
Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates:
Near-Optimal Deterministic Parallel and Distributed

Algorithms∗

Václav Rozhoň
ETH Zurich
Switzerland

Christoph Grunau
ETH Zurich
Switzerland

Bernhard Haeupler
ETH Zurich
Switzerland

Carnegie Mellon University
USA

Goran Zuzic
ETH Zurich
Switzerland

Jason Li
UC Berkeley

USA

ABSTRACT

This paper presents near-optimal deterministic parallel and dis-

tributed algorithms for computing (1+𝜀)-approximate single-source

shortest paths in any undirected weighted graph.

On a high level, we deterministically reduce this and other shortest-

path problems to𝑂 (1) 1 Minor-Aggregations. AMinor-Aggregation

computes an aggregate (e.g., max or sum) of node-values for every

connected component of some subgraph.

Our reduction immediately implies:

Optimal deterministic parallel (PRAM) algorithms with𝑂 (1)
depth and near-linear work.

Universally-optimal deterministic distributed (CONGEST)

algorithms, whenever deterministic Minor-Aggregate algo-

rithms exist. For example, an optimal𝑂 (HopDiam(𝐺))-round
deterministic CONGEST algorithm for excluded-minor net-

works.

Several novel tools developed for the above results are interesting

in their own right:

A local iterative approach for reducing shortest path com-

putations łup to distance 𝐷ž to computing low-diameter

∗VR and CG received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement
No. 853109). BH was supported in part by NSF grants CCF-1814603, CCF-1910588,
NSF CAREER award CCF-1750808, a Sloan Research Fellowship, funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (ERC grant agreement 949272), and the Swiss National Foun-
dation (project grant 200021-184735) GZ was supported in part by the Swiss National
Foundation (project grant 200021-184735). JL was supported by the Simons Foundation
and the Simons Institute for the Theory of Computing.
1We use𝑂-notation to suppress polylogarthmic factors in the number of nodes 𝑛, e.g.,

𝑂 (𝑚) =𝑚 log𝑂 (1) 𝑛. We use the term near-linear to mean𝑂 (𝑚) .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’22, June 20ś24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00
https://doi.org/10.1145/3519935.3520074

decompositions łup to distance 𝐷
2 ž. Compared to the re-

cursive vertex-reduction approach of [48], our approach is

simpler, suitable for distributed algorithms, and eliminates

many derandomization barriers.

A simple graph-based𝑂 (1)-competitive ℓ1-oblivious routing

based on low-diameter decompositions that can be evaluated

in near-linear work. The previous such routing [64] was

𝑛𝑜 (1) -competitive and required 𝑛𝑜 (1) more work.

A deterministic algorithm to round any fractional single-

source transshipment flow into an integral tree solution.

The first distributed algorithms for computing Eulerian ori-

entations.

CCS CONCEPTS

· Theory of computation→Distributed algorithms; Parallel

algorithms.

KEYWORDS

Distributed Algorithms, Parallel Algorithms, Shortest Path

ACM Reference Format:

Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Ja-

son Li. 2022. Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates: Near-

Optimal Deterministic Parallel and Distributed Algorithms. In Proceedings

of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC

’22), June 20ś24, 2022, Rome, Italy. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3519935.3520074

1 INTRODUCTION

This paper gives essentially near-optimal2 deterministic parallel

algorithms for various (1+𝜀)-approximate shortest-path-type prob-

lems in undirected weighted graphs. These problems include com-

puting (1+𝜀)-approximate shortest paths or shortest path trees from

a single source (shortened to (1 + 𝜀)-SSSP) and (1 + 𝜀)-approximate

minimum transshipment (shortened to (1 + 𝜀)-transshipment). Our

algorithms run in polylogarithmic time and require near-linear

2We refer to optimality up to polylogarithmic factors as near-optimality, while almost-

optimality refers to optimality up to subpolynomial, i.e., 𝑛𝑜 (1) , factors.

478

STOC ’22, June 20ś24, 2022, Rome, Italy Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

work. This is optimal up to polylogarithmic factors. All prior paral-

lel deterministic algorithms with polylogarithmic depth for (1 + 𝜀)-
SSSP required 𝑛Θ(1) more work and, to our knowledge, no sub-

quadratic work NC algorithm was known for (1+𝜀)-transshipment.

We also give deterministic distributed algorithms for the above

problems, including the first non-trivial distributed deterministic

(1 + 𝜀)-transshipment algorithm.

Computing a single-source shortest path is one of the most fun-

damental problems in combinatorial optimization. Already in 1956,

Dijkstra [14] gave a simple deterministic𝑂 (𝑚 log𝑛) time algorithm

for computing an exact single-source shortest path tree in any

directed graph. Parallel and distributed algorithms on the other

hand have been subject of over three decades of extensive research

[1, 7, 9, 10, 17, 19ś25, 31, 36, 39, 40, 44, 47, 49, 59ś61, 64, 65] with

much remaining unknown. Much recent research has focused on

(1 + 𝜀)-approximate shortest paths in undirected graphs, the prob-

lem solved in this paper. We provide a detailed summary of this

prior work next and describe related work on SSSP algorithms in

other computational models or on other related problems, includ-

ing all-pair-shortest-path and SSSP in directed graphs, in the full

version of the paper. We focus on randomized and deterministic

parallel algorithms with polylogarithmic depth, i.e., RNC and NC

algorithms.

Parallel Algorithm. The PRAM model of parallel computation

was introduced in 1979. After a decade of intense study, Karp and

Ramachandran noted in their influential 1989 survey on parallel

algorithms [43] that the łtransitive closure bottleneckž for shortest-

path-type problem required work łfar in excess of the time required

to solve the problem sequentiallyž. Indeed, these algorithms build on

matrix multiplication or on transitive closure routines and require

𝑂 (𝑛3) work. A line of work [12, 44, 59ś61] provided algorithms

with different work-time trade-offs but without much improvement

on the cubic work bound for fast parallel algorithms.

In a major breakthrough, Cohen [10] gave a randomized (1 + 𝜀)-
SSSP algorithm based on hopsets with 𝑂𝜌 (1) time and 𝑂 (𝑚1+𝜌)
work for any constant 𝜌 > 0. Algorithms with slightly improved

time-work tradoffs were given [21, 22] but these algorithms still

required a polynomial𝑚𝜌 factor more work than Dijkstra’s algo-

rithm to parallelize shortest path computations to polylogarithmic

parallel time.

This remained the state-of-the-art until 2020 when methods

from continuous optimization developed by Sherman [56, 58] en-

abled further progress on shortest-path type problems. In particular,

Sherman gave an 𝑚 · 𝑛𝑜 (1) sequential algorithm for the (1 + 𝜀)-
approximate minimum transshipment problem. Transshipment, also

known as uncapacitated min-cost flow, Wasserstein distance, or

optimal transport, is the other major problem solved in this paper.

The input to the transshipment problem on some weighted graph𝐺

consists of a demand 𝑏 which specifies for each node a positive or

negative demand value with these values summing up to zero. The

goal is to find a flow of minimum cost which sends flow from nodes

with surplus to nodes with positive demands. Here the cost of rout-

ing a unit of flow over an edge is proportional to the weight/length

of the edge. For example, an optimal transshipment flow for a de-

mand with 𝑏 (𝑠) = −1 and 𝑏 (𝑡) = 1 is simply a unit flow from 𝑠 to

𝑡 which decomposes into a distribution over shortest (𝑠, 𝑡)-paths.

We remark that transshipment is in many ways a powerful gen-

eralization of shortest-path problems, including computing SSSP

(trees), with the exception that extracting trees or paths from a

continuous transshipment flow often remains a hard problem itself

which requires highly nontrivial rounding algorithms. While hav-

ing an innocent feel to them, such rounding steps have a history of

being inherently randomized and being algorithmic bottlenecks for

shortest-path problems on several occasions.

Sherman’s almost-linear time transshipment algorithm did not

imply anything new for SSSP at first, but it inspired two indepen-

dent approaches by [48] and Andoni, Stein, and Zhong [2] that led

to near-optimal randomized parallel shortest path algorithms with

polylogarithmic time and near-linear work. In particular, Li [48]

improved several parts of Sherman’s algorithm and combined it

with the vertex-reduction framework that Peng [53] had introduced

to give the first near-linear time algorithm for (1 + 𝜀)-maximum-

flow. [48] also adopts a randomized rounding algorithm of [7] based

on random walks to extract approximate shortest-path trees from

transshipment flows. Overall, this results in randomized PRAM al-

gorithms for both (1+ 𝜀)-transshipment and (1+ 𝜀)-SSSP with poly-

logarithmic time and near-linear work. Concurrently, Andoni, Stein,

and Zhong [2] achieved the same result for (1+𝜀)-transshipment by

combining Sherman’s framework with ideas from hop-sets. They

also provide a randomized rounding based on random walks algo-

rithm that can extract an 𝑠-𝑡 shortest path. Later, this rounding was

extended in Zhong’s thesis [62] to extract the full (1 + 𝜀)-SSSP tree.

It is remarkable that all parallel (1+𝜀)-SSSP algorithms described

above (with the exception of the super-quadratic work algorithms

before Cohen’s 25 year old breakthrough) crucially rely on ran-

domization for efficiency. Indeed, the only modern deterministic

parallel (1 + 𝜀)-SSSP algorithm is a very recent derandomization of

Cohen’s algorithm by Elkin and Matar [19]. This algorithm suffers

from the familiar 𝑂 (𝑚1+𝜌) work bound for a polylogarithmic time

parallel algorithm. For the (1 + 𝜀)-transshipment problem even less

is known. Indeed we are not aware of any efficient deterministic

parallel algorithm before this work and would expect that much

larger polynomial work bounds would be required to achieve a

deterministic algorithm with polylogarithmic parallel time.

In this paper, we give deterministic parallel algorithms for both

the (1+𝜀)-SSSP and the (1+𝜀)-transshipment problem in undirected

weighted graphs. Both algorithms only require near-linear work

and run in polylogarithmic time. This solves these two and various

other shortest-path-type problems optimally, up to polylogarithmic

factors.

Theorem 1.1 (Deterministic Parallel SSSP and Transship-

ment). There is a deterministic parallel algorithm that, given an

undirected graph with nonnegative weights, computes a (1 + 𝜀)-
approximate single-source shortest path tree or a (1+𝜀)-approximation

to minimum transshipment in 𝑂 (𝑚 · 𝜀−2) work and 𝑂 (1) time in the

PRAM model for any 𝜀 ∈ (0, 1].

Distributed Algorithm. We also give new distributed (1+ 𝜀)-SSSP
and (1 + 𝜀)-transshipment algorithms in the standard CONGEST

model of distributed computing. For distributed algorithms a lower

bound of Ω(
√
𝑛 + HopDiam(𝐺)) rounds is known for worst-case

topologies [16, 55], where HopDiam(𝐺) is the unweighted (i.e.,

hop) diameter of the network. We refer to this as the existential

479

Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms STOC ’22, June 20ś24, 2022, Rome, Italy

lower bound since it depends on the parameterization by (𝑛,Hop-
Diam(𝐺)), as opposed to the later-discussed universal lower bound

which does not.

In his 2004 survey on distributed approximation, Elkin [15]

pointed to the distributed complexity of shortest paths approxi-

mations as one of two fundamental and wide-open problems in the

areaÐas no non-trivial algorithms complementing the above lower

bounds were known.

Since then, the (1 + 𝜀)-SSSP problem is one of the most studied

problems. We only give a brief summary here: Lenzen and Patt-

Shamir gave an𝑂 (𝑛1/2+𝜀+HopDiam(𝐺))-round𝑂 (1+ log 1/𝜀
𝜀)-SSSP

algorithm [46] and a (1 + 𝑜 (1))-approximation in 𝑂 (𝑛1/2 · Hop-
Diam(𝐺)1/4 +HopDiam(𝐺)) rounds was given by Nanongkai [49].

Building on Sherman’s transshipment framework mentioned be-

fore, [7] gave a randomized𝑂 (𝜀−3 · (
√
𝑛+HopDiam(𝐺))) algorithm.

The first algorithm improving over the Ω(
√
𝑛) barrier was given

in [36] with a running time of ShortcutQuality(𝐺) · 𝑛𝑜 (1) albeit
with a bad 𝑛𝑜 (1) -approximation. This was recently improved by

[64] to a (1 + 𝜀)-approximation with the same round complexity.

Using [28], this gives a (1+ 𝜀)-approximation algorithm with round

complexity HopDiam(𝐺) · 𝑛𝑜 (1) for any excluded minor topology

(e.g., planar graphs). All the above algorithms are randomized: The

only deterministic distributed algorithm is the (1+𝑜 (1))-SSSP algo-

rithm of [40] with a (𝑛1/2+𝑜 (1) +HopDiam(𝐺)1+𝑜 (1)) running time.

For (1 + 𝜀)-transshipment, the only known sublinear distributed

algorithm is the randomized ShortcutQuality(𝐺) · 𝑛𝑜 (1) -round al-

gorithm of [64]. No non-trivial deterministic distributed (1 + 𝜀)-
transshipment algorithm (with sub-linear round complexity) was

known prior to this work.

The distributed results of this paper include deterministic dis-

tributed algorithms for (1 + 𝜀)-SSSP, its generalization (1 + 𝜀)-set-
source shortest path (in which we are looking for distances from a

subset of nodes), and (1 + 𝜀)-transshipment. Our results improve

over the previous best running times of deterministic distributed

algorithms for each of the above problems, both in the worst-case

and for any excluded minor graph. Both the round and the message

complexities (in 𝐾𝑇0, see [52] for the definition) of our algorithms

are (existentially) optimal, up to poly log𝑛 factors, in all cases.

Theorem 1.2 (Deterministic Distributed SSSP and Trans-

shipment). There are deterministicCONGEST algorithms that, given

an undirected graph with non-negative weights, compute a (1 + 𝜀)-
approximate set-source shortest path forest or a (1+ 𝜀)-transshipment

solution for any 𝜀 ∈ (0, 1]. Our algorithms have an optimal message

complexity of 𝑂 (𝑚) · 𝜀−2 and are guaranteed to terminate

(1) within at most 𝑂 (
√
𝑛 + HopDiam(𝐺)) · 𝜀−2 rounds and

(2) within at most 𝑂 (HopDiam(𝐺)) · 𝜀−2 rounds if 𝐺 does not

contain any 𝑂 (1)-dense minor.

Universal optimality. Recently, the pervasive Ω̃(HopDiam(𝐺) +√
𝑛) distributed lower bounds have been extended to a near-tight

universal lower bound [38] which shows that most optimization

problems including all problems studied in this paper require

Ω̃(ShortcutQuality(𝐺)) rounds on any communication graph 𝐺 .

Here ShortcutQuality(𝐺) is a natural graph parameter (we refer

the interested reader to [38] for a formal definition). For experts

interested in universally-optimal distributed algorithms we remark

distance structures

ℓ1-oblivious routing (1 + ε) transshipment

(sparse neighborhood cover
+ distance information)

distance structures

ℓ1-oblivious routing

(1 + ε) transshipment

(1 + ε) set-shortest path

up to D/poly log n

distance structures
up to distance D

boosting [She13]

up to distance D

up to distance D

up to distance D

distance reduction

rounding [Li20]

(1 + ε) set-shortest path

ℓ1-oblivious routing
graph based

Figure 1: This figure summarizes our approach with our

contributions marked in red. It is known that a 𝑂 (1)-
competitive solution to ℓ1-oblivious routing can be boosted

to a (1 + 𝜀)-approximate transshipment which can then be

rounded to yield a (1+𝜀)-approximate SSSP tree.We close the

circle of reductions by constructing certain distance struc-

tures from the approximate SSSP tree. Think of those dis-

tance structures as a family of clusterings on different scales,

storing some additional distance information. One of our

main technical contributions is the efficient construction

of a 𝑂 (1)-approximate oblivious routing from the distance

structures, which closes the loop.

This loop of reductions itself is not very useful as the com-

plexity of the problems does not decrease. We break this

loop by our distance reduction framework by showing one

can construct distance structures łup to distance 𝐷ž us-

ing distance structures łup to distance 𝐷/poly log𝑛. After
𝑂 (log𝑛) iterations, we build up the desired solution to any

of the four problems, in particular to approximate transship-

ment and set-SSSP.

that the results of this paper imply strong conditional results. We

state these results for the interested reader in Section 2.3.

1.1 Technical Overview

While the results for SSSP and transshipment are important, the

main impact of this paper will likely be the new tools and algo-

rithmic ideas developed in this paper. We expect these ideas to be

applicable beyond shortest path problems. Next, we give a brief

summary of the most relevant parts and ideas of prior work which

are needed to understand our work and put in proper context. We

then give an informal high-level overview of our new algorithm

and some of the new tools developed for it. A readable and more

precise technical proof overview is given in Section 2.

1.1.1 Background and Prior Work.

Transshipment Boosting, ℓ1-Oblivious Routing, and Transshipment

Flow Rounding. All modern SSSP-algorithms, including ours, com-

pute shortest paths via the transshipment problem (see text before

Theorem 1.1 for a definition). The key idea in this approach of Sher-

man [56, 58] is that even a rather bad𝛼-approximation algorithm for

(dual) transshipment can be boosted to a (1+𝜀)-approximation. This

is achieved via the multiplicative weights method (or equivalently:

gradient descent) and requires only poly(𝛼, 𝜀−1, log𝑛) invocations

480

STOC ’22, June 20ś24, 2022, Rome, Italy Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

of the 𝛼-approximation algorithm [7, 58, 63]. A particularly con-

venient way of obtaining such a boostable 𝛼-approximation is to

design a linear matrix 𝑅 which maps any node-demand 𝑏 to an

𝛼-approximate transshipment flow for 𝑏. Such a matrix is called

an ℓ1-oblivious routing because linearity forces each node to route

its demand obliviously, i.e., without knowledge of the demand on

other nodes. As mentioned before, in order to obtain an actual

(1 + 𝜀)-SSSP tree from a transshipment flow most algorithms [48]

are using an approach of [6] which produces a (1 + 𝜀)-SSSP tree

after 𝑂 (log𝑛) adaptive applications of some rounding algorithm.

All parts of this reduction except for the rounding algorithm are

deterministic.

Putting all these pieces together proves that all one needs to

obtain an efficient (deterministic) algorithm for both the (1 + 𝜀)-
transshipment and the (1 + 𝜀)-SSSP problem is a 𝑂 (1)-competitive

ℓ1-oblivious routing that can be evaluated efficiently and a (deter-

ministic) rounding algorithm. Our algorithm uses these steps in a

black-box fashion except that we need to replace the randomized

rounding algorithm by a new deterministic transshipment flow

rounding procedure.

Vertex Reduction Framework. Unfortunately, it is clear that ℓ1-

oblivious routing cannot be done without having some approximate

shortest path information. This chicken and egg problem is resolved

via a clever vertex-reduction framework of Li [48]. The vertex-

reduction framework relies on a cyclic sequence of efficient prob-

lem reductions. For transshipment [48], these problems are SSSP,

transshipment, ℓ1-oblivious routing, and ℓ1-embedding. Specifically:

• To solve (1 + 𝜀)-SSSP on 𝐺 , it is sufficient to solve (1 + 𝜀)-
transshipment on 𝐺 ,

• for which it is sufficient to construct 𝑂 (1)-competitive ℓ1-

oblivious routing on 𝐺 (via boosting),

• for which it is sufficient to construct an 𝑂 (1)-distortion ℓ1-
embedding on 𝐺 ,

• for which it is sufficient to solve𝑂 (log2 𝑛) instances of𝑂 (1)-
SSSP on a sequence of graphs 𝐺 ′

1,𝐺
′
2, . . . ,𝐺

′
𝑂 (log2 𝑛) , which

are resolved recursively.

As stated, this simply reduced (1 + 𝜀)-SSSP on 𝐺 to multiple 𝑂 (1)-
SSSP on graphs that are slightly larger than 𝐺 , which isn’t particu-

larly helpful on its own. The key idea to transform this łbranching

cyclež into a branching spiral that terminates (fast) is to add a step

into the cycle which applies ultrasparsification on 𝐺 ′
𝑖 , which is

an operation that transforms a graph with 𝑛 nodes to a smaller

graph with 𝑛
𝛾 nodes such that distances in the smaller graph 𝑂 (𝛾)-

approximate distances in the larger graph. Applying this step, we

can reduce (1 + 𝜀)-SSSP on a graph with 𝑛 nodes to 𝑂 (log2 𝑛) in-
stances of𝑂 (1)-SSSPs on smaller graphs with𝑂

(
𝑛

log100 𝑛

)
nodes. It

is easy to see that the total size of all recursive calls falls exponen-

tially on each subsequent level, hence the total parallel runtime is

𝑂 (1) and the total work𝑂 (𝑚) (since a single sequence of reductions
requires 𝑂 (𝑚) work).

Minor Aggregates and the Low-Congestion Shortcuts Framework.

The low-congestion shortcuts framework was originally intended

for designing simple and efficient distributed graph algorithms and

was developed over a long sequence of works [27ś30, 33ś35, 37,

38, 45]. However, this paper argues that the framework provides

a natural language even for developing fast parallel algorithms.

Indeed, we present our parallel SSSP algorithm using the framework

and our hope is that this choice simplifies the exposition, even

before considering the benefits of immediately obtaining distributed

results.

We describe our algorithms in the recently introduced Minor-

Aggregationmodel [32, 64], which offers an intuitive interface to the

recent advancements in the low-congestion shortcut framework. In

the Minor-Aggregation model, one can (1) contract edges, thereby

operating a minor, (2) each (super)node in the contracted graph

can compute an aggregate (e.g., min, max, sum) of surrounding

neighbors, and (3) add 𝑂 (1) arbitrarily-connected virtual nodes

over the course of the algorithm. The goal is to design 𝑂 (1)-round
algorithms in this model. Such aMinor-Aggregation algorithm can

be compiled to a near-optimal algorithm in both the parallel and

distributed settings.

1.1.2 Our New Tools.

Near-Optimal Graph-Based ℓ1-oblivious routing. The first key

contribution of this paper is a new construction of graph-based

ℓ1-oblivious routing with drastically improved guarantees from

the so-called sparse neighborhood covers. A sparse neighborhood

cover of distance scale 𝐷 is a collection of 𝑂 (log𝑛) clusterings
(partitioning of the node set into disjoint clusters) such that (1)

each cluster has diameter at most 𝐷 , and (2) each ball in 𝐺 of ra-

dius 𝐷/(log𝐶 𝑛) is fully contained in at least one cluster (for some

fixed constant 𝐶 > 0). Specifically, given sparse neighborhood

covers for all 𝑂 (log𝑛) exponentially-increasing distance scales

𝛽, 𝛽2, 𝛽3, . . . , poly(𝑛) for some 𝛽 = 𝑂 (1) along with some extra dis-

tance information, we construct an 𝑂 (1)-competitive ℓ1-oblivious

routing. The algorithm greatly differs from all prior approaches, as

all of them had inherent barriers preventing them from achieving

deterministic near-optimality, which we describe below.

Derandomization issues: Efficient constructions of an ℓ1-oblivious

routing either use an ℓ1-embedding or so-called low-diameter de-

compositions; this is a clustering problem whose deterministic

version is also known as a sparse neighborhood cover. Sparse neigh-

borhood covers were introduced in the seminal work of [4] and

applied with great success for many problems, including approxi-

mate shortest paths and other distance based problems [5, 13].

Since an efficient deterministic ℓ1-embedding is not known, we

need a deterministic construction of sparse neighborhood covers.

Luckily, many of the ideas required to derandomize the computa-

tion of sparse neighborhood covers were developed very recently

by a sequence of papers that derandomized the closely related net-

work decomposition problem which is, essentially, an unweighted

version of the sparse cover problem [8, 26, 54]. In [18], these un-

weighted results were extended to an algorithm constructing sparse

neighborhood covers for weighted graphs and this is the result that

we use to solve the shortest path problem here.

Distance-reduction framework: Iterative and Locality-Friendly.

As we explained earlier, our new ℓ1-oblivious routing construction

reduces the SSSP problem in 𝐺 to computing sparse neighborhood

covers along with some extra distance information. Clearly, this

481

Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms STOC ’22, June 20ś24, 2022, Rome, Italy

requires our SSSP computation to compute some distance informa-

tion, leading again to a chicken and egg problem. Unfortunately,

directly applying the vertex-reduction framework is not compatible

with our desire to obtain fast minor-aggregation (or distributed)

algorithms. In particular, at the lowest level of the recursion, the

vertex-reduction framework generates a polynomial number of

constant-size SSSP problems, each of which essentially corresponds

to a minor of 𝐺 . While these problems can each be solved in con-

stant time in the parallel setting, the fact that these minors can

be arbitrarily overlapping and each correspond to large diameter

subsets in 𝐺 means that polynomially many instead of the desired

polylogarithmic number of minor aggregations are necessary.

This paper therefore designs a novel, completely different, and

more locality-friendly complexity-reduction framework: distance

reduction. On a high-level, we show that obtaining łsparse neigh-

borhood covers up to distance scale 𝐷ž can be reduced to several

łshortest path computations up to distance𝐷ž which are computable

from łsparse neighborhood covers up to distance𝐷/poly log𝑛ž (see
Figure 1). This iterative and local nature of our distance-reduction

framework directly translates into a small overall number of minor

aggregations; this is in stark contrast to the inherently recursive

vertex-reduction framework (which recurses on different graphs,

requiring a recursive approach). As a nice little extra, combining our

distance-reduction framework with the new ℓ1-embedding makes

for an algorithm that is (in our not exactly unbiased opinion) a

good bit simpler than the previous algorithms of [2, 48]. We note

that this framework is more reminiscent of older approaches to

hopset constructions [10, 20]. In these approaches, hopsets over

longer paths which use at most ℓ/2 edges are used to bootstrap the

construction of hopsets over paths using at most ℓ edges.

A key definition to formalize what exactly the łup to distance 𝐷ž

in our distance-reduction framework means is the following. We

attach a virtual, so-called, cheating node and connect it to all other

nodes with an edge of length𝐷 . This new graph naturally preserves

distance information łup to distance 𝐷ž and the complexity of

computing distances increases as 𝐷 increases.

Derandomization: Deterministic Transshipment Flow Rounding

via Eulerian Tours. All previous transshipment approaches crucially

use randomization. The most significant challenge we had to over-

come in making our results deterministic stem from the following

issue: The only problem that remains to be derandomized in this

paper is rounding a (fractional) transshipment solution to (a flow

supported on) a tree, a crucial step in the distance-reduction frame-

work. We prove the following theorem (only the parallel version is

stated for simplicity).

Theorem 1.3. There is a deterministic parallel algorithm which

takes as an input any fractional transshipment flow 𝑓 satisfying some

single-source transshipment demand 𝑏 in the graph 𝐺 and in near-

linear work and polylogarithmic time outputs a flow 𝑓 ′ of equal or
smaller cost which is supported on some tree in 𝐺 .

While such a flow rounding seems an unlikely bottleneck for a

deterministic SSSP algorithm, we remark that even for randomized

algorithms a lot of complexity has come from this rounding step

in the algorithms of [2, 7, 48]Ðall these approaches are based on

random walks and are inherently randomized.

Note that if the fractional flow 𝑓 is acyclic (has no directed cycles),

then there is a trivial randomized rounding which simply samples

one outgoing edge for each node in𝐺 through which flow is routed,

choosing the probability of each edge proportional to the outflow in

𝑓 . It is easy to see that retaining the edges that are in the connected

component of the source truthfully samples a tree-supported flow

from 𝑓 . The complexity comes in once 𝑓 is not acyclic as the sampled

edges can now create many connected components. This requires

finding the cycles in these components, contracting the edges and

again running a randomized out-edge sampling on the remaining

graph.

Deterministically none of the above works. Indeed, we are not

aware of any simple(r) way of deterministically obtaining a tree-

supported flow even if 𝑓 is acyclic. Our rounding procedure can be

seen as a generalization of an algorithm of Cohen’s rounding [11],

which can be used to round any fractional transshipment flow to

an integral flow by scaling flow values to only leave integral and

half-integral flow values and then finding an Eulerian tour covering

all half-integral edges. Pushing one half-unit of flow in the cheaper

direction of this Eulerian tour makes all flow values fully integral

and allows the scaling to be reduced. At the end of this procedure,

all flow values are integral but this does not guarantee that the flow

is supported on a tree. To eliminate any non-tree like parts of the

flow we show how to keep the algorithm running and find further

Eulerian tours until the flow becomes tree-supported.

A Distributed Eulerian Tour Algorithm. The problem of comput-

ing Eulerian Tours can be stated as follows. Given an undirected

graph with all degrees even, direct the edges in such a way that

the out-degree of every node equals the in-degree. Note that we

do not require connectedness. While computing Eulerian tours is a

well-known parallel primitive which can be efficiently computed

in near-linear work and polylogarithmic time [3], there are, to our

knowledge, no distributed algorithms known for this problem.

Therefore, to also give distributed SSSP algorithms in this paper

we need to design efficient distributed Eulerian-tour algorithms that

can then be used in the Eulerian-tour-based rounding procedure

of Theorem 1.3. We build the first algorithm computing such an

Eulerian tour orientation by using algorithms from [50, 51] for low-

congestion cycle covers. Interestingly, these low-congestion cycle

covers were only developed for the completely unrelated purpose

of making distributed computation resilient to Byzantine faults

introduced by an adversary in a recent line of work [41, 42, 50, 51].

Theorem 1.4 (Informal). There is a deterministic CONGEST

algorithm which, given any Eulerian subgraph 𝐻 of the network 𝐺

as an input, computes an Eulerian tour orientation in 𝑂 (
√
𝑛 + Hop-

Diam(𝐺)) rounds or 𝑂 (HopDiam(𝐺)) rounds if 𝐺 is an excluded-

minor graph.

Themost general and fully formal statements of all results proven

in this paper are given in Section 2.3.

2 SSSP VIA MINOR-AGGREGATIONS: A
LOCAL ITERATIVE REDUCTION CYCLE

In Section 1 and Figure 1, we gave an idealized and informal de-

scription of our algorithm. The real set of reductions our algorithm

is built on is not quite the perfect cycle from Figure 1, but instead

482

STOC ’22, June 20ś24, 2022, Rome, Italy Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

it looks like Figure 2. In Section 2.1, we give a formal definition for

each part of this new łcyclež and explain how the parts of the new

cycle correspond to parts in the old cycle. Once we have defined

each part of the new cycle, each arrow in Figure 2 corresponds

to a formal statement. These formal statements can be found in

Section 2.2, along with informal explanations how the statements

can be proven.

Finally, Section 2.3 contains statements of our main theorems to-

gether with simple proof sketches. The formal proofs for all the

results stated in Section 2.2 and Section 2.3 can be found in the full

version of the paper.

Distance structure
for scales Dj , 1 ≤ j < i

OObliv
Di

OForest
1/ log3 n,D

for D ∈ [Di

poly log n
, Di]OPot

Di

ORound OEuler

Sparse Neighborhood Cover
with diameter Di

Lemma 3.13

Lemma 3.10

Lemma 3.11

Lemma 3.12

Distance structure
for scale Di

Lemma 3.14

Figure 2: The figure illustrates a single iteration of our local

iterative reduction cycle. At the beginning of the cycle, the

algorithm has already computed a distance structure for ev-

ery scale 𝐷 𝑗 with 𝐷 𝑗 < 𝐷𝑖 . After completion of the cycle,

the algorithm has computed a distance structure for scale

𝐷𝑖 , under the assumption that it has access to the rounding

oracleO𝑅𝑜𝑢𝑛𝑑 (or theEulerian-Orientation oracleO𝐸𝑢𝑙𝑒𝑟).

Lemma 2.9 states this result formally. Moreover, each arrow

in the cycle corresponds to a formal statement of the follow-

ing form: Given 𝐴 (and 𝐵), then one can efficiently (in 𝑂 (1)
Minor-Aggregation rounds) compute 𝐶.

2.1 Key Definitions and Oracles

The definition of the oblivious routing oracle O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

relies on the

definition of the graph 𝐺𝑆,𝐷 and the definition of distance scales.

We start with the definition of the graph 𝐺𝑆,𝐷 .

Definition 2.1 (Graph 𝐺𝑆,𝐷). Let 𝑆 ⊆ 𝑉 and 𝐷 ∈ [poly(𝑛)]. We

construct the graph 𝐺𝑆,𝐷 = (𝑉 ∪ {𝑣𝐷 , 𝑠∗}, 𝐸 ∪ {{𝑣𝐷 , 𝑢} | 𝑢 ∈
𝑉 } ∪ {{𝑠∗, 𝑢} | 𝑢 ∈ 𝑆}) by adding two additional nodes 𝑣𝐷 and 𝑠∗

to 𝐺 . The node 𝑣𝐷 is connected to each node in 𝑉 and the node 𝑠∗

is connected to all the nodes in 𝑆 , with all the new edges having a

weight of 𝐷 . Moreover, we denote with𝐺𝑆 the unweighted graph

one obtains by discarding the edge weights in the weighted graph

𝐺𝑆,𝐷 .

Informally speaking,𝐺𝑆,𝐷 preserves distance information only

up to distance 2𝐷 . More formally, any shortest path between two

nodes in 𝐺 remains a shortest path in 𝐺𝑆,𝐷 if this path is of length

at most 2𝐷 . Shortest paths in 𝐺 longer than 2𝐷 , on the other hand,

are not preserved in 𝐺𝑆,𝐷 , since any two nodes in 𝐺𝑆,𝐷 have a

shortest path of length 2𝐷 via 𝑣𝐷 . Moreover, consider a shortest

path tree from vertex 𝑠∗ up to distance 2𝐷 . If one removes 𝑠∗ and

𝑣𝐷 from this tree, then the resulting forest is a shortest path forest

in 𝐺 from set 𝑆 up to distance 𝐷 .

We next give the definition of distance scales, along with defining

global parameters which are used throughout the paper.

Definition 2.2 (Distance Scales). We set 𝜏 = log7 (𝑛), 𝛽 = 8𝜏 and

𝐷𝑖 = 𝛽
𝑖 .

A distance scale is a value contained in the set {𝐷𝑖 : 𝑖 ∈ N, 𝐷𝑖 ≤
𝑛2max𝑒∈𝐸 ℓ (𝑒)}. In particular, if we denote with 𝑖𝑚𝑎𝑥 the largest

integer 𝑖 for which 𝐷𝑖 is a distance scale, then 𝐷𝑖𝑚𝑎𝑥
≥ diam(𝐺).

We are finally ready to formally define oracle O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

, the ℓ1-

Oblivious Routing Oracle for scale 𝐷𝑖 . It corresponds to computing

an łℓ1-oblivious routing up to distance 𝐷𝑖 ž in Figure 1.

Definition 2.3 (ℓ1-Oblivious Routing Oracle for scale𝐷𝑖 Ð O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

).

The ℓ1-Oblivious Routing Oracle for scale𝐷𝑖 , O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

, takes as input

a set 𝑆 ⊆ 𝑉 as well as a demand 𝑏 and a flow 𝑓 for𝐺𝑆,𝐷𝑖
. It outputs

𝑅𝑆𝑏 and 𝑅𝑇
𝑆
𝑓 for a fixed 𝑂 (1)-competitive ℓ1-oblivious routing 𝑅𝑆

for 𝐺𝑆,𝐷𝑖
.

Next, we give the formal definition of the forest oracle O𝐹𝑜𝑟𝑒𝑠𝑡
𝜀,𝐷

.

Definition 2.4 ((1 + 𝜀)-Approximate Forest for distance 𝐷 rooted

at 𝑆 / Forest Oracle Ð O𝐹𝑜𝑟𝑒𝑠𝑡
𝜀,𝐷

). The forest oracle O𝐹𝑜𝑟𝑒𝑠𝑡
𝜀,𝐷

takes as

input a node set 𝑆 ⊆ 𝑉 . The output is a (1 + 𝜀)-approximate forest

for distance 𝐷 rooted at 𝑆 , which is a forest 𝐹 rooted at 𝑆 such that

the following holds.

(1) For every 𝑢 ∈ 𝑉 (𝐺) with dist𝐺 (𝑆,𝑢) ≤ 𝐷 we have 𝑢 ∈ 𝑉 (𝐹).
(2) For every 𝑢 ∈ 𝑉 (𝐹), dist𝐹 (𝑆,𝑢) ≤ (1 + 𝜀)𝐷 .

For a given distance scale 𝐷𝑖 , having access to O𝐹𝑜𝑟𝑒𝑠𝑡
1

log3 (𝑛) ,𝐷
for

every 𝐷 ∈
[
𝐷𝑖

𝜏 , 𝐷𝑖

]
corresponds to ł(1 + 𝜀) set-shortest path up to

distance 𝐷𝑖 ž in Figure 1.

The notion of ł(1+𝜀) transshipment up to distance𝐷ž in Figure 1

does not have a direct correspondence in Figure 2. However, the

potential oracleO𝑃𝑜𝑡
𝐷𝑖

outputs a potential capturing a certain version

of (dual) transshipment potentials. The oracle O𝑃𝑜𝑡
𝐷𝑖

is defined as

follows:

Definition 2.5 (Potential for scale 𝐷𝑖 with respect to set 𝑆 / Po-

tential Oracle Ð O𝑃𝑜𝑡
𝐷𝑖

). The potential oracle O𝑃𝑜𝑡
𝐷𝑖

takes as input

a node set 𝑆 ⊆ 𝑉 . The output is a potential 𝜙𝑆,𝐷𝑖
∈ R

𝑉 (𝐺𝑆,𝐷𝑖
) for

scale 𝐷𝑖 with respect to 𝑆 . A potential for scale 𝐷𝑖 with respect to

a set 𝑆 ⊆ 𝑉 is a non-negative potential 𝜙𝑆,𝐷𝑖
such that:

(1) ∀𝑣 ∈ 𝑆 : 𝜙𝑆,𝐷𝑖
(𝑣) = 0 and

(2) dist𝐺 (𝑣, 𝑆) ≥ 𝐷𝑖

𝜏 implies 𝜙𝑆,𝐷𝑖
(𝑣) ≥ 0.5𝐷𝑖

𝜏 .

We next give the definition of a distance structure for scale 𝐷𝑖 .

Definition 2.6 (Distance Structure for scale 𝐷𝑖). A distance struc-

ture for scale 𝐷𝑖 consists of a sparse neighborhood cover with cov-

ering radius 𝐷𝑖

𝜏 . Moreover, each cluster 𝐶 in one of the clusterings

comes with

(1) a tree𝑇𝐶 of diameter at most 𝐷𝑖 which spans𝐶 and is rooted

at some node 𝑣𝐶 ∈ 𝐶 . We refer to 𝑣𝐶 as the cluster center.

(2) A potential for scale 𝐷𝑖 with respect to 𝑉 \ 𝐶 (known to

nodes in 𝐶).

483

Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms STOC ’22, June 20ś24, 2022, Rome, Italy

In Figure 1, łdistance structures up to distance 𝐷ž correspond to

having a distance structure for every scale 𝐷 𝑗 with 𝐷 𝑗 ≤ 𝐷 .

In Section 1we outlined the problem of rounding a transshipment

flow, and that rounding can be deterministically reduced to solving

𝑂 (1) Eulerian-Orientation problems. We now define the oracles

for the two problems.

The rounding oracle is defined as follows.

Definition 2.7 (Rounding Oracle Ð O𝑅𝑜𝑢𝑛𝑑
𝜀). The Rounding Ora-

cle O𝑅𝑜𝑢𝑛𝑑
𝜀 takes as input a weighted graph 𝐻 with length function

ℓ𝐻 and a flow 𝑓 on𝐻 . The weighted graph𝐻 needs to be a subgraph

of some graph 𝐻 ′ that one can obtain from𝐺 by adding up to𝑂 (1)
virtual nodes and adding edges of arbitrary nonnegative length inci-

dent to the virtual nodes. The flow 𝑓 needs to satisfy the following

condition. Let 𝑏 be the demand that 𝑓 routes. Then, 𝑏 (𝑣) ≥ 0 for all

𝑣 ∈ 𝑉 (𝐻) except for some 𝑠 ∈ 𝑉 (𝐻) called the source. The output is
a rooted tree𝑇 with root 𝑠 spanning all vertices of 𝐻 with non-zero

demand such that
∑

𝑣:𝑏 (𝑣)≠0 𝑏 (𝑣) dist𝑇 (𝑠, 𝑣) ≤ (1 + 𝜀 ′)ℓ𝐻 (𝑓) with
𝜀 ′ = min

(
𝜀, 1

20 log3 (𝑛)𝜏

)
.

Note that O𝑅𝑜𝑢𝑛𝑑
𝜀 takes as input a weighted graph that can

have more vertices than 𝐺 . This allows us to use O𝑅𝑜𝑢𝑛𝑑
𝜀 to round

a transshipment flow defined on the graph 𝐺𝑆,𝐷 . Moreover, we

sometimes just write O𝑅𝑜𝑢𝑛𝑑 , without a precision parameter 𝜀,

which we define as O𝑅𝑜𝑢𝑛𝑑
= O𝑅𝑜𝑢𝑛𝑑

1 = O𝑅𝑜𝑢𝑛𝑑
1

20 log3 (𝑛)𝜏
.

The Eulerian-Orientation oracle is defined next.

Definition 2.8 (Eulerian-Orientation Oracle Ð O𝐸𝑢𝑙𝑒𝑟). The

Eulerian-Orientation oracle O𝐸𝑢𝑙𝑒𝑟 takes as input a Eulerian

graph 𝐻 . The graph 𝐻 has to be a subgraph of some graph 𝐻 ′ that
one can obtain from 𝐺 by adding up to 𝑂 (1) virtual nodes and
adding any edges incident to the virtual nodes. The output is an

orientation of the edges of 𝐻 such that the in-degree of every node

is equal to its out-degree.

2.2 Formal Statements Corresponding to
Figure 2

For the sake of this section, we say that we can solve a problem or

compute a structure efficiently if there exists a Minor-Aggregation

algorithm for the task that runs in 𝑂 (1) rounds.
In this subsection, we give one formal statement for each arrow

in Figure 2, as promised at the beginning of Section 2. Before that,

we state a result which captures the main essence of our local

iterative reduction cycle.

Lemma 2.9 (Main Lemma). Assume a distance structure for every

scale𝐷 𝑗 smaller than scale𝐷𝑖 and oracleO𝑅𝑜𝑢𝑛𝑑 are given. A distance

structure for scale 𝐷𝑖 can be efficiently computed.

Lemma 2.9 is a simple corollary of the next four lemmas. The

formal proof can be found in the full version of the paper.

Lemma 2.10. Assume a distance structure for every scale𝐷 𝑗 smaller

than scale 𝐷𝑖 is given. Then, O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

can be efficiently computed.

Lemma 2.10 follows from a simple adaption of our𝑂 (1)-competitive

ℓ1-oblivious routing construction, explained in the full version of

the paper.

Lemma 2.11. Assume oracle O𝑅𝑜𝑢𝑛𝑑 and O𝑂𝑏𝑙𝑖𝑣
𝐷𝑖

are given. Then,

O𝑃𝑜𝑡
𝐷𝑖

andO𝐹𝑜𝑟𝑒𝑠𝑡
1

log3 (𝑛) ,𝐷
can be efficiently computed for any𝐷 ∈

[
𝐷𝑖

𝜏 , 𝐷𝑖

]
.

Lemma 2.11 follows mainly from previous work. More precisely,

having access to a 𝑂 (1)-competitive ℓ1-oblivious routing in 𝐺𝑆,𝐷𝑖
,

we can compute the following two objects via boosting and round-

ing [7, 48, 57, 64]. First, a (1 + 𝜀)-SSSP-tree in 𝐺𝑆,𝐷𝑖
rooted at 𝑠∗.

Second, an individually good (1+𝜀)-approximate potential in𝐺𝑆,𝐷𝑖

for the single-source transshipment demand with source 𝑠∗. For
completeness, we give a summary of these steps in the proof of the

full version of the paper.

If one looks at what the aforementioned tree and potential in

𝐺𝑆,𝐷𝑖
correspond to in the graph𝐺 , then one can relatively straight-

forwardly transform them to obtain a
(
1 + 1

log3 𝑛

)
-approximate for-

est for 𝐷 rooted at 𝑆 and a potential for scale 𝐷𝑖 with respect to

𝑆 , assuming 𝜀 = 1
poly(log𝑛) is sufficiently small. The details of this

transformation can be found in the full version of the paper.

Lemma 2.12. Assume oracle O𝐹𝑜𝑟𝑒𝑠𝑡
1

log3 (𝑛) ,𝐷
is given for every 𝐷 ∈

[
𝐷𝑖

𝜏 , 𝐷𝑖

]
. Then, a sparse neighborhood cover with covering radius

𝐷𝑖

𝜏 together with a rooted spanning tree 𝑇𝐶 of diameter at most 𝐷𝑖

for every cluster 𝐶 in the cover can be computed efficiently.

Lemma 2.12 directly follows from [18, Theorem C.4], which is

proven by adapting the algorithms of [8, 54] for the closely-related

network decomposition problem.

Lemma 2.13. Assume we are given an oracle O𝑃𝑜𝑡
𝐷𝑖

and a sparse

neighborhood cover with covering radius 𝐷𝑖

𝜏 together with a rooted

spanning tree𝑇𝐶 of diameter at most𝐷𝑖 for every cluster𝐶 in the cover.

Then, a distance structure for scale 𝐷𝑖 can be computed efficiently.

Given a sparse neighborhood cover together with a tree for each

cluster, it only remains to compute the potential for scale 𝐷𝑖 with

respect to 𝑉 \ 𝐶 for each cluster 𝐶 in the sparse neighborhood

cover. One can compute the potentials for all the clusters in a given

clustering C simultaneously. The simplest approach for computing

these potentials is to compute a single potential for scale 𝐷𝑖 with

respect to all the nodes that are neighboring one of the clusters in

C. This approach works as long as there does not exist a node that

is both clustered and neighboring a different cluster. Even though

this can indeed happen, there is a simple solution that solves this

problem. The details can be found in the proof of Lemma 2.13 in

the full version of the paper.

Lemma 2.14. Assume the oracle O𝐸𝑢𝑙𝑒𝑟 is given. Then, O𝑅𝑜𝑢𝑛𝑑 can

be efficiently computed.

The main ideas to prove this lemma were already discussed in

the introduction. The details can be found in the full version of the

paper.

2.3 Main Theorems

In this part, we state the main theorems of this paper.

First of all, a simple induction proof on top of Lemma 2.9 leads

to the following result.

484

STOC ’22, June 20ś24, 2022, Rome, Italy Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

Lemma 2.15. Assume oracle O𝑅𝑜𝑢𝑛𝑑 is given. Then, a distance

structure for every scale 𝐷𝑖 can be efficiently computed.

Note that for 𝑖 = 1, Lemma 2.9 states that given access to O𝑅𝑜𝑢𝑛𝑑 ,

one can efficiently compute a distance structure for scale 𝐷1. The

complete induction proof can be found in the full version of the

paper.

Given access to a distance structure for every scale 𝐷𝑖 , the theo-

rem below follows directly from our 𝑂 (1)-competitive ℓ1-oblivious

routing scheme described in the full version of the paper.

Theorem 2.16 (Distance Structures give ℓ1-Oblivious Rout-

ing). Assume a distance structure for every scale 𝐷𝑖 is given. Then,

there exists a𝑂 (1)-competitive ℓ1-oblivious routing 𝑅 for𝐺 for which

𝑅 and 𝑅𝑇 can be efficiently evaluated.

As discussed in Section 1, ℓ1-oblivious routing and rounding is

sufficient to solve the (1+𝜀)-SSSP tree and the (1+𝜀)-transshipment

problems [7, 48, 57, 64].

Theorem 2.17 (ℓ1-Oblivious Routing gives SSSP and trans-

shipment). Assume oracle O𝑅𝑜𝑢𝑛𝑑
𝜀/2 is given for some 𝜀 ∈ (0, 1] and

that there exists an efficient algorithm to evaluate 𝑅 and 𝑅𝑇 for some

𝑂 (1)-competitive ℓ1-oblivious routing 𝑅 for 𝐺 . Then, the (1 + 𝜀)-
transshipment problem and the (1 + 𝜀)-SSSP-tree problem in𝐺 can

be solved in 𝑂 (1/𝜀2) Minor-Aggregation rounds.

Combining Lemma 2.15, Theorem 2.16 and Theorem 2.17 results

in the following theorem.

Theorem 2.18. Assume oracle O𝑅𝑜𝑢𝑛𝑑
𝜀/2 is given for some 𝜀 ∈ (0, 1].

The (1 + 𝜀)-transshipment problem and the (1 + 𝜀)-SSSP-tree problem
in 𝐺 can be solved in 𝑂 (1/𝜀2) Minor-Aggregation rounds.

The theorem above together with the fact that O𝑅𝑜𝑢𝑛𝑑 can be

efficiently implemented given O𝐸𝑢𝑙𝑒𝑟 implies the following result.

Theorem 2.19. Assume oracle O𝐸𝑢𝑙𝑒𝑟 is given and let 𝜀 ∈ (0, 1].
The (1 + 𝜀)-transshipment problem and the (1 + 𝜀)-SSSP-tree problem
in 𝐺 can be solved in 𝑂 (1/𝜀2) Minor-Aggregation rounds.

The Eulerian-Orientation problem can be solved with near-

linear work and polylogarithmic depth [3]. Together with the the-

orem above and the fact that each Minor-Aggregation round can

be simulated with near-linear work and polylogarithmic depth, we

obtain our main parallel result.

Theorem 1.1 (Deterministic Parallel SSSP and Transship-

ment). There is a deterministic parallel algorithm that, given an

undirected graph with nonnegative weights, computes a (1 + 𝜀)-
approximate single-source shortest path tree or a (1+𝜀)-approximation

to minimum transshipment in 𝑂 (𝑚 · 𝜀−2) work and 𝑂 (1) time in the

PRAM model for any 𝜀 ∈ (0, 1].

Moreover, ourCONGEST algorithms for theEulerian-Orientation

problem developed in the full version of the paper together with

general simulation results for the CONGEST model developed in

prior work, we obtain our main result in the CONGEST model.

Theorem 1.2 (Deterministic Distributed SSSP and Trans-

shipment). There are deterministicCONGEST algorithms that, given

an undirected graph with non-negative weights, compute a (1 + 𝜀)-
approximate set-source shortest path forest or a (1+ 𝜀)-transshipment

solution for any 𝜀 ∈ (0, 1]. Our algorithms have an optimal message

complexity of 𝑂 (𝑚) · 𝜀−2 and are guaranteed to terminate

(1) within at most 𝑂 (
√
𝑛 + HopDiam(𝐺)) · 𝜀−2 rounds and

(2) within at most 𝑂 (HopDiam(𝐺)) · 𝜀−2 rounds if 𝐺 does not

contain any 𝑂 (1)-dense minor.

We finish this section by stating the conditional results on uni-

versally optimal SSSP and transshipment algorithms one can obtain

from this work:

Theorem 2.20. Suppose there exists a deterministic algorithm

for partwise aggregation that runs in ShortcutQuality(𝐺) · 𝑛𝑜 (1)
CONGEST rounds, then there exist deterministic (1 + 𝜀)-SSSP and

(1+𝜀)-transshipment algorithms with a round complexity of Shortcut-

Quality(𝐺)) ·𝑛𝑜 (1) , which is universally-optimal up to a 𝑛𝑜 (1) -factor.

We get even stronger conditional results if better CONGEST

algorithms for computing cycle covers as defined in [50, 51] are

given.

Theorem 2.21. Suppose there exists a deterministic algorithm for

partwise aggregation that runs in𝑂 (ShortcutQuality(𝐺)) CONGEST
rounds and a (𝑂 (1),𝑂 (1)) cycle cover algorithm for 𝑂 (1)-diameter

graphs which runs in 𝑂 (1) CONGEST rounds. Then, there exist de-

terministic (1 + 𝜀)-SSSP and (1 + 𝜀)-transshipment algorithms with a

round complexity of 𝑂 (ShortcutQuality(𝐺)), which is universally-

optimal up to polylogarithmic factors.

While the polylogarithmically tight algorithmic results assumed

in Theorem 2.21 seem out of reach of current techniques, our con-

ditional results show that the problem-specific part towards univer-

sally optimal shortest path algorithms, even deterministic ones, are

essentially fully understood through the techniques of this paper.

REFERENCES
[1] Noga Alon, Zvi Galil, and Oded Margalit. 1997. On the exponent of the all pairs

shortest path problem. J. Comput. System Sci. 54, 2 (1997), 255ś262.
[2] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate

undirected shortest paths via low hop emulators. In Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 322ś335.

[3] Mikhail Atallah and Uzi Vishkin. 1984. Finding Euler tours in parallel. J. Comput.
System Sci. 29, 3 (1984), 330ś337.

[4] Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science. IEEE, 503ś513.

[5] Yair Bartal. 2021. Advances in Metric Ramsey Theory and its Applications. arXiv
preprint arXiv:2104.03484 (2021).

[6] Ruben Becker, Yuval Emek, and Christoph Lenzen. 2019. Low diameter
graph decompositions by approximate distance computation. arXiv preprint
arXiv:1909.09002 (2019).

[7] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-
tributed and Streaming Models. In 31st International Symposium on Distributed
Computing (DISC), Vol. 91. 7:1ś7:16.

[8] Yi-Jun Chang and Mohsen Ghaffari. 2021. Strong-Diameter Network Decom-
position. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing (Virtual Event, Italy) (PODC’21). Association for Computing Machin-
ery, New York, NY, USA, 273ś281. https://doi.org/10.1145/3465084.3467933

[9] Shiri Chechik and Doron Mukhtar. 2020. Single-Source Shortest Paths in the
CONGEST Model with Improved Bound. In Proceedings of the 39th Symposium
on Principles of Distributed Computing (PODC). 464ś473.

[10] Edith Cohen. 1994. Polylog-time and near-linear work approximation scheme
for undirected shortest paths. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of Computing. 16ś26.

485

Undirected (1 + 𝜀)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms STOC ’22, June 20ś24, 2022, Rome, Italy

[11] Edith Cohen. 1995. Approximate max-flow on small depth networks. SIAM J.
Comput. 24, 3 (1995), 579ś597.

[12] Edith Cohen. 1997. Using selective path-doubling for parallel shortest-path
computations. Journal of Algorithms 22, 1 (1997), 30ś56.

[13] Edith Cohen. 1998. Fast Algorithms for Constructing t-Spanners and Paths
with Stretch t. SIAM J. Comput. 28, 1 (1998), 210ś236. https://doi.org/10.1137/
S0097539794261295 arXiv:https://doi.org/10.1137/S0097539794261295

[14] Edsger Dijkstra. 1959. A note on two problems in connexion with graphs. Nu-
merische mathematik 1, 1 (1959), 269ś271.

[15] Michael Elkin. 2004. Distributed approximation: a survey. ACM SIGACT News
35, 4 (2004), 40ś57.

[16] Michael Elkin. 2006. An unconditional lower bound on the time-approximation
trade-off for the distributed minimum spanning tree problem. SIAM J. Comput.
36, 2 (2006), 433ś456.

[17] Michael Elkin. 2017. Distributed Exact Shortest Paths in Sublinear Time. Journal
of the ACM (JACM) (2017), 757ś770.

[18] Michael Elkin, Bernhard Haeupler, Václav Rozhoň, and Christoph Grunau. [n.d.].
Deterministic Low-Diameter Decompositions for Weighted Graphs and Dis-
tributed and Parallel Applications.

[19] Michael Elkin and Shaked Matar. 2021. Deterministic PRAM Approximate Short-
est Paths in Polylogarithmic Time and Slightly Super-Linear Work. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (Vir-
tual Event, USA) (SPAA ’21). Association for Computing Machinery, New York,
NY, USA, 198ś207. https://doi.org/10.1145/3409964.3461809

[20] Michael Elkin and Ofer Neiman. 2016. Hopsets with Constant Hopbound, and
Applications to Approximate Shortest Paths. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS). 128ś137.

[21] Michael Elkin and Ofer Neiman. 2017. Linear-Size Hopsets with Small Hopbound,
and Distributed Routing with Low Memory. arXiv:1704.08468 [cs.DS]

[22] Michael Elkin and Ofer Neiman. 2019. Hopsets with constant hopbound, and
applications to approximate shortest paths. SIAM J. Comput. 48, 4 (2019), 1436ś
1480.

[23] Michael Elkin and Ofer Neiman. 2019. Linear-Size Hopsets with Small Hop-
bound, and Constant-Hopbound Hopsets in RNC. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 333ś341.

[24] Sebastian Forster and Danupon Nanongkai. 2018. A Faster Distributed Single-
Source Shortest Paths Algorithm. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS). 686ś697.

[25] Zvi Galil and Oded Margalit. 1997. All pairs shortest paths for graphs with small
integer length edges. J. Comput. System Sci. 54, 2 (1997), 243ś254.

[26] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. 2021. Improved De-
terministic Network Decomposition. In Proc. of the 32nd ACM-SIAM Symp. on
Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics,
USA, 2904ś2923.

[27] Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed algorithms for planar
networks ii: Low-congestion shortcuts, mst, and min-cut. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA).
202ś219.

[28] Mohsen Ghaffari and Bernhard Haeupler. 2021. Low-Congestion Shortcuts for
Graphs Excluding Dense Minors. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing (Virtual Event, Italy) (PODC’21). Association
for Computing Machinery, New York, NY, USA, 213ś221. https://doi.org/10.
1145/3465084.3467935

[29] Mohsen Ghaffari, Bernhard Haeupler, and Harald Räcke. 2021. Hop-Constrained
Expander Decompositions, Oblivious Routing, and Universally-Optimal Dis-
tributed Algorithms. arXiv preprint (2021).

[30] Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. 2021. Hop-constrained
oblivious routing. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. 1208ś1220.

[31] Mohsen Ghaffari and Jason Li. 2018. Improved distributed algorithms for exact
shortest paths. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 431ś444.

[32] Mohsen Ghaffari and Goran Zuzic. 2022. Universally-Optimal Distributed Exact
Min-Cut. arXiv preprint (2022).

[33] Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. 2018. Round- and
message-optimal distributed graph algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing. 119ś128.

[34] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-congestion
shortcuts without embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing. 451ś460.

[35] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-optimal low-
congestion shortcuts on bounded parameter graphs. In International Symposium
on Distributed Computing. Springer, 158ś172.

[36] Bernhard Haeupler and Jason Li. 2018. Faster distributed shortest path approxi-
mations via shortcuts. arXiv preprint arXiv:1802.03671 (2018).

[37] Bernhard Haeupler, Jason Li, and Goran Zuzic. 2018. Minor excluded network
families admit fast distributed algorithms. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing. 465ś474.

[38] Bernhard Haeupler, David Wajc, and Goran Zuzic. 2021. Universally-optimal
distributed algorithms for known topologies. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing. 1166ś1179.

[39] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. An
almost-tight distributed algorithm for computing single-source shortest paths.
2016. In STOC, Vol. 16. 2897518ś2897638.

[40] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2019. A
deterministic almost-tight distributed algorithm for approximating single-source
shortest paths. SIAM J. Comput. (2019), STOC16ś98.

[41] Yael Hitron and Merav Parter. 2021. Broadcast CONGEST algorithms against
adversarial edges. In 35th International Symposium on Distributed Computing
(DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[42] Yael Hitron and Merav Parter. 2021. General CONGEST Compilers against
Adversarial Edges. In 35th International Symposium on Distributed Computing
(DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 209),
Seth Gilbert (Ed.). Schloss Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 24:1ś24:18. https://doi.org/10.4230/LIPIcs.DISC.2021.24

[43] Richard M Karp and Vijaya Ramachandran. 1989. A survey of parallel algorithms
for shared-memory machines.

[44] Philip N Klein and Sairam Subramanian. 1997. A randomized parallel algorithm
for single-source shortest paths. Journal of Algorithms 25, 2 (1997), 205ś220.

[45] Shimon Kogan and Merav Parter. 2021. Low-Congestion Shortcuts in Constant
Diameter Graphs. arXiv preprint arXiv:2106.01894 (2021).

[46] Christoph Lenzen and Boaz Patt-Shamir. 2013. Fast routing table construction
using small messages. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. 381ś390.

[47] Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. 2019. Distributed distance
computation and routing with small messages. Distributed Computing 32, 2 (2019),
133ś157.

[48] Jason Li. 2020. Faster parallel algorithm for approximate shortest path. In Proc-
cedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM,
308ś321.

[49] Danupon Nanongkai. 2014. Distributed approximation algorithms for weighted
shortest paths. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing (STOC). 565ś573.

[50] Merav Parter and Eylon Yogev. 2019. Low Congestion Cycle Covers and Their
Applications. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Diego, California) (SODA ’19). Society for Industrial and
Applied Mathematics, USA, 1673ś1692.

[51] Merav Parter and Eylon Yogev. 2019. Optimal Short Cycle Decomposition in
Almost Linear Time. In 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi (Eds.). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 89:1ś89:14. https://doi.org/10.4230/LIPIcs.ICALP.2019.89

[52] David Peleg. 2000. Distributed computing: a locality-sensitive approach. SIAM.
[53] Richard Peng. 2016. Approximate Undirected Maximum Flows in

𝑂 (𝑚𝑝𝑜𝑙𝑦𝑙𝑜𝑔 (𝑛)) Time. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1862ś1867.

[54] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic
Network Decomposition and Distributed Derandomization.

[55] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed
verification and hardness of distributed approximation. SIAM J. Comput. 41, 5
(2012), 1235ś1265.

[56] Jonah Sherman. 2013. NearlyMaximum Flows in Nearly Linear Time. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science (FOCS). 263ś269.

[57] Jonah Sherman. 2017. Area-convexity, ℓ∞ regularization, and undirected multi-
commodity flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 452ś460.

[58] Jonah Sherman. 2017. Generalized Preconditioning and Undirected Minimum-
Cost Flow. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 772ś780.

[59] Hanmao Shi and Thomas H Spencer. 1999. Timeśwork tradeoffs of the single-
source shortest paths problem. Journal of algorithms 30, 1 (1999), 19ś32.

[60] Thomas H Spencer. 1997. Time-work tradeoffs for parallel algorithms. Journal of
the ACM (JACM) 44, 5 (1997), 742ś778.

[61] Jeffrey D Ullman and Mihalis Yannakakis. 1991. High-probability parallel
transitive-closure algorithms. SIAM J. Comput. 20, 1 (1991), 100ś125.

[62] Peilin Zhong. 2021. New Primitives for Tackling Graph Problems and Their Appli-
cations in Parallel Computing. Ph.D. Dissertation. Columbia University.

[63] Goran Zuzic. 2021. A Simple Boosting Framework for Transshipment. arXiv
preprint arXiv:2110.11723 (2021).

[64] Goran Zuzic, Goramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui
Sun. 2022. Universally-Optimal Distributed Shortest Paths and Transshipment via
Graph-Based L1-Oblivious Routing. In Proceedings of the 33rd Annual ACM-SIAM

486

STOC ’22, June 20ś24, 2022, Rome, Italy Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

Symposium on Discrete Algorithms (SODA). SIAM.
[65] Uri Zwick. 1998. All pairs shortest paths in weighted directed graphs-exact and

almost exact algorithms. In Proceedings 39th Annual Symposium on Foundations

of Computer Science (Cat. No. 98CB36280). IEEE, 310ś319.

487

	Abstract
	1 Introduction
	1.1 Technical Overview

	2 SSSP via Minor-Aggregations: A Local Iterative Reduction Cycle
	2.1 Key Definitions and Oracles
	2.2 Formal Statements Corresponding to fig:oracles
	2.3 Main Theorems

	References

