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Rigid tumours contain soft cancer cells

Thomas Fuhs    1,14, Franziska Wetzel1,14, Anatol W. Fritsch    1,2,14, Xinzhi Li    3,14, 
Roland Stange1, Steve Pawlizak1, Tobias R. Kießling1, Erik Morawetz1, 
Steffen Grosser    1, Frank Sauer1, Jürgen Lippoldt1, Frederic Renner    1, 
Sabrina Friebe1,4, Mareike Zink1, Klaus Bendrat5,6, Jürgen Braun7, Maja H. Oktay8, 
John Condeelis    9, Susanne Briest10, Benjamin Wolf10, Lars-Christian Horn11, 
Michael Höckel10, Bahriye Aktas    10, M. Cristina Marchetti    12, 
M. Lisa Manning    13, Axel Niendorf5, Dapeng Bi3 and Josef A. Käs    1 

Palpation utilizes the fact that solid breast tumours are stiffer than the 
surrounding tissue. However, cancer cells tend to soften, which may 
enhance their ability to squeeze through dense tissue. This apparent 
paradox proposes two contradicting hypotheses: either softness emerges 
from adaptation to the tumour’s microenvironment or soft cancer cells are 
already present inside a rigid primary tumour mass giving rise to cancer 
cell motility. We investigate primary tumour explants from patients with 
breast and cervix carcinomas on multiple length scales. We find that primary 
tumours are highly heterogeneous in their mechanical properties on all 
scales from the tissue level down to individual cells. This results in a broad 
rigidity distribution—from very stiff cells to cells softer than those found 
in healthy tissue—that is shifted towards a higher fraction of softer cells. 
Atomic-force-microscopy-based tissue rheology reveals that islands of rigid 
cells are surrounded by soft cells. The tracking of vital cells confirms the 
coexistence of jammed and unjammed areas in tumour explants. Despite 
the absence of a percolated backbone of stiff cells and a large fraction of 
unjammed, motile cells, cancer cell clusters show a heterogeneous solid 
behaviour with a finite elastic modulus providing mechanical stability.

Early on, tumour biology recognized that cancer cells undergo dedif-
ferentiation towards a more disordered and thus softer cytoskeleton1. 
Evidence for soft cells already inside primary tumours is, however, 
only circumstantial and cell lines differ from clinical samples2–5. Cell 
softening is associated with the downregulation of keratin after partial 

or complete epithelial–mesenchymal transition6,7; these cells migrate 
more efficiently through dense environments8, until nuclear jamming 
hinders further movement9,10. For metastatic cells extracted from extra-
cellular fluids such as pleural effusions, softness correlates with clinical 
pathology5. Similarly, cytobrushes indicate cancer cell softening in oral 
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((1.4 ± 1.3) × 105 Pa) and have similar fluidity (for both, n = 4). The cer-
vical epithelium is primarily surrounded by rigid connective tissue 
and smooth muscle cells. For effective cancer cell proliferation, it is 
sufficient if the tumour just matches or slightly exceeds the resistance 
of the surrounding microenvironment16. Moreover, cervical tissue is 
highly active showing functional and structural changes, for example, 
during the menstrual cycle, which is reflected in variably altered viscoe-
lastic properties37. This demonstrates that carcinomas do not have to 
be drastically stiffer than the healthy surrounding tissue38.

With the atomic force microscopy (AFM) technique, we measured 
the elasticity maps of the same live tumour explants with cellular reso-
lution to capture the local, heterogeneous distribution of stiffness. We 
see a log-normal distribution in stiffness (Fig. 1e), also seen in single-cell 
AFM measurements39,40. For breast cancer, we observe a stiffening in 
the median Young’s Modulus from EBN = 132 Pa (n = 16) to EBC = 288 Pa 
(n = 13) moving from healthy to cancerous tissue. In the cervix, we see 
a drop in median stiffness from ECN = 570 Pa (n = 5) for healthy cervix 
to ECC = 385 Pa (n = 7) in cervical cancer. These values integrate over 
the differences between stroma and cancer cell clusters. Within the 
cancer cell clusters, we observe smaller stiff regions surrounded by 
softer cells, both spanning several hundreds of micrometres (Fig. 1c). 
The regions of soft cells are percolated within the observed sections. 
Moreover, the stiff regions remain in isolated areas. Since we have only 
sections of the tumour, it remains unclear whether the rigid regions 
are percolated or remain islands in three dimensions. The soft and stiff 
regions within the cell clusters show a solid behaviour with finite elastic 
moduli. This mechanically stable behaviour permits the understand-
ing that fibrotic stroma does not solely contribute to the rigidity of a  
solid tumour.

Carcinomas contain cells that are softer than 
healthy cells
Suspended cells lose all stimuli from their microenvironment and enter 
an unperturbed ground state, so that changes must be due to expres-
sion changes. This ground state was characterized in step-stress experi-
ments with an optical stretcher (OS)41 (Fig. 3). For cervical tumours, 
neighbouring normal epithelial tissue was used as a reference. For 
breast cancer, it was benign lesions (fibroadenoma, FA) and primary 
human mammary epithelial cells (HMEpC) from breast reductions. 
All the samples were in culture for a short time, as primary cells soften 
with time in culture (Extended Data Fig. 1). As the HMEpC controls were 
in culture longer than the tumour samples, the observed differences 
underestimate the relative softening of cancer cells.

The relative deformation of measured cells also follows a 
log-normal distribution. From the cumulative distribution of 13 breast 
cancer samples (n = 6,526), compared with two FA samples (n = 186) 
and one HMEpC sample (n = 358), we find that the breast cancer cells 
are the softest with a median relative deformation of MDBC = 0.024 (FA 
cells, MDFA = 0.015; healthy cells, HMEpCMDHMEpC = 0.018) (Fig. 3 and 
Extended Data Fig. 2). All the differences are significant.

An increase in soft cancer cells with respect to healthy cells char-
acterizes both breast and cervical tumours (Extended Data Table 1). 
The cells from tumours are more heterogeneous, that is, they display 
a broader log-normal distribution, with a large fraction of cells that are 
just as stiff as those in normal tissues. Primary carcinoma contains soft 
as well as rigid cells, which could stem from cancer deregulation or the 
broad spectrum of epithelial and mesenchymal states may cause the 
variability in cytoskeletal expression that cause this heterogeneous 
behaviour. In cancer cell clusters, these cells separate in regions of 
soft and rigid cells, as shown by our AFM measurements. The stiffen-
ing of breast tissue felt by palpation can be attributed to the different 
compositions of healthy and cancerous breast tissue, as soft fat cells 
get replaced by large volumes of cancer cells. These cancer cells are a 
lot stiffer than fat cells, even if they are softer than the healthy epithelial 
cells that they originate from in the first place.

cancer11. In contrast, circulating breast cancer cells are slightly stiffer 
than the surrounding white blood cells12. Fine-needle aspirations of 
breast tumours show that solid tumours contain well-defined soft 
regions13,14, although it remains unclear if these soft areas are composed 
of cancer cells or extracellular matrix (ECM).

Our recent research indicates that the fluid or solid behaviour of 
cancer cell clusters in breast and cervical tumours is modulated by 
cell unjamming15. Cell proliferation requires a cell cluster resistant 
enough to divide against a typically firm surrounding stroma16,17, yet 
proliferation fluidizes tissues18,19. Cancer cell spheroids can spread 
like a fluid droplet20, and yet their shapes and sorting behaviours are 
not solely governed by surface tension21. Many cell aggregates exhibit 
features of glassiness or jamming, suggesting the mechanical impact of 
solid–fluid transitions on tissue bulk behaviour22,23. Because fluid-like 
and solid-like tissues have different mechanisms for proliferation24, 
migration, self-organization and cohesion (that is, cancer cell escape)25, 
these uncertainties prevent us from fully understanding the initial 
metastatic cascade.

Nonetheless, a breast tumour is undoubtedly a rigid mass, as 
already stated in the ancient Egyptian medical text Ebers Papyrus. 
Neoplastic tissue, composed of cancer cell clusters surrounded by 
enhanced, stiff and often fibrotic stroma, appears as a rigid mass26 with 
respect to the healthy surrounding tissue. Pathologists use excessive 
ECM deposition as a marker for poor prognosis, since it is a strong 
tumour promoter27,28. Tumour progression seems to simultaneously 
require rigid and soft properties of cancerous tissue and individual 
cancer cells. This apparent paradox, as discussed recently17, is solved by 
us by unique multiscale mechanical measurements on patient-derived 
tumour explants.

Moreover, cancer cells are highly mechanosensitive and mechani-
cally adapt to their microenvironment. Mechanical changes may be 
directly caused through mechanosensitive responses of the cytoskel-
eton or through expression changes by cellular mechanotransduc-
tion29–31. This may cause cell stiffening after the cancer cell has left the 
tumour cell mass into the stiff ECM. Moreover, fluid unjammed cancer 
cell clusters may induce cancer cell softening or softening may be the 
cause of unjamming. The question remains if mechanical changes 
already start in the tumour mass or rather occur only when the cells 
leave into the stroma.

Multiscale tumour mechanics
Starting on the bulk-tissue level, we quantified macroscopic viscoe-
lasticity with tabletop magnetic resonance elastography (MRE)32–34 on 
centimetre-sized vital tumour explants, from cervical and mammary 
carcinomas (Figs. 1 and 2). Soft tissues and cells often exhibit a dis-
tinctive power-law viscoelastic response35, described by the complex 
shear modulus derived from the fractional Maxwell model. We extract 
the stiffness/elastic resistance (µ) and its power-law exponent (α) as a 
measure for fluidity/dissipation. The cells and tissues are highly com-
plex compound materials, and no analytic constitutive model exists 
to describe their multiscale mechanical behaviour. Thus, mechanical 
constants measured with diverse techniques on different scales cannot 
be quantitatively compared36. Nevertheless, the measured mechanical 
behaviours can be compared and correlated.

The MRE data confirm the medical practice that breast cancer can 
be identified by palpation; breast tumour explants (n = 5) with a median 
mechanical resistance of µBC = (2.9 ± 1.9) × 105 Pa are clearly (p = 0.021, 
Kolmogorov–Smirnov (KS) test) stiffer than healthy breast tissue with 
µBN = (163 ± 77) Pa (n = 3), whereas the fluidity is similar (Fig. 1b). In the 
tumour explants, the fibrotic stroma may contribute to an increase 
in stiffness, whereas healthy epithelial breast tissue is surrounded by 
connective tissue and very soft fat tissue, which may dominate the 
averaged bulk stiffness measured by MRE.

In contrast, for the cervix samples, tumours (4.4 ± 1.4) × 104 Pa 
are not significantly (p = 0.53, KS test) stiffer than healthy tissue 
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Cancer cell unjamming modulates stiffness of cell 
clusters
In tumour explants, we have found unjammed as well as jammed regions 
by vital cell tracking. To understand how such regions affect the global 
tumour behaviour, we use cell spheroids to illustrate the mechani-
cal properties of jammed and unjammed tissues. We have recently 
shown that MDA-MB-436 spheroids, a model for breast cancer, con-
sist of unjammed cells that can move, whereas MCF-10A spheroids, 
a model for epithelial cells, consist of jammed, non-moving cells15. 
Spheroid fusion experiments demonstrate that spheroids with motile 
cells behave like a fluid and jammed cell clusters have properties of 
an amorphous solid15. This exemplifies the fact that tissue fluidity, 
as an emergent collective cell behaviour, is a key modulator of tissue 
stiffness. We performed force–indentation experiments on spheroids 
with an AFM instrument. MCF-10A spheroids have an elastic modulus 
of 88(±63) Pa compared with 135(±38) Pa for single cells. MDB-MB-436 
spheroids dropped from a single-cell elastic modulus of 570(±300) Pa 
to 111(±72) Pa for spheroids (Fig. 4). The motile cells in MDB-MB-436 

spheroids oppose much less external loads compared with individual 
cells. The jammed MCF-10A spheroids also lose some of their individual 
strength but only 36% compared with the 80% value of MDA-MB-436. 
We tracked the fusion of nine pairs of MCF-10A spheroids and ten pairs 
of MDA-MB-436 spheroids. The fusion progress rate—measured as 
Δ(cosθ)/Δt—between 24 and 36 h after fusion start, was significantly 
different between the two fusion experiments. Qualitatively, MCF-10A 
fusions virtually arrest, in contrast to the ongoing MDA-MB-436 fusions 
(Fig. 4). Together with the AFM measurements, this establishes the fact 
that tissue fluidity rather than direct individual cell stiffness impacts 
the mechanical stability of cell clusters. Single-cell stiffness may be 
more of a determinant of tissue fluidity. Already, the two cell lines show 
broad log-normal distributions for their cell stiffness. Furthermore, the 
primary tissue samples are even more heterogeneous. Our AFM-based 
cell elasticity maps of cervix and breast carcinoma display rigid and soft 
regions. The soft areas are unjammed and the rigid ones are jammed. If 
the rigid cells do not form a percolated backbone, how can the tissue 
maintain a mechanically stable behaviour with a finite elastic modulus?
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Fig. 1 | Viscoelasticity of breast cancer tissue. a, Haematoxylin and eosin 
stain of invasive breast cancer growth: regions of desmoplastic reaction (1), 
intraductal tumour growth (2) and fatty tissue (3) can be identified. b, MRE 
of breast tumours. Centimetre-sized vital pieces of primary breast tumours 
(n = 5) and healthy breast tissue (n = 3) were measured. The bulk stiffness µ of 
tumours is higher compared with healthy tissue, as expected from palpation 
(p = 0.021, KS test), and the difference in fluidity α is not significant. c,f, AFM 
maps of local tissue elasticity for breast tumour and healthy breast tissue. Tissue 
elasticity maps measured for 0.5 × 0.5 mm2 areas in vital tissue explants with 
10 µm resolution reveal domains of several hundreds of micrometres in size 

with distinctively higher or lower local elasticity leading to a heterogeneous 
structure. d, Median breast tissue stiffness; the median Young’s modulus rises 
from EBN = 132 Pa (n = 16) to EBC = 288 Pa (n = 13) moving from healthy to cancerous 
tissue (p < 0.01, MWU test). e, Distribution of local Young’s moduli of breast 
cancer tissue (dark blue) and control tissue (light blue) from the maps shown 
in c and f. Both tissues show a log-normal distribution in stiffness (red fit lines), 
with the tumour showing a much wider, heterogeneous distribution in stiffness. 
The box plots show quartiles 1, 2 and 3 (box) and 5%/95% (whiskers); n.s., not 
significant; *p < 0.05, **p < 0.01.
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Regions of rigid cells surrounded by soft, motile 
cells
We used the measured stiffness distribution from patient samples 
and a vertex-based model42,43 used for the unjamming transition44–48 
to disentangle the influence of a stiff and soft fraction of cancer cells 
on tissue mechanics (Fig. 5)49. Our qualitative simulations show—in a 
reductionist situation only—how the interplay of soft and rigid cells can 
assume different states of tissue fluidity depending on the distribution 
of soft and rigid cancer cells. For a tissue of mechanically homogene-
ous cells, the collective fluidity is controlled by the cell shape index P0, 
which describes the interaction between cellular cortical tension (that 
is, effective cell stiffness) and cell adhesion. Cells with large tension tend 
towards a stiff, round shape, whereas when it is low, cells tend towards 
a softer, elongated shape15,50,51. Thus, round, stiff cells with a shape 
parameter smaller than the critical P0 collectively assume the state of 
an amorphous, jammed solid, whereas elongated, soft cells with a larger 
shape parameter are motile in a cooperative fluid, unjammed state.

We have stratified the fraction of soft and stiff cancer cells in our 
model49 based on the measured stiffness distributions, since the elastic 

modulus of a single cell is linearly proportional to P0 for small deforma-
tions52. Since carcinoma shows a mixed epithelial and mesenchymal 
phenotype7 and different cadherins can bind to each other53, we assume 
that differences in P0 between the cancer cells are predominantly 
caused by changes in the cancer cell’s cortical tension and differences 
in cell–cell adhesion are less important. Cancer cell unjamming is 
further modulated by mechanical effects of the nucleus15 and other 
effects. We have recently identified the mechanism of ‘second-order 
rigidity’ as a key driver54,55, which works in the same fashion in two and 
three dimensions. Since all our results are verified by experimental 
data, we visualized the mechanism in a qualitative two-dimensional 
model for clarifying how mechanical heterogeneity influences the 
tissue mechanics. In our model, the mechanical bulk property of 
the cell collective is determined by computing the shear modulus G  
(ref. 56). In terms of mechanical stability, G is finite in a fully jammed, 
solid tissue, but vanishes in a completely unjammed, fluid one.

We computed G as a function of the mean and standard devia-
tion (s.d.) of P0 and found three distinct mechanical phases (Fig. 5a): 
a fully unjammed (fluid) phase where the shear modulus of the tissue 

Control
0

500

1,000

1,500

Y
ou

ng
's

 m
od

ul
us

, E
 (

P
a)

Tumour

**

1

2

3

Tumour Control
0.3

0.4

0.5

0.6

0.7

0.8

F
lu

id
ity

, α
 (

a.
u.

)

n.s.

Tumour Control

S
tif

fn
es

s,
 µ

 (
P

a)

107

106

105

104

103

n.s.

Young's modulus (Pa)

C
ou

nt
s

0 500 1,000 1,500 2,000
0

500

1,000

1,500
Tumour

Control

0

500

1,000

0 500 1,000

P
os

iti
on

 (
µm

)

Position (µm)

C
on

tr
ol

0
50

0
1,

00
0

1,
50

0
2,

00
0

2,
50

0

Y
oung's m

odulus (P
a)

0
10

0
20

0
30

0
40

0
50

0

Y
oung's m

odulus (P
a)

0

500

1,000

0 500 1,000

Position (µm)

P
os

iti
on

 (
µm

)
T

um
ou

r

b c

fed

a

Fig. 2 | Viscoelasticity of cervix cancer tissue. a, Haematoxylin and eosin stain 
of squamous cell carcinoma of the uterine cervix; the tumour (1) is confined 
to the cervix. The vaginal cuff (3) and ectocervix (2) are not affected. b, MRE of 
cervical tumours. Centimetre-sized pieces of vital primary tumour explants of 
cervical tumours (n = 4) and healthy cervix tissue (n = 4) were measured. On the 
bulk-tissue level, tumours are similar compared with healthy tissue. The tumour 
is not significantly stiffer or more fluid than the surrounding tissue (n.s.; KS test). 
c,f, AFM-based map of local tissue elasticity of cervix carcinoma and healthy 
control tissue. Tissue elasticity measured for patches of 1 × 1 mm2 with 10 µm 
resolution from vital tissue explants reveals that the cancer cell clusters are 

heterogeneously divided into domains of several hundreds of micrometres with 
high or low local elastic strength. d, Median cervix tissue stiffness; in the cervix, 
we see a drop in median stiffness from ECN = 570 Pa (n = 5) for healthy cervix to 
ECC = 385 Pa (n = 7) in cervical cancer (p < 0.01, MWU test). e, Histogram of the 
distribution of local Young’s moduli from AFM measurements of cervix cancer 
tissue and control tissue, from the maps shown in c and f. Both tissues show a 
log-normal distribution in stiffness (red fit lines), with the tumour only displaying 
softer cells than the cells from the healthy tissue. The box plots show quartiles 1, 2 
and 3 (box) and 5%/95% (whiskers). n.s., not significant; **p < 0.01.
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remained zero; a partially jammed, heterogeneous phase where tension 
percolation gives a finite bulk stiffness; and a solid phase. This tissue 
classification is also well founded in our AFM and OS data, independ-
ent of the simulations. The edge tensions have been calculated based 
on P0 values of two neighbouring cells (Methods). Stiff cells (P0 < 3.812) 
form the jammed regions (Fig. 4b), whereas soft cells are responsible 
for fluid regions. In the heterogeneous solid phase, the tension network 
self-organizes into a percolated structure, yet the rigid, jammed cells do 
not percolate. This suggests that a small fraction of jammed islands in a 
fluid sea, as observed in our patient-derived tumour explants, are suf-
ficient to give rise to a finite shear modulus. In the fully solid phase, both 
tension and stiff cells form percolating networks. In our AFM data (Fig. 1),  
we find—for tumours—the same stiff islands surrounded by soft cells 
with a finite bulk modulus analogous to the heterogeneous solid state 
in our simulations. In the healthy tissue samples, we find a more homo-
geneous stiffness distribution, suggesting a more solid-like behaviour.

The solid heterogeneous phase is clearly determined by the frac-
tion of rigid cells in the tissue, fr (Methods). The pure fluid phase only 
exists for fr < 0.24, also visible when plotting the shear modulus over 
fr (Fig. 5c). The heterogeneous solid spans 0.24 < fr < 0.48, and the 
fully solid phase corresponds to fr > 0.48. The dependence of tissue 
mechanics49 on fr reveals that tumour heterogeneity, that is, variance 

σ(P0), fosters the rigidification of a tumour, which can be seen by the 
positive slope of the phase boundaries (Fig. 5a). This suggests that a 
tissue can rigidify with increasing cellular heterogeneity, as evident in 
the widening of the stiffness distribution of single cancer cells.

With further simplified dynamical vertex model simulations where 
every cell experiences an active propulsive force57 (Methods), we elu-
cidate the effect of heterogeneity and the fraction of rigid cells on 
tissue fluidity. The long-time migration behaviour is described by the 
self-diffusivity Deff (ref. 58). The fluid phase is characterized by a finite 
value of Deff, and Deff becomes vanishingly small (Methods) as the solid 
state is approached at fr = 0.48. This suggests that the heterogeneous 
solid (0.24 < fr < 0.48) is jammed with respect to small perturbations 
but can be fluidized when subject to a large propulsive force. In the 
solid phase (fr > 0.48), the cells are jammed and diffusive motion is 
completely hindered due to the contact percolation of rigid cells.

Our patient-derived stiffness data positions within the phase 
diagram with respect to the fraction of rigid cells fr confirm the clas-
sification by looking at the spatial stiffness maps measured by AFM 
(Methods). This permits the categorization of breast and cervical 
tumour samples with respect to our phase diagram (Fig. 5e). We find 
that breast and cervical cancer samples are located within the hetero-
geneous solid phase permitting a large fraction of unjammed, motile 
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Fig. 3 | Single-cell mechanics of carcinomas. a, Relative deformation and 
relaxation curves of single measured cells from a breast carcinoma (tumour, 
n = 613) compared with primary HMEpC cells from healthy epithelial breast tissue 
from breast reductions (n = 358). The cells are deformed by the laser during the 
2 s stretch period (orange band) and relax afterwards. b, Cumulative distribution 
over 13 breast cancer samples (n = 6,526), compared with the two FA samples 
(n = 186) and one HMEpC sample (n = 358). A log-normal distribution was 
successfully fitted (red fit lines). The distribution is clearly shifted towards softer 
cancer cells. Nevertheless, the extreme width of the distribution means that 

even stiff cancer cells exist within the tumour mass. c, Relative deformation and 
relaxation behaviour of single cells from a cervical carcinoma (n = 111) compared 
with normal cervical epithelial (n = 38) tissue from the same patient. The 
stretching time is 2 s (orange band). d, Cumulative distribution over four pairs of 
cervix samples (nCT = 1,481, nCN = 262) (**p < 0.01, ***p < 0.001, MWU test). A log-
normal distribution fits the data very well (red fit lines). The cancer-cell softening 
effect visible by the shift in distribution towards larger relative deformations is 
for the cervix carcinoma—even more pronounced than breast tumours. The box 
plots show quartiles 1, 2 and 3 (box); 5%/95% (whiskers); and mean (small square).
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cells, whereas healthy cells from breast reductions, cells from healthy 
cervix tissue and benign FAs are in the solid, jammed phase. Here the 
log-normal distributions measured with OS and the spatial distribu-
tions measured with AFM lead to the same result concerning the clas-
sification of tissue in the phase diagram.

The spatial organization of cancer cells in clusters with soft, 
motile and rigid, jammed regions within a tumour causes the coun-
terintuitive result that many soft cells can exist within the solid mass 
without destroying its mechanical stability as a solid that resists the 
microenvironment. Even where no backbone of stiff cells permeates 
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the bulk, the tissue can spontaneously self-organize a spanning ten-
sion network that maintains rigidity. This heterogeneous solid phase 
explains how a tumour is able to simultaneously provide mechani-
cal stability and cancer cell motility through the presence of soft, 
unjammed cells.

Soft cancer cells induce multicellular streaming
We use vital cancer cell tracking to confirm that there are both jammed 
islands and motile, unjammed areas in patient-derived tumour explants 
(12 cervix and 4 mamma carcinomas). In half the samples, we find 
unjammed as well as jammed regions in cancer clusters (examples in 
Fig. 6 and Supplementary Videos 1 and 2). The rigid jammed cancer 
cell clusters act as dynamic obstacles that lead to percolated tension 
networks and transiently channel soft, unjammed cells into parallel 
streams that wind through the cancer cell clusters (Fig. 6).

Our reductionist dynamic vertex model45,57 makes obvious the 
effect of motile cells in a mechanically heterogeneous microenviron-
ment. By calculating the velocity correlation between a motile cell and 
surrounding cells, we characterize the collective streaming behaviour 
(Fig. 6a–c). For a fluid state at fr = 0.12, the correlations indicate that 
up to 3–4 other unjammed cancer cells tend to ‘follow’ the motile one. 
Lateral to the invading cell, the correlations are weaker and vanish 

at around a single-cell diameter. This directional anisotropy results 
in the formation of a cellular stream of cancer cells (Fig. 6d–f)57. The 
stream anisotropy decreases with fr and disappears for the solid states 
at fr > 0.48 (Extended Data Fig. 4). These results reveal that mechani-
cal heterogeneity due to the presence of soft cancer cells has a strong 
tendency to enhance the collective stream-like behaviour, as found in 
our vital cancer cell tracking observations.

Heterogeneity allows solid tumours and motile 
cancer cells
Despite the fact that cancer is a systemic disease, particularly the fact 
that metastasis quintessentially depends on biomechanical changes 
at the cell and tissue level59–61, the black-and-white characterization 
of tumour masses as stiff and cancer cells as soft demonstrates a lack 
of a comprehensive, detailed picture of mechanics in tumour biol-
ogy. For the development of a malignant tumour, cancer cells have 
to move, proliferate and displace dense healthy tissue. Previously, 
the importance of cellular mechanical changes has been recognized 
when cancer cells leave the tumour cell mass and enter the surrounding 
stroma25. Cancer cell unjamming triggered by cell softening already 
boosts metastasis through a collective motility transition in cancer 
cell clusters within the tumour.
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fluid, heterogeneous solid and solid tissues. Rigid cancer cells are shown in light 
blue, whereas soft ones are in dark blue. The intercellular tension network is 
indicated by red lines drawn at cell junctions. The white space at the boundary 
is the cell-free space that arises from boundary conditions. c, Tumour rigidity is 
plotted as a function of the fraction of rigid cancer cells. The rigidity is expressed 
by the elastic shear modulus. The red curve represents the median of the 
scattered points at each fr value and shows a rigidity transition at fr = 0.24 from 
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This allows the mapping of each cell type to the categorization of tumour to the 
solid–fluid nexus as predicted by the vertex model. The error bars indicate 1 s.d.
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Cancer cells show a broad stiffness distribution shifted towards 
softer cells through deregulation. In cancer cell clusters, the softer 
cancer cells can squeeze by each other, which leads to collective cell 
streaming. With increasing stiffness, this becomes difficult and the 
cancer cells arrest through jamming. These collective mechanisms lead 
to jammed regions of stiff cells embedded in streams of soft cells. The 
rigid jammed islands feel each other by tension percolation through the 

surrounding fluid, unjammed areas, leading to a solid bulk behaviour. 
The resulting finite elastic storage modulus results in tumour stability 
and rigidity against external forces.

Multicellular streaming, which is frequently observed in the 
stroma surrounding the tumour25,62,63, self-organizes collagen associ-
ated with the cellular cancer tissue into directed transport highways64, 
further facilitating the aligned streaming. Streaming in the bulk of the 
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‘follow’ the invading cell. However, lateral to the invading cell, the correlations 
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indicative of a cellular stream forming behind the invading cell. With increasing  
fr, the anisotropy disappears. d–f, Snapshots of the cell velocity field taken 
from the corresponding states shown in a (d), b (e) and c (f). The invading cell 
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cell clusters causes a three-dimensional volume flow of cancer cells out 
of the depth of cancer cell clusters to the boundary, which is much more 
efficient than just the two-dimensional dissociation of cancer cells from 
the cluster surface. Moreover, multicellular streams exit the tumour 
with the ability to form collective clusters, enhancing their ability to 
survive outside the tumour mass and enhance metastatic cascade65,66.

The emergent cooperative properties of a heterogeneous tissue 
induced by cancer cell softening cannot be understood by studying the 
molecular properties of single metastatic cells and may play a critical role 
in cancer invasiveness. The interplay of mechanical heterogeneity and 
cancer cell unjamming regulates the stiffness of cancer cell aggregates 
and simultaneously permits cell motility. To our knowledge, this prop-
erty of the heterogeneous solid state goes beyond previously reported 
states of active matter. Deregulation and dedifferentiation as well as the 
spectrum of epithelial–mesenchymal transition, which are part of any 
malignant transformation, most probably cause a broad mechanical 
heterogeneity together with a shift to softer cells. Thus, we expect that 
the observed mechanical changes occur inherently with early neoplasm.

The ability for cancer cell unjamming may be part of the initial 
difference between benign tumours that grow locally and malignant, 
invasive tumours. To overcome the complexity and heterogeneity, 
the universal physics underlying the mechanical processes in the pro-
gression of solid tumours, which is agnostic to the molecular details 
of different tumour entities, may provide a more general perspective 
on cancer development as a systemic disease than the molecular cell 
perspective alone. Since the described processes relate to the initial 
steps of cancer cell spreading, they may become important predictors 
of patient outcome complementary to genetic signatures. As described 
here, pathological mechanical changes driven by emergent effects, 
which cannot be directly related to a simple molecular cause, are a 
missing link in understanding cancer and will ultimately lead to new 
diagnostics as well as therapy.
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Methods
Experimental procedures
Ethics votum. This study was approved by the Ethics Committees 
of the Medical Faculty of Leipzig University for mamma and cervix 
carcinoma (090-10-19042010 and 227-10-23082010, respectively), 
and the Medical Association Hamburg for mamma samples. For 
the FA samples, the study was approved by the Institutional Review 
Board of the Montefiore Hospital (protocol no. 02-12-328). A consent 
document was signed by all the patients. Diagnostic-relevant parts 
of the tumour biopsy were used for standard tumour classification 
done by the responsible pathologists. All the patient samples were 
blinded and pathological staging was received after the evaluation of  
measurement data.

Primary tissue samples. The remaining tissue with vital cells were 
used for cancer cell extraction. To dissolve a tissue into individual 
cells, the tissue samples were sliced into pieces of about 1 mm thick-
ness and put into a gentleMACS Unique C tube (Miltenyi Biotec) con-
taining 5 ml Dulbecco’s modified Eagle medium (DMEM)/Ham’s F12 
medium supplemented with either 1.60 mg ml–1 collagenase P (Roche) 
and 20 µg ml–1 DNAse for breast cancer samples or 0.25 mg ml–1 col-
lagenase 1A (Sigma), 0.25 mg ml–1 pronase (Roche) and 20 µg ml–1 
DNAse for cervical cancer samples. The C tubes were mounted onto 
the gentleMACS dissociator and stirred using a customized dissocia-
tion routine (that is, 30 s mixing at varying speeds). The suspension 
was then incubated at 37 °C for 30–60 min. This step was repeated 
twice until no tissue clusters were visible. The single-cell suspension 
was then centrifuged first at 40×g to collect the remaining cell clusters 
and cell debris. This was followed by another centrifuge step at 300×g 
for 5–10 min. The pellet containing the cells from the tumour sample 
was then resuspended and the cells were cultured first in DMEM/Ham’s 
F12 supplemented with 10% foetal calf serum and ×1 penicillin/strepto-
mycin/amphotericin B for 24 h; afterwards, a serum-free medium was 
used for culture (HuMEC medium (Gibco) for breast cancer cells and 
defined keratinocyte serum-free medium (Gibco) for cervical cancer 
cells, each supplemented with ×1 penicillin/streptomycin/ampho-
tericin B). These media are optimized for epithelia cell culture and 
promote the growth of epithelia cells as well as suppress other cell types 
by the supplementation of growth factors and other components67. 
Fine-needle aspiration biopsy was used to obtain the samples from 
malignant breast tumours and FAs, a benign lesion of breast tissue. In 
contrast to core biopsy, where a small cylinder of tissue is obtained, a 
smaller needle (21 gauge) was used. By exerting a negative pressure, 
mainly loosely attached cells and sheets of epithelial cells were col-
lected due to the capillary effect when inserted into FAs68. The obtained 
cells were shortly cultured as described above and all the vital cells 
were used for measurement. Primary human mamma epithelial cells 
(Invitrogen) and HMEpC (PromoCell) were cultured according to the 
protocols provided.

Biomechanical measurements of cancer cells using automated 
microfluidic OS. The OS is a two-beam laser trap, enabling biome-
chanical studies without physical contact4,69. Two opposing infrared 
laser beams form a stable trap. The suspended cells were injected and 
delivered through a microfluidic device to the centre of the trap. They 
were probed in a creep experiment where they were subjected to a 
step-stress profile, stretching with a high laser power for 2 s and holding 
for another 2 s with low power afterwards to observe their relaxation 
behaviour. The measurements were fully automated. Phase-contrast 
image sequences taken during the measurements were analysed using 
custom-made image analysis software to extract the time course of the 
observed relative cell deformation. The measured cells remain viable 
after stretching70. The applied laser power exerted a peak tensile stress 
of about 20 Pa on the cells causing an elongation of 0.5–7.0% of the cell 
diameter along the laser axis. Actively contracting cells can lead to an 

underestimation of deformation, but is more common in cancer cells 
(Supplementary Fig. 1); therefore, it might result in a slight underestima-
tion of the difference. Log-normal distributions were fitted to the data 
and the significance was tested with the Mann–Whitney U-test (MWU 
test). The width of the distributions was characterized by the inter-
quartile range with the difference between the first and third quartile.

Biomechanical measurements of cancer tissues using AFM. The 
tissue samples from breast and cervix carcinomas and adjacent healthy 
tissues were obtained during routine tumour resections. The tissue 
samples were measured within hours after resection. The tissue samples 
were chopped into 400-µm-thin slices with a McIlwain tissue chop-
per. Subsequently, the slices were glued (Histoacryl, B. Braun) onto 
microscope slides followed by the measurement of elastic strength 
(Young’s modulus). The AFM used is a NanoWizard 4 instrument with 
300 µm HybridStage ( JPK) combined with an Axio Zoom.V16 instrument 
(ZEISS). A CONT (NanoWorld) contact-mode cantilever was modi-
fied with a 6-µm-diameter polystyrene bead to increase the contact 
area. The force ramps were recorded with the following parameters: 
maximum force, 7.5 nN; z speed, 20 µm s–1; z length, 30 µm; capture rate, 
2,048 Hz; imaging area, up to 1 × 1 mm2 was split into smaller squares of 
200–250 µm side length to fit into the piezo range of the hybrid stage. 
The maps were recorded with 10 µm data-point spacing. The AFM data 
were first analysed with the JPK data processing software (version 7.1.18) 
to calculate the Young’s modulus using a Hertz fit to the smoothed 
and baseline-corrected force–indentation curves. The data were 
post-processed with a custom-written MATLAB program (MathWorks, 
version 2018b) to fit a log-normal distribution (2,000–10,000 data 
points per sample). The significance was tested with the MWU test. By 
using simultaneous fluorescence microscopy of DNA-stained cell nuclei, 
we assured that our maps, which we obtained, are from tumour areas 
with cancer cell clusters and not from the surrounding ECM.

Biomechanical measurements of single cells and MTS. MCF-10A 
and MDA-MB436 cells were cultured in cell culture flasks (TPP) for 
single-cell AFM measurements. Multicellular tumour spheroids 
(MTS) were formed on UltraPure agarose gels in a 96-well plate. Here 
20,000 cells are added to each well, as they cannot adhere to the aga-
rose; they adhere only to the other cells present and form the MTS. 
MDA-MB-436 cells were cultured in 90% DMEM (without sodium pyru-
vate), 10% foetal calf serum and 1% 10,000 U ml–1 penicillin/streptomy-
cin. MCF-7 cells were cultured in 88% Eagle’s minimal essential medium 
supplemented with 10 µg ml–1 insulin and 1 mM sodium pyruvate, 10% 
foetal calf serum/foetal bovine serum, 1% non-essential amino acids 
and 1% penicillin/streptomycin. The cells and MTS were measured 
with a CellHesion 200 instrument ( JPK) and a tipless cantilever (Arrow 
TL1, NanoWorld). Single cells and MTS were directly measured after 
passaging into a Petri dish (TPP), and still being only weakly adherent 
to reduce the influence of the substrate. The CellHesion instrument is 
equipped with a custom climate chamber to provide 37 °C and 5% CO2 
during the measurements.

Biomechanical measurements of cancer tissues using MRE. Table-
top MRE measurements were carried out on 8 mm punch biopsies from 
the same tissues described earlier. The setup consists of a tabletop 
magnetic resonance imaging scanner (Pure Devices) with a 10 mm bore 
and 0.5 T permanent magnet that was customized by an additional 
gradient amplifier (DC-600, Pure Devices) and a piezoelectric driver 
controlled by a magnetic resonance imaging system (Piezosystem 
Jena) covering the frequency range between 200 and 6,000 Hz. The 
tissue samples were placed at the bottom of 7 mm glass tubes pro-
tected from evaporation by the addition of a cotton wool ball soaked 
in phosphate-buffered saline at the top of the tube and sealed by a 
plastic plug with a silicon shock absorber at the bottom and a single 
slice of polyvinyl chloride at the top. The glass tubes with the samples 
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were coupled from the top to the piezo driver and the section with 
the sample was positioned within the bore of the magnetic resonance 
imaging scanner, which was heated to 37 °C. The vibrations from the 
piezo actuator are constrained in axial motion and coupled via the glass 
walls into the sample. A detailed overview of the imaging sequences 
and motion-encoding gradients is described elsewhere6. In brief, the 
data acquisition time for each frequency was approximately 8 min; a 
frequency range of 1–6 kHz was covered in 500 Hz intervals, resulting in 
11 measurement points and a total runtime of approximately 1.5 h. The 
following acquisition parameters were used: repetition time, 500 ms; 
echo time, 42 ms; slice thickness, 3.00 mm; matrix size, 56 × 56; field of 
view, 8.40 × 8.40 mm2 resulting in a voxel size of 0.15 × 0.15 × 3.00 mm3. 
The acquired data were unwrapped and Fourier transformed in time 
to extract complex-valued wave images for each driving frequency. 
The wave profiles for deflection parallel to the cylinder axis were cre-
ated and fitted by the analytical solution of shear waves in a z-infinite 
cylinder6, resulting in the complex wavenumber k* = k′ + ik″. Based on 
the fact that the shear-wave speed c and shear-wave penetration rate 
a can be derived for each frequency, we get

c = 2𝜋𝜋f
k′

; a = f
k′′

. (S1)

These parameters were directly fitted by a viscoelastic fractional 
element model to derive shear-modulus-related parameters.

G∗ = μ1−αηα (i2𝜋𝜋f)α (S2)

Here µ and α are two independent variables; µ represents a meas-
ure of tissue stiffness and the power-law variable α is directly translated 
to the phase angle of the complex shear modulus G* by multiplication 
with π/2. More details can be found elsewhere32,34. The KS test was used 
to check the significance.

Spheroid fusion experiments. Spheroids were formed with the same 
protocol as the AFM measurements. Two spheroids were transferred into 
a single well and observed with phase contrast microscopy over several 
hours. The used Leica DM IRB instrument was equipped with a custom 
climate chamber to provide 37 °C and 5% CO2 during the measurement. 
Spheroids were fitted with two circles, the angle θ is the angle between 
the line connecting the two centre points and the radius from one centre 
to the intersection of the two circles. The progress of spheroid fusion 
was tracked over time and calculated as Δ(cosθ)/Δt in the time period of 
24–36 h of fusion. The significance was checked with the KS test.

Vertex model of a mechanically heterogeneous tissue. We use the 
vertex model to understand the collective mechanical behaviour of 
dense tumour aggregates. In the vertex model, a two-dimensional 
confluent epithelial tissue is governed by the energy function42,71–75 
E = ∑N

i=1 [KA(Ai − A
i
0)

2 + KP(Pi − Pi0)
2], where cell areas {Ai} and perimeters 

{Pi} are functionals of the positions of vertices {ri}. Also, KA and KP are 
the area and perimeter elasticities, respectively. The quadratic term 
in Ai results from resistance to cell volume changes71,73. Changes to cell 
perimeters are related to the deformation of actomyosin cortex71,73. 
The term KPP2i  corresponds to the energy cost of deforming the cortex. 
The linear term, −2KPPi0Pi, is the effective line tension by cell i, which 
gives rise to a ‘preferred perimeter’ Pi0. The value of Pi0 emerges from 
an interplay of cell–cell adhesion and cortical tension71. Here we assume 
the preferred cell area A0 does not vary from cell to cell and is set to be 
the average area per cell ( Ai0 = A). The energy can be non- 

dimensionalized by choosing KPA as the energy unit and √A as the 
length unit:

ε =
N
∑
i=1

[κA(ai − 1)2 + (pi − pi0)
2]

where ai = Ai/A and pi = Pi/√A are the rescaled area and perimeter of 
the ith cell, respectively. Also, κA = KAA/KP is the rescaled cell area elas-
ticity and pi0 = P

i
0/√A is the preferred cell shape index76.

In this model, cell stiffness is determined by tension τm on cell–cell 
junctions (edges). For an edge with length lm, the tension is given by49,56,77

τm ≡ ∂ε
∂lm

= (pi − pi0) + (pj − pj0),

where pi and pj are the rescaled perimeters of cells i and j, respectively, 
adjacent to edge m. As a result, cell stiffness is directly tuned by the 
preferred cell shape indices. To capture the experimental heterogenei-
ties in single-cell stiffness and cell–cell interactions14,78–80, we introduce 
variations in the preferred shape indices49. The majority of this work 
uses a log-normal distributed set of {pi0}. The results are insensitive to 
the form of distribution for {pi0}.

To initialize the simulation, Voronoi cells58 are used to provide a 
set of initial vertex positions. Then, each cell is assigned a value of p0 
drawn from a log-normal distribution. The set of p0 values remains as 
quenched variables. We use a combination of FIRE (fast inertial relaxa-
tion engine) and conjugate-gradient algorithms81,82 to minimize the 
tissue energy under periodic boundary conditions with a fixed equi-
librium cell area A0 = Ā = 1. This algorithm produces stable states where 
the net residual force on vertices is less than 10–8. For this work, we 
simulate tissues with N = 400 cells. Each tissue is characterized by a 
mean (μp0) and s.d. (σp0) of single-cell p0 values. We have systematically 
studied a large range of these parameters: μp0 = 3.75–3.90; σp0 = 0.05 to 
–0.20. Following a previous theoretical study49, we define the fraction 
of rigid cell fr as the fraction of cells with p0 < 3.812, which can  
be written as

fr = ∫μ∗
−∞ ℱμ,σ (p0)dp0.

Here ℱμ,σ (p0)  is the distribution function of p0. For a 
log-normal-distributed p0, the fraction of rigid cells is analytically  
given by

fr = (1/2)erfc[(μ − log(μ∗))/(√2σ)].

Here erfc is the complementary error function and μ and σ are the 
control parameters of the log-normal distribution for which the mean 
and s.d. can be calculated as

μp0 = eμ+
σ2

2

σp0 = (eσ2 − 1) e2μ+σ2 .

Calculating mechanical response at the tissue level. At the tissue 
level, its mechanical response is characterized by shear modulus G. 
A non-zero G corresponds to a solid-like tissue, whereas G vanishes 
for a fluid state. We obtain G by calculating the linear response to an 
infinitesimal affine strain γ via the Born–Huang formulation83

G = Gaffine − Gnon-affine =
1

Atotal
[∂

2E
∂γ2

− ΞiμM−1
iμjνΞjν]

γ=0
.

In the above equation, Ξiμ is the derivative of the force on vertex i 
with respect to strain given by

Ξiμ ≡
∂2E

∂γ∂riμ
,

where riµ is the position of vertex i and µ = x, y is the Cartesian index. 
Also, Atotal = ∑N

i Ai is the total area of the tissue. Also, M is the Hessian 
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matrix given by the second derivative of tissue energy E with respect 
to position vectors of vertices i and j (refs. 49,56):

Miμjν =
∂2E

∂riμ∂rjν
.

Using effective diffusivity to characterize dynamics of  
cell motion. We use self-diffusivity Ds = limt→∞⟨Δr (t)

2⟩/ (4t) to distin-
guish between the solid and fluid states57, where limt→∞⟨Δr (t)

2⟩ is the 
mean square displacement. For practicality, we calculate Ds using 
simulation runs of 2 × 105 time steps at step size Δt = 4 × 10–2 using 
Euler’s method with propulsive force v0 = 0.05 and rotational noise of 
cells Dr = 1 under periodic boundaries. We present the self-diffusivity 
in units of D0 = v20/(2Dr), which is the free-diffusion constant of an iso-
lated cell. Then, Deff = Ds/D0 serves as a dynamical order parameter that 
distinguishes a fluid state from a solid state. The simulations are per-
formed in the Surface Evolver program.

Accounting for measured distributions of cell stiffness. The experi-
mental data for breast and cervix cancer cells are well described by 
log-normal distributions. The rigidity of the tissue with p0 values given 
by these distributions can be obtained. We stress that only the relative 
cell stiffness can be inferred from the experimental data, but not the 
actual value of =p0 for each cell. This is because p0 is controlled by  
the interplay between cortical tension and cell–cell adhesion, whereas 
the OS only measures the mechanical tension, that is, the stiffness of 
the single-cell cortex in the absence of any cell–cell interactions. These 
data do not infer the effective tension that the cells experience in a 
confluent tissue. Nonetheless, this analysis provides an understanding 
of how soft cancer cells impact the mechanical behaviour of tissues. In 
particular, it suggests the possibility that a tumour—containing cells 
that are on average softer than that of the healthy tissue—could actually 
still exhibit rigidity at the collective tissue level due to the broadness 
of distribution.

The fraction of rigid cells can be extracted from the relative defor-
mations of various tissue types. For each cell type, we use the mean 
deformation value of non-cancer cells (Fig. 3) to define the single-cell 
rigidity threshold for both non-cancer and cancer phenotypes. The fr 
value for each cell type is then calculated by computing the fraction 
of cells with deformation values smaller than the mean deformation 
value of their non-cancer counterpart. This allows the mapping of each 
cell type in each tumour category to the solid–fluid nexus predicted 
within the theory.

Heterogeneity and cellular invasion. Here we use a dynamic vertex 
model45 to simulate a tissue where only a single cell is invasive to study 
the effect of heterotypic cellular environment on cell migration. The 
invading cell has a propulsive force v0 along a polarity vector n̂, which 
undergoes random rotational diffusion58 at a slow rate. This mimics 
the directional motility of a metastatic cell under the influence of strong 
chemotactic signals84. In the model, each vertex ν evolves according 
to the overdamped equation of motion, with a viscous drag Γ as

Γ

drμ
dt

=
⎧
⎨
⎩

− ∂ϵ
∂rμ

+ v0n̂ vertices of invading cell,

− ∂ϵ
∂rμ

for other vertices.

The polarity vector undergoes random rotational diffusion as

∂tθi = ηi(t)

⟨ηi(t)ηj(t′)⟩ = 2Drδ(t − t′)δij
,

where θi is the polarity angle that defines n̂ and ηi(t) is a white-noise 
process with zero mean and variance 2Dr. The value of angular  
noise Dr determines the memory of stochastic noise in the system, 

giving rise to a persistence timescale τ = 1/Dr for the polarization vector 
n̂. The timescale τ = 1/Dr controls the persistence of cell motion.

We numerically simulate the model using molecular dynamics by 
performing 105 integration steps at a step size of Δt = 10–2 using Euler’s 
method with propulsive force v0 = 0.4 and rotational noise Dr = 0.01 for 
N = 400 cells under periodic boundaries. With heterogeneity, tissues 
in the range of 0 < fr < 1 become accessible and cells moving through 
them must interact with rigid as well as soft neighbouring cells along 
the path of invasion. This results in a highly intermittent migration 
dynamics for the invading cell.

Emergence of stream-like collective behaviour. To reveal the motil-
ity patterns in a heterogeneous tissue, we assume a log-normal distribu-
tion of p0 values based on the broad distribution of cell deformations 
from the OS. Since cancer cells are also shown to be more contractile 
and the contractility mechanism is also responsible for cell traction, 
we assume that soft cells (p0 > 3.812) have larger motility than rigid 
cells (p0 < 3.812).

To analyse the motion of the invading cell, we always orient the 
invading cell such that its direction of motion is along the x axis, that 
is, we choose a frame of reference in which the invading cell is located 
at (x = 0, y = 0). To correlate the motion of the invading cell and other 
cells in its vicinity, we compute the correlation function as23

Cvv(x, y) =< vactive • v (x, y) >,

Positions are in units of mean cell diameter. When fr = 0.11, directly 
behind the invading cell, the correlations are long ranged indicating 
that up to 3–4 cells tend to ‘follow’ the invading cell. However, lateral 
to the invading cell, the correlations are weaker and decay beyond the 
one-cell diameter. This directional anisotropy is indicative of a cellular 
stream forming behind the invading cell. With an increase in fr, the 
anisotropy disappears. To further quantify the behaviour of stream ani-
sotropy with changing fr, we calculate the correlation lengths ξx, ξy in the 
x and y directions, respectively, where the correlation Cvv(x, y) decays 
to a threshold of 10–3. Then, the stream anisotropy parameter is given 
by the ratio ξx/ξy and we plot it as a function of fr (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data are available upon request from the corresponding author.

Code availability
Simulation data and code are available from D.B. (d.bi@northeastern.
edu) on reasonable request.
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Extended Data Fig. 1 | Effect of passaging on the deformability of primary 
breast tumour and normal epithelial cells. Left) Distribution of the maximum 
relative cell deformations (observed at t = 3 s) for a breast cancer sample 
stretched at the end of passage number 1-3 (sample size: P1 = 164 cells, P 2 = 496 
cells, P3 = 309 cells). Right) Relative deformation distribution epithelial cells 

from breast reduction (HMEpC) stretched at the end of passage number 2 and 
10 (sample size: P2 = 352 cells, P10 = 702 cells). With increasing passage number 
more and more deformable cells are found. Time between passaging was  
7 to 10 days.
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Extended Data Fig. 2 | Individual Histograms of the relative deformation of 
breast tumour samples. Cells isolated from 13 breast tumours were measured 
in the optical stretcher, 2 fibroadenomas (FA) and HMEpC cells serve as control. 

Log-Normal distributions were fitted to the histograms; details of the fits can be 
found in Extended Data Table 1.
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Extended Data Fig. 3 | Individual Histograms the relative deformation of Cervix Tumours. Cells were isolated from 4 cervix tumours and normal cervix tissue from 
the same patient as control. Log-Normal distributions were fitted; details of the fits can be found in Extended Data Table 1.
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Extended Data Fig. 4 | The stream anisotropy as a function of fr for the invading cell. The stream anisotropy as a function of fr for the invading cell.
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Extended Data Table 1 | Statistic quantities of the tumour samples
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Experimental data was recorded with the manufactures software on comercially available instruments.

Data analysis Data was analysed with MATLAB (R2021a), and Origin (2017G).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data are available upon request from the corresponding author. Simulation data and code is available from Dapeng Bi, Department of Physics, Northeastern 
University, Boston, MA 02115, USA d.bi@northeastern.edu
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Due to the nature of the tumours investigated only tissue from female patients was used.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Patients were recruited during routine cancer treatment.

Ethics oversight ethics committees of the Medical Faculty of Leipzig Universit; 
medical association Hamburg; 
institutional review board of the Montefiore Hospital, Bronx, NY

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding All patient samples were blinded and pathological staging was received after evaluation of the measurement data. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Primary human mamma epithelial cells HMEC (Invitrogen) 
HMEpC (PromoCell, Heidelberg)  
MCF-10A, ATCC 
MDA-MB-436, ATCC

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.



4

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration This study was approved by the ethics committees of the Medical Faculty of Leipzig University for mamma and cervix carcinoma 
090-10-19042010 and 227-10-23082010 (mamma and cervix), and the medical association Hamburg for mamma samples, and for 
fibroadenoma samples the study was approved by the institutional review board of the Montefiore Hospital, Bronx, NY IRB Protocol 
#: 02-12-328.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
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Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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