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ABSTRACT

Given a Boolean circuit C, we wish to convert it to a circuit C’ that
computes the same function as C even if some of its gates suffer
from adversarial short circuit errors, i.e., their output is replaced
by the value of one of their inputs. Can we design such a resilient
circuit C” whose size is roughly comparable to that of C? Prior work
gave a positive answer for the special case where C is a formula.

We study the general case and show that any Boolean circuit C
of size s can be converted to a new circuit C” of quasi-polynomial
size sOU98S) that computes the same function as C even if a 1/51
fraction of the gates on any root-to-leaf path in C” are short cir-
cuited. Moreover, if the original circuit C is a formula, the resilient
circuit C’ is of near-linear size s!*€. The construction of our re-
silient circuits utilizes the connection between circuits and pag-like
communication protocols, originally introduced in the context of
proof complexity.
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1 INTRODUCTION

The study of reliable computation over unreliable components has
both theoretical and practical significance and it is one of the oldest
topics considered by theoretical computer science, dating back to
an influential series of lectures by von Neumann in 1952 [30]. In the
study of noise resilient circuits, we wish to convert a given circuit C
to a circuit C’ that computes the same function as C even if some
of the gates of C” are faulty. Furthermore, we wish to do so with
a small overhead in the size and depth, meaning that the size and
depth of C’ should be “close" to these of C.

In this paper we design fault tolerant Boolean circuits' with
respect to adversarial short-circuit errors, an error model that was
introduced by Kleitman, Leighton, and Ma [20]. First observe that
if the adversary is allowed to corrupt gates arbitrarily, no circuit
is resilient to even a single error, as the adversary can simply flip
the result of the output gate. To prevent this, [20] allow the ad-
versary to replace a gate by an arbitrary function g, as long as it
satisfies g(0,0) = 0 and g(1,1) = 1.2 This error model is practi-
cally motivated (see Section 1.3.1), and is equivalent to an error
model where the value of a gate is replaced by the value of one
of its children (the wire to the other child is “cut out"). We follow
[18] and consider a strong noise model where an adversary can
corrupt (“short circuits”) at most a constant fraction of the gates on
all root-to-leaf paths. In addition, we assume that the adversary is
omniscient and has full information of the entire circuit. It can also
choose a worst-case input and select which gates to corrupt and
what to corrupt them based on this input.

Prior works exploring this model were either only able to handle
a sub-constant error rate [20] (see Section 1.3) or considered a
restricted family of circuits. Specifically, [3, 18] showed that any
Boolean formula® can be converted to a noise resilient one with
only a polynomial blowup in size. We note that since any circuit
can be expanded out to an (exponentially larger) formula, their
results can be used to convert any circuit to a noise resilient one,

'We assume fan-in 2 AND/OR gates and negations only at the leaves (i.e., the inputs
to the circuit are x1, . . ., x, and X1, . . ., Xp).

%In particular, the adversary can replace any AND gate in the circuit with an OR gate
and vice versa.

3Formulas are tree-shaped circuits (the fan-out of every gate is at most 1).
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but will require an exponential blowup in size. Whether or not
general circuits can be made noise resilient with a more modest
overhead in size was left as an open problem (see [3, 18] and the
excellent survey [14]).

1.1 Our Results

We answer this longstanding open problem in the positive, showing
that any circuit can be made noise resilient with only a quasi-
polynomial blowup in size.

THEOREM 1.1 (MAIN RESULT, INFORMAL). Let C be a circuit with
size s and depth d. There exists a circuit C' with size sOUogd) gng
depth O(d) that computes the same function as C even when a %—
fraction of its gates on every root-to-leaf path are adversarially short
circuited.

We believe that a quasi-polynomial blowup in the circuit size is
necessary when converting some circuits into noise resilient ones
(see Section 2.3). In particular, we conjecture that, unlike in the
case of formulas [3, 18], a polynomial overhead will not suffice.
Unfortunately, proving so, even in an existential manner, may be
currently out-of-reach as it would imply P/ poly ¢ NC!; since
P/ poly C NC! implies that every circuit of polynomial size has an
equivalent formula of polynomial size, and thus, due to [3, 18],
also has an error-resilient formula of polynomial size.

In addition to the bound in Theorem 1.1, we are also able to
bound the size of the obtained resilient circuit C’ by poly(d) times
the number of root-to-leaf paths in C. This allows us to show that
if C is a formula, then C’ has near-linear size s!*€: Any formula
can be converted to an equivalent balanced formula of near-linear
size [1], and the number of root-to-leaf paths in any formula is at
most its size.

THEOREM 1.2. Let C be a circuit of depth d and let p be the number
root-to-leaf paths in C. There exists a circuit C’ with size p - poly(d)
and depth O(d) that computes the same function as C even when
a % -fraction of its gates on every root-to-leaf path are adversarially
short circuited.

COROLLARY 1.3. Lete > 0 and let C be aformula with sizes. There
exists a circuit C’ with size s'*€ that computes the same function as
C even when a %—fmction of its gates on every root-to-leaf path are
adversarially short circuited.

We note that while Corollary 1.3 significantly improves the
poly(s) blowup obtained by [3, 18], it is incomparable to their results
as our noise-resilient circuit C’ is not guaranteed to be a formula.

1.2 Resilient Circuits and Interactive Coding

Computation and communication are closely linked. Indeed, to

construct their resilient formulas, 18] design corresponding robust

communication protocols: Given a Boolean formula (or even a

circuit) C of size s and depth d, they

(1) Apply the Karchmer-Wigderson transformation [19] to con-
vert C to a communication protocol IT of length d for a related
communication problem.

“#Recall that a function f : {0, 1} — {0, 1} has a formula of poly(n) size if and only
if it has a circuit of O(log n) depth.
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(2) Convert II to a noise resilient protocol I1” of length O(d) using
tools from the field of interactive coding [26—-28].

(3) Convert IT’ to a noise resilient formula C” of depth O(d) by
proving a noisy version of the Karchmer-Wigderson theorem.

Since the size of C’ is bounded by ZO(d), when C is a formula

we can balance it and get a poly(s)-size resilient circuit. However,
for general circuits, 2°(4) may be exponential in s.

To circumvent this potential blowup in size, we use a generaliza-
tion of the Karchmer-Wigderson theorem that shows an equivalence
between circuit size and the size of a DAG-like communication pro-
tocol with a strong correctness guarantee, that we touch on below
[25, 29]. Very roughly, a DAG-protocol can be viewed as a two-party
pebble game over a (rooted) directed acyclic graph, where each
non-leaf node is owned by one of the parties. When playing the
game, the “pebble” starts at the root of this graph and is moved
along the edges, where in each step the party who owns the vertex
with the pebble moves it to one of its children. pAG-protocols were
originally introduced in the context of proof complexity and they
simplify to standard communication protocols when the underlying
DAGS are trees.

To construct resilient circuits, we show how to convert DAG-
protocols to noise resilient DAG-protocols that must operate cor-
rectly even if an adversary controls some of the nodes in the pag
and when the pebble lands on these nodes, the adversary chooses
the child to progress to.

We next list some of the reasons that make the design of noise
resilient DAG-protocols significantly more challenging than the
design of standard noise resilient protocols:

Limited memory. In our game, the parties only know their input
and the current location of the pebble. In particular, they may not
know the path that led the pebble from the root to the current
node, as in a DAG there may be multiple paths that lead to the same
node. This can be interpreted as the parties not having sufficient
memory to store the full transcript. Interactive coding schemes
typically rely on the fact that the parties know the transcript. E.g.,
they often implement a “rewind-if-error" strategy, where the parties
try to detect if an error occurred by comparing (hashes of) their
transcripts, and then “rewind” to a point in the execution of the
protocol before the error occurred, which is also determined using
the transcripts.

Unreliable memory. In the setting of interactive coding, the com-
munication between the parties is error-prone. However, each party
is allowed to use its local memory (which may be limited, see Sec-
tion 1.3.3), and this memory is always assumed to be reliable (not
affected by noise). In contrast, in our noisy paG-protocol model,
the entire “memory" of the parties is given by the location of the
pebble. Since the adversary can, in certain cases, move the pebble,
it can tamper with the little memory the parties have.

Strong correctness guarantee. Perhaps the most challenging prob-
lem we encounter is the fact that the equivalence between circuits
and DAG-protocols due to [25, 29] only holds provided that the
DAG-protocols satisfy a very strong correctness guarantee, that we
call rectangular correctness: In the case of standard communication
protocols, the leaves of the protocol tree are labeled by potential
outputs and the label of every leaf must be a correct solution for
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every input pair that reaches it. For pag-protocols, we will some-
times require the label of a leaf to also be a correct solution for
input pairs that do not reach it.

For a detailed overview of our efforts, see Section 2.

1.3 Related Work

1.3.1 Resilient Circuits. As is typically the case when modeling
noise-resiliency (e.g., error correcting codes), the noise affecting
the circuit can be modeled as either stochastic or as adversarial.

Stochastic noise. Von Neumann [30] studied the stochastic noise
model, where the noise flips the value of each gate in the circuit
independently with some small fixed probability. Von Neumann’s
model was studied by a long sequence of work, including [5-11,
16, 22, 23]. For example, in this model, it is known that a circuit of
size s can be converted to a noise resilient circuit of size O(s log s),
and that a function with sensitivity s’ requires a resilient circuits
of size Q(s” logs”) [5, 10, 11, 22, 30].

Adversarial noise. The short-circuit fault model we adopt in this
paper, where faulty gates output the value of one of their children,
was introduced by [20]. As explained above, it is a simple error
model that still allows for positive results in the adversarial setting.
It is also motivated by applications - [20] note that “stuck-at” and
“power-ground” failures resulting from short-circuits or broken
connections are more common than other types of errors. As for
results, [20] show that for any number of errors k, a circuit C of
size s can be converted into a circuit C’ of size O(k - s + kl°823)
that computes the same function as C provided that at most k of
its gates are adversarially short-circuited. They also prove lower
bounds on the size of resilient circuits and consider short-circuiting
faults in the stochastic setting.

The task of making formulas resilient to short-circuit faults was
considered by [3, 18]. In their model, an all-knowing adversary
can short-circuit a constant fraction of the gates on all root-to-leaf
paths. Observe that if the adversary is allowed to corrupt even a
single root-to-leaf path in its entirety, it can force the output to
equal the value of one of the input leaves by short circuiting the
gates on the path leading to this leaf.

The main result of [18] is that a formula C of size s and depth d
can be converted to a formula C” of size poly(s) and depth O(d) that
computes the same function as C as long as at most 1/10— € fraction
of the gates on every root-to-leaf path are corrupted. Furthermore,
the transformation of C to C’ runs in poly(s) time. The work of [3]
shows that the maximum noise resilience of formulas is 1/5: They
give a polynomial size resilient circuit C’ that can withstand 1/5—¢
fraction of errors on every root-to-leaf path. In addition, they show
that no circuit C” with sub-exponential blowup is resilient to 1/5
fraction of errors on every root-to-leaf path.

The work of [12] studies a different adversarial model, where
the adversary may corrupt the output of a small constant fraction
of the gates at each layer of the circuit in an arbitrary way. By
exploiting interesting connections between their model and the
model of probabilistically checkable proofs, [12] were able to show
that every symmetric function has a small resilient circuit. However,
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the obtained circuit is only guaranteed to compute, what they call,
a “loose version" of the function, and may err on many inputs.

1.3.2 DAG-Protocols. Razborov [25] introduced a model of PLS
communication protocols, and showed that it captures circuit size,
generalizing the equivalence between the standard communication
protocols and circuit/formula depth due to [19]. This connection
was used by Krajicek [21], who introduced the technique of mono-
tone feasible interpolation, which became a popular method for
proving lower bounds on the refutation size in propositional proof
systems such as Resolution, and Cutting Planes [2, 17], by reducing
to monotone circuit lower bounds. The notion of PLS communi-
cation protocols was simplified by Pudlak [24] and Sokolov [29]
to the notion of pDAG-like communication protocols. Subsequently, a
“converse” to monotone feasible interpolation was established in
[13] to prove new lower bounds on monotone circuits by lifting
lower bounds on Resolution refutations.

1.3.3  Interactive Coding. In the field of interactive coding, initiated
by a seminal paper of Schulman [26], we wish to convert a given
protocol IT that was designed to work over a noiseless channel, to
a protocol I1” that works over a noisy channel. Various aspects of
interactive codes (e.g., computational efficiency, interactive channel
capacity, noise tolerance, list decoding, different channel types)
were considered in recent years. See [14] for a survey.

Interactive coding with small memory. Motivated by the problem
of constructing resilient circuits, [15] (which is an unpublished
manuscript by a subset of the current authors and is an earlier
version of this work) initiated the study of interactive codes that
incur a small overhead in memory®. Building on [15], the work of
[4] gives an interactive coding scheme that is resilient to a constant
fraction of adversarial errors and only incurs an O(log d) overhead
in the memory, where d is the length of II. However, unlike our
setting, the scheme of [4] assumes an oblivious adversary who
makes all its decisions in advance (i.e., independently of the random
choices of the interactive coding scheme or the communication
history). Moreover, as explained above, to get our result, aside from
dealing with small memory, we also need to deal with memory
corruptions and rectangular correctness (see Section 1.2).

1.4 Open Problems

We next suggest several concrete directions for future work:

Transformation time. While the size of the resilient circuit C” we
construct in Theorem 1.1 is bounded by s©(1ogd),
similar bound on the running time of the transformation converting
C to C’. Can such transformation run in polynomial time in the
size of C’, like in [3, 18]?

we don’t know a

Lower bounds under assumptions. As discussed in Section 1.1,
proving unconditional super-polynomial lower bounds on the size
of resilient circuits will imply strong circuit lower bounds. However,
such bounds may be within reach under assumptions. Is it possible
to show that a quasi-polynomial overhead like in Theorem 1.1 is
necessary in some “sufficiently rich" oracle model?

5 A version of this manuscript can be found at https://arxiv.org/abs/1805.06872v1.
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Maximum tolerance. The work of [3] shows that the maximum
noise resilience of formulas under short-circuiting error is 1/5 (see
Section 1.3). What is the maximum noise resilience of general cir-
cuits?

2 OUR TECHNIQUES

The work closest to the current one is that of [18], where an ana-
logue of Theorem 1.1 holding only for Boolean formulas was shown.
The work [18] does this in 3 steps:

(1) Formulas — Protocols. As their first step, [18] invoke the
Karchmer-Wigderson transformation [19] that defines, for any
Boolean function f, a related communication search problem6
KWy with the property that a Boolean formula computing f
and of depth d is essentially equivalent to a communication
protocol solving the search problem KW using d rounds. More-
over, having short circuit errors in the formula corresponds to
running the protocol over a channel with corruption noise and
perfect feedback’. We shall henceforth call these channels feed-
back channels for simplicity.

Protocols — Error Resilient Protocols. As mentioned above,
protocols that can run successfully even on feedback channels
are equivalent to formulas that can work even when some gates
are short circuited. In this step, [18] take the protocol for KWy
from Item 1 and convert it to a protocol that can run successfully
even on feedback channels. This can be achieved using the by
now standard tools from interactive coding.

Error Resilient Protocols — Error Resilient Formulas. Now
that we have a protocol for KWy that can run successfully
even on feedback channels, we can again use the Karchmer-
Wigderson equivalence to devise from it a Boolean formula
computing f that is resilient to short circuit errors. We note
that this error-resilient version of the Karchmer-Wigderson
transformation was also one of the results in [18].

—
Y
~

We follow a similar high level blueprint. For the first step, we
can no longer rely on the Karchmer-Wigderson transformation as
it only works for Boolean formulas, and the trivial way to extend it
to circuits by first expanding the circuit to a formula requires an
exponential blowup in size, which Theorem 1.1 cannot afford. We
get around this by using a generalization presented (separately) by
Razborov and Sokolov [25, 29]. These show that a Boolean circuit
of depth d and size s is equivalent to a DAG-like communication
protocol with depth d and size s and a strong correctness guarantee,
that we call rectangular correctness.

The aforementioned result is the analogue of Item 1 in our blue-
print. We next describe the analogues for Items 2 and 3. The ana-
logue of Item 3 is a result (see Theorem 4.4) that shows that the
above equivalence due to Razborov and Sokolov also extends to
the error resilient setting, and if we can show that there exist error
resilient DAG-protocols that satisfy rectangular correctness, then

6Specifically, suppose that the function f maps the set {0, 1}" to {0, 1}. Then, in the
search problem KWy, Alice’s input is an element x € {0, 1}" such that f(x) =1
and Bob’s input is an element y € {0, 1}" such that f(y) = 0. Their goal is to find a
coordinate i € [n] satisfying x; # y;.

"In this model, some of the symbols sent during the protocol may be corrupted by
an adversary, but the sender of each symbol gets to know via ‘feedback’ whether the
symbol was received correctly or was corrupted, and in the latter case, also gets to
know what it was corrupted to.
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they can be used to construct a circuit resilient to short circuit er-
rors. This part of our proof conceptually follows [18] but is slightly
more involved as it deals with more general objects.

The technical bulk of our proof goes in showing an analogue
of Item 2. As mentioned above, this requires showing that a bAG-
protocol (something more general than a protocol) satisfies rectan-
gular correctness (something stronger than standard correctness)
even in the presence of feedback errors. We describe our approach
for this next.

2.1 pAaG-Protocols

The most straightforward way to think of a DaG-protocol is to view
it as a two-party pebble game over a (rooted) directed acyclic graph.
Each leaf of the graph is labeled by an output while each non-leaf
node is owned by either Alice or Bob, that in addition, have private
inputs x and y respectively. A “pebble” starts at the root of this
graph and is moved along the edges as follows: If currently the
pebble is at a node v that is owned by Alice, then Alice uses her
input x to select one of the out-edges of v for the pebble to take.
The pebble then follows this edge and moves to the vertex that it
leads to and the process continues. Ultimately, the pebble will reach
a leaf and the output of the game will be the output of the leaf that
the pebble reaches.

DAG-protocols generalize communication protocols. We now de-
scribe why the pebble game described above generalizes a commu-
nication protocol. For this, consider a communication protocol with
some alphabet ¥ and assume without loss of generality that the
protocol is alternating with Alice speaking first and the output of
the protocol is just its transcript. We argue that this communication
protocol can be equivalently seen as a pebble game whose graph is
just a complete |X|-ary tree with the even layers (including the root)
owned by Alice and the odd layers owned by Bob. Furthermore, the
output corresponding to a leaf is simply the unique path from the
root to this leaf.

Now, if Alice’s input requires her to send a symbol ¢ € ¥ in
the first round, then she can make the pebble follow the edge
corresponding to ¢ in the pebble game. Similarly, if Bob wants to
send o’ € 3 based on his input and the fact that he received o, then
he can direct the pebble to the edge corresponding to o”’. Proceeding
this way, the pebble will just follow a path corresponding to the
transcript of the protocol implying that the output of the pebble
game will match the output of the protocol.

DAG-protocols and feedback errors. We also need to define the
error model for DAG-protocols that corresponds to worst-case short
circuit errors in the Boolean circuit. In this model, there is an ad-
versary that is all-knowing and all-powerful: It knows the graph
underlying the pebble game, the inputs of the parties, and controls
some of the nodes in the graph. If the pebble ever lands on a node
controlled by the adversary, then the edge it will take next will be
determined by the adversary regardless of the inputs of the parties.
We note that even though the parties do not control where the
pebble goes, they do see where the adversary sent it.

In the case of a communication protocol, when the graph un-
derlying the pebble game is a tree, such errors indeed correspond
to feedback errors, as both the parties see where the pebble went
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or equivalently, the sending party knows what symbol was re-
ceived by the receiving party. This correspondence may lead one
to think that tools from interactive coding that are used to make
communication protocols error resilient can be extended to also
make DAG-protocols error resilient. However, several problems arise
during this extension.

The fundamental reason these problems arise is that when the
underlying graph is not a tree, the current location of the pebble
does not determine the path of the pebble from the root to that loca-
tion. Essentially all interactive schemes crucially rely on the parties
having the knowledge of this path or equivalently, remembering
the sequence of symbols received. Indeed, if the parties know the
symbols they received, they can use it along with their input to
determine the sequence of symbols sent and check if any of the
symbols sent by them was not received correctly by the other party.
If there exists such a symbol, the parties can conclude that an error
occurred and try to fix it.

Not being able to detect errors is a major problem. However, even
if the parties can somehow tell whether or not an error happened,
the fact that there are multiple (in fact, up to exponentially many)
paths from the root to the current node would mean that the parties
have multiple locations (on different paths) that they can rewind to.
A subset of these locations that the parties can rewind to will be
consistent with Alice’s input while another subset will be consistent
with Bob’s input. Finding an element in the intersection that is not
too far from the current node (as otherwise a small number of errors
cause many rewinds) may require a lot of communication.

2.2 Rectangular Correctness

Not only do we need to work with paG-protocols, a generaliza-
tion of communication protocols, we actually need to show that
DAG-protocols are rectangular correct, a notion much stronger than
standard correctness, in order to eventually get error resilient cir-
cuits. We shall omit a precise definition of rectangular correctness
in this sketch and will only provide a brief intuition (that is admit-
tedly much weaker than the actual definition in Definition 3.4) by
comparing it to the “standard” notion of correctness. For standard
correctness, one requires that for all possible inputs x and y to
Alice and Bob, the leaf of the graph reached by the inputs x and y
is labelled with an output that is correct for x and y. Rectangular
correctness is stronger, and requires that for all inputs x, x” to Alice
and y, y’ to Bob, any leaf that is reached when the inputs are x,y’
and also reached when the inputs are x’, y is labelled with an output
that is correct for x and y (and also for x” and y’, by symmetry),
even when it may not be the leaf reached when the inputs are x and

y.

Rectangular correctness — the bane. Note that if one restricts at-
tention to the case x = x” and y = y’, then the notion of rectangular
correctness reduces to the notion of correctness, implying that it is
indeed a stronger notion of correctness. It is in fact a very strong no-
tion of correctness, and even without errors, converting a protocol
that is correct (under the standard notion) to one that is also rect-
angular correct may require an exponential blowup. For example,
note that for all functions f on n bits, the game KW can be solved
(with standard correctness) by a pebble game of size linear in n, as
all it requires is finding a coordinate where Alice’s and Bob’s input
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bits differ. A pebble game can first check if the first bit of Alice
and Bob are the same, then check if the second bits are the same,
and so on, solving the Karchmer-Wigderson game in O(n) steps.
However, if any such game KW ¢ can be solved with rectangular
correctness by a pebble game of size less than an exponential, then
the Razborov and Sokolov equivalence to circuits would imply that
there is a circuit of size less than an exponential for any function
f, a contradiction.

Rectangular correctness — the boon. On the other hand, the fact
that circuits are equivalent to pebble games with rectangular cor-
rectness also helps us, as it ensures that the error-free pebble games
that we start with have the strong rectangular correctness guar-
antee. To see this, let x and y be inputs for Alice and Bob and let
vy, y be the leaf reached by the inputs x and y. Roughly speaking,
rectangular correctness ensures that there are many leaves # vy y
in the tree that are labeled with outputs that are correct for x and
y. This means that our error resilient version of this pebble game
does not necessarily have to reach the leaf vy, y, and it suffices for
it to reach any of the leaves that are labeled with the same output.
Focusing on this weaker requirement makes our task much easier,
as explained next.

2.3 Building Error Resilient pac-Protocols for
Karchmer-Wigderson Games

Recall that our goal is to build error resilient pAG-protocols that are
rectangular correct for all Karchmer-Wigderson games. For now, we
drop the bane of rectangular correctness and focus only on getting
standard correctness. We mention that even this would crucially
rely on the boon of rectangular correctness for the error-free pebble
game. Later, we shall adapt our techniques to also overcome the
bane of rectangular correctness.

We wish to take inspiration from the interactive coding tools
used in [18]. At an (extremely) high level, interactive coding schemes
rely on two operations: (1) Detecting errors inserted by the adver-
sary fast, and (2) rewinding appropriately in order to fix those errors
once they are detected. As mentioned in Section 2.1, both these
operations are hard to perform for general pebble games, however
the boon of rectangular correctness gives us a way around.

Detecting errors fast. As mentioned in Section 2.2, instead of
the stronger task of detecting errors, we shall use the definition of
rectangular correctness to focus only on the weaker task of detecting
errors that can lead to an incorrect output. For this, recall that the
intuitive notion of rectangular correctness (provided in Section 2.2)
has the nice property of being “independently verifiable” by Alice
and Bob: Let x and y be the inputs of Alice and Bob and v be a
leaf in the graph. Alice can go over all possible inputs y’ for Bob
and check if there exists one such y’ that together with x, takes
them to the leaf v. Similarly, Bob can go over all possible inputs x’
for Alice and check if there is an x” that together with y will take
them to v. If both the checks succeed, then rectangular correctness
ensures that leaf v has the correct output for x and y. Crucially, this
verification does not require any communication!

Even though this intuition for rectangular correctness is strictly
weaker than the formal definition (see Definition 3.4) which proves
a stronger guarantee for all (even non-leaf) nodes in the graph, it
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does capture the fact that Alice and Bob can independently check
whether any given node in the graph is correct for their inputs or
not. If either of the checks fail, then the respective party knows
that an error occurred and they need to rewind. Otherwise, if both
the checks pass, there may still be errors but they will not lead the
parties to an incorrect output, and they can continue with the rest
of the pebble game.

The rewind mechanism. The next step after knowing whether
or not to rewind is to determine where to rewind to. Here, we
draw inspiration from the “meeting points” approach for interactive
coding and adapt it to the setting of DAG-protocols. Let s and d be the
size (i.e., the number of vertices) and depth respectively of the pDAG-
protocol without errors and assume without loss of generality that
the underlying graph is layered. In the meeting points approach, the
error resilient DAG-protocol simulates the error-free DAG-protocol
move by move, remembering, in addition to the current location v
of the pebble in the error-free paG-protocol, a set of O(log d) nodes
in the error-free pAG-protocol on the path from the root to v

The set of meeting points remembered are chosen to be expo-
nentially spaced. That is, if currently the pebble is at depth d, then
(roughly), there will be one meeting point at depths d—1,d—2,d—4,
and so on, implying a total of O(log d) meeting points. This means
that at most O(log d) nodes need to be remembered together im-
plying a size bound of s0Uogd) on the error-resilient DAG-protocol.
Additionally, this ensures that, regardless of the number e of errors
inserted by the adversary, there is always a meeting point at most
O(e) steps before that is remembered by the parties. Thus, e errors
by the adversary can only hurt the pebble game by O(e) rounds,
resulting in resilience to a constant fraction of errors overall.

Note that if one decides to work with (asymptotically) fewer
meeting points in an attempt to make the error-resilient pebble
game smaller in size, then for all constants C, there must be two
meeting points whose distances from d are more than a factor of
C apart, say § and C§. This means that the adversary can invest §
corruptions and ensure that the closest consistent meeting point is
C$ rounds away, implying that the parties have to rewind at least
Cé rounds. As § corruptions cause C rewinds, such a protocol
cannot be resilient to more than a é
holds for all constants C, the protocol cannot be resilient to any
constant fraction of errors. Thus, techniques like our must have a
quasi-polynomial blowup in the size of the pebble game.

fraction of errors. As this

The variable ct. An important subtlety in the above analysis
is when the parties decide to rewind, say, 32 steps from depth d
to reach the meeting point at depth d’ = d — 32. Ideally, when
the pebble is at depth d’, we would like to have meeting points at
depths d’—1,d"—2,d" —4, - - - or equivalently, at depths d —33,d —
34,d — 36, - - - remembered. However, the pebble just arrived here
from depth d where these meeting points at these depths were not
remembered. This lack of memory is a major problem, as if the
adversary now spends one error to make the parties believe the
node at depth d’ is incorrect (when it is actually not), the closest
meeting point they can rewind to is d’ — 32 = d — 64, which is

32 rounds away. Thus, one error can hurt the pebble game by 32
8In the actual proof, this is implemented by constructing a graph of size 5Ologd)
each of whose nodes determines a tuple of O(log d) nodes of the graph underlying
the error-free pAG-protocol.
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rounds, or any other constant, and we cannot hope for resilience
to a constant fraction of errors.

Again taking inspiration from interactive coding schemes, we
handle this by maintaining a variable ct, that is incremented when-
ever the parties detected an error. If the closest meeting point is
D* rounds away, the parties only rewind to that meeting point
if ct > D*, whence they also decrease ct by D*. This way, the
only way the parties can rewind D* steps from a correct node is
if the adversary spends at least O(D*) errors, implying resilience
to a constant fraction of errors. On the other hand, if the node the
parties want to rewind from is actually incorrect, then the only
reason parties do not have a meeting point D* rounds away is if the
parties went ahead at least O(D*) rounds from the incorrect node,
which again happens only if the adversary spends at least O(D*)
errors, again implying resilience to a constant fraction of errors.

2.4 Proving Rectangular Correctness

All the arguments above were only to show a pebble game that
satisfies standard correctness in the presence of a constant fraction
of adversarial errors. Recall that in order to get error-resilient cir-
cuits, we need the pebble game to satisfy the stronger notion of
rectangular correctness. Ensuring this extra guarantee requires a
non-trivial adaptation of the game above, which we touch on next.

Recall from Section 2.2 that rectangular correctness requires that
for all inputs x, y for Alice and Bob, the output of all leaves v for
which there exist x’, y” such that v is reached when the inputs are
x,y’ and also reached when the inputs are x’, y, should be correct
for x and y. Extending this definition to the adversarial error setting,
one gets that for all inputs x, y and all leaves v, if there exists an
error pattern a, b that corrupt a small number of nodes (where a
determines how the nodes owned by Alice are corrupted and b
determines how the nodes owned by Bob are corrupted) and for
which there exist x’,y” and a’, b’ such that v is reached when the
inputs are x, y” and errors are a, b’ and also reached when the inputs
are x’, y and errors are a’, b, should be correct for x and y.

Now;, note that if the game is non-trivial, the graph must have
a leaf v and inputs x and y such that the output of v is incorrect
for x and y. By the above definition, this means that any such leaf
must have a party, say Alice, such that when Alice’s input is x,
leaf v cannot be reached unless a lot of the nodes owned by Alice
are corrupted, regardless of Bob’s input or how many of the nodes
owned by him are corrupted. This essentially means that we need
to count Alice’s and Bob’s corruptions separately, and corruptions
to one of the parties should not affect the other.

For this, we split the variable ct from the previous section into
two variables ct 4 and ctp, one controlled by Alice and the other
controlled by Bob. In order to properly make this split, we also need
to define two new variables tct4 and tctp that roughly capture
the number of nodes on the path that are controlled by Alice and
Bob respectively®. We then carefully adapt our analysis from above
to maintain and control these new variables, and use them to finish
the proof.

9The actual proof defines these to be total number of time ct is incremented, ignoring
the times it is decreased, but the two versions are morally equivalent.
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3 CIRCUITS AND DAG-PROTOCOLS

Circuits. We focus on Boolean circuits computing Boolean func-
tions, namely circuits consisting of V, A and — gates, and we assume
without loss of generality that all negations are applied directly to
the inputs.'® Further, we assume without loss of generality that all
the Vv and A gates in the error-free circuit have fan-in 2. The size of
a circuit C is the number of gates in the circuit and will be denoted
by |Cl.

Communication Search Problems. We consider search problems
S € X x Y x O for finite input set X X Y and output set O, where
on input (x,y) € X X Y, the search problem is to find some output
0 € S(x,y) = {0€ O :(x,y,0) € S}. For any Boolean function
f :1{0,1}" — {0, 1}, Karchmer & Wigderson [19] introduced a
corresponding search problem KWy € X' x Y x O, for X = i),
Y = f71(0) and O = [n], given as follows
apair (x,y) € f71(1) x f7(0)
a coordinate i € [n] such that x; # y;

Input:

Output:

Note that KW is total, namely KWy (x,y) # 0 for all (x,y) €

£71(1) x £71(0). Karchmer & Wigderson [19] established the fol-

lowing connection between the circuit depth of a function f and
the communication complexity of KW.

THEOREM 3.1 ([19]). Forall f : {0,1}* — {0, 1}, the circuit depth
of f is equal to the (deterministic) communication complexity of
KWf.

An analogous connection was later established for circuit size
by Razborov [25], and later simplified by Sokolov [29], using the
notion of bAaG-protocols. We next define pAG-protocols. However,
we mention that the notion of paG-like communication protocols
we consider is equivalent to the definition in [13, 29], with a minor
stylistic difference that we define the protocol in terms of the mes-
sage functions for each party, whereas, previously it was defined
directly in terms of the associated rectangles for each vertex. We
find our style of definition to be more suitable for the purpose of
designing error-resilient DAG protocols.

DAG-protocols. A DAG-protocol IT with inputs in X XY and output
in O is given as

1= (3,G = (Va UV U Vo, B), 1t (ho Joevauvg» (00 oeve )

where, ¥ is a finite, non-empty alphabet, G is a (finite) directed
acyclic graph with a designated root vertex rt and the vertex set
partitioned into disjoint sets V4, Vg, and V. The set V corresponds
to the sink nodes (those with out-degree 0), V4 corresponds to nodes
where Alice “speaks”, and Vg corresponds to nodes where Bob
“speaks”. We use V to denote the set of all vertices V = V4 LIVg LIVp
(where ALI B denotes the union of disjoint sets A and B). All vertices
in V4 U Vg have out-degree at most |X| and edges coming out of
such a vertex are labeled by distinct elements in ¥; we use 2, to
denote the labels on edges coming out of vertex v. For a vertex
v € VyUVpgando € X, we shall denote by v, the vertex reached
by following the out edge labeled o from v (if one exists).

1Fact: Any Boolean circuit can be transformed to an equivalent Boolean circuit where
all negations are applied directly to the inputs at the cost of at most doubling the
number of gates.
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For all v € Vg4, the “message function” Ay, : X — I encodes
Alice’s behavior at vertex v, and for allv € Vg, hy, : Y — 3
encodes Bob’s behavior at vertex v. For ease of notation, we will
often write hy : X X Y — 3 with the understanding that h,, (x, y)
only depends on x (resp. y) when v € V4 (resp. v € Vp). It is
required that hy, (x, y) € 24, for all v. Finally, every vertex v € Vg
is labeled by an output value o, € O.

The size of the paG-protocol is |II| := |V, and the depth d(II) is
the length of the longest path starting from rt.

Execution of a DAG-protocol. The “execution” of a DAG-protocol
II corresponds to a labeling of all vertices v € V with rectangles
Ry = Xy X Yy, € X x Y, following [13, 29].

Definition 3.2. For a pac-protocol IT as above, we inductively,
from the root, associate a rectangle R, to each v € V, as follows:
Rit = X XY and for all v # rt, Ry, is the smallest rectangle X, X Yz,

such that Ry, 2 Uyev {(x, Y) € Ry :up,(x,y) = v}.

OBSERVATION 3.3. For a DAG-protocol IT as above with associated
rectangles {Ry }ycv, it holds for allv # rt € V and x € Xy, there
existsu € V andy € Y such that (x,y) € Ry and up, (x4 = .
Similarly, fory € Y, there exists au € V and x € X such that
(x,y) € Ry andup (5, y) = v.

Definition 3.4. We say a DAG-protocol II is rectangular-correct
w.r.t. a search problem S C X X ¥ x O if for all v € Vp and all
(x,y) € Ry, it holds that 0, € S(x, y).

Remark 3.5. We emphasize the correctness requirement of DAG-
protocols is significantly stronger than that of memory-limited
communication protocols [4]. Namely, memory-limited communi-
cation protocols (defined with the same tuple as a DAG-protocol)
only require that o, € S(x,y), where v is the unique leaf that is
reached from the root on input (x, y), whereas, bag-protocols re-
quire that 0, € S(x,y) for every leaf v such that (x,y) € Ry, even
if this leaf is not “reached from the root” on inputs (x, y).

Remark 3.6. Our definition of a DAG-protocol differs from [13, 29],
in that, the latter is defined directly in terms of the associated
rectangles, and not indirectly in terms of the message functions h,
as in ours. While these two definitions are essentially equivalent,
our definition is more suitable for our context of designing error-
resilient circuits.

Alternating pDAG-protocols. A DAG-protocol IT of depth d is said
to be layered if the vertices of I can be partitioned into d + 1 layers
indexed 0, - - - , d such that the root rt is the only vertex in the layer
0, all the leaves are in layer d, and all edges in E go from one layer
i to i + 1 for some i. Further, IT is said to be alternating if the even
layers (including 0) form the set V4 (Alice’s vertices) the odd layers
form the set Vg (Bob’s vertices), and the last layer forms the set Vo
(sink vertices). Observe that at the cost of increasing the depth by a
constant factor and increasing the size by a fixed polynomial, one
can transform any DAG-protocol II into another pAG-protocol I’
that is alternating such that if II is rectangular-correct w.r.t. S, then
soisIT’.

Trimmed DAG-protocols. Let IT be a DAG-protocol with associated
rectangles {Ry }ev- Let (4, v) € E be an edge, with o € X being the
label of (u,v), i.e., v = us. We say that the edge (u, v) is empty if
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hy (x,y) # o forall (x,y) € Ry,. We say thata vertex v is unreachable
if R, = 0. We use I1ii,,, to denote the trimmed version of I1, obtained
by removing all empty edges and unreachable vertices. Observe
that the associated rectangles of Il are the same as that of IT
(for vertices that remain). We say that IT is trimmed if IT¢yjy, = IL.

3.1 Equivalence between Circuits and
pAG-Protocols
THEOREM 3.7 ([25, 29]). We have:

(1) There is a transformation T that takes a circuit C and outputs a
DAG-protocol IT with alphabet [2] such that |I1| = |C| and 11 is
rectangular-correct w.r.t. KW, where f is the function computed
by C.

(2) There is a transformation T’ that takes a DAG-protocol I1 that is
rectangular-correct w.r.t. KW for some Boolean function f, and
outputs a circuit C such that |C| < |II| and C computes f.

In particular, it follows that for all Boolean functions f, the circuit-
size of f is equal to the size of the smallest DAG-protocol that is
rectangular-correct w.r.t. KW .

ProoF. We prove only the first part as that is the only part we
shall use. We also note that the proof for the second part is subsumed
by the proof of Theorem 4.4. The transformation T on input C out-

puts a pac-protocol IT = ([21, G = (V. E). tt, {ho oev,uv: 00 oevp )-

such that:

> The graph G has the same structure as C, where rt corresponds to
the output gate of C. The set V4 is the set of nodes corresponding
to V gates in C while Vg is the set of nodes corresponding to
A gates. Recall that we assume that all the negation gates are
applied directly to the inputs.

For v € V4, hy(x) is the smallest i € [2] such that the gate corre-
sponding to v; in C evaluates to 1 on input x (defined arbitrarily
if no such i exists). For v € Vp, hy (y) is the smallest i € [2] such
that the gate corresponding to v; in C evaluates to 0 on input y
(defined arbitrarily if no such i exists).

> The value o, € [n] for v € Vp is coordinate input to the gate

corresponding to v in C.

v

Clearly, |TI| = |C| and we only have to show that IT is rectangular-
correct w.r.t. KW ¢, where f is the function computed by C. To this
end, we prove by induction (starting from the root) that, for all
v € V, using v to also denote the function computed at the node
corresponding to v in C, we have:

Ry C{(x,y) €{0,1}" x{0,1}" 1 v(x) =1 A v(y) =0},

where R, is as defined in Definition 3.2. This suffices due to Defini-
tion 3.4.

By definition, Rt = X XY = f~1(1) x £71(0), and thus the base
case holds. For the induction step, fix any node v € V and suppose
the statement holds for all u such that (u,v) € E. By Definition 3.2,
for all (x,y) € Ry, we have x”,y’,u’,u” such that (x,y’) € Ry,
(x",y) € Ry, u];ul(x’ y) = O and u;l’uﬂ ) = O We now argue
that v(x) = 1. The proof that v(y) = 0 is analogous.

As (x,y’) € Ry, the induction hypothesis says that u’(x) = 1.
If u’ corresponds to an A gate, we must also have v(x) = 1 and
there is nothing to show, so assume that u” corresponds to an v
gate. Equivalently, we have u’ € V4 and together with u/(x) = 1
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= v, our definition of h,/ implies that v(x) = 1 as
m}

’
and Up (e, y)
desired.

4 ERROR MODELS FOR CIRCUITS AND
DAG-PROTOCOLS

4.1 Error Model for Circuits

We consider the short-circuit error model. Let C be a Boolean circuit
with n inputs, and V' = W, LI V,, be the set of all gates in C, where
W denotes the set of all vV gates and V) denotes the set of all A
gates. An error pattern for C is defined by a tuple e = (a, b) where
a € (VU {+))W denotes a function mapping v € W to one of its
children in V or to *,and b € (VU {*})"4 is defined analogously. For
an error pattern e = (a, b), we shall use e, to denote a, ifv € W,
and by, if v € Vj.

Intuitively, if e is an error pattern and v is a gate in C, then e, = *
means that the gate v is error-free. On the other hand, if e,, # *,
then e, is equal to one of the children u of v in C, and this means
that the gate v has been ‘short-circuited’ to u. Formally, given an
input z € {0, 1}", an error pattern e, the value v(z, e) computed at
gate v is as follows: If v is a leaf, then v(z, e) is the value of the
literal of v on z. For an internal gate v,

if e # =
ife, =+«andov € V, .

ev(z,e),
v(z,€) = \/u:(v,u)eE u(z,e),
/\u:(v,u)eE u(z,e),
The (final) output of C is C(z, e) = rt(z, ), where rt is the output
gate of C.

(1)

ife, = *and v € Vy

Definition 4.1 (Error resilient circuits). Let n > 0, C be a Boolean
circuit with n inputs, f : {0,1}"* — {0, 1} be a Boolean function,
and & be a set of error patterns for C. We say that C computes f
despite & if C(z,e) = f(z) forall z € {0,1}" and e € &.

4.2 Error Model for pag-Protocols

The error model for pAG-protocols is defined similarly to the error
model for (tree-like) communication protocols in the context of con-
structing error resilient formulas [3, 18]. Consider a DAG-protocol

I = (3,G = (Va U Vg U Vo, E), tt, {hoboevauvy (00 }oevs ).

An error pattern for II is defined by a tuple e = (a,b), where
a € (ZU{#})"4 is a function mapping v € V4 to one of its out-edges
(equivalently, children) and b € (3 U {*})VB is defined analogously.
Let & be a rectangular set of allowed error patterns for I, i.e., & =
E4 x Ep, where E4 € (S U {*})V4 and Eg C (3 U {*})VB. Define
the pag-protocol I1g with inputs in Xg X Yg (for Xg :== X X E4
and Yg := Y X Ep) and output in O, as:

Mg = (3,6, 1t, the o Yoevauvy, (00 }oevs )
where hg ,, for v € V4 U Vp is defined as:

ay, ifveViganday, € X
hg o ((x,a), (y,b)) = { by, ifveVgandb, €. (2)
hy(x,y), otherwise

Intuitively, IIg is a protocol defined on the same graph as II
with the same behavior except for the error pattern (a, b) € &. For
every node v € Vy, if a,, = * then this node is not corrupted, and
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if a, € ¥ then this node is corrupted, and Bob gets the signal that
Alice proceeded to node v,,, (independently of where she actually
proceeded to).

Definition 4.2 (The search problem Sg). ForII and & as above and
a search problem S € X X Y X O, the search problem Sg C Xg X
Yg x O is defined to be such that for all (x,a) € Xg, (y,b) € Ys,
and o € O, we have ((x, a), (y,b),0) € Sg & (x,y,0) €8S.

Definition 4.3 (Error resilient pag-protocols). For IT and & as

above and a search problem S C XxY xO, we say II solves S despite &

(or that IT is resilient to errors in &) if IIg is rectangular-correct
w.rt. Sg.

4.3 The KW Transformation with Errors

In this subsection, we prove an error-resilient version of Theo-
rem 3.7.

THEOREM 4.4. There is a transformation T* that takes as input a
DAG-protocol I1 for which there exists a Boolean function f such that
I solves KW despite &, and a rectangular set of error patterns & for
I1, and outputs a circuit C and a set of error patterns &’ for C such
that:

(1) |C| < |II| and the fan-out of all gates in C is at most |Z|.

(2) C computes f despite &.

Furthermore, for all @ > 0, if d is the depth of Il and & = E4 X Ep
where E 4 is the set of alla € (2 U {*})VA such that a,, # * for at
most 8d values of v on any root to leaf path in G, and Ep is defined
analogously, then &’ contains all error patterns e’ = (a’,b’) such
that a], # = on at most 0d values of v" on an input to output path in
C and likewise for b’.

ProoF. The transformation T* on input IT and & has the follow-
ing steps:
(1) Let ITg be constructed as in Section 4.2. Trim IIg to a protocol
IIg, trim as in Section 3. Define &tyim to be the same as & but
restricted to the vertices that were not trimmed, i.e., we have
e’ = (a’,b’) € Eim if and only if there exists e = (a,b) € &
such that a (resp. b) agrees with a’ (resp. b’) on all the ver-
tices that were not trimmed. Observe that I1g tyjm, has the same
associated rectangle Rg ., = Xg o, X Yg o, for vertex v asin Il g.
Create a circuit C that has the exact same structure as I1g trim
with the nodes in V4 replaced by V gates, the nodes in Vg
replaced by A gates, and the nodes v € V replaced by the literal
2o,,- If for some v € V), there exists ((x, a), (y, b)) € Rg, ,, that
satisfies that x,,, = 0 and y,,, = 1, then negate the input to the
input gate corresponding to v.
Define the set &’ to be the set of all (a’,b’) for which there
exists (a,b) € Eyim such that a’ is the same as a except that if
a coordinate v was equal to o € X in g, then that coordinate is
now equal to v, in a’, and the same holds for b’ and b.

Item 1 holds straightforwardly. We show Item 2 by showing via
induction (from the leaves up) that for all untrimmed nodes v € V,
and all ((x, a), (y,b)) € Rg_ o, letting v also denote the correspond-
ing gate in C and * denote the error pattern *'* or " for the
circuit C (exactly which will be clear from context), we have that:

v(x, (a, %)) =1 and ou(y, (x,b)) = 0. 3)
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This suffices as short circuiting an A gate cannot change the output
from 1 to 0 and similarly short circuiting an V gate cannot change
the output from 0 to 1. For the base case, v is an input gate and Eq. (3)
holds because of the way we negate the gates in the transformation
T* and the fact that IT solves KW ¢ despite &. For the inductive step,
we fix a node v € V4 (the case v € Vg is analogous). Let £, C ¥
be the set of out-edges of v. As IIg tyim is trimmed, for all o € 2o,
there is an ((x, a), (y, b)) € Rg,,, such that hg ., ((x, a), (y,b)) = 0.
As v € V4, we have that hg ,, is a function of its first coordinate
implying that hg ,((x,a), (y’,b")) = o for all (y’,b") € Yg. By
Definition 3.2, we have that:

XS,'U < U X(S,va

oEY,

and Ygo C m Y& v,

oEY,

To see why this implies Eq. (3), note that for any ((x, a), (y, b)) €
Rg, v, we have

do €%y : ((x,a), (y,b)) € Rg v,

4
Yo € 2y Axs,a0) € Xg : ((x5,a5), (Y, b)) € Rg vy - @

By our induction hypothesis, the second part of Eq. (4) implies
Vs (y, (*,b)) = 0 for all o € Z,,. It follows that v(y, (x,b)) = 0.1t
remains to show v(x, (a, x)) = 1.If a;, = *, this is because of the first
part of Eq. (4) and the induction hypothesis. Otherwise, a,, = ¢*
for some 0 € Xy, then Eq. (2) implies that ((x, a), (y,b)) € Rg .
and an application of the induction hypothesis finishes the proof.

[m]

5 CONSTRUCTING ERROR RESILIENT
DAG-PROTOCOLS

In this section, we show a general transformation that maps a DAG-
protocol to an error resilient bag-protocol. Note that some of the
proofs are deferred to the full version. Formally, we show that:

THEOREM 5.1. Let 0 = 5—10 and € > 0. Let II be a paG-protocol of

size s and depth d that is rectangular-correct w.r.t. a search problem
S. There exists a DAG-protocol I’ (as defined in Section 5.2) such that
(1) I’ has size s’ = sOU0gd) gng depth d’ = O(d).
(2) If p is the number of root-to-leaf paths in I1, then it holds that
s” = p - poly(d).
(3) I solves S despite & = E54 X Eg whereE4 C (X' U {*})Vf/\ is
the set of alla € (X' U {*})V;\ such that a,y # * for at most
(0 — €)d’ values of v’ on any root to leaf path in G’, and Ep
is defined analogously.

Observe that the transformation in Theorem 5.1 together with
Theorems 3.7 and 4.4 proves Theorems 1.1 and 1.2. Our transforma-
tion is inspired by the “rewind-if-error” framework used in many
interactive coding schemes, starting with the work of Schulman [26].
The basic idea is to communicate according to the original protocol
until an error is detected, at which points the parties backtrack
until they reach a point of agreement. Indeed this is precisely the
error resilient protocol used in [18] for the standard tree-like com-
munication protocols (in the context of constructing error-resilient
formulas).

The main problem in our setting, is that a bAG-protocol can
have many paths from the root to any vertex and hence we can
no longer recall the entire transcript. We get around this problem
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by remembering only O(log d) nodes on the path, and it is these
nodes that the parties backtrack to. The nodes which we remember
are carefully chosen, and are referred to as “meeting points” (In the
actual proof, we use MP to denote these nodes and MPL to denote the
depths!! of these nodes) . We note that it is this additional storage
that causes the blowup in the size of the DAG-protocol.

More precisely, for any node in the original paG-protocol, the
depth x of the node determines a set MPL(x) of size at most O(log d),
such that for all x” € MPL(x), at most one meeting point at depth
x’ is “remembered”, ie., stored in MP, at this node, and no meeting
point at a depth outside MPL(x) is remembered.

5.1 Meeting Points

First, we define and establish properties of the set MPL(:). Through-
out this section, for non-negative integers x, y, we shall use Lx]y to
denote the largest multiple of y that is at most x, i.e, [x]y = L%J -y.
The notation [x, y] will denote the set of integers between x and y
(including x and y) while (x, y] will denote [x,y] \ {x}. The nota-
tions [x,y) and (x,y) are defined similarly. We work with a fixed
z > 0 in this section and consider the set Z = [0, 27) of integers
that can be represented using z bits.

5.1.1 Definition. We define the notion of meeting points:

Definition 5.2. Let x € Z and j € [z]. The j meeting point of x
is defined as

MPL(x) = max{[x]y-1 — 2771 oy.

We also define, for S C [z], the notation MPLg(x) = {MPL;j(x) | j €
S}. We shall omit the subscript S when S = [z].

Observe that the j" meeting point of x is at most 2/ away from
x, and thus, the set of meetings points is (roughly) evenly spaced
out geometrically. The term 2/~! is subtracted to make the meeting
points distinct for all j. The most important property of Defini-
tion 5.2 is that the function MPL changes in a very controlled way as
x, the depth of the node our simulation is currently at, is updated.
If we advance the simulation by one step and x increases by 1, then
we have that MPL(x + 1) is at most one element short of MPL (x) U {x}.
Similarly, we can also make precise claims (see Section 5.1.2) about
what happens when our simulation rewinds to an earlier meeting
point.

Next, we define some helpful notation concerning the binary
representation of an integer x € Z. For x € Z, we define the set:

ones(x) = {j € [z] | lxly < Lxlpy1} )
In other words, ones(x) is the set of all positions (ordered from the
least to the most significant) that are 1 in the binary representa-
tion of x. Observe that ones(x) is non-empty unless x = 0. The

following properties are straightforward consequences of the above
definitions.

LEMMA 5.3. We have MPL(0) = {0}. Forallx #+ 0 € Z and j >
max(ones(x)), we have MPL;(x) = 0.

Proor. That MPL(0) = {0} is direct. For the other part, note that
j > max(ones(x)) implies [x],-1 < 2/~ and use Definition 5.2.
|

More precisely, MPL will denote the “levels” of the nodes, and the level will be a
deterministic function of the depth.
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LEMMA 5.4. Forallx # 0 € Z and all j < j € [max(ones(x))],
we haveMPL;(x) > MPLj (x).

Proor. We first prove the result with j* = max(ones(x)). As
j < j’, we have that x > 2/ and from Definition 5.2 and Lemma 5.3,
we have MPLj(x) > 0 = MPLj(x). Now, consider the case 1 <
j < j < max(ones(x)) and use MPL;(x),MPLj(x) > 0 to get (by
Definition 5.2):

MPLj(x) = Lxlp1 = 2771 =[xy =277
> Lty =271 = MPLy ().
o

5.1.2  Maintaining Meeting Points. We next argue that Definition 5.2
ensures that the meeting points change in a fairly systematic way
as the protocol proceeds. For instance, the following lemma shows
that going from depth x to x + 1 “loses” at most one meeting point
(and also says which one), and gains one meeting point, which is
the node at depth x.

LEMMA 5.5. Let x,x + 1 be two consecutive elements of Z. Observe
that ones(x+1) # 0 and definek = min(ones(x+1)). Forallj € [z],
we have:

X, ifj=1
MPLj(x + 1) = AMPLj_1(x), if1<j<k.
MPL;(x), ifk<j<z

We can also compute what happens when our protocol back-
tracks from a node at depth x to a node at depth x” € MPL(x).
This is done in the following two lemmas, where the first lemma
considers the case where we backtrack to the k’th meeting point
for k € ones(x), and the latter considers backtracking to the k’th
meeting point where k € [z] \ ones(x). For the latter lemma, it
is sufficient to consider k < max(ones(x)) as otherwise, the k’th
meeting point is 0.

LEMMA 5.6. Let x € Z, k € ones(x) define x’ = MPL(x). If
x" > 0, then, for all j € [z], we have:
x' =271,

MPLj (x),

ifj € [k]

L0 = { fk<j<z’

Observe that in the foregoing lemma, MPL j (x”) for j € [k] is not
guaranteed to be in MPL(x), and thus may not be remembered at
x, and therefore also not remembered at x”. This is okay because
the meeting points are designed to be roughly geometrically apart,
and the fact that our simulation went from x to x’ means that it
rewound roughly 2 steps. Not remembering the meeting points
for j € [k] just means that the rewinds will be “delayed” by an
additional 2¥ steps which is just a constant factor more.

LEMMA 5.7. Let x € Z such that x > 0, and let k € [z] \ ones(x)
satisfy k < max(ones(x)). Define x’ = MPLy(x) and i* to be the
smallest i € ones(x) such thati > k. For all j € [z], we have:

x =2/, ifl1<j<k

MPL ;41 (x), ifk <j<i*
MPL;(x") = j+1(%) . if st

max{|x |y — 27,0}, ifj=i

MPL; (x), ifi*<j<z
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Lemma 5.7 follows from the following stronger lemma.

LEMMA 5.8. Let x € Z such that x > 0, and let k € [z] \ ones(x)
satisfy k < max(ones(x)). Define x’ = MPLy(x) and i* to be the
smallest i € ones(x) such thati > k. For all j € [k,i*], we have

Lx]gj-1 = [x]yi-1. For all j € [0, 2], we have
x’, ifo<j<k
IxJp = {x" + 2K 12/, ifk<j<i*.
Lx]o, ifi*<j<z

ProorF. The first part follows because [k, i*) N ones(x) = 0 by
our choice of i* and Eq. (5). For the second part, we first derive
several equivalent ways of writing x”. As x” = MPLg(x) > 0, we
have from Definition 5.2 that x” = [ x]yx-1 — 2k-1 = Lx g1 — 2k-1
by the first part. As i* € ones(x), we can extend this using Eq. (5)

to

= Lxlper = 2570 = Ll — 2570 = Ly + 20T - 2R
To finish the proof of the claim, we use x” = [ x]yx-1— 2k-1 implying
that x’ is a multiple of 2/ for j € [0, k) for the first case. For the
case k < j < i*,weusex’ = Lx]yie-1 = 2k=1 with the observation
that I_xJZi*,l is a multiple of 2. Finally, for i* < j < z, we use

x' = Lx]yim + 21"=1 _ 2k=1 apnd get:

Lx"Joi = LLx Ly Loy = LLxlyir i = Lx)y

5.2 The Error Resilient Protocol

We now define our transformation. The input to the transformation
is a parameter € > 0 and a DAG-protocol:

1= (3,G = (Va UV U Vo, B), tt, {ho Yoev,uvs» (00 oy, )-

Let p be a special ‘rewind’ symbol that is not an element of 3 and
define 3’ = SU{p}. Our transformation outputs a new DAG-protocol

' = (3,6" = (VAU VR UV E') it B Yo eviuvy (0 Yorevr ).

We assume without loss of generality that € = 27k for some
integer k > 0. We shall also assume that the protocol IT is alternating
and trimmed as defined in Section 3 and the number of layers d is
a power of 2. We first augment II by adding an alternating path
(i.e., a path where the nodes at even locations, starting from 0, are
in Vg4, and those at odd locations are in Vp) of length Kd to each
of the leaves v € V where K = 22K — 1. These assumptions can
be realized by increasing the depth and the number of root-to-leaf
paths by a constant factor, the size by a factor of O(d), and preserve
rectangular-correctness (Definition 3.4). From now on, when we
say II and d, we refer to this new protocol. We observe that II is
still alternating and the depth d is still a power of 2.

As I is alternating, the even layers (including 0) form the set
V4 and the odd layers form the set Vg. We group every pair of
consecutive internal layers, i.e., all the layers except the last one,
into a level and use L(v) to denote the level of an internal node v.
Formally, we define d(v) to be the depth of a node v, and L(v) =

l@ . Thus, the root rt satisfies d(rt) = L(rt) = 0 and for all

internal nodes v, the value of L(v) € Z = [0, 27), where z = log, d
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is an integer. We shall apply the theory developed in Section 5.1
with these values of z and Z.
We now proceed to define the protocol I1” formally.

The setV' = VA U Vé U V. We define the set V' to be:
V' =V xV x|[0,6d] x [0,6d] x [0,6d] x [0, 6d],

where V is the set of all subsets of V of size at most 10z. That is,
each element of V’ is a six-tuple, where (1) The first coordinate,
denoted by v(v’) is an element of V. (2) The second coordinate,
denoted by MP(¢’) is a non-empty subset of V, of size at most
10z. (3) The remaining coordinates, respectively ct4(v’), ctp(v’),
tcta(v’), and tctp(v’), are integers in [0, 6d]. We shall omit the
argument v’ from the above when it is clear from context. Note
that |V’| = |V|9®). We shall have v’ € Vy if either v € Vp or
max{tcty, tctg} = 6d.If v’ ¢ V/, we shall have v’ € Vf’\ (re-
spectively, Vé) if v € Vy (respectively, Vg). We shall abbreviate
ctq +ctpand tcty + tctp as ct and tct respectively.

The set E’. Each vertex v” € V; U V] has two kinds of edges
coming out of it, the forward edges and the rewind edge. There is
one forward edge for every out-edge of v = v(v’) and in addition,
there is a single extra rewind edge. We first specify the forward
edges. Let 0 € X be such that v has an out-edge labeled o. We
define the edge corresponding to o in G’ by specifying the vertex
vl it leads to. This is:

(6)

vl = (vg,MP™, cty, ctp, tety, tetp),
where:
MP™ = {u € MP U {v} | L(u) € MPL(L(vs)) U {L(vs)}).

We now specify the rewind edge by specifying the vertex v;, it leads
to. We do this assuming v” € V; as the case v’ € V is symmetric.
First, define u™ to be the element in MP N V4 that maximizes L(-)
and define D* = 2(L(v) —L(u*)) > 0. Note that we can equivalently
write D* = d(v) — d(u*) as both v, u™ € V4. Define:

v

5

(7)

, _ J(@MP,ctq +1,ctp, tcty +1,tctp), ifcty +1 < D*
P (w*,MP*, ct4 + 1 — D*, ctp, tcty + 1, tetp), ow.

where:
MP* = {rt}U{u € MP | d(u) < d(u*) AL(u) € MPL(L(x*)) U{L(u™)}}.

Intuitively, a rewind edge first looks for the largest u* € MP that it
can rewind to. Then, if the counter ct 4 is more than the difference
D* in the depths of u* and v, it jumps to u*, and otherwise, it
increments the counter and stays at v. The reason we keep a counter
instead of jumping to u* in “one go" is that maybe this edge was
taken due to an adversarial corruption, and one corruption should
not make us go back by D* in the depth. Also, note that, as u*,v €
V4, a rewind edge may lead to a node in V; from another node in
Vv and thus, the pag-protocol I1” is not alternating. Our definitions
above imply that for any edge (u’,v") € E’, we have

(2 tct(@’) +d(v(v)) — ct(v'))
- (2-tet(@’) + d(v(w’)) — ct(u)) = 1.
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This together with the fact that tct(v’) < 12d implies that the
graph G’ is acyclic and has depth

d’ < 25d. (®)

The root rt’. We define:

rt’ = (rt, {rt},0,0,0,0). )

Throughout, we shall restrict attention to vertices v’ such that there
is a path from rt’ to v’ by removing all the other vertices.

The functions {h,, ,}U,GVAU‘/{;. We state the definitions only for
v’ € V} as the definitions for v” € V} are analogous. Recall that
h!,: X xY — %' Let Ry = Xy X Yy, be the associated rectangles

of IT as in Definition 3.2. We have:
ho(x,y), ifYueMPU{v}:xeXy,

P, otherwise

o (x,y) = (10)

The values {O;r}v'eVO’» Recall that v” € V; if either v € Vp or
max{tcty, tctg} = 6d. In the former case, we define o;, = 0y
while in the latter case, we define 0;/ to be an arbitrary value € O.

5.2.1 Some Observations. The following observations follow from
the foregoing definitions. We use 1 (E) to denote the indicator func-
tion for the condition E, i.e., 1(E) = 1 if E holds and 0 otherwise.
(1) teta(@') — teta@) = 1(v/ € V4 AV’ = uj).
@) L@)) - Low)) < 1(u/ € ViAo #u)).

(3) (") - cta@)~(dEW)) - cta@)) < 1(o/ # u))-
]l(u’ € Vf" AV = u;,)

OBSERVATION 5.9. For all (u’,v’) € E’, we have:

The following observations make use of Definition 5.2 and the
way E’ is defined.

OBSERVATION 5.10. For allv’ € V' reachable from rt’, and all
u € MP, we have d(u) < d(v). Moreover, the inequality is strict unless
v =rt

OBSERVATION 5.11. For allv’ € V' reachable from rt’, we have
d(u) # d(’) for allu # u’ € MP. We also have L(u) € MPL(L(v)) U
{L(v)} forallu € MP U {v}.

Note that Observation 5.11 implies that the number of vertices
stored in MP(v”) for any v’ that is reachable from rt’ is at most 10z.

LEmMA 5.12. Forallv’ € V' reachable from rt’, there exists a path
fromrt tov in G such that contains all vertices in MP.

Proor. Proof by induction on the distance from rt’ to v’. The
base case is when rt’ = v’ and holds trivially from our definitions.
For the inductive step, let v’ # rt” € V’ and u’ be arbitrary such
that (u’,v’) € E’. This gives us two cases based on whether the
edge (u’,v’) is a forward or a rewind edge. In the former case,
Eq. (6) holds and v = u, for some o € ¥ and MP C MP(u’) U {u}.
The result now follows from the induction hypothesis on u’.

Assume now that the edge (u’,v’) is a rewind edge implying
that Eq. (7) holds. If the first case of Eq. (7) is true, then u = v and
MP(u’) = MP and the result follows from the induction hypothesis.
We can therefore assume that the second case of Eq. (7) is true.
In this case v = u* for some u* € MP(u’) and all vertices w € MP
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satisfy w € MP(¢*) and d(w) < d(u*). The result now follows from
the induction hypothesis. O
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