Undirected (1 + ¢)-Shortest Paths via Minor-Aggregates:
Near-Optimal Deterministic Parallel and Distributed
Algorithms’

Vaclav Rozhon Christoph Grunau Bernhard Haeupler
ETH Zurich ETH Zurich ETH Zurich
Switzerland Switzerland Switzerland

Carnegie Mellon University
USA
Goran Zuzic Jason Li
ETH Zurich UC Berkeley
Switzerland USA

ABSTRACT

This paper presents near-optimal deterministic parallel and dis-
tributed algorithms for computing (1+¢)-approximate single-source
shortest paths in any undirected weighted graph.

On a high level, we deterministically reduce this and other shortest-
path problems to O(1) ! Minor-Aggregations. A Minor-Aggregation
computes an aggregate (e.g., max or sum) of node-values for every
connected component of some subgraph.

Our reduction immediately implies:

Optimal deterministic parallel (PRAM) algorithms with 0(1)

depth and near-linear work.

Universally-optimal deterministic distributed (CONGEST)

algorithms, whenever deterministic Minor-Aggregate algo-
rithms exist. For example, an optimal o] (HopDiam(G))-round
deterministic CONGEST algorithm for excluded-minor net-
works.

Several novel tools developed for the above results are interesting
in their own right:

A local iterative approach for reducing shortest path com-
putations “up to distance D” to computing low-diameter

“VR and CG received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement
No. 853109). BH was supported in part by NSF grants CCF-1814603, CCF-1910588,
NSF CAREER award CCF-1750808, a Sloan Research Fellowship, funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (ERC grant agreement 949272), and the Swiss National Foun-
dation (project grant 200021-184735) GZ was supported in part by the Swiss National
Foundation (project grant 200021-184735). JL was supported by the Simons Foundation
and the Simons Institute for the Theory of Computing.

!We use O-notation to suppress polylogarthmic factors in the number of nodes n, e.g.,

5(m) =m logo(l) n. We use the term near-linear to mean 5(m)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’22, June 20-24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06...$15.00
https://doi.org/10.1145/3519935.3520074

478

decompositions “up to distance %”. Compared to the re-
cursive vertex-reduction approach of [48], our approach is
simpler, suitable for distributed algorithms, and eliminates
many derandomization barriers.

A simple graph-based o (1)-competitive #;-oblivious routing
based on low-diameter decompositions that can be evaluated
in near-linear work. The previous such routing [64] was
n°W _competitive and required n° more work.

A deterministic algorithm to round any fractional single-
source transshipment flow into an integral tree solution.
The first distributed algorithms for computing Eulerian ori-
entations.

CCS CONCEPTS

« Theory of computation — Distributed algorithms; Parallel
algorithms.

KEYWORDS
Distributed Algorithms, Parallel Algorithms, Shortest Path

ACM Reference Format:

Véaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Ja-
son Li. 2022. Undirected (1 + ¢)-Shortest Paths via Minor-Aggregates: Near-
Optimal Deterministic Parallel and Distributed Algorithms. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC
'22), June 20-24, 2022, Rome, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3519935.3520074

1 INTRODUCTION

This paper gives essentially near-optimal® deterministic parallel
algorithms for various (1 + ¢)-approximate shortest-path-type prob-
lems in undirected weighted graphs. These problems include com-
puting (1+¢)-approximate shortest paths or shortest path trees from
a single source (shortened to (1 + ¢)-SSSP) and (1 + ¢)-approximate
minimum transshipment (shortened to (1 + ¢)-transshipment). Our
algorithms run in polylogarithmic time and require near-linear

2We refer to optimality up to polylogarithmic factors as near-optimality, while almost-
optimality refers to optimality up to subpolynomial, i.e., n°M | factors.

STOC ’22, June 20-24, 2022, Rome, Italy

work. This is optimal up to polylogarithmic factors. All prior paral-
lel deterministic algorithms with polylogarithmic depth for (1 + ¢)-
SSSP required n®M more work and, to our knowledge, no sub-
quadratic work NC algorithm was known for (1 + ¢)-transshipment.
We also give deterministic distributed algorithms for the above
problems, including the first non-trivial distributed deterministic
(1 + ¢)-transshipment algorithm.

Computing a single-source shortest path is one of the most fun-
damental problems in combinatorial optimization. Already in 1956,
Dijkstra [14] gave a simple deterministic O(m log n) time algorithm
for computing an exact single-source shortest path tree in any
directed graph. Parallel and distributed algorithms on the other
hand have been subject of over three decades of extensive research
[1,7,9, 10, 17, 19-25, 31, 36, 39, 40, 44, 47, 49, 59-61, 64, 65] with
much remaining unknown. Much recent research has focused on
(1 + ¢)-approximate shortest paths in undirected graphs, the prob-
lem solved in this paper. We provide a detailed summary of this
prior work next and describe related work on SSSP algorithms in
other computational models or on other related problems, includ-
ing all-pair-shortest-path and SSSP in directed graphs, in the full
version of the paper. We focus on randomized and deterministic
parallel algorithms with polylogarithmic depth, i.e., RNC and NC
algorithms.

Parallel Algorithm. The PRAM model of parallel computation
was introduced in 1979. After a decade of intense study, Karp and
Ramachandran noted in their influential 1989 survey on parallel
algorithms [43] that the “transitive closure bottleneck” for shortest-
path-type problem required work “far in excess of the time required
to solve the problem sequentially”. Indeed, these algorithms build on
matrix multiplication or on transitive closure routines and require
0O(n?) work. A line of work [12, 44, 59-61] provided algorithms
with different work-time trade-offs but without much improvement
on the cubic work bound for fast parallel algorithms.

In a major breakthrough, Cohen [10] gave a randomized (1 + ¢)-
SSSP algorithm based on hopsets with 5p(1) time and O(m!*P)
work for any constant p > 0. Algorithms with slightly improved
time-work tradoffs were given [21, 22] but these algorithms still
required a polynomial m” factor more work than Dijkstra’s algo-
rithm to parallelize shortest path computations to polylogarithmic
parallel time.

This remained the state-of-the-art until 2020 when methods
from continuous optimization developed by Sherman [56, 58] en-
abled further progress on shortest-path type problems. In particular,
Sherman gave an m - no) sequential algorithm for the (1 + ¢)-
approximate minimum transshipment problem. Transshipment, also
known as uncapacitated min-cost flow, Wasserstein distance, or
optimal transport, is the other major problem solved in this paper.
The input to the transshipment problem on some weighted graph G
consists of a demand b which specifies for each node a positive or
negative demand value with these values summing up to zero. The
goal is to find a flow of minimum cost which sends flow from nodes
with surplus to nodes with positive demands. Here the cost of rout-
ing a unit of flow over an edge is proportional to the weight/length
of the edge. For example, an optimal transshipment flow for a de-
mand with b(s) = —1 and b(t) = 1 is simply a unit flow from s to
t which decomposes into a distribution over shortest (s, t)-paths.

479

Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

We remark that transshipment is in many ways a powerful gen-
eralization of shortest-path problems, including computing SSSP
(trees), with the exception that extracting trees or paths from a
continuous transshipment flow often remains a hard problem itself
which requires highly nontrivial rounding algorithms. While hav-
ing an innocent feel to them, such rounding steps have a history of
being inherently randomized and being algorithmic bottlenecks for
shortest-path problems on several occasions.

Sherman’s almost-linear time transshipment algorithm did not
imply anything new for SSSP at first, but it inspired two indepen-
dent approaches by [48] and Andoni, Stein, and Zhong [2] that led
to near-optimal randomized parallel shortest path algorithms with
polylogarithmic time and near-linear work. In particular, Li [48]
improved several parts of Sherman’s algorithm and combined it
with the vertex-reduction framework that Peng [53] had introduced
to give the first near-linear time algorithm for (1 + ¢)-maximum-
flow. [48] also adopts a randomized rounding algorithm of [7] based
on random walks to extract approximate shortest-path trees from
transshipment flows. Overall, this results in randomized PRAM al-
gorithms for both (1 + ¢)-transshipment and (1 + ¢)-SSSP with poly-
logarithmic time and near-linear work. Concurrently, Andoni, Stein,
and Zhong [2] achieved the same result for (1+¢)-transshipment by
combining Sherman’s framework with ideas from hop-sets. They
also provide a randomized rounding based on random walks algo-
rithm that can extract an s-t shortest path. Later, this rounding was
extended in Zhong’s thesis [62] to extract the full (1 + ¢)-SSSP tree.

It is remarkable that all parallel (1+¢)-SSSP algorithms described
above (with the exception of the super-quadratic work algorithms
before Cohen’s 25 year old breakthrough) crucially rely on ran-
domization for efficiency. Indeed, the only modern deterministic
parallel (1 + £)-SSSP algorithm is a very recent derandomization of
Cohen’s algorithm by Elkin and Matar [19]. This algorithm suffers
from the familiar O(m'*?) work bound for a polylogarithmic time
parallel algorithm. For the (1 + ¢)-transshipment problem even less
is known. Indeed we are not aware of any efficient deterministic
parallel algorithm before this work and would expect that much
larger polynomial work bounds would be required to achieve a
deterministic algorithm with polylogarithmic parallel time.

In this paper, we give deterministic parallel algorithms for both
the (1+¢)-SSSP and the (1+¢)-transshipment problem in undirected
weighted graphs. Both algorithms only require near-linear work
and run in polylogarithmic time. This solves these two and various
other shortest-path-type problems optimally, up to polylogarithmic
factors.

THEOREM 1.1 (DETERMINISTIC PARALLEL SSSP AND TRANSSHIP-
MENT). There is a deterministic parallel algorithm that, given an
undirected graph with nonnegative weights, computes a (1 + ¢)-
approximate single-source shortest path tree or a (1+¢)-approximation
to minimum transshipment in 5(m - e72) work and 5(1) time in the
PRAM model for any ¢ € (0, 1].

Distributed Algorithm. We also give new distributed (1+ ¢)-SSSP
and (1 + ¢)-transshipment algorithms in the standard CONGEST
model of distributed computing. For distributed algorithms a lower
bound of Q(+/n + HopDiam(G)) rounds is known for worst-case
topologies [16, 55], where HopDiam(G) is the unweighted (i.e.,
hop) diameter of the network. We refer to this as the existential

Undirected (1 + €)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms

lower bound since it depends on the parameterization by (n, Hop-
Diam(G)), as opposed to the later-discussed universal lower bound
which does not.

In his 2004 survey on distributed approximation, Elkin [15]
pointed to the distributed complexity of shortest paths approxi-
mations as one of two fundamental and wide-open problems in the
area—as no non-trivial algorithms complementing the above lower
bounds were known.

Since then, the (1 + ¢)-SSSP problem is one of the most studied
problems. We only give a brief summary here: Lenzen and Patt-
Shamir gave an O(nl/2+e +HopDiam(G))-round O(1+ %)—SSSP
algorithm [46] and a (1 + o(1))-approximation in O(nl/2 . Hop-
Diam(G)!/4 + HopDiam(G)) rounds was given by Nanongkai [49].
Building on Sherman’s transshipment framework mentioned be-
fore, [7] gave a randomized O(e73- (Vn+ HopDiam(G))) algorithm.
The first algorithm improving over the Q(+/n) barrier was given
in [36] with a running time of ShortcutQuality(G) - n°(!) albeit
with a bad n°(V) -approximation. This was recently improved by
[64] to a (1 + ¢)-approximation with the same round complexity.
Using [28], this gives a (1 + ¢)-approximation algorithm with round
complexity HopDiam(G) - n°@ for any excluded minor topology
(e.g., planar graphs). All the above algorithms are randomized: The
only deterministic distributed algorithm is the (1+0(1))-SSSP algo-
rithm of [40] with a (n!/2+(1) 4+ HopDiam(G)'*°(!))) running time.
For (1 + ¢)-transshipment, the only known sublinear distributed
algorithm is the randomized ShortcutQuality(G) - n°M _round al-
gorithm of [64]. No non-trivial deterministic distributed (1 + ¢)-
transshipment algorithm (with sub-linear round complexity) was
known prior to this work.

The distributed results of this paper include deterministic dis-
tributed algorithms for (1 + ¢)-SSSP, its generalization (1 + ¢)-set-
source shortest path (in which we are looking for distances from a
subset of nodes), and (1 + ¢)-transshipment. Our results improve
over the previous best running times of deterministic distributed
algorithms for each of the above problems, both in the worst-case
and for any excluded minor graph. Both the round and the message
complexities (in KTp, see [52] for the definition) of our algorithms
are (existentially) optimal, up to poly log n factors, in all cases.

THEOREM 1.2 (DETERMINISTIC DISTRIBUTED SSSP AND TRANS-
SHIPMENT). There are deterministic CONGEST algorithms that, given
an undirected graph with non-negative weights, compute a (1 + €)-
approximate set-source shortest path forest or a (1+ ¢)-transshipment
solution for any € € (0, 1]. Our algorithms have an optimal message
complexity ofa(m) - €72 and are guaranteed to terminate

(1) within at most O(\/n + HopDiam(G)) - £2 rounds and
(2) within at most O(HopDiam(G)) - e2 rounds if G does not
contain any O(1)-dense minor.

Universal optimality. Recently, the pervasive Q(HopDiam(G) +
y/n) distributed lower bounds have been extended to a near-tight
universal lower bound [38] which shows that most optimization
problems including all problems studied in this paper require
Q(ShortcutQuality(G)) rounds on any communication graph G.
Here ShortcutQuality(G) is a natural graph parameter (we refer
the interested reader to [38] for a formal definition). For experts
interested in universally-optimal distributed algorithms we remark

480

STOC 22, June 20-24, 2022, Rome, Italy

~

(1+¢) transshipment

{1-oblivious routing
up to distance D

distance structures

£1-oblivious routing

(1+) transshipment]

b 1o distance D
distance reduction u hane
—_—

sraph based
! rounding [Li20]
{1-oblivious routing \ | to D/poly logn

(1+2) set-shortest path

up to distance D

distance structures
up to distance D

TS

Figure 1: This figure summarizes our approach with our
contributions marked in red. It is known that a 5(1)-
competitive solution to ¢;-oblivious routing can be boosted
to a (1 + ¢)-approximate transshipment which can then be
rounded to yield a (1+¢)-approximate SSSP tree. We close the
circle of reductions by constructing certain distance struc-
tures from the approximate SSSP tree. Think of those dis-
tance structures as a family of clusterings on different scales,
storing some additional distance information. One of our
main technical contributions is the efficient construction
of a 5(1)-approximate oblivious routing from the distance
structures, which closes the loop.

This loop of reductions itself is not very useful as the com-
plexity of the problems does not decrease. We break this
loop by our distance reduction framework by showing one
can construct distance structures “up to distance D” us-
ing distance structures “up to distance D/polylogn. After
O(logn) iterations, we build up the desired solution to any
of the four problems, in particular to approximate transship-
ment and set-SSSP.

that the results of this paper imply strong conditional results. We
state these results for the interested reader in Section 2.3.

1.1 Technical Overview

While the results for SSSP and transshipment are important, the
main impact of this paper will likely be the new tools and algo-
rithmic ideas developed in this paper. We expect these ideas to be
applicable beyond shortest path problems. Next, we give a brief
summary of the most relevant parts and ideas of prior work which
are needed to understand our work and put in proper context. We
then give an informal high-level overview of our new algorithm
and some of the new tools developed for it. A readable and more
precise technical proof overview is given in Section 2.

1.1.1 Background and Prior Work.

Transshipment Boosting, {1-Oblivious Routing, and Transshipment
Flow Rounding. All modern SSSP-algorithms, including ours, com-
pute shortest paths via the transshipment problem (see text before
Theorem 1.1 for a definition). The key idea in this approach of Sher-
man [56, 58] is that even a rather bad a-approximation algorithm for
(dual) transshipment can be boosted to a (1+¢)-approximation. This
is achieved via the multiplicative weights method (or equivalently:
gradient descent) and requires only poly(&, £}, log n) invocations

STOC ’22, June 20-24, 2022, Rome, Italy

of the a-approximation algorithm [7, 58, 63]. A particularly con-
venient way of obtaining such a boostable a-approximation is to
design a linear matrix R which maps any node-demand b to an
a-approximate transshipment flow for b. Such a matrix is called
an f1-oblivious routing because linearity forces each node to route
its demand obliviously, i.e., without knowledge of the demand on
other nodes. As mentioned before, in order to obtain an actual
(1 + £)-SSSP tree from a transshipment flow most algorithms [48]
are using an approach of [6] which produces a (1 + ¢)-SSSP tree
after O(log n) adaptive applications of some rounding algorithm.
All parts of this reduction except for the rounding algorithm are
deterministic.

Putting all these pieces together proves that all one needs to
obtain an efficient (deterministic) algorithm for both the (1 + ¢)-
transshipment and the (1 + ¢)-SSSP problem is a 5(1)—competitive
£1-oblivious routing that can be evaluated efficiently and a (deter-
ministic) rounding algorithm. Our algorithm uses these steps in a
black-box fashion except that we need to replace the randomized
rounding algorithm by a new deterministic transshipment flow
rounding procedure.

Vertex Reduction Framework. Unfortunately, it is clear that ¢ -
oblivious routing cannot be done without having some approximate
shortest path information. This chicken and egg problem is resolved
via a clever vertex-reduction framework of Li [48]. The vertex-
reduction framework relies on a cyclic sequence of efficient prob-
lem reductions. For transshipment [48], these problems are SSSP,
transshipment, ¢;-oblivious routing, and #;-embedding. Specifically:

e To solve (1 + ¢)-SSSP on G, it is sufficient to solve (1 + ¢)-
transshipment on G,

e for which it is sufficient to construct 5(1)-competitive 01-
oblivious routing on G (via boosting),

o for which it is sufficient to construct an O(1)-distortion ;-
embedding on G,

o for which it is sufficient to solve O(log? n) instances of 0(1)-
SSSP on a sequence of graphs G{, Gé, e GZ)(logZ "y’ which

are resolved recursively.

As stated, this simply reduced (1 + ¢€)-SSSP on G to multiple 5(1)-

SSSP on graphs that are slightly larger than G, which isn’t particu-

larly helpful on its own. The key idea to transform this “branching

cycle” into a branching spiral that terminates (fast) is to add a step

into the cycle which applies ultrasparsification on G/, which is

an operation that transforms a graph with n nodes to a smaller

graph with % nodes such that distances in the smaller graph 5()/)—

approximate distances in the larger graph. Applying this step, we

can reduce (1 + ¢)-SSSP on a graph with n nodes to O(log? n) in-

stances of O(1)-SSSPs on smaller graphs with O (logl%n) nodes. It
is easy to see that the total size of all recursive calls falls exponen-
tially on each subsequent level, hence the total parallel runtime is
O(1) and the total work O(m) (since a single sequence of reductions

requires 6] (m) work).

Minor Aggregates and the Low-Congestion Shortcuts Framework.
The low-congestion shortcuts framework was originally intended
for designing simple and efficient distributed graph algorithms and
was developed over a long sequence of works [27-30, 33-35, 37,

481

Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

38, 45]. However, this paper argues that the framework provides
a natural language even for developing fast parallel algorithms.
Indeed, we present our parallel SSSP algorithm using the framework
and our hope is that this choice simplifies the exposition, even
before considering the benefits of immediately obtaining distributed
results.

We describe our algorithms in the recently introduced Minor-
Aggregation model [32, 64], which offers an intuitive interface to the
recent advancements in the low-congestion shortcut framework. In
the Minor-Aggregation model, one can (1) contract edges, thereby
operating a minor, (2) each (super)node in the contracted graph
can compute an aggregate (e.g., min, max, sum) of surrounding
neighbors, and (3) add 0(1) arbitrarily-connected virtual nodes
over the course of the algorithm. The goal is to design O(1)-round
algorithms in this model. Such a Minor-Aggregation algorithm can
be compiled to a near-optimal algorithm in both the parallel and
distributed settings.

1.1.2 Our New Tools.

Near-Optimal Graph-Based {1 -oblivious routing. The first key
contribution of this paper is a new construction of graph-based
£1-oblivious routing with drastically improved guarantees from
the so-called sparse neighborhood covers. A sparse neighborhood
cover of distance scale D is a collection of O(logn) clusterings
(partitioning of the node set into disjoint clusters) such that (1)
each cluster has diameter at most D, and (2) each ball in G of ra-
dius D/ (logc n) is fully contained in at least one cluster (for some
fixed constant C > 0). Specifically, given sparse neighborhood
covers for all O(logn) exponentially-increasing distance scales
B, % B2, ..., poly(n) for some § = O(1) along with some extra dis-
tance information, we construct an O (1)-competitive ¢;-oblivious
routing. The algorithm greatly differs from all prior approaches, as
all of them had inherent barriers preventing them from achieving
deterministic near-optimality, which we describe below.

Derandomization issues: Efficient constructions of an #; -oblivious
routing either use an #;-embedding or so-called low-diameter de-
compositions; this is a clustering problem whose deterministic
version is also known as a sparse neighborhood cover. Sparse neigh-
borhood covers were introduced in the seminal work of [4] and
applied with great success for many problems, including approxi-
mate shortest paths and other distance based problems [5, 13].

Since an efficient deterministic #;-embedding is not known, we
need a deterministic construction of sparse neighborhood covers.
Luckily, many of the ideas required to derandomize the computa-
tion of sparse neighborhood covers were developed very recently
by a sequence of papers that derandomized the closely related net-
work decomposition problem which is, essentially, an unweighted
version of the sparse cover problem [8, 26, 54]. In [18], these un-
weighted results were extended to an algorithm constructing sparse
neighborhood covers for weighted graphs and this is the result that
we use to solve the shortest path problem here.

Distance-reduction framework: Iterative and Locality-Friendly.
As we explained earlier, our new #;-oblivious routing construction
reduces the SSSP problem in G to computing sparse neighborhood
covers along with some extra distance information. Clearly, this

Undirected (1 + €)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms

requires our SSSP computation to compute some distance informa-
tion, leading again to a chicken and egg problem. Unfortunately,
directly applying the vertex-reduction framework is not compatible
with our desire to obtain fast minor-aggregation (or distributed)
algorithms. In particular, at the lowest level of the recursion, the
vertex-reduction framework generates a polynomial number of
constant-size SSSP problems, each of which essentially corresponds
to a minor of G. While these problems can each be solved in con-
stant time in the parallel setting, the fact that these minors can
be arbitrarily overlapping and each correspond to large diameter
subsets in G means that polynomially many instead of the desired
polylogarithmic number of minor aggregations are necessary.

This paper therefore designs a novel, completely different, and
more locality-friendly complexity-reduction framework: distance
reduction. On a high-level, we show that obtaining “sparse neigh-
borhood covers up to distance scale D” can be reduced to several
“shortest path computations up to distance D” which are computable
from “sparse neighborhood covers up to distance D/poly log n” (see
Figure 1). This iterative and local nature of our distance-reduction
framework directly translates into a small overall number of minor
aggregations; this is in stark contrast to the inherently recursive
vertex-reduction framework (which recurses on different graphs,
requiring a recursive approach). As a nice little extra, combining our
distance-reduction framework with the new #;-embedding makes
for an algorithm that is (in our not exactly unbiased opinion) a
good bit simpler than the previous algorithms of [2, 48]. We note
that this framework is more reminiscent of older approaches to
hopset constructions [10, 20]. In these approaches, hopsets over
longer paths which use at most £/2 edges are used to bootstrap the
construction of hopsets over paths using at most ¢ edges.

A key definition to formalize what exactly the “up to distance D”
in our distance-reduction framework means is the following. We
attach a virtual, so-called, cheating node and connect it to all other
nodes with an edge of length D. This new graph naturally preserves
distance information “up to distance D” and the complexity of
computing distances increases as D increases.

Derandomization: Deterministic Transshipment Flow Rounding
via Eulerian Tours. All previous transshipment approaches crucially
use randomization. The most significant challenge we had to over-
come in making our results deterministic stem from the following
issue: The only problem that remains to be derandomized in this
paper is rounding a (fractional) transshipment solution to (a flow
supported on) a tree, a crucial step in the distance-reduction frame-
work. We prove the following theorem (only the parallel version is
stated for simplicity).

THEOREM 1.3. There is a deterministic parallel algorithm which
takes as an input any fractional transshipment flow f satisfying some
single-source transshipment demand b in the graph G and in near-
linear work and polylogarithmic time outputs a flow f’ of equal or
smaller cost which is supported on some tree in G.

While such a flow rounding seems an unlikely bottleneck for a
deterministic SSSP algorithm, we remark that even for randomized
algorithms a lot of complexity has come from this rounding step
in the algorithms of [2, 7, 48]—all these approaches are based on
random walks and are inherently randomized.

482

STOC 22, June 20-24, 2022, Rome, Italy

Note that if the fractional flow f is acyclic (has no directed cycles),
then there is a trivial randomized rounding which simply samples
one outgoing edge for each node in G through which flow is routed,
choosing the probability of each edge proportional to the outflow in
f.Itis easy to see that retaining the edges that are in the connected
component of the source truthfully samples a tree-supported flow
from f. The complexity comes in once f is not acyclic as the sampled
edges can now create many connected components. This requires
finding the cycles in these components, contracting the edges and
again running a randomized out-edge sampling on the remaining
graph.

Deterministically none of the above works. Indeed, we are not
aware of any simple(r) way of deterministically obtaining a tree-
supported flow even if f is acyclic. Our rounding procedure can be
seen as a generalization of an algorithm of Cohen’s rounding [11],
which can be used to round any fractional transshipment flow to
an integral flow by scaling flow values to only leave integral and
half-integral flow values and then finding an Eulerian tour covering
all half-integral edges. Pushing one half-unit of flow in the cheaper
direction of this Eulerian tour makes all flow values fully integral
and allows the scaling to be reduced. At the end of this procedure,
all flow values are integral but this does not guarantee that the flow
is supported on a tree. To eliminate any non-tree like parts of the
flow we show how to keep the algorithm running and find further
Eulerian tours until the flow becomes tree-supported.

A Distributed Eulerian Tour Algorithm. The problem of comput-
ing Eulerian Tours can be stated as follows. Given an undirected
graph with all degrees even, direct the edges in such a way that
the out-degree of every node equals the in-degree. Note that we
do not require connectedness. While computing Eulerian tours is a
well-known parallel primitive which can be efficiently computed
in near-linear work and polylogarithmic time [3], there are, to our
knowledge, no distributed algorithms known for this problem.

Therefore, to also give distributed SSSP algorithms in this paper
we need to design efficient distributed Eulerian-tour algorithms that
can then be used in the Eulerian-tour-based rounding procedure
of Theorem 1.3. We build the first algorithm computing such an
Eulerian tour orientation by using algorithms from [50, 51] for low-
congestion cycle covers. Interestingly, these low-congestion cycle
covers were only developed for the completely unrelated purpose
of making distributed computation resilient to Byzantine faults
introduced by an adversary in a recent line of work [41, 42, 50, 51].

THEOREM 1.4 (INFORMAL). There is a deterministic CONGEST
algorithm which, given any Eulerian subgraph H of the network G
as an input, computes an Eulerian tour orientation in 5(\/2 + Hop-
Diam(G)) rounds or 5(H0pDiam(G)) rounds if G is an excluded-
minor graph.

The most general and fully formal statements of all results proven
in this paper are given in Section 2.3.

2 SSSP VIA MINOR-AGGREGATIONS: A
LOCAL ITERATIVE REDUCTION CYCLE
In Section 1 and Figure 1, we gave an idealized and informal de-

scription of our algorithm. The real set of reductions our algorithm
is built on is not quite the perfect cycle from Figure 1, but instead

STOC ’22, June 20-24, 2022, Rome, Italy

it looks like Figure 2. In Section 2.1, we give a formal definition for
each part of this new “cycle” and explain how the parts of the new
cycle correspond to parts in the old cycle. Once we have defined
each part of the new cycle, each arrow in Figure 2 corresponds
to a formal statement. These formal statements can be found in
Section 2.2, along with informal explanations how the statements
can be proven.

Finally, Section 2.3 contains statements of our main theorems to-
gether with simple proof sketches. The formal proofs for all the
results stated in Section 2.2 and Section 2.3 can be found in the full
version of the paper.

Lemma 3.11

Lemma 3.14

Lemma 3.10 (©Round

oFuler

Distance structure
for scales D;,1 < j <i

Distance structure
for scale D;

‘ ’ OES“

Forest D

Lemma 3.13 Lemma 3.12

Sparse Neighborhood Cover

with diameter D;

Figure 2: The figure illustrates a single iteration of our local
iterative reduction cycle. At the beginning of the cycle, the
algorithm has already computed a distance structure for ev-
ery scale D; with D; < D;. After completion of the cycle,
the algorithm has computed a distance structure for scale
D;, under the assumption that it has access to the rounding
oracle OR°Und (or the EULERIAN-ORIENTATION oracle OFv/er),
Lemma 2.9 states this result formally. Moreover, each arrow
in the cycle corresponds to a formal statement of the follow-
ing form: Given A (and B), then one can efficiently (in 0(1)
Minor-Aggregation rounds) compute C.

2.1 Key Definitions and Oracles

The definition of the oblivious routing oracle OOb 119 relies on the
definition of the graph Gs p and the definition of distance scales.
We start with the definition of the graph Gs p.

Definition 2.1 (Graph Gs p). Let S € V and D € [poly(n)]. We
construct the graph Gsp (VU {up,s*H,EU {{up,u} | u €
VYU {{s*,u} | u € S}) by adding two additional nodes vp and s*
to G. The node vp is connected to each node in V and the node s*
is connected to all the nodes in S, with all the new edges having a
weight of D. Moreover, we denote with Gs the unweighted graph
one obtains by discarding the edge weights in the weighted graph
Gs.p.

Informally speaking, Gs p preserves distance information only
up to distance 2D. More formally, any shortest path between two
nodes in G remains a shortest path in Gs p if this path is of length
at most 2D. Shortest paths in G longer than 2D, on the other hand,
are not preserved in Gg p, since any two nodes in Gs p have a
shortest path of length 2D via vp. Moreover, consider a shortest
path tree from vertex s* up to distance 2D. If one removes s* and

483

Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

vp from this tree, then the resulting forest is a shortest path forest
in G from set S up to distance D.

We next give the definition of distance scales, along with defining
global parameters which are used throughout the paper.

Definition 2.2 (Distance Scales). We set 7 = log’ (n), = 87 and
D; = L.

A distance scale is a value contained in the set {D;: i € N, D; <
n? maxecg £(e)}. In particular, if we denote with ipgy the largest

integer i for which D; is a distance scale, then D;,,, . > diam(G).

We are finally ready to formally define oracle Ogbli”, the #;-
Oblivious Routing Oracle for scale D;. It corresponds to computing
an “f;-oblivious routing up to distance D;” in Figure 1.

Definition 2.3 (£1-Oblivious Routing Oracle for scale D; — OObl iv),

The ¢;-Oblivious Routing Oracle for scale D;, ()Obl '0 takes as 1nput
asetS C V as well as a demand b and a flow f for Gs,p,. It outputs

Rsb and Rg f for a fixed O(1)-competitive £ -oblivious routing Rg
for Gs p,.

Next, we give the formal definition of the forest oracle Of g est

Definition 2.4 ((1 + ¢)-Approximate Forest for distance D rooted
at S / Forest Oracle — ()Fore”) The forest oracle OFore” takes as
input a node set S C V. The outputisa (1+¢)- appr0x1mate forest
for distance D rooted at S, which is a forest F rooted at S such that
the following holds.
(1) For every u € V(G) with distg(S,u) < D we have u € V(F).
(2) For every u € V(F), distp(S,u) < (1+¢)D.

For a given distance scale D;, having access to OF7es! for

log3(n)”

every D € [% D,—] corresponds to “(1 + ¢) set-shortest path up to

distance D;” in Figure 1.

The notion of “(1+¢) transshipment up to distance D” in Figure 1
does not have a direct correspondence in Figure 2. However, the
potential oracle Og‘i’t outputs a potential capturing a certain version

of (dual) transshipment potentials. The oracle Og?t is defined as
follows:

Definition 2.5 (Potential for scale D; with respect to set S / Po-
tential Oracle — Og‘?t). The potential oracle Og‘?t takes as input

anode set S C V. The output is a potential ¢s p, € RV (Gs0i) for
scale D; with respect to S. A potential for scale D; with respect to
aset S C V is a non-negative potential ¢g p, such that:

(1) YoeS: ¢>5D(v)—0and

(2) distg (v, S) > 1mphes ¢s.p,(v) = 0. 5

We next give the definition of a distance structure for scale D;.

Definition 2.6 (Distance Structure for scale D;). A distance struc-
ture for scale D; consists of a sparse neighborhood cover with cov-
ering radius % Moreover, each cluster C in one of the clusterings
comes with
(1) atree T¢ of diameter at most D; which spans C and is rooted
at some node ve € C. We refer to u¢ as the cluster center.
(2) A potential for scale D; with respect to V \ C (known to
nodes in C).

Undirected (1 + €)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms

In Figure 1, “distance structures up to distance D” correspond to
having a distance structure for every scale D; with D; < D.

In Section 1 we outlined the problem of rounding a transshipment
flow, and that rounding can be deterministically reduced to solving
o] (1) EULERIAN-ORIENTATION problems. We now define the oracles
for the two problems.

The rounding oracle is defined as follows.

Definition 2.7 (Rounding Oracle — OR°%"d) The Rounding Ora-
cle ORound takes as input a weighted graph H with length function
¢y and a flow f on H. The weighted graph H needs to be a subgraph
of some graph H’ that one can obtain from G by adding up to O(1)
virtual nodes and adding edges of arbitrary nonnegative length inci-
dent to the virtual nodes. The flow f needs to satisfy the following
condition. Let b be the demand that f routes. Then, b(v) > 0 for all
v € V(H) except for some s € V(H) called the source. The output is
arooted tree T with root s spanning all vertices of H with non-zero
demand such that ¥, (y)20 b(0) distr(s,0) < (1 +¢&")eg(f) with
&’ = min (e, m)

Note that O§°”"d takes as input a weighted graph that can
have more vertices than G. This allows us to use OR%" to round
a transshipment flow defined on the graph Gs p. Moreover, we
sometimes just write OR%"d_ithout a precision parameter &,
which we define as ORound = Ofo”"d = QRound

20log3 (n) 7

The EULERIAN-ORIENTATION oracle is deﬁrfeii)next.
Definition 2.8 (EULERIAN-ORIENTATION Oracle — OFuler), The
EULERIAN-ORIENTATION oracle OFU€" takes as input a Eulerian
graph H. The graph H has to be a subgraph of some graph H’ that
one can obtain from G by adding up to O(1) virtual nodes and
adding any edges incident to the virtual nodes. The output is an
orientation of the edges of H such that the in-degree of every node
is equal to its out-degree.

2.2 Formal Statements Corresponding to
Figure 2

For the sake of this section, we say that we can solve a problem or
compute a structure efficiently if there exists a Minor-Aggregation
algorithm for the task that runs in O(1) rounds.

In this subsection, we give one formal statement for each arrow
in Figure 2, as promised at the beginning of Section 2. Before that,
we state a result which captures the main essence of our local
iterative reduction cycle.

Lemma 2.9 (Main Lemma). Assume a distance structure for every
scale Dj smaller than scale D; and oracle ORound gy given. A distance
structure for scale D; can be efficiently computed.

Lemma 2.9 is a simple corollary of the next four lemmas. The
formal proof can be found in the full version of the paper.

Lemma 2.10. Assume a distance structure for every scale Dj smaller
than scale D; is given. Then, Ogibli” can be efficiently computed.

Lemma 2.10 follows from a simple adaption of our o(1)-competitive
¢1-oblivious routing construction, explained in the full version of
the paper.

484

STOC 22, June 20-24, 2022, Rome, Italy

Lemma 2.11. Assume oracle ORound

Og‘i’t and OF"?"“D can be efficiently computed forany D € [% Di] .
@)’

and Og?’“” are given. Then,
1

Lemma 2.11 follows mainly from previous work. More precisely,
having access to a 5(1)—competitive f-oblivious routing in Gs p,,
we can compute the following two objects via boosting and round-
ing [7, 48, 57, 64]. First, a (1 + £)-SSSP-tree in Gs p, rooted at s*.
Second, an individually good (1+ ¢)-approximate potential in G p,
for the single-source transshipment demand with source s*. For
completeness, we give a summary of these steps in the proof of the
full version of the paper.

If one looks at what the aforementioned tree and potential in
Gs,p, correspond to in the graph G, then one can relatively straight-

1

log®n
est for D rooted at S and a potential for scale D; with respect to
S, assuming ¢ = is sufficiently small. The details of this

forwardly transform them to obtain a (1 +)—approximate for-

1
poly (log n)
transformation can be found in the full version of the paper.

Forest
(e

Lemma 2.12. Assume oracle is given for every D €

log3(m)”
[%,Di]. Then, a sparse neighborhood cover with covering radius

D; . . .
=" together with a rooted spanning tree Tc of diameter at most D;

for every cluster C in the cover can be computed efficiently.

Lemma 2.12 directly follows from [18, Theorem C.4], which is
proven by adapting the algorithms of [8, 54] for the closely-related
network decomposition problem.

Lemma 2.13. Assume we are given an oracle Og‘_’t and a sparse
1

neighborhood cover with covering radius % together with a rooted
spanning tree Tc of diameter at most D; for every cluster C in the cover.
Then, a distance structure for scale D; can be computed efficiently.

Given a sparse neighborhood cover together with a tree for each
cluster, it only remains to compute the potential for scale D; with
respect to V' \ C for each cluster C in the sparse neighborhood
cover. One can compute the potentials for all the clusters in a given
clustering C simultaneously. The simplest approach for computing
these potentials is to compute a single potential for scale D; with
respect to all the nodes that are neighboring one of the clusters in
C. This approach works as long as there does not exist a node that
is both clustered and neighboring a different cluster. Even though
this can indeed happen, there is a simple solution that solves this
problem. The details can be found in the proof of Lemma 2.13 in
the full version of the paper.

OEuler

Lemma 2.14. Assume the oracle is given. Then, QRound .,

be efficiently computed.
The main ideas to prove this lemma were already discussed in

the introduction. The details can be found in the full version of the
paper.

2.3 Main Theorems

In this part, we state the main theorems of this paper.
First of all, a simple induction proof on top of Lemma 2.9 leads
to the following result.

STOC ’22, June 20-24, 2022, Rome, Italy

Lemma 2.15. Assume oracle OR°Und s given. Then, a distance

structure for every scale D; can be efficiently computed.

Note that for i = 1, Lemma 2.9 states that given access to OQRound,
one can efficiently compute a distance structure for scale D;. The
complete induction proof can be found in the full version of the
paper.

Given access to a distance structure for every scale D;, the theo-
rem below follows directly from our O(1)-competitive £;-oblivious
routing scheme described in the full version of the paper.

THEOREM 2.16 (DISTANCE STRUCTURES GIVE £1-OBLIVIOUS ROUT-
ING). Assume a distance structure for every scale D; is given. Then,
there exists a O(1)-competitive £, -oblivious routing R for G for which
R and RT can be efficiently evaluated.

As discussed in Section 1, #1-oblivious routing and rounding is
sufficient to solve the (1+¢)-SSSP tree and the (1+¢)-transshipment
problems [7, 48, 57, 64].

THEOREM 2.17 (£1-OBLIVIOUS ROUTING GIVES SSSP AND TRANS-
SHIPMENT). Assume oracle OZ"Zu”d is given for some ¢ € (0,1] and

that there exists an efficient algorithm to evaluate R and RT for some
5(1)-competitive £1-oblivious routing R for G. Then, the (1 + ¢)-
transshipment problem and the (1 + ¢)-SSSP-tree problem in G can
be solved in O(1/¢2) Minor-Aggregation rounds.

Combining Lemma 2.15, Theorem 2.16 and Theorem 2.17 results
in the following theorem.

THEOREM 2.18. Assume oracle Ofozund is given for some e € (0, 1].
The (1 + ¢)-transshipment problem and the (1 + ¢)-SSSP-tree problem
in G can be solved in O(1/¢?) Minor-Aggregation rounds.

The theorem above together with the fact that OR°4"d can be

OEuler

efficiently implemented given implies the following result.

THEOREM 2.19. Assume oracle OEUler js given and let ¢ € (0,1].
The (1+ ¢)-transshipment problem and the (1 + ¢)-SSSP-tree problem
in G can be solved in O(1/¢%) Minor-Aggregation rounds.

The EULERIAN-ORIENTATION problem can be solved with near-
linear work and polylogarithmic depth [3]. Together with the the-
orem above and the fact that each Minor-Aggregation round can
be simulated with near-linear work and polylogarithmic depth, we
obtain our main parallel result.

THEOREM 1.1 (DETERMINISTIC PARALLEL SSSP AND TRANSSHIP-
MENT). There is a deterministic parallel algorithm that, given an
undirected graph with nonnegative weights, computes a (1 + ¢)-
approximate single-source shortest path tree or a (1+¢)-approximation
to minimum transshipment in 5(m - €72) work and 5(1) time in the
PRAM model for any ¢ € (0,1].

Moreover, our CONGEST algorithms for the EULERIAN-ORIENTATION

problem developed in the full version of the paper together with
general simulation results for the CONGEST model developed in
prior work, we obtain our main result in the CONGEST model.

THEOREM 1.2 (DETERMINISTIC DISTRIBUTED SSSP AND TRANS-
SHIPMENT). There are deterministic CONGEST algorithms that, given

485

Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

an undirected graph with non-negative weights, compute a (1 + ¢)-
approximate set-source shortest path forest or a (1 + ¢)-transshipment
solution for any ¢ € (0, 1]. Our algorithms have an optimal message
complexity of O(m) - =2 and are guaranteed to terminate

(1) within at most O(\/n + HopDiam(G)) - £2 rounds and
(2) within at most O(HopDiam(G)) - ¢~% rounds if G does not
contain any O(1)-dense minor.

We finish this section by stating the conditional results on uni-
versally optimal SSSP and transshipment algorithms one can obtain
from this work:

THEOREM 2.20. Suppose there exists a deterministic algorithm
for partwise aggregation that runs in ShortcutQuality(G) - no()
CONGEST rounds, then there exist deterministic (1 + €)-SSSP and
(1+¢)-transshipment algorithms with a round complexity of Shortcut-
Quality(G)) - n°V), which is universally-optimal up to a n°‘V) -factor.

We get even stronger conditional results if better CONGEST
algorithms for computing cycle covers as defined in [50, 51] are
given.

THEOREM 2.21. Suppose there exists a deterministic algorithm for
partwise aggregation that runs in O(ShortcutQuality(G)) CONGEST
rounds and a (0(1), 0(1)) cycle cover algorithm for O(1)-diameter
graphs which runs in O(1) CONGEST rounds. Then, there exist de-
terministic (1 + €)-SSSP and (1 + ¢)-transshipment algorithms with a
round complexity of O(ShortcutQuality (G)), which is universally-
optimal up to polylogarithmic factors.

While the polylogarithmically tight algorithmic results assumed
in Theorem 2.21 seem out of reach of current techniques, our con-
ditional results show that the problem-specific part towards univer-
sally optimal shortest path algorithms, even deterministic ones, are
essentially fully understood through the techniques of this paper.

REFERENCES

[1] Noga Alon, Zvi Galil, and Oded Margalit. 1997. On the exponent of the all pairs
shortest path problem. J. Comput. System Sci. 54, 2 (1997), 255-262.

Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel approximate
undirected shortest paths via low hop emulators. In Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 322-335.

Mikhail Atallah and Uzi Vishkin. 1984. Finding Euler tours in parallel. J. Comput.
System Sci. 29, 3 (1984), 330-337.

Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science. IEEE, 503-513.
Yair Bartal. 2021. Advances in Metric Ramsey Theory and its Applications. arXiv
preprint arXiv:2104.03484 (2021).

Ruben Becker, Yuval Emek, and Christoph Lenzen. 2019. Low diameter
graph decompositions by approximate distance computation. arXiv preprint
arXiv:1909.09002 (2019).

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-
tributed and Streaming Models. In 31st International Symposium on Distributed
Computing (DISC), Vol. 91. 7:1-7:16.

Yi-Jun Chang and Mohsen Ghaffari. 2021. Strong-Diameter Network Decom-
position. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing (Virtual Event, Italy) (PODC21). Association for Computing Machin-
ery, New York, NY, USA, 273-281. https://doi.org/10.1145/3465084.3467933
Shiri Chechik and Doron Mukhtar. 2020. Single-Source Shortest Paths in the
CONGEST Model with Improved Bound. In Proceedings of the 39th Symposium
on Principles of Distributed Computing (PODC). 464-473.

Edith Cohen. 1994. Polylog-time and near-linear work approximation scheme
for undirected shortest paths. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of Computing. 16-26.

[2

[3

[5

G

7

[8

[9

(10]

Undirected (1 + €)-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel and Distributed Algorithms

[11]
[12]

(13

[14

[15

[16]

(7

(18]

[19

[20

[21

[22]

[23

[24]

[26]

[27]

[28]

[29]

[30

[31]

[32

[33]

[36]

[37

Edith Cohen. 1995. Approximate max-flow on small depth networks. SIAM 7.
Comput. 24, 3 (1995), 579-597.

Edith Cohen. 1997. Using selective path-doubling for parallel shortest-path
computations. Journal of Algorithms 22, 1 (1997), 30-56.

Edith Cohen. 1998. Fast Algorithms for Constructing t-Spanners and Paths
with Stretch t. SIAM J. Comput. 28, 1 (1998), 210-236. https://doi.org/10.1137/
50097539794261295 arXiv:https://doi.org/10.1137/S0097539794261295

Edsger Dijkstra. 1959. A note on two problems in connexion with graphs. Nu-
merische mathematik 1, 1 (1959), 269-271.

Michael Elkin. 2004. Distributed approximation: a survey. ACM SIGACT News
35, 4 (2004), 40-57.

Michael Elkin. 2006. An unconditional lower bound on the time-approximation
trade-off for the distributed minimum spanning tree problem. SIAM . Comput.
36, 2 (2006), 433-456.

Michael Elkin. 2017. Distributed Exact Shortest Paths in Sublinear Time. Journal
of the ACM (JACM) (2017), 757-770.

Michael Elkin, Bernhard Haeupler, Vaclav Rozhon, and Christoph Grunau. [n.d.].
Deterministic Low-Diameter Decompositions for Weighted Graphs and Dis-
tributed and Parallel Applications.

Michael Elkin and Shaked Matar. 2021. Deterministic PRAM Approximate Short-
est Paths in Polylogarithmic Time and Slightly Super-Linear Work. In Proceedings
of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (Vir-
tual Event, USA) (SPAA °21). Association for Computing Machinery, New York,
NY, USA, 198-207. https://doi.org/10.1145/3409964.3461809

Michael Elkin and Ofer Neiman. 2016. Hopsets with Constant Hopbound, and
Applications to Approximate Shortest Paths. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS). 128-137.

Michael Elkin and Ofer Neiman. 2017. Linear-Size Hopsets with Small Hopbound,
and Distributed Routing with Low Memory. arXiv:1704.08468 [cs.DS]

Michael Elkin and Ofer Neiman. 2019. Hopsets with constant hopbound, and
applications to approximate shortest paths. SIAM J. Comput. 48, 4 (2019), 1436—
1480.

Michael Elkin and Ofer Neiman. 2019. Linear-Size Hopsets with Small Hop-
bound, and Constant-Hopbound Hopsets in RNC. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 333-341.

Sebastian Forster and Danupon Nanongkai. 2018. A Faster Distributed Single-
Source Shortest Paths Algorithm. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS). 686-697.

Zvi Galil and Oded Margalit. 1997. All pairs shortest paths for graphs with small
integer length edges. J. Comput. System Sci. 54, 2 (1997), 243-254.

Mohsen Ghaffari, Christoph Grunau, and Vaclav Rozhon. 2021. Improved De-
terministic Network Decomposition. In Proc. of the 32nd ACM-SIAM Symp. on
Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics,
USA, 2904-2923.

Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed algorithms for planar
networks ii: Low-congestion shortcuts, mst, and min-cut. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA).
202-219.

Mohsen Ghaffari and Bernhard Haeupler. 2021. Low-Congestion Shortcuts for
Graphs Excluding Dense Minors. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing (Virtual Event, Italy) (PODC’21). Association
for Computing Machinery, New York, NY, USA, 213-221. https://doi.org/10.
1145/3465084.3467935

Mohsen Ghaffari, Bernhard Haeupler, and Harald Riacke. 2021. Hop-Constrained
Expander Decompositions, Oblivious Routing, and Universally-Optimal Dis-
tributed Algorithms. arXiv preprint (2021).

Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. 2021. Hop-constrained
oblivious routing. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. 1208-1220.

Mohsen Ghaffari and Jason Li. 2018. Improved distributed algorithms for exact
shortest paths. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 431-444.

Mohsen Ghaffari and Goran Zuzic. 2022. Universally-Optimal Distributed Exact
Min-Cut. arXiv preprint (2022).

Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. 2018. Round- and
message-optimal distributed graph algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing. 119-128.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-congestion
shortcuts without embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing. 451-460.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-optimal low-
congestion shortcuts on bounded parameter graphs. In International Symposium
on Distributed Computing. Springer, 158-172.

Bernhard Haeupler and Jason Li. 2018. Faster distributed shortest path approxi-
mations via shortcuts. arXiv preprint arXiv:1802.03671 (2018).

Bernhard Haeupler, Jason Li, and Goran Zuzic. 2018. Minor excluded network
families admit fast distributed algorithms. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing. 465-474.

486

[38

[39]

[40]

[41

=
&

[43

[44

[45

[46

N
)

[48

[49

[50]

STOC 22, June 20-24, 2022, Rome, Italy

Bernhard Haeupler, David Wajc, and Goran Zuzic. 2021. Universally-optimal
distributed algorithms for known topologies. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing. 1166-1179.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. An
almost-tight distributed algorithm for computing single-source shortest paths.
2016. In STOC, Vol. 16. 2897518-2897638.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2019. A
deterministic almost-tight distributed algorithm for approximating single-source
shortest paths. SIAM . Comput. (2019), STOC16-98.

Yael Hitron and Merav Parter. 2021. Broadcast CONGEST algorithms against
adversarial edges. In 35th International Symposium on Distributed Computing
(DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum fir Informatik.

Yael Hitron and Merav Parter. 2021. General CONGEST Compilers against
Adversarial Edges. In 35th International Symposium on Distributed Computing
(DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 209),
Seth Gilbert (Ed.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany, 24:1-24:18. https://doi.org/10.4230/LIPIcs.DISC.2021.24

Richard M Karp and Vijaya Ramachandran. 1989. A survey of parallel algorithms
for shared-memory machines.

Philip N Klein and Sairam Subramanian. 1997. A randomized parallel algorithm
for single-source shortest paths. Journal of Algorithms 25, 2 (1997), 205-220.
Shimon Kogan and Merav Parter. 2021. Low-Congestion Shortcuts in Constant
Diameter Graphs. arXiv preprint arXiv:2106.01894 (2021).

Christoph Lenzen and Boaz Patt-Shamir. 2013. Fast routing table construction
using small messages. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. 381-390.

Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. 2019. Distributed distance
computation and routing with small messages. Distributed Computing 32, 2 (2019),
133-157.

Jason Li. 2020. Faster parallel algorithm for approximate shortest path. In Proc-
cedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM,
308-321.

Danupon Nanongkai. 2014. Distributed approximation algorithms for weighted
shortest paths. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing (STOC). 565-573.

Merav Parter and Eylon Yogev. 2019. Low Congestion Cycle Covers and Their
Applications. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Diego, California) (SODA ’19). Society for Industrial and
Applied Mathematics, USA, 1673-1692.

Merav Parter and Eylon Yogev. 2019. Optimal Short Cycle Decomposition in
Almost Linear Time. In 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 132), Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 89:1-89:14. https://doi.org/10.4230/LIPIcs ICALP.2019.89
David Peleg. 2000. Distributed computing: a locality-sensitive approach. SIAM.
Richard Peng. 2016. Approximate Undirected Maximum Flows in
O(mpolylog(n)) Time. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 1862-1867.

Vaclav Rozhori and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic
Network Decomposition and Distributed Derandomization.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed
verification and hardness of distributed approximation. SIAM J. Comput. 41, 5
(2012), 1235-1265.

Jonah Sherman. 2013. Nearly Maximum Flows in Nearly Linear Time. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science (FOCS). 263-269.
Jonah Sherman. 2017. Area-convexity, £« regularization, and undirected multi-
commodity flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 452-460.

Jonah Sherman. 2017. Generalized Preconditioning and Undirected Minimum-
Cost Flow. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 772-780.

Hanmao Shi and Thomas H Spencer. 1999. Time-work tradeoffs of the single-
source shortest paths problem. Journal of algorithms 30, 1 (1999), 19-32.
Thomas H Spencer. 1997. Time-work tradeoffs for parallel algorithms. Journal of
the ACM (JACM) 44, 5 (1997), 742-778.

Jeffrey D Ullman and Mihalis Yannakakis. 1991. High-probability parallel
transitive-closure algorithms. SIAM J. Comput. 20, 1 (1991), 100-125.

Peilin Zhong. 2021. New Primitives for Tackling Graph Problems and Their Appli-
cations in Parallel Computing. Ph.D. Dissertation. Columbia University.

Goran Zuzic. 2021. A Simple Boosting Framework for Transshipment. arXiv
preprint arXiv:2110.11723 (2021).

Goran Zuzic, Goramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui
Sun. 2022. Universally-Optimal Distributed Shortest Paths and Transshipment via
Graph-Based L1-Oblivious Routing. In Proceedings of the 33rd Annual ACM-SIAM

STOC ’22, June 20-24, 2022, Rome, Italy Vaclav Rozhon, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li

Symposium on Discrete Algorithms (SODA). SIAM. of Computer Science (Cat. No. 98CB36280). IEEE, 310-319.
[65] Uri Zwick. 1998. All pairs shortest paths in weighted directed graphs-exact and
almost exact algorithms. In Proceedings 39th Annual Symposium on Foundations

487

	Abstract
	1 Introduction
	1.1 Technical Overview

	2 SSSP via Minor-Aggregations: A Local Iterative Reduction Cycle
	2.1 Key Definitions and Oracles
	2.2 Formal Statements Corresponding to fig:oracles
	2.3 Main Theorems

	References

