (n = 358). A log-normal distribution was
successfully fitted (red fit lines). The distribution is clearly shifted towards softer
cancer cells. Nevertheless, the extreme width of the distribution means that
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even stiff cancer cells exist within the tumour mass. ¢, Relative deformation and
relaxation behaviour of single cells from a cervical carcinoma (n = 111) compared
with normal cervical epithelial (n = 38) tissue from the same patient. The
stretching timeis 2 s (orange band). d, Cumulative distribution over four pairs of
cervix samples (nq; =1,481, ncy =262) (**p < 0.01, **p < 0.001, MWU test). A log-
normal distribution fits the data very well (red fit lines). The cancer-cell softening
effect visible by the shift in distribution towards larger relative deformationsis
for the cervix carcinoma—even more pronounced than breast tumours. The box
plots show quartiles 1,2 and 3 (box); 5%/95% (whiskers); and mean (small square).

remained zero; apartiallyjammed, heterogeneous phase where tension
percolation gives a finite bulk stiffness; and a solid phase. This tissue
classification is also well founded in our AFM and OS data, independ-
ent of the simulations. The edge tensions have been calculated based
on Pyvalues of two neighbouring cells (Methods). Stiff cells (P, < 3.812)
form the jammed regions (Fig. 4b), whereas soft cells are responsible
for fluid regions.Inthe heterogeneous solid phase, the tension network
self-organizesintoa percolated structure, yet the rigid, jammed cells do
notpercolate. Thissuggests thatasmall fraction ofjammedislandsina
fluid sea, as observed in our patient-derived tumour explants, are suf-
ficient to give risetoafinite shear modulus. In the fully solid phase, both
tension and stiff cells form percolating networks. Inour AFM data (Fig. 1),
we find—for tumours—the same stiff islands surrounded by soft cells
with afinite bulk modulus analogous to the heterogeneous solid state
inour simulations. In the healthy tissue samples, we find amore homo-
geneous stiffness distribution, suggesting a more solid-like behaviour.
Thesolid heterogeneous phase s clearly determined by the frac-

tion of rigid cells in the tissue, f, (Methods). The pure fluid phase only
exists for f, < 0.24, also visible when plotting the shear modulus over
f. (Fig. 5¢). The heterogeneous solid spans 0.24 < f, < 0.48, and the
fully solid phase corresponds to f, > 0.48. The dependence of tissue
mechanics* on f, reveals that tumour heterogeneity, that is, variance

o(P,), fosters the rigidification of a tumour, which can be seen by the
positive slope of the phase boundaries (Fig. 5a). This suggests that a
tissue canrigidify with increasing cellular heterogeneity, as evidentin
the widening of the stiffness distribution of single cancer cells.

With further simplified dynamical vertex model simulations where
every cell experiences an active propulsive force” (Methods), we elu-
cidate the effect of heterogeneity and the fraction of rigid cells on
tissue fluidity. The long-time migration behaviour is described by the
self-diffusivity D (ref. *®). The fluid phase is characterized by a finite
value of D¢, and D.becomes vanishingly small (Methods) as the solid
stateisapproached at f, = 0.48. This suggests that the heterogeneous
solid (0.24 <f, < 0.48) is jammed with respect to small perturbations
but can be fluidized when subject to a large propulsive force. In the
solid phase (f; > 0.48), the cells are jammed and diffusive motion is
completely hindered due to the contact percolation of rigid cells.

Our patient-derived stiffness data positions within the phase
diagram with respect to the fraction of rigid cells f; confirm the clas-
sification by looking at the spatial stiffness maps measured by AFM
(Methods). This permits the categorization of breast and cervical
tumour samples with respect to our phase diagram (Fig. 5e). We find
thatbreast and cervical cancer samples are located within the hetero-
geneous solid phase permitting a large fraction of unjammed, motile
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g, Individual tracks of 8 over time for MCF-10A and MDA-MB-436. h, Fusion
progressrate, as measured by A(cos6)/At between 24 and 36 h after fusion start,
was significantly different between fusion experiments (p < 0.001, KS test). The
most pronounced difference between the samples, however, was of arather
qualitative nature. MCF-10A fusions virtually arrest, in contrast to the ongoing
MDA-MB-436 fusions (dashed lines for guidance). The box plots show quartiles 1,
2and 3 (box); 5%/95% (whiskers); and mean (circle). All the data points are plotted
inaandd (blue diamonds); **p < 0.01.

cells, whereas healthy cells frombreast reductions, cells from healthy
cervix tissue and benign FAs are in the solid, jammed phase. Here the
log-normal distributions measured with OS and the spatial distribu-
tions measured with AFM lead to the same result concerning the clas-
sification of tissue in the phase diagram.

The spatial organization of cancer cells in clusters with soft,
motile and rigid, jammed regions within a tumour causes the coun-
terintuitive result that many soft cells can exist within the solid mass
without destroying its mechanical stability as a solid that resists the
microenvironment. Even where no backbone of stiff cells permeates

Nature Physics



https://doi.org/10.1038/s41567-022-01755-0

Article
2 020 ey D
Pisscscssse
z gs8s8gss
1585508
178 )
0.15 - /S A
1557/ 6, /58
< LY AL
: Ejg st/
o S ¢
0.10 F E < § 7. :
S
E:::
g8
Eecs
0.05 cgsss st
3.75 3.80 3.85 3.90
u(Py)
[ e .
10° 10 Mamma i Cervix
: 5
0.8 - E E
O 0 L —1— : =
£l . 5
= 0.6 - : o,
3 s R _-__: - __.»’ 3
£ - .2 E
§ 107° 0.4 r 5 5§82
% 5 £33
0.2+ E e
10715 | | : | | -Eg
H S 3
L L L L 0 H [l
02 04 06 08 1.0 $ N
@00 Q/QO < &(o (Qoo
f f &S Q\Q NS

Fig. 5| Two-dimensional vertex model simulations of mixtures of soft and
rigid cancer cells. a, Mechanical phase diagram of cancer cell aggregates. This
phase diagram distinguishes between solid, heterogeneous solid and fluid tissues
as afunction of the mean value of Py and its distribution width. The P, values of
each cell are randomly assigned from alog-normal distribution. Here the fraction
of rigid cells f, is determined by mean(P,) and s.d.(P,). At f, = 0.24, arigidity
transition occurs, which is indicated by the thick black line. Below f, = 0.24, the
tissue behaves as a fluid that lacks mechanical rigidity due to the absence of an
intercellular tension network. Above f;, = 0.24, the tension network percolation
generates solid behaviour despite the fact that no backbone of jammed, stiff cells
spans the bulk. The red dashed curve represents the onset of contact percolation
transition at f, = 0.48 for stiff, jammed cells. The mismatch between rigidity and
contact percolations results in an intermediate heterogeneous solid state as an
unexpected mechanical state of tissues. The broad heterogeneity in cancer cells’

mechanical properties is the key determinant of cellular tumour tissue.
b, Representative snapshots of different mechanical states corresponding to
fluid, heterogeneous solid and solid tissues. Rigid cancer cells are shown in light
blue, whereas soft ones are in dark blue. The intercellular tension network is
indicated by red lines drawn at cell junctions. The white space at the boundary
isthe cell-free space that arises from boundary conditions. ¢, Tumour rigidity is
plotted as a function of the fraction of rigid cancer cells. The rigidity is expressed
by the elastic shear modulus. The red curve represents the median of the
scattered points at each f, value and shows arigidity transition atf, = 0.24 from
finite to vanishing shear modulus. d, Effective self-diffusivity as a function of f,.
Each cell has motility force v, = 0.05 and rotational noise D, = 1. e, Fraction of rigid
cells extracted from the relative deformations of various tissue types (Methods).
This allows the mapping of each cell type to the categorization of tumour to the
solid-fluid nexus as predicted by the vertex model. The error barsindicate1s.d.

the bulk, the tissue can spontaneously self-organize a spanning ten-
sion network that maintains rigidity. This heterogeneous solid phase
explains how a tumour is able to simultaneously provide mechani-
cal stability and cancer cell motility through the presence of soft,
unjammed cells.

Soft cancer cellsinduce multicellular streaming
We use vital cancer cell tracking to confirmthat there are both jammed
islands and motile, unjammed areas in patient-derived tumour explants
(12 cervix and 4 mamma carcinomas). In half the samples, we find
unjammed as well as jammed regions in cancer clusters (examples in
Fig. 6 and Supplementary Videos 1and 2). The rigid jammed cancer
cell clusters act as dynamic obstacles that lead to percolated tension
networks and transiently channel soft, unjammed cells into parallel
streams that wind through the cancer cell clusters (Fig. 6).

Our reductionist dynamic vertex model**” makes obvious the
effect of motile cells in a mechanically heterogeneous microenviron-
ment. By calculating the velocity correlation between a motile cell and
surrounding cells, we characterize the collective streaming behaviour
(Fig. 6a-c). For a fluid state at f, = 0.12, the correlations indicate that
up to3-4 other unjammed cancer cells tend to ‘follow’ the motile one.
Lateral to the invading cell, the correlations are weaker and vanish

ataround a single-cell diameter. This directional anisotropy results
in the formation of a cellular stream of cancer cells (Fig. 6d-f)*. The
stream anisotropy decreases with f, and disappears for the solid states
atf,>0.48 (Extended Data Fig. 4). These results reveal that mechani-
cal heterogeneity due to the presence of soft cancer cells has a strong
tendency to enhance the collective stream-like behaviour, as foundin
our vital cancer cell tracking observations.

Heterogeneity allows solid tumours and motile
cancer cells

Despite the fact that cancer is a systemic disease, particularly the fact
that metastasis quintessentially depends on biomechanical changes
at the cell and tissue level’", the black-and-white characterization
of tumour masses as stiff and cancer cells as soft demonstrates a lack
of acomprehensive, detailed picture of mechanics in tumour biol-
ogy. For the development of a malignant tumour, cancer cells have
to move, proliferate and displace dense healthy tissue. Previously,
the importance of cellular mechanical changes has been recognized
when cancer cells leave the tumour cellmass and enter the surrounding
stroma®. Cancer cell unjamming triggered by cell softening already
boosts metastasis through a collective motility transition in cancer
cell clusters within the tumour.
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Fig. 6| Emergent cellular stream caused by aninvading cellinside a
heterogeneous tumour. a-c, Simulated velocity correlations for fluid (a),
heterogeneous solid (b) and solid (c) tissues. In the simulated N = 400 cell system,
one actively invading cell, with propulsive force v, = 0.4 and rotational noise
D,=0.01,isintroduced (Methods). The colours indicate the value of correlations
C,,(x,y) between the velocity vector of the invading cell and surrounding cells
located at relative position (x, y). When f, = 0.1175, directly behind the invading
cell, the correlations are long ranged, indicating that up to 34 cells tend to
‘follow’ the invading cell. However, lateral to the invading cell, the correlations
are weaker and decay beyond the one-cell diameter. This directional anisotropy is
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indicative of a cellular stream forming behind the invading cell. With increasing
f., the anisotropy disappears. d-f, Snapshots of the cell velocity field taken

from the corresponding states shownina (d), b (e) and ¢ (f). The invading cell

is coloured with green edges. The light-blue and dark-blue colours represent
rigid and soft cells, respectively. The red arrows show velocity. g, Tracks from
time-lapse image series of a stream of cells in a cervical tumour sample ex vivo.
Astream of cellsis visible in the upper-right part of the piece (enlarged in h). The
surrounding cells areimmobile, that is, jammed (as shown ini). The cell nuclei
are marked by purple circles. The tracks are coloured according to the maximal
velocity, using the same colour scale in g-i (Supplementary Videos1and 2).

Cancer cells show a broad stiffness distribution shifted towards
softer cells through deregulation. In cancer cell clusters, the softer
cancer cells can squeeze by each other, which leads to collective cell
streaming. With increasing stiffness, this becomes difficult and the
cancer cellsarrest through jamming. These collective mechanisms lead
tojammed regions of stiff cells embedded in streams of soft cells. The
rigidjammed islands feel each other by tension percolation through the

surrounding fluid, unjammed areas, leading to a solid bulk behaviour.
The resulting finite elastic storage modulus results in tumour stability
and rigidity against external forces.

Multicellular streaming, which is frequently observed in the
stroma surrounding the tumour®>*, self-organizes collagen associ-
ated with the cellular cancer tissue into directed transport highways®*,
further facilitating the aligned streaming. Streamingin the bulk of the

Nature Physics



Article

https://doi.org/10.1038/s41567-022-01755-0

cell clusters causes a three-dimensional volume flow of cancer cells out
ofthe depth of cancer cell clusters to the boundary, whichismuchmore
efficient thanjust the two-dimensional dissociation of cancer cells from
the cluster surface. Moreover, multicellular streams exit the tumour
with the ability to form collective clusters, enhancing their ability to
survive outside the tumour mass and enhance metastatic cascade®>*°.

The emergent cooperative properties of a heterogeneous tissue
induced by cancer cell softening cannot be understood by studying the
molecular properties of single metastatic cellsand may play acritical role
in cancer invasiveness. The interplay of mechanical heterogeneity and
cancer cellunjamming regulates the stiffness of cancer cell aggregates
and simultaneously permits cell motility. To our knowledge, this prop-
erty of the heterogeneous solid state goes beyond previously reported
states of active matter. Deregulation and dedifferentiation as well as the
spectrum of epithelial-mesenchymal transition, which are part of any
malignant transformation, most probably cause a broad mechanical
heterogeneity together with a shift to softer cells. Thus, we expect that
the observed mechanical changes occurinherently with early neoplasm.

The ability for cancer cell unjamming may be part of the initial
difference between benign tumours that grow locally and malignant,
invasive tumours. To overcome the complexity and heterogeneity,
the universal physics underlying the mechanical processesinthe pro-
gression of solid tumours, which is agnostic to the molecular details
of different tumour entities, may provide amore general perspective
on cancer development as a systemic disease than the molecular cell
perspective alone. Since the described processes relate to the initial
steps of cancer cell spreading, they may become important predictors
of patient outcome complementary to genetic signatures. As described
here, pathological mechanical changes driven by emergent effects,
which cannot be directly related to a simple molecular cause, are a
missing link in understanding cancer and will ultimately lead to new
diagnostics as well as therapy.
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Methods

Experimental procedures

Ethics votum. This study was approved by the Ethics Committees
of the Medical Faculty of Leipzig University for mamma and cervix
carcinoma (090-10-19042010 and 227-10-23082010, respectively),
and the Medical Association Hamburg for mamma samples. For
the FA samples, the study was approved by the Institutional Review
Board of the Montefiore Hospital (protocol no. 02-12-328). A consent
document was signed by all the patients. Diagnostic-relevant parts
of the tumour biopsy were used for standard tumour classification
done by the responsible pathologists. All the patient samples were
blinded and pathological staging was received after the evaluation of
measurement data.

Primary tissue samples. The remaining tissue with vital cells were
used for cancer cell extraction. To dissolve a tissue into individual
cells, the tissue samples were sliced into pieces of about 1 mm thick-
ness and put into a gentleMACS Unique C tube (Miltenyi Biotec) con-
taining 5 ml Dulbecco’s modified Eagle medium (DMEM)/Ham’s F12
medium supplemented with either 1.60 mg ml™ collagenase P (Roche)
and 20 pg ml™ DNAse for breast cancer samples or 0.25 mg ml™ col-
lagenase 1A (Sigma), 0.25 mg ml™ pronase (Roche) and 20 pg ml™
DNAse for cervical cancer samples. The C tubes were mounted onto
the gentleMACS dissociator and stirred using a customized dissocia-
tion routine (thatis, 30 s mixing at varying speeds). The suspension
was then incubated at 37 °C for 30-60 min. This step was repeated
twice until no tissue clusters were visible. The single-cell suspension
wasthen centrifuged first at 40xgto collect the remaining cell clusters
and cell debris. This was followed by another centrifuge step at 300xg
for 5-10 min. The pellet containing the cells from the tumour sample
was thenresuspended and the cells were cultured firstin DMEM/Ham’s
F12 supplemented with 10% foetal calf serum and x1 penicillin/strepto-
mycin/amphotericin B for 24 h; afterwards, aserum-free medium was
used for culture (HuMEC medium (Gibco) for breast cancer cells and
defined keratinocyte serum-free medium (Gibco) for cervical cancer
cells, each supplemented with x1 penicillin/streptomycin/ampho-
tericin B). These media are optimized for epithelia cell culture and
promote the growth of epithelia cells as well as suppress other cell types
by the supplementation of growth factors and other components®’.
Fine-needle aspiration biopsy was used to obtain the samples from
malignant breast tumours and FAs, a benign lesion of breast tissue. In
contrast to core biopsy, where asmall cylinder of tissue is obtained, a
smaller needle (21 gauge) was used. By exerting a negative pressure,
mainly loosely attached cells and sheets of epithelial cells were col-
lected due to the capillary effect wheninserted into FAs®®. The obtained
cells were shortly cultured as described above and all the vital cells
were used for measurement. Primary human mamma epithelial cells
(Invitrogen) and HMEpC (PromoCell) were cultured according to the
protocols provided.

Biomechanical measurements of cancer cells using automated
microfluidic OS. The OS is a two-beam laser trap, enabling biome-
chanical studies without physical contact**’. Two opposing infrared
laser beams form a stable trap. The suspended cells were injected and
delivered through a microfluidic device to the centre of the trap. They
were probed in a creep experiment where they were subjected to a
step-stress profile, stretching withahigh laser power for 2 sand holding
for another 2 s with low power afterwards to observe their relaxation
behaviour. The measurements were fully automated. Phase-contrast
image sequences taken during the measurements were analysed using
custom-madeimage analysis software to extract the time course of the
observed relative cell deformation. The measured cells remain viable
after stretching’™. The applied laser power exerted a peak tensile stress
ofabout 20 Paonthe cells causing an elongation of 0.5-7.0% of the cell
diameter along the laser axis. Actively contracting cells canlead to an

underestimation of deformation, but is more common in cancer cells
(Supplementary Fig.1); therefore, it might result in a slight underestima-
tion of the difference. Log-normal distributions were fitted to the data
and the significance was tested with the Mann-Whitney U-test (MWU
test). The width of the distributions was characterized by the inter-
quartile range with the difference between the first and third quartile.

Biomechanical measurements of cancer tissues using AFM. The
tissue samples from breast and cervix carcinomas and adjacent healthy
tissues were obtained during routine tumour resections. The tissue
samples were measured within hours after resection. The tissue samples
were chopped into 400-pum-thin slices with a Mcllwain tissue chop-
per. Subsequently, the slices were glued (Histoacryl, B. Braun) onto
microscope slides followed by the measurement of elastic strength
(Young’s modulus). The AFM used is a NanoWizard 4 instrument with
300 pmHybridStage (JPK) combined with an Axio Zoom.V16 instrument
(ZEISS). A CONT (NanoWorld) contact-mode cantilever was modi-
fied with a 6-pum-diameter polystyrene bead to increase the contact
area. The force ramps were recorded with the following parameters:
maximum force, 7.5 nN; zspeed, 20 pm s™; zlength, 30 pm; capturerate,
2,048 Hz;imagingarea, up to1x 1 mm?was splitinto smaller squares of
200-250 umside length to fit into the piezo range of the hybrid stage.
The maps wererecorded with 10 um data-point spacing. The AFM data
were firstanalysed with theJPK data processing software (version 7.1.18)
to calculate the Young’s modulus using a Hertz fit to the smoothed
and baseline-corrected force-indentation curves. The data were
post-processed with a custom-written MATLAB program (MathWorks,
version 2018b) to fit a log-normal distribution (2,000-10,000 data
points per sample). The significance was tested with the MWU test. By
using simultaneous fluorescence microscopy of DNA-stained cell nuclei,
we assured that our maps, which we obtained, are from tumour areas
with cancer cell clusters and not from the surrounding ECM.

Biomechanical measurements of single cells and MTS. MCF-10A
and MDA-MB436 cells were cultured in cell culture flasks (TPP) for
single-cell AFM measurements. Multicellular tumour spheroids
(MTS) were formed on UltraPure agarose gels in a 96-well plate. Here
20,000 cells are added to each well, as they cannot adhere to the aga-
rose; they adhere only to the other cells present and form the MTS.
MDA-MB-436 cells were cultured in 90% DMEM (without sodium pyru-
vate), 10% foetal calf serum and 1%10,000 U ml ™ penicillin/streptomy-
cin. MCF-7 cells were cultured in 88% Eagle’s minimal essential medium
supplemented with 10 pg ml™insulin and 1 mM sodium pyruvate, 10%
foetal calf serum/foetal bovine serum, 1% non-essential amino acids
and 1% penicillin/streptomycin. The cells and MTS were measured
witha CellHesion 200 instrument (JPK) and atipless cantilever (Arrow
TL1, NanoWorld). Single cells and MTS were directly measured after
passaging into a Petri dish (TPP), and still being only weakly adherent
toreduce theinfluence of the substrate. The CellHesion instrument is
equipped witha custom climate chamber to provide 37 °C and 5% CO,
during the measurements.

Biomechanical measurements of cancer tissues using MRE. Table-
top MRE measurements were carried out on 8 mm punchbiopsies from
the same tissues described earlier. The setup consists of a tabletop
magnetic resonance imaging scanner (Pure Devices) withal0 mmbore
and 0.5 T permanent magnet that was customized by an additional
gradient amplifier (DC-600, Pure Devices) and a piezoelectric driver
controlled by a magnetic resonance imaging system (Piezosystem
Jena) covering the frequency range between 200 and 6,000 Hz. The
tissue samples were placed at the bottom of 7 mm glass tubes pro-
tected from evaporation by the addition of a cotton wool ball soaked
in phosphate-buffered saline at the top of the tube and sealed by a
plastic plug with a silicon shock absorber at the bottom and a single
slice of polyvinyl chloride at the top. The glass tubes with the samples
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were coupled from the top to the piezo driver and the section with
the sample was positioned within the bore of the magnetic resonance
imaging scanner, which was heated to 37 °C. The vibrations from the
piezoactuator are constrained in axial motionand coupled viathe glass
walls into the sample. A detailed overview of the imaging sequences
and motion-encoding gradients is described elsewhere®. In brief, the
data acquisition time for each frequency was approximately 8 min; a
frequency range of 1-6 kHz was covered in 500 Hz intervals, resulting in
11 measurement points and a total runtime of approximately 1.5 h. The
following acquisition parameters were used: repetition time, 500 ms;
echotime, 42 ms; slice thickness, 3.00 mm; matrix size, 56 x 56; field of
view, 8.40 x 8.40 mm?resultinginavoxelssize of 0.15 x 0.15 x 3.00 mm?®.
The acquired data were unwrapped and Fourier transformed in time
to extract complex-valued wave images for each driving frequency.
The wave profiles for deflection parallel to the cylinder axis were cre-
ated and fitted by the analytical solution of shear waves in a z-infinite
cylinder®, resulting in the complex wavenumber k* = kK’ + ik”. Based on
the fact that the shear-wave speed c and shear-wave penetration rate
acanbe derived for each frequency, we get

f S

==, S1
a k' ( )

These parameters were directly fitted by a viscoelastic fractional

element model to derive shear-modulus-related parameters.

G* = p-an* (i2af)" (S2)

Here zand a are twoindependent variables; u represents ameas-

ure of tissue stiffness and the power-law variable ais directly translated

to the phase angle of the complex shear modulus G* by multiplication

with /2. More details can be found elsewhere®***, The KS test was used
to check the significance.

Spheroid fusion experiments. Spheroids were formed with the same
protocolasthe AFM measurements. Two spheroids were transferred into
asingle welland observed with phase contrast microscopy over several
hours. The used Leica DM IRB instrument was equipped with a custom
climate chamber to provide 37 °C and 5% CO, during the measurement.
Spheroids were fitted with two circles, the angle 6is the angle between
theline connecting the two centre points and the radius fromone centre
to the intersection of the two circles. The progress of spheroid fusion
was tracked over time and calculated as A(cos6)/Atin the time period of
24-36 hof fusion. The significance was checked with the KS test.

Vertex model of a mechanically heterogeneous tissue. We use the
vertex model to understand the collective mechanical behaviour of
dense tumour aggregates. In the vertex model, a two-dimensional
confluent epithelial tissue is governed by the energy function*>””
E= YL [Ka(Ai = AL)? + Kp(P; — P, )2 wherecell areas {A} and perimeters
{»3 are functionals of the positions of vertices {r;}. Also, K, and K, are
the area and perimeter elasticities, respectively. The quadratic term
inA;results from resistance to cell volume changes’””>. Changes to cell
perimeters are related to the deformation of actomyosin cortex””>.
The term KpP?corresponds to the energy cost of deforming the cortex.
The linear term, —2K,P. P, is the effective line tension by cell i, which
gives rise to a ‘preferred perimeter’ P, The value of P, emerges from
aninterplay of cell-cell adhesion and cortical tension”. Here we assume
the preferred cell area A, does not vary from cell to celland is set to be
the average area per cell (4] = A). The energy can be non-

dimensionalized by choosing KA as the energy unit and \/i as the
length unit:

e= Y [Ka(@ =1 + (i~ P

i=1

where a; = A;/Aand p; = P,/\/ A are the rescaled area and perimeter of
the ith cell, respectively. Also, k, = K,A/K,is the rescaled cell area elas-
ticityand pi, = P{ )7/ Ais the preferred cell shape index™.
Inthismodel, cell stiffness is determined by tension r,,on cell-cell
junctions (edges).Foranedgewithlengthl,, the tensionis given by*>**”

? ; ~
Tn= 5 = (Pi= P+ (= Py,

where p;and p;are the rescaled perimeters of cellsiandj, respectively,
adjacent to edge m. As a result, cell stiffness is directly tuned by the
preferred cell shape indices. To capture the experimental heterogenei-
tiesinsingle-cell stiffness and cell-cellinteractions'”5*°, we introduce
variations in the preferred shape indices*. The majority of this work
uses alog-normal distributed set of{pg}. Theresults are insensitive to
the form of distribution for {p }.

To initialize the simulation, Voronoi cells*® are used to provide a
set of initial vertex positions. Then, each cell is assigned a value of p,
drawn from alog-normal distribution. The set of p, values remains as
quenched variables. We use acombination of FIRE (fastinertial relaxa-
tion engine) and conjugate-gradient algorithms®"** to minimize the
tissue energy under periodic boundary conditions with a fixed equi-
librium cellarea A, = A = L Thisalgorithm producesstable states where
the net residual force on vertices is less than 1078, For this work, we
simulate tissues with N=400 cells. Each tissue is characterized by a
mean (u1,,) ands.d. (0,,) of single-cell p, values. We have systematically
studied alargerange of these parameters: y1,, = 3.75-3.90; 0,,=0.05to
-0.20.Following a previous theoretical study*’, we define the fraction
of rigid cell f; as the fraction of cells with p, <3.812, which can
be writtenas

fo= 1" %0 (D0) dpo.

Here #,,(po) is the distribution function of p,. For a
log-normal-distributed p,, the fraction of rigid cells is analytically
given by

f = /2)erfel(u — log(u*))/(V20)].

Here erfcis the complementary error functionand gand oare the
control parameters of the log-normal distribution for which the mean
ands.d. can be calculated as

2

o

Ht+ =

, =€

Hp
0Op, = (7 —1) e+

Calculating mechanical response at the tissue level. At the tissue
level, its mechanical response is characterized by shear modulus G.
A non-zero G corresponds to a solid-like tissue, whereas G vanishes
for a fluid state. We obtain G by calculating the linear response to an
infinitesimal affine strain y via the Born-Huang formulation®

O
At LOY2 7

-1 =

G = Gaffine — Gnon-affine = Al
y=0

In the above equation, Z,is the derivative of the force on vertex i
with respect to strain given by

_ 0F
~ oyory,”

=

where r;, is the position of vertex i and u=x, y is the Cartesian index.
Also, Aioral = Zf.vA,- is the total area of the tissue. Also, M is the Hessian
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matrix given by the second derivative of tissue energy F with respect
to position vectors of vertices i and,j (refs. ***°):
O*F

Using effective diffusivity to characterize dynamics of
cell motion. We use self-diffusivity D, = lim,, .(Ar(6)*)/ (4¢) to distin-
guish between the solid and fluid states”, where lim,_, .(Ar(6)*) is the
mean square displacement. For practicality, we calculate D, using
simulation runs of 2 x 10° time steps at step size At =4 x 1072 using
Euler’s method with propulsive force v, = 0.05 and rotational noise of
cells D, =1under periodic boundaries. We present the self-diffusivity
inunits of Dy = v3/(2D,), which s the free-diffusion constant of aniiso-
lated cell. Then, D= D/D,serves as adynamical order parameter that
distinguishes a fluid state from a solid state. The simulations are per-
formed in the Surface Evolver program.

Accounting for measured distributions of cell stiffness. The experi-
mental data for breast and cervix cancer cells are well described by
log-normal distributions. The rigidity of the tissue with p, values given
by these distributions canbe obtained. We stress that only the relative
cell stiffness can be inferred from the experimental data, but not the
actual value of =p, for each cell. This is because p, is controlled by
theinterplay between cortical tension and cell-cell adhesion, whereas
the OS only measures the mechanical tension, that is, the stiffness of
thesingle-cell cortexinthe absence of any cell-cellinteractions. These
data do not infer the effective tension that the cells experience in a
confluenttissue. Nonetheless, this analysis provides an understanding
of how soft cancer cellsimpact the mechanical behaviour of tissues. In
particular, it suggests the possibility that a tumour—containing cells
thatare on average softer than that of the healthy tissue—could actually
still exhibit rigidity at the collective tissue level due to the broadness
of distribution.

The fraction of rigid cells can be extracted from the relative defor-
mations of various tissue types. For each cell type, we use the mean
deformation value of non-cancer cells (Fig. 3) to define the single-cell
rigidity threshold for both non-cancer and cancer phenotypes. Thef,
value for each cell type is then calculated by computing the fraction
of cells with deformation values smaller than the mean deformation
value of their non-cancer counterpart. This allows the mapping of each
cell type in each tumour category to the solid-fluid nexus predicted
within the theory.

Heterogeneity and cellular invasion. Here we use a dynamic vertex
model* tosimulate a tissue where only a single cell is invasive to study
the effect of heterotypic cellular environment on cell migration. The
invading cell has a propulsive force v, along a polarity vector i, which
undergoes random rotational diffusion®® at a slow rate. This mimics
the directional motility of a metastatic cellunder theinfluence of strong
chemotactic signals®*. In the model, each vertex v evolves according
to the overdamped equation of motion, with a viscous drag I"as

e

[‘dr” _ _arﬂ
dr _%e for other vertices.

ory,

+ voht vertices of invading cell,

The polarity vector undergoes random rotational diffusion as

0,0, = ni(t)
(O (e)) = 2D,8(e - )8,
where 6; is the polarity angle that defines 7and n,(t) is a white-noise

process with zero mean and variance 2D,. The value of angular
noise D, determines the memory of stochastic noise in the system,

giving rise to apersistence timescale 7 =1/D, for the polarization vector
A. The timescale T=1/D, controls the persistence of cell motion.

We numerically simulate the model using molecular dynamics by
performing10° integration steps at astep size of At =102 using Euler’s
method with propulsive force v, = 0.4 and rotational noise D, = 0.01for
N=400 cells under periodic boundaries. With heterogeneity, tissues
in the range of 0 < f, <1become accessible and cells moving through
them must interact with rigid as well as soft neighbouring cells along
the path of invasion. This results in a highly intermittent migration
dynamics for the invading cell.

Emergence of stream-like collective behaviour. To reveal the motil-
ity patternsin aheterogeneoustissue, we assume alog-normal distribu-
tion of p, values based on the broad distribution of cell deformations
from the OS. Since cancer cells are also shown to be more contractile
and the contractility mechanism is also responsible for cell traction,
we assume that soft cells (p, > 3.812) have larger motility than rigid
cells (p, < 3.812).

To analyse the motion of the invading cell, we always orient the
invading cell such that its direction of motion is along the x axis, that
is, we choose aframe of reference in which the invading cellis located
at (x=0,y=0).To correlate the motion of the invading cell and other
cellsinits vicinity, we compute the correlation function as*

Cop(X,Y) =< Vaetive * V(X)) >,

Positions are inunits of meancell diameter. Whenf, = 0.11, directly
behind the invading cell, the correlations are long ranged indicating
that up to 3-4 cells tend to ‘follow’ the invading cell. However, lateral
totheinvading cell, the correlations are weaker and decay beyond the
one-cell diameter. This directional anisotropy is indicative of a cellular
stream forming behind the invading cell. With an increase inf,, the
anisotropy disappears. To further quantify the behaviour of stream ani-
sotropy with changingf,, we calculate the correlationlengths &, §,inthe
xand ydirections, respectively, where the correlation C,,(x, y) decays
toathreshold of 1072, Then, the stream anisotropy parameter is given
by theratio {,/§,and we plotitasafunction of f, (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data are available upon request from the corresponding author.

Code availability
Simulation dataand code are available from D.B. (d.bi@northeastern.
edu) onreasonable request.
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Extended Data Fig. 1| Effect of passaging on the deformability of primary
breast tumour and normal epithelial cells. Left) Distribution of the maximum
relative cell deformations (observed at t = 3 s) for a breast cancer sample
stretched at the end of passage number 1-3 (sample size: P1 =164 cells, P2 =496
cells, P3 =309 cells). Right) Relative deformation distribution epithelial cells

1 — B HMEpCP10

0.4- O HMEpC P2
£ 0.3
E.; o
= 0.2
c
>
S 0.1

0.0 .

0.00 0.05 0.10

relative deformation

from breast reduction (HMEpC) stretched at the end of passage number 2 and
10 (samplessize: P2 =352 cells, P10 = 702 cells). With increasing passage number
more and more deformable cells are found. Time between passaging was
7to10days.
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Extended DataFig. 2 | Individual Histograms of the relative deformation of Log-Normal distributions were fitted to the histograms; details of the fits can be
breast tumour samples. Cellsisolated from 13 breast tumours were measured found in Extended Data Table1.

inthe optical stretcher, 2 fibroadenomas (FA) and HMEpC cells serve as control.
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Extended Data Fig. 3 | Individual Histograms the relative deformation of Cervix Tumours. Cells were isolated from 4 cervix tumours and normal cervix tissue from
the same patient as control. Log-Normal distributions were fitted; details of the fits can be found in Extended Data Table 1.
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Extended Data Fig. 4| The stream anisotropy as a function of f, for the invading cell. The stream anisotropy as a function of f, for the invading cell.
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Extended Data Table 1| Statistic quantities of the tumour samples

sample 1st Median 3rd Inter- Log- Log-| Grade (G), T class ER PR Her2| additional Age| sample

Quartile Quartile  quartile] Normal Normal nodal (pT) (x/12) (x/12) neu size

(@3-q1) m ol metastasis
(N+/N-)

Breast
HMEpC 0,01162 0,01772 0,02306 0,01144 -4.121 0.563 cells from breast reduction, 2nd passage 23 352
FA1 0,01145 0,01553 0,01981 0,00836 -4.245 0.527 fibroadenoma 80
FA 2 0,00935 0,01312 0,02051 0,01116 -4.299 0.622 fibroadenoma 76
Breast tumor 1 0.02388 0.02913 0.03485 0.01097 -3.571 0.353 3+ 2 12 6 1+ >50) 613
Breast tumor 2 0.01833 0.02279 0.02686 0.00853 -3.823 0.366 3- lc 12 12 0 >50) 423
Breast tumor 3 0.01899 0.02475 0.03142 0.01243 -3.725 0.399 3- 2 12 4 1+ >50 529
Breast tumor 4 0.01456 0.02004 0.02730 0.01274 -3.947 0.521 3- 2 0 0  1+[neoadjuv. <50 750
Breast tumor 5 0.01913 0.02654 0.03923 0.02010 -3.651 0.542 2 1c 12 9 0 >50) 46
Breast tumor 6 0.01661 0.02526 0.03768 0.02108 -3.746 0.666 3+ 2 8 4 1+ >50) 763
Breast tumor 7 0.01561 0.01974 0.02520 0.00959 -3.919 0.401 3+ 3 4 2+ >50 770
Breast tumor 8 0.01939 0.02665 0.03564 0.01625 -3.661 0.465 3+ 1 0 1+ >50 823
Breast tumor 9 0.02030 0.02998 0.04254 0.02224 -3.574 0.528 3- 2 6 1+ >50 291
Breast tumor 10 0.02119 0.02779 0.03743 0.01624 -3.590 0.434 3- 1 12 0 1+ >50 830
Breast tumor 11 0.01299 0.01884 0.02910 0.01611 -3.952 0.589 1 2 12 0 1+ >50) 254
Breast tumor 12 0.01057 0.01514 0.02075 0.01018 -4.212 0.514 3- 2 8 6 0 <50 240
Breast tumor 13 0.01182 0.01551 0.02149 0.00966 -4.168 0,520 1 lc 12 12 0 <50 193
Cervix
Cervix 1-t 0.01459 0.01888 0.02522 0.01063 -3.961 0.481 3 (N+) 2b squamous 53 650
Cervix 1-n 0.01149 0.01458 0.01934 0.00785 -4.557 0.772 normal cell ca. 46
Cervix 2-t 0.01661 0.02246 0.02880 0.01219 -3.857 0.434 3 (N+) 2b adeno- 54 446
Cervix 2-n 0.00811 0.01164 0.01515 0.00704 -4.602 0.661 normal carcinoma 119
Cervix 3-t 0.04179 0.05475 0.06730 0.02551 -2.983 0.405 2 (N-) 1bl adeno- 55 111
Cervix 3-n 0.01038 0.01815 0.02579 0.01541 -4.185 0.758 normal carcinoma 38
Cervix 4-t 0.02883 0.03669 0.04645 0.01763 -3.347 0.380 3(N-) 1b2 squamous 40 478
Cervix 4-n 0.01872 0.02434 0.03092 0.01220 -3.763 0.404 normal cell ca. 66
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Experimental data was recorded with the manufactures software on comercially available instruments.

Data analysis Data was analysed with MATLAB (R2021a), and Origin (2017G).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data are available upon request from the corresponding author. Simulation data and code is available from Dapeng Bi, Department of Physics, Northeastern
University, Boston, MA 02115, USA d.bi@northeastern.edu




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Due to the nature of the tumours investigated only tissue from female patients was used.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Patients were recruited during routine cancer treatment.
Ethics oversight ethics committees of the Medical Faculty of Leipzig Universit;

medical association Hamburg;
institutional review board of the Montefiore Hospital, Bronx, NY

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding All patient samples were blinded and pathological staging was received after evaluation of the measurement data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChlIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

Oooooos
OXOOXO

Dual use research of concern

>
Q
Q
(e
=
)
o
o)
=
o
=
_
D)
§o)
o)
=
>
Q@
w
(e
=
3
Q
<L




Antibodies

Antibodies used

Validation

Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Primary human mamma epithelial cells HMEC (Invitrogen)
HMEpC (PromoCell, Heidelberg)

MCF-10A, ATCC

MDA-MB-436, ATCC

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Indicate where the specimens have been deposited to permit free access by other researchers.

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  This study was approved by the ethics committees of the Medical Faculty of Leipzig University for mamma and cervix carcinoma
090-10-19042010 and 227-10-23082010 (mamma and cervix), and the medical association Hamburg for mamma samples, and for
fibroadenoma samples the study was approved by the institutional review board of the Montefiore Hospital, Bronx, NY IRB Protocol

#:02-12-328.
Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

XXX XX &

|:| Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

ChlIP-seq

Data deposition
D Confirm that both raw and final processed data have been deposited in a public database such as GEO.

D Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.




Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.
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Plots

Confirm that:
D The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Not used




Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: D Whole brain D ROI-based |:| Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
D |:| Functional and/or effective connectivity

D |:| Graph analysis

|:| D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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	Rigid tumours contain soft cancer cells

	Multiscale tumour mechanics

	Carcinomas contain cells that are softer than healthy cells
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	Regions of rigid cells surrounded by soft, motile cells

	Soft cancer cells induce multicellular streaming

	Heterogeneity allows solid tumours and motile cancer cells
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