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ABSTRACT

Given a Boolean circuit C , we wish to convert it to a circuit C ′ that

computes the same function as C even if some of its gates suffer

from adversarial short circuit errors, i.e., their output is replaced

by the value of one of their inputs. Can we design such a resilient

circuitC ′ whose size is roughly comparable to that ofC? Prior work

gave a positive answer for the special case where C is a formula.

We study the general case and show that any Boolean circuit C

of size s can be converted to a new circuit C ′ of quasi-polynomial

size sO (log s ) that computes the same function as C even if a 1/51

fraction of the gates on any root-to-leaf path in C ′ are short cir-

cuited. Moreover, if the original circuit C is a formula, the resilient

circuit C ′ is of near-linear size s1+ϵ . The construction of our re-

silient circuits utilizes the connection between circuits and dag-like

communication protocols, originally introduced in the context of

proof complexity.
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1 INTRODUCTION

The study of reliable computation over unreliable components has

both theoretical and practical significance and it is one of the oldest

topics considered by theoretical computer science, dating back to

an influential series of lectures by von Neumann in 1952 [30]. In the

study of noise resilient circuits, we wish to convert a given circuit C

to a circuit C ′ that computes the same function as C even if some

of the gates of C ′ are faulty. Furthermore, we wish to do so with

a small overhead in the size and depth, meaning that the size and

depth of C ′ should be łclose" to these of C .

In this paper we design fault tolerant Boolean circuits1 with

respect to adversarial short-circuit errors, an error model that was

introduced by Kleitman, Leighton, and Ma [20]. First observe that

if the adversary is allowed to corrupt gates arbitrarily, no circuit

is resilient to even a single error, as the adversary can simply flip

the result of the output gate. To prevent this, [20] allow the ad-

versary to replace a gate by an arbitrary function д, as long as it

satisfies д(0, 0) = 0 and д(1, 1) = 1.2 This error model is practi-

cally motivated (see Section 1.3.1), and is equivalent to an error

model where the value of a gate is replaced by the value of one

of its children (the wire to the other child is łcut out"). We follow

[18] and consider a strong noise model where an adversary can

corrupt (łshort circuitsž) at most a constant fraction of the gates on

all root-to-leaf paths. In addition, we assume that the adversary is

omniscient and has full information of the entire circuit. It can also

choose a worst-case input and select which gates to corrupt and

what to corrupt them based on this input.

Prior works exploring this model were either only able to handle

a sub-constant error rate [20] (see Section 1.3) or considered a

restricted family of circuits. Specifically, [3, 18] showed that any

Boolean formula3 can be converted to a noise resilient one with

only a polynomial blowup in size. We note that since any circuit

can be expanded out to an (exponentially larger) formula, their

results can be used to convert any circuit to a noise resilient one,

1We assume fan-in 2 AND/OR gates and negations only at the leaves (i.e., the inputs
to the circuit are x1, . . . , xn and x̄1, . . . , x̄n ).
2In particular, the adversary can replace any AND gate in the circuit with an OR gate
and vice versa.
3Formulas are tree-shaped circuits (the fan-out of every gate is at most 1).
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but will require an exponential blowup in size. Whether or not

general circuits can be made noise resilient with a more modest

overhead in size was left as an open problem (see [3, 18] and the

excellent survey [14]).

1.1 Our Results

We answer this longstanding open problem in the positive, showing

that any circuit can be made noise resilient with only a quasi-

polynomial blowup in size.

Theorem 1.1 (Main result, informal). Let C be a circuit with

size s and depth d . There exists a circuit C ′ with size sO (logd ) and

depth O (d ) that computes the same function as C even when a 1
51 -

fraction of its gates on every root-to-leaf path are adversarially short

circuited.

We believe that a quasi-polynomial blowup in the circuit size is

necessary when converting some circuits into noise resilient ones

(see Section 2.3). In particular, we conjecture that, unlike in the

case of formulas [3, 18], a polynomial overhead will not suffice.

Unfortunately, proving so, even in an existential manner, may be

currently out-of-reach as it would imply P/ poly ⊈ NC1; since

P/ poly ⊆ NC1 implies that every circuit of polynomial size has an

equivalent formula of polynomial size4, and thus, due to [3, 18],

also has an error-resilient formula of polynomial size.

In addition to the bound in Theorem 1.1, we are also able to

bound the size of the obtained resilient circuit C ′ by poly(d ) times

the number of root-to-leaf paths in C . This allows us to show that

if C is a formula, then C ′ has near-linear size s1+ϵ : Any formula

can be converted to an equivalent balanced formula of near-linear

size [1], and the number of root-to-leaf paths in any formula is at

most its size.

Theorem 1.2. LetC be a circuit of depth d and let p be the number

root-to-leaf paths in C . There exists a circuit C ′ with size p · poly(d )

and depth O (d ) that computes the same function as C even when

a 1
51 -fraction of its gates on every root-to-leaf path are adversarially

short circuited.

Corollary 1.3. Let ϵ > 0 and letC be a formulawith size s . There

exists a circuit C ′ with size s1+ϵ that computes the same function as

C even when a 1
51 -fraction of its gates on every root-to-leaf path are

adversarially short circuited.

We note that while Corollary 1.3 significantly improves the

poly(s ) blowup obtained by [3, 18], it is incomparable to their results

as our noise-resilient circuit C ′ is not guaranteed to be a formula.

1.2 Resilient Circuits and Interactive Coding

Computation and communication are closely linked. Indeed, to

construct their resilient formulas, [18] design corresponding robust

communication protocols: Given a Boolean formula (or even a

circuit) C of size s and depth d , they

(1) Apply the Karchmer-Wigderson transformation [19] to con-

vert C to a communication protocol Π of length d for a related

communication problem.

4Recall that a function f : {0, 1}n → {0, 1} has a formula of poly(n) size if and only
if it has a circuit of O (logn) depth.

(2) Convert Π to a noise resilient protocol Π′ of length O (d ) using

tools from the field of interactive coding [26ś28].

(3) Convert Π′ to a noise resilient formula C ′ of depth O (d ) by

proving a noisy version of the Karchmer-Wigderson theorem.

Since the size of C ′ is bounded by 2O (d ) , when C is a formula

we can balance it and get a poly(s )-size resilient circuit. However,

for general circuits, 2O (d ) may be exponential in s .

To circumvent this potential blowup in size, we use a generaliza-

tion of the Karchmer-Wigderson theorem that shows an equivalence

between circuit size and the size of a dag-like communication pro-

tocol with a strong correctness guarantee, that we touch on below

[25, 29]. Very roughly, a dag-protocol can be viewed as a two-party

pebble game over a (rooted) directed acyclic graph, where each

non-leaf node is owned by one of the parties. When playing the

game, the łpebblež starts at the root of this graph and is moved

along the edges, where in each step the party who owns the vertex

with the pebble moves it to one of its children. dag-protocols were

originally introduced in the context of proof complexity and they

simplify to standard communication protocols when the underlying

dags are trees.

To construct resilient circuits, we show how to convert dag-

protocols to noise resilient dag-protocols that must operate cor-

rectly even if an adversary controls some of the nodes in the dag

and when the pebble lands on these nodes, the adversary chooses

the child to progress to.

We next list some of the reasons that make the design of noise

resilient dag-protocols significantly more challenging than the

design of standard noise resilient protocols:

Limited memory. In our game, the parties only know their input

and the current location of the pebble. In particular, they may not

know the path that led the pebble from the root to the current

node, as in a dag there may be multiple paths that lead to the same

node. This can be interpreted as the parties not having sufficient

memory to store the full transcript. Interactive coding schemes

typically rely on the fact that the parties know the transcript. E.g.,

they often implement a łrewind-if-error" strategy, where the parties

try to detect if an error occurred by comparing (hashes of) their

transcripts, and then łrewindž to a point in the execution of the

protocol before the error occurred, which is also determined using

the transcripts.

Unreliable memory. In the setting of interactive coding, the com-

munication between the parties is error-prone. However, each party

is allowed to use its local memory (which may be limited, see Sec-

tion 1.3.3), and this memory is always assumed to be reliable (not

affected by noise). In contrast, in our noisy dag-protocol model,

the entire łmemory" of the parties is given by the location of the

pebble. Since the adversary can, in certain cases, move the pebble,

it can tamper with the little memory the parties have.

Strong correctness guarantee. Perhaps the most challenging prob-

lem we encounter is the fact that the equivalence between circuits

and dag-protocols due to [25, 29] only holds provided that the

dag-protocols satisfy a very strong correctness guarantee, that we

call rectangular correctness: In the case of standard communication

protocols, the leaves of the protocol tree are labeled by potential

outputs and the label of every leaf must be a correct solution for
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every input pair that reaches it. For dag-protocols, we will some-

times require the label of a leaf to also be a correct solution for

input pairs that do not reach it.

For a detailed overview of our efforts, see Section 2.

1.3 Related Work

1.3.1 Resilient Circuits. As is typically the case when modeling

noise-resiliency (e.g., error correcting codes), the noise affecting

the circuit can be modeled as either stochastic or as adversarial.

Stochastic noise. Von Neumann [30] studied the stochastic noise

model, where the noise flips the value of each gate in the circuit

independently with some small fixed probability. Von Neumann’s

model was studied by a long sequence of work, including [5ś11,

16, 22, 23]. For example, in this model, it is known that a circuit of

size s can be converted to a noise resilient circuit of size O (s log s ),

and that a function with sensitivity s ′ requires a resilient circuits

of size Ω(s ′ log s ′) [5, 10, 11, 22, 30].

Adversarial noise. The short-circuit fault model we adopt in this

paper, where faulty gates output the value of one of their children,

was introduced by [20]. As explained above, it is a simple error

model that still allows for positive results in the adversarial setting.

It is also motivated by applications - [20] note that łstuck-atž and

łpower-groundž failures resulting from short-circuits or broken

connections are more common than other types of errors. As for

results, [20] show that for any number of errors k , a circuit C of

size s can be converted into a circuit C ′ of size O (k · s + k log2 3)

that computes the same function as C provided that at most k of

its gates are adversarially short-circuited. They also prove lower

bounds on the size of resilient circuits and consider short-circuiting

faults in the stochastic setting.

The task of making formulas resilient to short-circuit faults was

considered by [3, 18]. In their model, an all-knowing adversary

can short-circuit a constant fraction of the gates on all root-to-leaf

paths. Observe that if the adversary is allowed to corrupt even a

single root-to-leaf path in its entirety, it can force the output to

equal the value of one of the input leaves by short circuiting the

gates on the path leading to this leaf.

The main result of [18] is that a formula C of size s and depth d

can be converted to a formulaC ′ of size poly(s ) and depthO (d ) that

computes the same function asC as long as at most 1/10−ϵ fraction

of the gates on every root-to-leaf path are corrupted. Furthermore,

the transformation of C to C ′ runs in poly(s ) time. The work of [3]

shows that the maximum noise resilience of formulas is 1/5: They

give a polynomial size resilient circuitC ′ that can withstand 1/5−ϵ

fraction of errors on every root-to-leaf path. In addition, they show

that no circuit C ′ with sub-exponential blowup is resilient to 1/5

fraction of errors on every root-to-leaf path.

The work of [12] studies a different adversarial model, where

the adversary may corrupt the output of a small constant fraction

of the gates at each layer of the circuit in an arbitrary way. By

exploiting interesting connections between their model and the

model of probabilistically checkable proofs, [12] were able to show

that every symmetric function has a small resilient circuit. However,

the obtained circuit is only guaranteed to compute, what they call,

a łloose version" of the function, and may err on many inputs.

1.3.2 dag-Protocols. Razborov [25] introduced a model of PLS

communication protocols, and showed that it captures circuit size,

generalizing the equivalence between the standard communication

protocols and circuit/formula depth due to [19]. This connection

was used by Krajíček [21], who introduced the technique of mono-

tone feasible interpolation, which became a popular method for

proving lower bounds on the refutation size in propositional proof

systems such as Resolution, and Cutting Planes [2, 17], by reducing

to monotone circuit lower bounds. The notion of PLS communi-

cation protocols was simplified by Pudlak [24] and Sokolov [29]

to the notion of dag-like communication protocols. Subsequently, a

łconversež to monotone feasible interpolation was established in

[13] to prove new lower bounds on monotone circuits by lifting

lower bounds on Resolution refutations.

1.3.3 Interactive Coding. In the field of interactive coding, initiated

by a seminal paper of Schulman [26], we wish to convert a given

protocol Π that was designed to work over a noiseless channel, to

a protocol Π′ that works over a noisy channel. Various aspects of

interactive codes (e.g., computational efficiency, interactive channel

capacity, noise tolerance, list decoding, different channel types)

were considered in recent years. See [14] for a survey.

Interactive coding with small memory. Motivated by the problem

of constructing resilient circuits, [15] (which is an unpublished

manuscript by a subset of the current authors and is an earlier

version of this work) initiated the study of interactive codes that

incur a small overhead in memory5. Building on [15], the work of

[4] gives an interactive coding scheme that is resilient to a constant

fraction of adversarial errors and only incurs an O (logd ) overhead

in the memory, where d is the length of Π. However, unlike our

setting, the scheme of [4] assumes an oblivious adversary who

makes all its decisions in advance (i.e., independently of the random

choices of the interactive coding scheme or the communication

history). Moreover, as explained above, to get our result, aside from

dealing with small memory, we also need to deal with memory

corruptions and rectangular correctness (see Section 1.2).

1.4 Open Problems

We next suggest several concrete directions for future work:

Transformation time. While the size of the resilient circuitC ′ we

construct in Theorem 1.1 is bounded by sO (logd ) , we don’t know a

similar bound on the running time of the transformation converting

C to C ′. Can such transformation run in polynomial time in the

size of C ′, like in [3, 18]?

Lower bounds under assumptions. As discussed in Section 1.1,

proving unconditional super-polynomial lower bounds on the size

of resilient circuits will imply strong circuit lower bounds. However,

such bounds may be within reach under assumptions. Is it possible

to show that a quasi-polynomial overhead like in Theorem 1.1 is

necessary in some łsufficiently rich" oracle model?

5A version of this manuscript can be found at https://arxiv.org/abs/1805.06872v1.
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Maximum tolerance. The work of [3] shows that the maximum

noise resilience of formulas under short-circuiting error is 1/5 (see

Section 1.3). What is the maximum noise resilience of general cir-

cuits?

2 OUR TECHNIQUES

The work closest to the current one is that of [18], where an ana-

logue of Theorem 1.1 holding only for Boolean formulas was shown.

The work [18] does this in 3 steps:

(1) Formulas → Protocols. As their first step, [18] invoke the

Karchmer-Wigderson transformation [19] that defines, for any

Boolean function f , a related communication search problem6

KWf with the property that a Boolean formula computing f

and of depth d is essentially equivalent to a communication

protocol solving the search problem KWf usingd rounds. More-

over, having short circuit errors in the formula corresponds to

running the protocol over a channel with corruption noise and

perfect feedback7. We shall henceforth call these channels feed-

back channels for simplicity.

(2) Protocols→ Error Resilient Protocols.Asmentioned above,

protocols that can run successfully even on feedback channels

are equivalent to formulas that can work even when some gates

are short circuited. In this step, [18] take the protocol for KWf

from Item 1 and convert it to a protocol that can run successfully

even on feedback channels. This can be achieved using the by

now standard tools from interactive coding.

(3) ErrorResilient Protocols→ErrorResilient Formulas.Now

that we have a protocol for KWf that can run successfully

even on feedback channels, we can again use the Karchmer-

Wigderson equivalence to devise from it a Boolean formula

computing f that is resilient to short circuit errors. We note

that this error-resilient version of the Karchmer-Wigderson

transformation was also one of the results in [18].

We follow a similar high level blueprint. For the first step, we

can no longer rely on the Karchmer-Wigderson transformation as

it only works for Boolean formulas, and the trivial way to extend it

to circuits by first expanding the circuit to a formula requires an

exponential blowup in size, which Theorem 1.1 cannot afford. We

get around this by using a generalization presented (separately) by

Razborov and Sokolov [25, 29]. These show that a Boolean circuit

of depth d and size s is equivalent to a dag-like communication

protocol with depth d and size s and a strong correctness guarantee,

that we call rectangular correctness.

The aforementioned result is the analogue of Item 1 in our blue-

print. We next describe the analogues for Items 2 and 3. The ana-

logue of Item 3 is a result (see Theorem 4.4) that shows that the

above equivalence due to Razborov and Sokolov also extends to

the error resilient setting, and if we can show that there exist error

resilient dag-protocols that satisfy rectangular correctness, then

6Specifically, suppose that the function f maps the set {0, 1}n to {0, 1}. Then, in the
search problem KWf , Alice’s input is an element x ∈ {0, 1}n such that f (x ) = 1

and Bob’s input is an element y ∈ {0, 1}n such that f (y ) = 0. Their goal is to find a
coordinate i ∈ [n] satisfying xi , yi .
7In this model, some of the symbols sent during the protocol may be corrupted by
an adversary, but the sender of each symbol gets to know via ‘feedback’ whether the
symbol was received correctly or was corrupted, and in the latter case, also gets to
know what it was corrupted to.

they can be used to construct a circuit resilient to short circuit er-

rors. This part of our proof conceptually follows [18] but is slightly

more involved as it deals with more general objects.

The technical bulk of our proof goes in showing an analogue

of Item 2. As mentioned above, this requires showing that a dag-

protocol (something more general than a protocol) satisfies rectan-

gular correctness (something stronger than standard correctness)

even in the presence of feedback errors. We describe our approach

for this next.

2.1 dag-Protocols

The most straightforward way to think of a dag-protocol is to view

it as a two-party pebble game over a (rooted) directed acyclic graph.

Each leaf of the graph is labeled by an output while each non-leaf

node is owned by either Alice or Bob, that in addition, have private

inputs x and y respectively. A łpebblež starts at the root of this

graph and is moved along the edges as follows: If currently the

pebble is at a node v that is owned by Alice, then Alice uses her

input x to select one of the out-edges of v for the pebble to take.

The pebble then follows this edge and moves to the vertex that it

leads to and the process continues. Ultimately, the pebble will reach

a leaf and the output of the game will be the output of the leaf that

the pebble reaches.

dag-protocols generalize communication protocols. We now de-

scribe why the pebble game described above generalizes a commu-

nication protocol. For this, consider a communication protocol with

some alphabet Σ and assume without loss of generality that the

protocol is alternating with Alice speaking first and the output of

the protocol is just its transcript. We argue that this communication

protocol can be equivalently seen as a pebble game whose graph is

just a complete |Σ|-ary tree with the even layers (including the root)

owned by Alice and the odd layers owned by Bob. Furthermore, the

output corresponding to a leaf is simply the unique path from the

root to this leaf.

Now, if Alice’s input requires her to send a symbol σ ∈ Σ in

the first round, then she can make the pebble follow the edge

corresponding to σ in the pebble game. Similarly, if Bob wants to

send σ ′ ∈ Σ based on his input and the fact that he received σ , then

he can direct the pebble to the edge corresponding to σ ′. Proceeding

this way, the pebble will just follow a path corresponding to the

transcript of the protocol implying that the output of the pebble

game will match the output of the protocol.

dag-protocols and feedback errors. We also need to define the

error model for dag-protocols that corresponds to worst-case short

circuit errors in the Boolean circuit. In this model, there is an ad-

versary that is all-knowing and all-powerful: It knows the graph

underlying the pebble game, the inputs of the parties, and controls

some of the nodes in the graph. If the pebble ever lands on a node

controlled by the adversary, then the edge it will take next will be

determined by the adversary regardless of the inputs of the parties.

We note that even though the parties do not control where the

pebble goes, they do see where the adversary sent it.

In the case of a communication protocol, when the graph un-

derlying the pebble game is a tree, such errors indeed correspond

to feedback errors, as both the parties see where the pebble went
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or equivalently, the sending party knows what symbol was re-

ceived by the receiving party. This correspondence may lead one

to think that tools from interactive coding that are used to make

communication protocols error resilient can be extended to also

make dag-protocols error resilient. However, several problems arise

during this extension.

The fundamental reason these problems arise is that when the

underlying graph is not a tree, the current location of the pebble

does not determine the path of the pebble from the root to that loca-

tion. Essentially all interactive schemes crucially rely on the parties

having the knowledge of this path or equivalently, remembering

the sequence of symbols received. Indeed, if the parties know the

symbols they received, they can use it along with their input to

determine the sequence of symbols sent and check if any of the

symbols sent by them was not received correctly by the other party.

If there exists such a symbol, the parties can conclude that an error

occurred and try to fix it.

Not being able to detect errors is a major problem. However, even

if the parties can somehow tell whether or not an error happened,

the fact that there are multiple (in fact, up to exponentially many)

paths from the root to the current node would mean that the parties

have multiple locations (on different paths) that they can rewind to.

A subset of these locations that the parties can rewind to will be

consistent with Alice’s input while another subset will be consistent

with Bob’s input. Finding an element in the intersection that is not

too far from the current node (as otherwise a small number of errors

cause many rewinds) may require a lot of communication.

2.2 Rectangular Correctness

Not only do we need to work with dag-protocols, a generaliza-

tion of communication protocols, we actually need to show that

dag-protocols are rectangular correct, a notion much stronger than

standard correctness, in order to eventually get error resilient cir-

cuits. We shall omit a precise definition of rectangular correctness

in this sketch and will only provide a brief intuition (that is admit-

tedly much weaker than the actual definition in Definition 3.4) by

comparing it to the łstandardž notion of correctness. For standard

correctness, one requires that for all possible inputs x and y to

Alice and Bob, the leaf of the graph reached by the inputs x and y

is labelled with an output that is correct for x and y. Rectangular

correctness is stronger, and requires that for all inputs x ,x ′ to Alice

and y,y′ to Bob, any leaf that is reached when the inputs are x ,y′

and also reached when the inputs are x ′,y is labelled with an output

that is correct for x and y (and also for x ′ and y′, by symmetry),

even when it may not be the leaf reached when the inputs are x and

y.

Rectangular correctness ś the bane. Note that if one restricts at-

tention to the case x = x ′ andy = y′, then the notion of rectangular

correctness reduces to the notion of correctness, implying that it is

indeed a stronger notion of correctness. It is in fact a very strong no-

tion of correctness, and even without errors, converting a protocol

that is correct (under the standard notion) to one that is also rect-

angular correct may require an exponential blowup. For example,

note that for all functions f on n bits, the game KWf can be solved

(with standard correctness) by a pebble game of size linear in n, as

all it requires is finding a coordinate where Alice’s and Bob’s input

bits differ. A pebble game can first check if the first bit of Alice

and Bob are the same, then check if the second bits are the same,

and so on, solving the Karchmer-Wigderson game in O (n) steps.

However, if any such game KWf can be solved with rectangular

correctness by a pebble game of size less than an exponential, then

the Razborov and Sokolov equivalence to circuits would imply that

there is a circuit of size less than an exponential for any function

f , a contradiction.

Rectangular correctness ś the boon. On the other hand, the fact

that circuits are equivalent to pebble games with rectangular cor-

rectness also helps us, as it ensures that the error-free pebble games

that we start with have the strong rectangular correctness guar-

antee. To see this, let x and y be inputs for Alice and Bob and let

vx,y be the leaf reached by the inputs x and y. Roughly speaking,

rectangular correctness ensures that there are many leaves , vx,y
in the tree that are labeled with outputs that are correct for x and

y. This means that our error resilient version of this pebble game

does not necessarily have to reach the leaf vx,y , and it suffices for

it to reach any of the leaves that are labeled with the same output.

Focusing on this weaker requirement makes our task much easier,

as explained next.

2.3 Building Error Resilient dag-Protocols for

Karchmer-Wigderson Games

Recall that our goal is to build error resilient dag-protocols that are

rectangular correct for all Karchmer-Wigderson games. For now, we

drop the bane of rectangular correctness and focus only on getting

standard correctness. We mention that even this would crucially

rely on the boon of rectangular correctness for the error-free pebble

game. Later, we shall adapt our techniques to also overcome the

bane of rectangular correctness.

We wish to take inspiration from the interactive coding tools

used in [18]. At an (extremely) high level, interactive coding schemes

rely on two operations: (1) Detecting errors inserted by the adver-

sary fast, and (2) rewinding appropriately in order to fix those errors

once they are detected. As mentioned in Section 2.1, both these

operations are hard to perform for general pebble games, however

the boon of rectangular correctness gives us a way around.

Detecting errors fast. As mentioned in Section 2.2, instead of

the stronger task of detecting errors, we shall use the definition of

rectangular correctness to focus only on the weaker task of detecting

errors that can lead to an incorrect output. For this, recall that the

intuitive notion of rectangular correctness (provided in Section 2.2)

has the nice property of being łindependently verifiablež by Alice

and Bob: Let x and y be the inputs of Alice and Bob and v be a

leaf in the graph. Alice can go over all possible inputs y′ for Bob

and check if there exists one such y′ that together with x , takes

them to the leaf v . Similarly, Bob can go over all possible inputs x ′

for Alice and check if there is an x ′ that together with y will take

them to v . If both the checks succeed, then rectangular correctness

ensures that leafv has the correct output for x and y. Crucially, this

verification does not require any communication!

Even though this intuition for rectangular correctness is strictly

weaker than the formal definition (see Definition 3.4) which proves

a stronger guarantee for all (even non-leaf) nodes in the graph, it
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does capture the fact that Alice and Bob can independently check

whether any given node in the graph is correct for their inputs or

not. If either of the checks fail, then the respective party knows

that an error occurred and they need to rewind. Otherwise, if both

the checks pass, there may still be errors but they will not lead the

parties to an incorrect output, and they can continue with the rest

of the pebble game.

The rewind mechanism. The next step after knowing whether

or not to rewind is to determine where to rewind to. Here, we

draw inspiration from the łmeeting pointsž approach for interactive

coding and adapt it to the setting of dag-protocols. Let s andd be the

size (i.e., the number of vertices) and depth respectively of the dag-

protocol without errors and assume without loss of generality that

the underlying graph is layered. In the meeting points approach, the

error resilient dag-protocol simulates the error-free dag-protocol

move by move, remembering, in addition to the current location v

of the pebble in the error-free dag-protocol, a set ofO (logd ) nodes

in the error-free dag-protocol on the path from the root to v8.

The set of meeting points remembered are chosen to be expo-

nentially spaced. That is, if currently the pebble is at depth d, then

(roughly), there will be one meeting point at depths d−1, d−2, d−4,

and so on, implying a total of O (logd ) meeting points. This means

that at most O (logd ) nodes need to be remembered together im-

plying a size bound of sO (logd ) on the error-resilient dag-protocol.

Additionally, this ensures that, regardless of the number e of errors

inserted by the adversary, there is always a meeting point at most

O (e ) steps before that is remembered by the parties. Thus, e errors

by the adversary can only hurt the pebble game by O (e ) rounds,

resulting in resilience to a constant fraction of errors overall.

Note that if one decides to work with (asymptotically) fewer

meeting points in an attempt to make the error-resilient pebble

game smaller in size, then for all constants C , there must be two

meeting points whose distances from d are more than a factor of

C apart, say δ and Cδ . This means that the adversary can invest δ

corruptions and ensure that the closest consistent meeting point is

Cδ rounds away, implying that the parties have to rewind at least

Cδ rounds. As δ corruptions cause Cδ rewinds, such a protocol

cannot be resilient to more than a 1
C fraction of errors. As this

holds for all constants C , the protocol cannot be resilient to any

constant fraction of errors. Thus, techniques like our must have a

quasi-polynomial blowup in the size of the pebble game.

The variable ct. An important subtlety in the above analysis

is when the parties decide to rewind, say, 32 steps from depth d

to reach the meeting point at depth d
′
= d − 32. Ideally, when

the pebble is at depth d
′, we would like to have meeting points at

depths d′ − 1, d′ − 2, d′ − 4, · · · or equivalently, at depths d− 33, d−

34, d − 36, · · · remembered. However, the pebble just arrived here

from depth d where these meeting points at these depths were not

remembered. This lack of memory is a major problem, as if the

adversary now spends one error to make the parties believe the

node at depth d
′ is incorrect (when it is actually not), the closest

meeting point they can rewind to is d′ − 32 = d − 64, which is

32 rounds away. Thus, one error can hurt the pebble game by 32

8In the actual proof, this is implemented by constructing a graph of size sO (logd ) ,
each of whose nodes determines a tuple ofO (logd ) nodes of the graph underlying
the error-free dag-protocol.

rounds, or any other constant, and we cannot hope for resilience

to a constant fraction of errors.

Again taking inspiration from interactive coding schemes, we

handle this by maintaining a variable ct, that is incremented when-

ever the parties detected an error. If the closest meeting point is

D∗ rounds away, the parties only rewind to that meeting point

if ct ≥ D∗, whence they also decrease ct by D∗. This way, the

only way the parties can rewind D∗ steps from a correct node is

if the adversary spends at least O (D∗) errors, implying resilience

to a constant fraction of errors. On the other hand, if the node the

parties want to rewind from is actually incorrect, then the only

reason parties do not have a meeting point D∗ rounds away is if the

parties went ahead at least O (D∗) rounds from the incorrect node,

which again happens only if the adversary spends at least O (D∗)

errors, again implying resilience to a constant fraction of errors.

2.4 Proving Rectangular Correctness

All the arguments above were only to show a pebble game that

satisfies standard correctness in the presence of a constant fraction

of adversarial errors. Recall that in order to get error-resilient cir-

cuits, we need the pebble game to satisfy the stronger notion of

rectangular correctness. Ensuring this extra guarantee requires a

non-trivial adaptation of the game above, which we touch on next.

Recall from Section 2.2 that rectangular correctness requires that

for all inputs x ,y for Alice and Bob, the output of all leaves v for

which there exist x ′,y′ such that v is reached when the inputs are

x ,y′ and also reached when the inputs are x ′,y, should be correct

for x andy. Extending this definition to the adversarial error setting,

one gets that for all inputs x ,y and all leaves v , if there exists an

error pattern a,b that corrupt a small number of nodes (where a

determines how the nodes owned by Alice are corrupted and b

determines how the nodes owned by Bob are corrupted) and for

which there exist x ′,y′ and a′,b ′ such that v is reached when the

inputs are x ,y′ and errors are a,b ′ and also reached when the inputs

are x ′,y and errors are a′,b, should be correct for x and y.

Now, note that if the game is non-trivial, the graph must have

a leaf v and inputs x and y such that the output of v is incorrect

for x and y. By the above definition, this means that any such leaf

must have a party, say Alice, such that when Alice’s input is x ,

leaf v cannot be reached unless a lot of the nodes owned by Alice

are corrupted, regardless of Bob’s input or how many of the nodes

owned by him are corrupted. This essentially means that we need

to count Alice’s and Bob’s corruptions separately, and corruptions

to one of the parties should not affect the other.

For this, we split the variable ct from the previous section into

two variables ctA and ctB , one controlled by Alice and the other

controlled by Bob. In order to properly make this split, we also need

to define two new variables tctA and tctB that roughly capture

the number of nodes on the path that are controlled by Alice and

Bob respectively9. We then carefully adapt our analysis from above

to maintain and control these new variables, and use them to finish

the proof.

9The actual proof defines these to be total number of time ct is incremented, ignoring
the times it is decreased, but the two versions are morally equivalent.
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3 CIRCUITS AND DAG-PROTOCOLS

Circuits. We focus on Boolean circuits computing Boolean func-

tions, namely circuits consisting of∨,∧ and ¬ gates, and we assume

without loss of generality that all negations are applied directly to

the inputs.10 Further, we assume without loss of generality that all

the ∨ and ∧ gates in the error-free circuit have fan-in 2. The size of

a circuit C is the number of gates in the circuit and will be denoted

by |C |.

Communication Search Problems. We consider search problems

S ⊆ X ×Y × O for finite input set X ×Y and output set O, where

on input (x ,y) ∈ X ×Y , the search problem is to find some output

o ∈ S (x ,y) :=
{

o ∈ O : (x ,y,o) ∈ S
}

. For any Boolean function

f : {0, 1}n → {0, 1}, Karchmer & Wigderson [19] introduced a

corresponding search problem KWf ⊆ X ×Y ×O, for X = f −1 (1),

Y = f −1 (0) and O = [n], given as follows

Input: a pair (x ,y) ∈ f −1 (1) × f −1 (0)

Output: a coordinate i ∈ [n] such that xi , yi

Note that KWf is total, namely KWf (x ,y) , ∅ for all (x ,y) ∈

f −1 (1) × f −1 (0). Karchmer & Wigderson [19] established the fol-

lowing connection between the circuit depth of a function f and

the communication complexity of KWf .

Theorem 3.1 ([19]). For all f : {0, 1}n → {0, 1}, the circuit depth

of f is equal to the (deterministic) communication complexity of

KWf .

An analogous connection was later established for circuit size

by Razborov [25], and later simplified by Sokolov [29], using the

notion of dag-protocols. We next define dag-protocols. However,

we mention that the notion of dag-like communication protocols

we consider is equivalent to the definition in [13, 29], with a minor

stylistic difference that we define the protocol in terms of the mes-

sage functions for each party, whereas, previously it was defined

directly in terms of the associated rectangles for each vertex. We

find our style of definition to be more suitable for the purpose of

designing error-resilient dag protocols.

dag-protocols. A dag-protocolΠwith inputs inX×Y and output

in O is given as

Π =

(

Σ,G = (VA ⊔VB ⊔VO ,E), rt, {hv }v ∈VA⊔VB , {ov }v ∈VO

)

,

where, Σ is a finite, non-empty alphabet, G is a (finite) directed

acyclic graph with a designated root vertex rt and the vertex set

partitioned into disjoint setsVA,VB , andVO . The setVO corresponds

to the sink nodes (those with out-degree 0),VA corresponds to nodes

where Alice łspeaksž, and VB corresponds to nodes where Bob

łspeaksž. We useV to denote the set of all verticesV = VA⊔VB ⊔VO
(whereA⊔B denotes the union of disjoint setsA and B). All vertices

in VA ⊔VB have out-degree at most |Σ| and edges coming out of

such a vertex are labeled by distinct elements in Σ; we use Σv to

denote the labels on edges coming out of vertex v . For a vertex

v ∈ VA ⊔VB and σ ∈ Σv , we shall denote by vσ the vertex reached

by following the out edge labeled σ from v (if one exists).

10Fact: Any Boolean circuit can be transformed to an equivalent Boolean circuit where
all negations are applied directly to the inputs at the cost of at most doubling the
number of gates.

For all v ∈ VA, the łmessage functionž hv : X → Σ encodes

Alice’s behavior at vertex v , and for all v ∈ VB , hv : Y → Σ

encodes Bob’s behavior at vertex v . For ease of notation, we will

often write hv : X ×Y → Σ with the understanding that hv (x ,y)

only depends on x (resp. y) when v ∈ VA (resp. v ∈ VB ). It is

required that hv (x ,y) ∈ Σv for all v . Finally, every vertex v ∈ VO
is labeled by an output value ov ∈ O.

The size of the dag-protocol is |Π | := |V |, and the depth d(Π) is

the length of the longest path starting from rt.

Execution of a dag-protocol. The łexecutionž of a dag-protocol

Π corresponds to a labeling of all vertices v ∈ V with rectangles

Rv := Xv × Yv ⊆ X × Y , following [13, 29].

Definition 3.2. For a dag-protocol Π as above, we inductively,

from the root, associate a rectangle Rv to each v ∈ V , as follows:

Rrt = X×Y and for allv , rt, Rv is the smallest rectangle Xv ×Yv
such that Rv ⊇

⋃

u ∈V

{
(x ,y) ∈ Ru : uhu (x,y ) = v

}
.

Observation 3.3. For a dag-protocol Π as above with associated

rectangles {Rv }v ∈V , it holds for all v , rt ∈ V and x ∈ Xv , there

exists u ∈ V and y ∈ Y such that (x ,y) ∈ Ru and uhu (x,y ) = v .

Similarly, for y ∈ Yv , there exists a u ∈ V and x ∈ X such that

(x ,y) ∈ Ru and uhu (x,y ) = v .

Definition 3.4. We say a dag-protocol Π is rectangular-correct

w.r.t. a search problem S ⊆ X × Y × O if for all v ∈ VO and all

(x ,y) ∈ Rv , it holds that ov ∈ S (x ,y).

Remark 3.5. We emphasize the correctness requirement of dag-

protocols is significantly stronger than that of memory-limited

communication protocols [4]. Namely, memory-limited communi-

cation protocols (defined with the same tuple as a dag-protocol)

only require that ov ∈ S (x ,y), where v is the unique leaf that is

reached from the root on input (x ,y), whereas, dag-protocols re-

quire that ov ∈ S (x ,y) for every leaf v such that (x ,y) ∈ Rv , even

if this leaf is not łreached from the rootž on inputs (x ,y).

Remark 3.6. Our definition of a dag-protocol differs from [13, 29],

in that, the latter is defined directly in terms of the associated

rectangles, and not indirectly in terms of the message functions hv
as in ours. While these two definitions are essentially equivalent,

our definition is more suitable for our context of designing error-

resilient circuits.

Alternating dag-protocols. A dag-protocol Π of depth d is said

to be layered if the vertices of Π can be partitioned into d + 1 layers

indexed 0, · · · ,d such that the root rt is the only vertex in the layer

0, all the leaves are in layer d , and all edges in E go from one layer

i to i + 1 for some i . Further, Π is said to be alternating if the even

layers (including 0) form the setVA (Alice’s vertices) the odd layers

form the setVB (Bob’s vertices), and the last layer forms the setVO
(sink vertices). Observe that at the cost of increasing the depth by a

constant factor and increasing the size by a fixed polynomial, one

can transform any dag-protocol Π into another dag-protocol Π′

that is alternating such that if Π is rectangular-correct w.r.t. S , then

so is Π′.

Trimmed dag-protocols. Let Π be a dag-protocol with associated

rectangles {Rv }v ∈V . Let (u,v ) ∈ E be an edge, with σ ∈ Σ being the

label of (u,v ), i.e., v = uσ . We say that the edge (u,v ) is empty if
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hu (x ,y) , σ for all (x ,y) ∈ Ru .We say that a vertexv is unreachable

if Rv = ∅. We useΠtrim to denote the trimmed version ofΠ, obtained

by removing all empty edges and unreachable vertices. Observe

that the associated rectangles of Πtrim are the same as that of Π

(for vertices that remain). We say that Π is trimmed if Πtrim = Π.

3.1 Equivalence between Circuits and

dag-Protocols

Theorem 3.7 ([25, 29]). We have:

(1) There is a transformation T that takes a circuit C and outputs a

dag-protocol Π with alphabet [2] such that |Π | = |C | and Π is

rectangular-correct w.r.t. KWf , where f is the function computed

by C .

(2) There is a transformation T ′ that takes a dag-protocol Π that is

rectangular-correct w.r.t. KWf for some Boolean function f , and

outputs a circuit C such that |C | ≤ |Π | and C computes f .

In particular, it follows that for all Boolean functions f , the circuit-

size of f is equal to the size of the smallest dag-protocol that is

rectangular-correct w.r.t. KWf .

Proof. We prove only the first part as that is the only part we

shall use.We also note that the proof for the second part is subsumed

by the proof of Theorem 4.4. The transformation T on input C out-

puts a dag-protocolΠ =
(

[2],G = (V ,E), rt, {hv }v ∈VA∪VB , {ov }v ∈VO

)

,

such that:

▷ The graphG has the same structure asC , where rt corresponds to

the output gate ofC . The setVA is the set of nodes corresponding

to ∨ gates in C while VB is the set of nodes corresponding to

∧ gates. Recall that we assume that all the negation gates are

applied directly to the inputs.

▷ For v ∈ VA, hv (x ) is the smallest i ∈ [2] such that the gate corre-

sponding to vi in C evaluates to 1 on input x (defined arbitrarily

if no such i exists). For v ∈ VB , hv (y) is the smallest i ∈ [2] such

that the gate corresponding to vi in C evaluates to 0 on input y

(defined arbitrarily if no such i exists).

▷ The value ov ∈ [n] for v ∈ VO is coordinate input to the gate

corresponding to v in C .

Clearly, |Π | = |C | and we only have to show thatΠ is rectangular-

correct w.r.t. KWf , where f is the function computed by C . To this

end, we prove by induction (starting from the root) that, for all

v ∈ V , using v to also denote the function computed at the node

corresponding to v in C , we have:

Rv ⊆ {(x ,y) ∈ {0, 1}
n × {0, 1}n : v (x ) = 1 ∧ v (y) = 0},

where Rv is as defined in Definition 3.2. This suffices due to Defini-

tion 3.4.

By definition, Rrt = X ×Y = f −1 (1) × f −1 (0), and thus the base

case holds. For the induction step, fix any node v ∈ V and suppose

the statement holds for all u such that (u,v ) ∈ E. By Definition 3.2,

for all (x ,y) ∈ Rv , we have x ′,y′,u ′,u ′′ such that (x ,y′) ∈ Ru′ ,

(x ′,y) ∈ Ru′′ , u
′
hu′ (x,y

′)
= v , and u ′′

hu′′ (x
′
,y )
= v . We now argue

that v (x ) = 1. The proof that v (y) = 0 is analogous.

As (x ,y′) ∈ Ru′ , the induction hypothesis says that u ′(x ) = 1.

If u ′ corresponds to an ∧ gate, we must also have v (x ) = 1 and

there is nothing to show, so assume that u ′ corresponds to an ∨

gate. Equivalently, we have u ′ ∈ VA and together with u ′(x ) = 1

and u ′
hu′ (x,y

′)
= v , our definition of hu′ implies that v (x ) = 1 as

desired. □

4 ERROR MODELS FOR CIRCUITS AND

DAG-PROTOCOLS

4.1 Error Model for Circuits

We consider the short-circuit error model. LetC be a Boolean circuit

with n inputs, and V = V∨ ⊔V∧ be the set of all gates in C , where

V∨ denotes the set of all ∨ gates and V∧ denotes the set of all ∧

gates. An error pattern for C is defined by a tuple e = (a,b) where

a ∈ (V ∪ {∗})V∨ denotes a function mapping v ∈ V∨ to one of its

children inV or to ∗, and b ∈ (V ∪{∗})V∧ is defined analogously. For

an error pattern e = (a,b), we shall use ev to denote av if v ∈ V∨
and bv if v ∈ V∧.

Intuitively, if e is an error pattern andv is a gate inC , then ev = ∗

means that the gate v is error-free. On the other hand, if ev , ∗,

then ev is equal to one of the children u of v in C , and this means

that the gate v has been ‘short-circuited’ to u. Formally, given an

input z ∈ {0, 1}n , an error pattern e , the value v (z, e ) computed at

gate v is as follows: If v is a leaf, then v (z, e ) is the value of the

literal of v on z. For an internal gate v ,

v (z, e ) :=



ev (z, e ), if ev , ∗
∨

u :(v,u )∈E u (z, e ), if ev = ∗ and v ∈ V∨
∧

u :(v,u )∈E u (z, e ), if ev = ∗ and v ∈ V∧

. (1)

The (final) output ofC isC (z, e ) = rt(z, e ), where rt is the output

gate of C .

Definition 4.1 (Error resilient circuits). Let n > 0, C be a Boolean

circuit with n inputs, f : {0, 1}n → {0, 1} be a Boolean function,

and E be a set of error patterns for C . We say that C computes f

despite E if C (z, e ) = f (z) for all z ∈ {0, 1}n and e ∈ E.

4.2 Error Model for dag-Protocols

The error model for dag-protocols is defined similarly to the error

model for (tree-like) communication protocols in the context of con-

structing error resilient formulas [3, 18]. Consider a dag-protocol

Π =

(

Σ,G = (VA ⊔VB ⊔VO ,E), rt, {hv }v ∈VA⊔VB , {ov }v ∈VO

)

.

An error pattern for Π is defined by a tuple e = (a,b), where

a ∈ (Σ∪{∗})VA is a function mappingv ∈ VA to one of its out-edges

(equivalently, children) and b ∈ (Σ ∪ {∗})VB is defined analogously.

Let E be a rectangular set of allowed error patterns for Π, i.e., E =

EA × EB , where EA ⊆ (Σ ∪ {∗})VA and EB ⊆ (Σ ∪ {∗})VB . Define

the dag-protocol ΠE with inputs in XE × YE (for XE := X × EA
and YE := Y × EB ) and output in O, as:

ΠE =

(

Σ,G, rt, {hE,v }v ∈VA⊔VB , {ov }v ∈VO

)

,

where hE,v for v ∈ VA ⊔VB is defined as:

hE,v ((x ,a), (y,b)) =



av , if v ∈ VA and av ∈ Σ

bv , if v ∈ VB and bv ∈ Σ

hv (x ,y), otherwise

. (2)

Intuitively, ΠE is a protocol defined on the same graph as Π

with the same behavior except for the error pattern (a,b) ∈ E. For

every node v ∈ VA, if av = ∗ then this node is not corrupted, and
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if av ∈ Σ then this node is corrupted, and Bob gets the signal that

Alice proceeded to node vav (independently of where she actually

proceeded to).

Definition 4.2 (The search problem SE ). For Π and E as above and

a search problem S ⊆ X × Y × O, the search problem SE ⊆ XE ×

YE × O is defined to be such that for all (x ,a) ∈ XE , (y,b) ∈ YE ,

and o ∈ O, we have ((x ,a), (y,b),o) ∈ SE ⇐⇒ (x ,y,o) ∈ S .

Definition 4.3 (Error resilient dag-protocols). For Π and E as

above and a search problem S ⊆ X×Y×O, we sayΠ solves S despite E

(or that Π is resilient to errors in E) if ΠE is rectangular-correct

w.r.t. SE .

4.3 The KW Transformation with Errors

In this subsection, we prove an error-resilient version of Theo-

rem 3.7.

Theorem 4.4. There is a transformation T ∗ that takes as input a

dag-protocol Π for which there exists a Boolean function f such that

Π solves KWf despite E, and a rectangular set of error patterns E for

Π, and outputs a circuit C and a set of error patterns E ′ for C such

that:

(1) |C | ≤ |Π | and the fan-out of all gates in C is at most |Σ|.

(2) C computes f despite E ′.

Furthermore, for all θ > 0, if d is the depth of Π and E = EA × EB
where EA is the set of all a ∈ (Σ ∪ {∗})VA such that av , ∗ for at

most θd values of v on any root to leaf path in G, and EB is defined

analogously, then E ′ contains all error patterns e ′ = (a′,b ′) such

that a′
v ′
, ∗ on at most θd values of v ′ on an input to output path in

C and likewise for b ′.

Proof. The transformationT ∗ on input Π and E has the follow-

ing steps:

(1) Let ΠE be constructed as in Section 4.2. Trim ΠE to a protocol

ΠE,trim as in Section 3. Define Etrim to be the same as E but

restricted to the vertices that were not trimmed, i.e., we have

e ′ = (a′,b ′) ∈ Etrim if and only if there exists e = (a,b) ∈ E

such that a (resp. b) agrees with a′ (resp. b ′) on all the ver-

tices that were not trimmed. Observe that ΠE,trim has the same

associated rectangle RE,v = XE,v ×YE,v for vertex v as in ΠE .

(2) Create a circuit C that has the exact same structure as ΠE,trim
with the nodes in VA replaced by ∨ gates, the nodes in VB
replaced by∧ gates, and the nodesv ∈ VO replaced by the literal

zov . If for some v ∈ VO , there exists ((x ,a), (y,b)) ∈ RE,v that

satisfies that xov = 0 and yov = 1, then negate the input to the

input gate corresponding to v .

(3) Define the set E ′ to be the set of all (a′,b ′) for which there

exists (a,b) ∈ Etrim such that a′ is the same as a except that if

a coordinate v was equal to σ ∈ Σ in a, then that coordinate is

now equal to vσ in a′, and the same holds for b ′ and b.

Item 1 holds straightforwardly. We show Item 2 by showing via

induction (from the leaves up) that for all untrimmed nodes v ∈ V ,

and all ((x ,a), (y,b)) ∈ RE,v , letting v also denote the correspond-

ing gate in C and ⋆ denote the error pattern ∗V∧ or ∗V∨ for the

circuit C (exactly which will be clear from context), we have that:

v (x , (a,⋆)) = 1 and v (y, (⋆,b)) = 0. (3)

This suffices as short circuiting an ∧ gate cannot change the output

from 1 to 0 and similarly short circuiting an ∨ gate cannot change

the output from 0 to 1. For the base case,v is an input gate and Eq. (3)

holds because of the way we negate the gates in the transformation

T ∗ and the fact that Π solves KWf despite E. For the inductive step,

we fix a node v ∈ VA (the case v ∈ VB is analogous). Let Σv ⊆ Σ

be the set of out-edges of v . As ΠE,trim is trimmed, for all σ ∈ Σv ,

there is an ((x ,a), (y,b)) ∈ RE,v such that hE,v ((x ,a), (y,b)) = σ .

As v ∈ VA, we have that hE,v is a function of its first coordinate

implying that hE,v ((x ,a), (y
′,b ′)) = σ for all (y′,b ′) ∈ YE . By

Definition 3.2, we have that:

XE,v ⊆
⋃

σ ∈Σv

XE,vσ and YE,v ⊆
⋂

σ ∈Σv

YE,vσ .

To see why this implies Eq. (3), note that for any ((x ,a), (y,b)) ∈

RE,v , we have

∃σ ∈ Σv : ((x ,a), (y,b)) ∈ RE,vσ

∀σ ∈ Σv ∃(xσ ,aσ ) ∈ XE : ((xσ ,aσ ), (y,b)) ∈ RE,vσ .
(4)

By our induction hypothesis, the second part of Eq. (4) implies

vσ (y, (⋆,b)) = 0 for all σ ∈ Σv . It follows that v (y, (⋆,b)) = 0. It

remains to showv (x , (a,⋆)) = 1. Ifav = ∗, this is because of the first

part of Eq. (4) and the induction hypothesis. Otherwise, av = σ ∗

for some σ ∗ ∈ Σv , then Eq. (2) implies that ((x ,a), (y,b)) ∈ RE,vσ ∗
and an application of the induction hypothesis finishes the proof.

□

5 CONSTRUCTING ERROR RESILIENT

DAG-PROTOCOLS

In this section, we show a general transformation that maps a dag-

protocol to an error resilient dag-protocol. Note that some of the

proofs are deferred to the full version. Formally, we show that:

Theorem 5.1. Let θ = 1
50 and ϵ > 0. Let Π be a dag-protocol of

size s and depth d that is rectangular-correct w.r.t. a search problem

S . There exists a dag-protocol Π′ (as defined in Section 5.2) such that

(1) Π
′ has size s ′ = sO (logd ) and depth d ′ = O (d ).

(2) If p is the number of root-to-leaf paths in Π, then it holds that

s ′ = p · poly(d ).

(3) Π
′ solves S despite E = EA × EB where EA ⊆ (Σ′ ∪ {∗})V

′
A is

the set of all a ∈ (Σ′ ∪ {∗})V
′
A such that av ′ , ∗ for at most

(θ − ϵ )d ′ values of v ′ on any root to leaf path in G ′, and EB
is defined analogously.

Observe that the transformation in Theorem 5.1 together with

Theorems 3.7 and 4.4 proves Theorems 1.1 and 1.2. Our transforma-

tion is inspired by the łrewind-if-errorž framework used in many

interactive coding schemes, startingwith thework of Schulman [26].

The basic idea is to communicate according to the original protocol

until an error is detected, at which points the parties backtrack

until they reach a point of agreement. Indeed this is precisely the

error resilient protocol used in [18] for the standard tree-like com-

munication protocols (in the context of constructing error-resilient

formulas).

The main problem in our setting, is that a dag-protocol can

have many paths from the root to any vertex and hence we can

no longer recall the entire transcript. We get around this problem
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by remembering only O (logd ) nodes on the path, and it is these

nodes that the parties backtrack to. The nodes which we remember

are carefully chosen, and are referred to as łmeeting pointsž (In the

actual proof, we use MP to denote these nodes and MPL to denote the

depths11 of these nodes) . We note that it is this additional storage

that causes the blowup in the size of the dag-protocol.

More precisely, for any node in the original dag-protocol, the

depth x of the node determines a set MPL(x ) of size at mostO (logd ),

such that for all x ′ ∈ MPL(x ), at most one meeting point at depth

x ′ is łrememberedž, i.e., stored in MP, at this node, and no meeting

point at a depth outside MPL(x ) is remembered.

5.1 Meeting Points

First, we define and establish properties of the set MPL(·). Through-

out this section, for non-negative integers x ,y, we shall use ⌊x⌋y to

denote the largest multiple of y that is at most x , i.e., ⌊x⌋y = ⌊
x
y ⌋ ·y.

The notation [x ,y] will denote the set of integers between x and y

(including x and y) while (x ,y] will denote [x ,y] \ {x }. The nota-

tions [x ,y) and (x ,y) are defined similarly. We work with a fixed

z > 0 in this section and consider the set Z = [0, 2z ) of integers

that can be represented using z bits.

5.1.1 Definition. We define the notion of meeting points:

Definition 5.2. Let x ∈ Z and j ∈ [z]. The jth meeting point of x

is defined as

MPLj (x ) = max{⌊x⌋2j−1 − 2
j−1, 0}.

We also define, for S ⊆ [z], the notation MPLS (x ) = {MPLj (x ) | j ∈

S }. We shall omit the subscript S when S = [z].

Observe that the jth meeting point of x is at most 2j away from

x , and thus, the set of meetings points is (roughly) evenly spaced

out geometrically. The term 2j−1 is subtracted to make the meeting

points distinct for all j. The most important property of Defini-

tion 5.2 is that the function MPL changes in a very controlled way as

x , the depth of the node our simulation is currently at, is updated.

If we advance the simulation by one step and x increases by 1, then

we have that MPL(x+1) is at most one element short of MPL(x )∪{x }.

Similarly, we can also make precise claims (see Section 5.1.2) about

what happens when our simulation rewinds to an earlier meeting

point.

Next, we define some helpful notation concerning the binary

representation of an integer x ∈ Z . For x ∈ Z , we define the set:

ones(x ) = {j ∈ [z] | ⌊x⌋2j < ⌊x⌋2j−1 }. (5)

In other words, ones(x ) is the set of all positions (ordered from the

least to the most significant) that are 1 in the binary representa-

tion of x . Observe that ones(x ) is non-empty unless x = 0. The

following properties are straightforward consequences of the above

definitions.

Lemma 5.3. We have MPL(0) = {0}. For all x , 0 ∈ Z and j ≥

max(ones(x )), we have MPLj (x ) = 0.

Proof. That MPL(0) = {0} is direct. For the other part, note that

j ≥ max(ones(x )) implies ⌊x⌋2j−1 ≤ 2j−1 and use Definition 5.2.

□

11More precisely, MPL will denote the łlevelsž of the nodes, and the level will be a
deterministic function of the depth.

Lemma 5.4. For all x , 0 ∈ Z and all j < j ′ ∈ [max(ones(x ))],

we have MPLj (x ) > MPLj′ (x ).

Proof. We first prove the result with j ′ = max(ones(x )). As

j < j ′, we have that x > 2j and from Definition 5.2 and Lemma 5.3,

we have MPLj (x ) > 0 = MPLj′ (x ). Now, consider the case 1 ≤

j < j ′ < max(ones(x )) and use MPLj (x ), MPLj′ (x ) > 0 to get (by

Definition 5.2):

MPLj (x ) = ⌊x⌋2j−1 − 2
j−1 ≥ ⌊x⌋2j′−1 − 2

j−1

> ⌊x⌋2j′−1 − 2
j′−1
= MPLj′ (x ).

□

5.1.2 MaintainingMeeting Points. Wenext argue that Definition 5.2

ensures that the meeting points change in a fairly systematic way

as the protocol proceeds. For instance, the following lemma shows

that going from depth x to x + 1 łlosesž at most one meeting point

(and also says which one), and gains one meeting point, which is

the node at depth x .

Lemma 5.5. Let x ,x + 1 be two consecutive elements of Z . Observe

that ones(x+1) , ∅ and define k = min(ones(x+1)). For all j ∈ [z],

we have:

MPLj (x + 1) =



x , if j = 1

MPLj−1 (x ), if 1 < j ≤ k

MPLj (x ), if k < j ≤ z

.

We can also compute what happens when our protocol back-

tracks from a node at depth x to a node at depth x ′ ∈ MPL(x ).

This is done in the following two lemmas, where the first lemma

considers the case where we backtrack to the k’th meeting point

for k ∈ ones(x ), and the latter considers backtracking to the k’th

meeting point where k ∈ [z] \ ones(x ). For the latter lemma, it

is sufficient to consider k < max(ones(x )) as otherwise, the k’th

meeting point is 0.

Lemma 5.6. Let x ∈ Z , k ∈ ones(x ) define x ′ = MPLk (x ). If

x ′ > 0, then, for all j ∈ [z], we have:

MPLj (x
′) =


x ′ − 2j−1, if j ∈ [k]

MPLj (x ), if k < j ≤ z
.

Observe that in the foregoing lemma, MPLj (x
′) for j ∈ [k] is not

guaranteed to be in MPL(x ), and thus may not be remembered at

x , and therefore also not remembered at x ′. This is okay because

the meeting points are designed to be roughly geometrically apart,

and the fact that our simulation went from x to x ′ means that it

rewound roughly 2k steps. Not remembering the meeting points

for j ∈ [k] just means that the rewinds will be łdelayedž by an

additional 2k steps which is just a constant factor more.

Lemma 5.7. Let x ∈ Z such that x > 0, and let k ∈ [z] \ ones(x )

satisfy k < max(ones(x )). Define x ′ = MPLk (x ) and i∗ to be the

smallest i ∈ ones(x ) such that i > k . For all j ∈ [z], we have:

MPLj (x
′) =



x ′ − 2j−1, if 1 ≤ j < k

MPLj+1 (x ), if k ≤ j < i∗

max{⌊x⌋2j−1 − 2
j , 0}, if j = i∗

MPLj (x ), if i∗ < j ≤ z

.
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Lemma 5.7 follows from the following stronger lemma.

Lemma 5.8. Let x ∈ Z such that x > 0, and let k ∈ [z] \ ones(x )

satisfy k < max(ones(x )). Define x ′ = MPLk (x ) and i∗ to be the

smallest i ∈ ones(x ) such that i > k . For all j ∈ [k, i∗], we have

⌊x⌋2j−1 = ⌊x⌋2i∗−1 . For all j ∈ [0, z], we have

⌊x ′⌋2j =



x ′, if 0 ≤ j < k

x ′ + 2k−1 − 2j , if k ≤ j < i∗

⌊x⌋2j , if i∗ ≤ j ≤ z

.

Proof. The first part follows because [k, i∗) ∩ ones(x ) = ∅ by

our choice of i∗ and Eq. (5). For the second part, we first derive

several equivalent ways of writing x ′. As x ′ = MPLk (x ) > 0, we

have from Definition 5.2 that x ′ = ⌊x⌋2k−1 − 2
k−1
= ⌊x⌋2i∗−1 − 2

k−1

by the first part. As i∗ ∈ ones(x ), we can extend this using Eq. (5)

to

x ′ = ⌊x⌋2k−1 − 2
k−1
= ⌊x⌋2i∗−1 − 2

k−1
= ⌊x⌋2i∗ + 2

i∗−1 − 2k−1.

To finish the proof of the claim, we use x ′ = ⌊x⌋2k−1−2
k−1 implying

that x ′ is a multiple of 2j for j ∈ [0,k ) for the first case. For the

case k ≤ j < i∗, we use x ′ = ⌊x⌋2i∗−1 − 2
k−1 with the observation

that ⌊x⌋2i∗−1 is a multiple of 2j . Finally, for i∗ ≤ j ≤ z, we use

x ′ = ⌊x⌋2i∗ + 2
i∗−1 − 2k−1 and get:

⌊x ′⌋2j = ⌊⌊x
′⌋2i∗ ⌋2j = ⌊⌊x⌋2i∗ ⌋2j = ⌊x⌋2j .

□

5.2 The Error Resilient Protocol

We now define our transformation. The input to the transformation

is a parameter ϵ > 0 and a dag-protocol:

Π =

(

Σ,G = (VA ⊔VB ⊔V0,E), rt, {hv }v ∈VA∪VB , {ov }v ∈V0

)

.

Let ρ be a special ‘rewind’ symbol that is not an element of Σ and

define Σ′ = Σ∪{ρ}. Our transformation outputs a new dag-protocol

Π
′
=

(

Σ
′,G ′ =

(

V ′A ⊔V
′
B ⊔V

′
0 ,E
′
)

, rt′, {h′v ′ }v ′∈V ′A∪V
′
B
, {o′v ′ }v ′∈V ′0

)

.

We assume without loss of generality that ϵ = 2−k for some

integerk > 0.We shall also assume that the protocolΠ is alternating

and trimmed as defined in Section 3 and the number of layers d is

a power of 2. We first augment Π by adding an alternating path

(i.e., a path where the nodes at even locations, starting from 0, are

in VA, and those at odd locations are in VB ) of length Kd to each

of the leaves v ∈ V0 where K = 22k − 1. These assumptions can

be realized by increasing the depth and the number of root-to-leaf

paths by a constant factor, the size by a factor ofO (d ), and preserve

rectangular-correctness (Definition 3.4). From now on, when we

say Π and d , we refer to this new protocol. We observe that Π is

still alternating and the depth d is still a power of 2.

As Π is alternating, the even layers (including 0) form the set

VA and the odd layers form the set VB . We group every pair of

consecutive internal layers, i.e., all the layers except the last one,

into a level and use L(v ) to denote the level of an internal node v .

Formally, we define d(v ) to be the depth of a node v , and L(v ) =⌊
d(v )
2

⌋
. Thus, the root rt satisfies d(rt) = L(rt) = 0 and for all

internal nodes v , the value of L(v ) ∈ Z = [0, 2z ), where z = log2 d

is an integer. We shall apply the theory developed in Section 5.1

with these values of z and Z .

We now proceed to define the protocol Π′ formally.

The set V ′ = V ′
A
⊔V ′

B
⊔V ′0 . We define the set V ′ to be:

V ′ = V ×V × [0, 6d] × [0, 6d] × [0, 6d] × [0, 6d],

whereV is the set of all subsets of V of size at most 10z. That is,

each element of V ′ is a six-tuple, where (1) The first coordinate,

denoted by v (v ′) is an element of V . (2) The second coordinate,

denoted by MP(v ′) is a non-empty subset of V , of size at most

10z. (3) The remaining coordinates, respectively ctA (v
′), ctB (v

′),

tctA (v
′), and tctB (v

′), are integers in [0, 6d]. We shall omit the

argument v ′ from the above when it is clear from context. Note

that ��V ′�� = |V |O (z ) . We shall have v ′ ∈ V ′0 if either v ∈ V0 or

max{tctA, tctB } = 6d . If v ′ < V ′0 , we shall have v ′ ∈ V ′
A
(re-

spectively, V ′
B
) if v ∈ VA (respectively, VB ). We shall abbreviate

ctA + ctB and tctA + tctB as ct and tct respectively.

The set E ′. Each vertex v ′ ∈ V ′
A
∪ V ′

B
has two kinds of edges

coming out of it, the forward edges and the rewind edge. There is

one forward edge for every out-edge of v = v (v ′) and in addition,

there is a single extra rewind edge. We first specify the forward

edges. Let σ ∈ Σ be such that v has an out-edge labeled σ . We

define the edge corresponding to σ inG ′ by specifying the vertex

v ′σ it leads to. This is:

v ′σ =
(

vσ , MP
∗∗, ctA, ctB , tctA, tctB

)

, (6)

where:

MP
∗∗
= {u ∈ MP ∪ {v} | L(u) ∈ MPL(L(vσ )) ∪ {L(vσ )}}.

We now specify the rewind edge by specifying the vertexv ′ρ it leads

to. We do this assuming v ′ ∈ V ′
A
as the case v ′ ∈ V ′

B
is symmetric.

First, define u∗ to be the element in MP ∩ VA that maximizes L(·)

and define D∗ = 2(L(v )−L(u∗)) ≥ 0. Note that we can equivalently

write D∗ = d(v ) − d(u∗) as both v,u∗ ∈ VA. Define:

v ′ρ =

(v, MP, ctA + 1, ctB , tctA + 1, tctB ), if ctA + 1 < D∗

(u∗, MP∗, ctA + 1 − D
∗, ctB , tctA + 1, tctB ), o.w.

,

(7)

where:

MP
∗
= {rt} ∪ {u ∈ MP | d(u) < d(u∗)∧L(u) ∈ MPL(L(u∗))∪ {L(u∗)}}.

Intuitively, a rewind edge first looks for the largest u∗ ∈ MP that it

can rewind to. Then, if the counter ctA is more than the difference

D∗ in the depths of u∗ and v , it jumps to u∗, and otherwise, it

increments the counter and stays atv . The reason we keep a counter

instead of jumping to u∗ in łone go" is that maybe this edge was

taken due to an adversarial corruption, and one corruption should

not make us go back by D∗ in the depth. Also, note that, as u∗,v ∈

VA, a rewind edge may lead to a node in V ′
A
from another node in

V ′
A
and thus, the dag-protocol Π′ is not alternating. Our definitions

above imply that for any edge (u ′,v ′) ∈ E ′, we have

(

2 · tct(v ′) + d(v (v ′)) − ct(v ′)
)

−
(

2 · tct(u ′) + d(v (u ′)) − ct(u ′)
)

= 1.
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This together with the fact that tct(v ′) ≤ 12d implies that the

graph G ′ is acyclic and has depth

d ′ ≤ 25d . (8)

The root rt′. We define:

rt′ = (rt, {rt}, 0, 0, 0, 0) . (9)

Throughout, we shall restrict attention to verticesv ′ such that there

is a path from rt′ to v ′ by removing all the other vertices.

The functions {h′
v ′
}v ′∈V ′

A
∪V ′

B
. We state the definitions only for

v ′ ∈ V ′
A
as the definitions for v ′ ∈ V ′

B
are analogous. Recall that

h′
v ′

: X × Y → Σ
′. Let Rv = Xv × Yv be the associated rectangles

of Π as in Definition 3.2. We have:

h′v ′ (x ,y) =

hv (x ,y), if ∀u ∈ MP ∪ {v} : x ∈ Xu

ρ, otherwise
. (10)

The values {o′
v ′
}v ′∈V ′0

. Recall that v ′ ∈ V ′0 if either v ∈ V0 or

max{tctA, tctB } = 6d . In the former case, we define o′
v ′
= ov

while in the latter case, we define o′
v ′

to be an arbitrary value ∈ O.

5.2.1 Some Observations. The following observations follow from

the foregoing definitions. We use 1(E) to denote the indicator func-

tion for the condition E, i.e., 1(E) = 1 if E holds and 0 otherwise.

Observation 5.9. For all (u ′,v ′) ∈ E ′, we have:

(1) tctA (v
′) − tctA (u

′) = 1

(

u ′ ∈ V ′
A
∧v ′ = u ′ρ

)

.

(2) L(v (v ′)) − L(v (u ′)) ≤ 1

(

u ′ ∈ V ′
B
∧v ′ , u ′ρ

)

.

(3) (d(v (v ′)) − ctA (v
′))−(d(v (u ′)) − ctA (u

′)) ≤ 1

(

v ′ , u ′ρ

)

−

1

(

u ′ ∈ V ′
A
∧v ′ = u ′ρ

)

.

The following observations make use of Definition 5.2 and the

way E ′ is defined.

Observation 5.10. For all v ′ ∈ V ′ reachable from rt′, and all

u ∈ MP, we have d(u) ≤ d(v ). Moreover, the inequality is strict unless

v = rt.

Observation 5.11. For all v ′ ∈ V ′ reachable from rt′, we have

d(u) , d(u ′) for all u , u ′ ∈ MP. We also have L(u) ∈ MPL(L(v )) ∪

{L(v )} for all u ∈ MP ∪ {v}.

Note that Observation 5.11 implies that the number of vertices

stored in MP(v ′) for any v ′ that is reachable from rt′ is at most 10z.

Lemma 5.12. For allv ′ ∈ V ′ reachable from rt′, there exists a path

from rt to v in G such that contains all vertices in MP.

Proof. Proof by induction on the distance from rt′ to v ′. The

base case is when rt′ = v ′ and holds trivially from our definitions.

For the inductive step, let v ′ , rt′ ∈ V ′ and u ′ be arbitrary such

that (u ′,v ′) ∈ E ′. This gives us two cases based on whether the

edge (u ′,v ′) is a forward or a rewind edge. In the former case,

Eq. (6) holds and v = uσ for some σ ∈ Σ and MP ⊆ MP(u ′) ∪ {u}.

The result now follows from the induction hypothesis on u ′.

Assume now that the edge (u ′,v ′) is a rewind edge implying

that Eq. (7) holds. If the first case of Eq. (7) is true, then u = v and

MP(u ′) = MP and the result follows from the induction hypothesis.

We can therefore assume that the second case of Eq. (7) is true.

In this case v = u∗ for some u∗ ∈ MP(u ′) and all vertices w ∈ MP

satisfyw ∈ MP(u∗) and d(w ) ≤ d(u∗). The result now follows from

the induction hypothesis. □
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