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Abstract—Despite the successes of Reinforcement Learning 
(RL) in recent years, tasks that require exploring over long 
trajectories with limited feedback and searching in high-
dimensional space remain challenging. This paper proposes a 
deep RL framework for high-dimensional circuit linearization 
with an efficient exploration strategy leveraging a scaled dot-
product attention scheme and search on the replay technique. 
As a proof of concept, a 5-bit digital-to-time converter (DTC) is 
built as the environment, and an RL agent learns to tune the 
calibration words of the delay stages to minimize the integral 
nonlinearity (INL) with only scalar feedback. The policy 
network which selects calibration words is trained by the Soft 
Actor-Critic (SAC) algorithm. Our results show that the 
proposed RL framework can reduce the INL to less than 0.5 
LSB within 60, 000 trials, which is much smaller than the size of 
searching space.   

Keywords—Deep Reinforcement Learning, Circuits 
Calibration, High-Dimensional Searching, Attention Scheme 

I. INTRODUCTION 
Linearity is one of the most challenging specifications in 

analog-to-digital and time-to-digital converters. In phase-
locked loops (PLLs), nonlinearity in the phase comparison 
path leads to potential folding of out-of-band noise or to 
aliasing, resulting in in-band spurs, especially at near-integer 
channels [1]. Recently, PLL’s based on digital-to-time 
converters (DTCs) have become popular due to the 
fundamentally superior resolution of DTC’s over the time-to-
digital converters (TDCs), which are the limiting components 
in TDC-based PLL’s [2]-[3]. Although the DTC’s topology is 
simple, it is not trivial to achieve an INL of less than ~1 LSB. 
Two major INL contributors are code-dependent supply 
settling error and static distortion due to the mismatches 
between the delay units. To mitigate supply induced INL, a 
high-speed regulator [2] and a replica DTC [3] can be attached 
to the supply. 

The mismatch problem is more challenging due to its 
random nature. An intuitive solution to the mismatch-induced 
INL is to make each delay unit tunable and calibrate the DTC 
after fabrication. However, the high-dimensional search space 
hinders the use of this method. For example, a 5-bit DTC 
would have 32 delay stages, assuming each delay stage has a 
3-bit calibration word, leading to a searching space of 
7.9×1028. Most of the prior techniques for nonlinearity 
calibration are based on least-mean squares (LMS) 

algorithms. In [4], an LMS-based pre-distortion technique is 
proposed to mitigate the DTC nonlinearity in Bang-Bang 
PLLs. Injecting dither into the loop through a DTC to 
scramble the spectrum then cancel it with an adaptive filter is 
another way of reducing fractional spurs [5]. Although these 
calibration engines are usually power efficient, they require 
substantial engineering effort and expertise. In addition, such 
methods are highly specialized thus can’t be applied to any 
other kinds of circuits. 

Deep reinforcement learning methods have produced 
stunning results in game playing [6]. Recently, reinforcement 
learning algorithms have been applied in the integrated circuit 
area. These RL applications can be categorized into three 
broad classes: circuit design, circuit response tuning, and 
circuit calibration. Circuit design automation focuses on 
optimizing circuit parameters for given target design 
specifications [7]-[8]. Circuit tuning problems usually 
consider how to tune the digital control words to track 
environmental changes such as supply voltage and 
temperature drift [9]. Similar to circuit tuning, circuit 
calibration methods also tune the control words of the circuits. 
However, in calibration problems, usually good initial words, 
the control words which can make the circuit meet design 
specifications, are not given. This is because it is hard to 
simulate those control words deterministically due to process 
variations and inaccuracies of the system model. 

Besides gradient-based methods, evolutionary algorithms 
[10]-[11] are also widely used to solve non-linear, non-convex 
optimization or searching problems. The key difference 
between evolutionary methods and deep RL methods is that 
the former methods randomly sample the next action from a 
distribution while the latter methods select the next action 
from a policy network. 

In this paper, we present an RL framework (Fig. 1) that 
can search target calibration words in high-dimensional space. 
A 5-bit DTC model is built to demonstrate the concept. Our 
goal is to calibrate each delay unit such that the output delay 
can be a linear curve against the delay code. We consider the 
linearity is good enough when the |INL|max is ≤ 0.5 LSB. 

The key features of our framework are as follows:  

• To boost the gradient required by backpropagation 
training, we adopt the scaled dot-product attention 
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scheme from Transformer [12] to quantify how new 
the recently visited states are. 

• The training can easily diverge due to the high-
dimensional search space, therefore it is necessary to 
reset the calibration words after a fixed number of 
trials. Inspired by the well-known upper confidence 
bound (UCB) algorithm [13], we choose the reset 
calibration words according to the product of their Q-
values provided by the SAC and the number of steps 
in which that word is visited. 

 
Fig. 1. Fig. 1. RL framework for DTC linearity calibration. No prior 
knowledge or internal signals are provided to the RL block. The goal of the 
RL agent is to find calibration words such that the |INL|max is less than 0.5 
LSB. 

The rest of the paper is organized as follows. Section II 
formulates the linearity calibration problem. We then 
introduce our framework in Section III and demonstrate the 
performance in Section IV. Section V draws conclusions. 

II. FORMULATING THE DTC CALIBRATION PROBLEM 
      As a proof of concept, we built all blocks in Python. To 
achieve background calibration, besides implementing the 
RL block on-chip, an internal feedback signal for RL is 
required. We suggest selecting the average phase error as the 
objective, which is widely used in traditional calibration 
methods [4]-[5]. 

A. DTC Model for RL 
In general, there are two types of DTCs. The variable-

slope DTC changes the delay by tuning the capacitive load 
[2]-[3], while the constant-slope DTC keeps the RC time 
constant fixed and uses a digital-to-analog converter (DAC) to 
pre-charge internal nodes [14]. Thus the delay is controlled by 
tuning the pre-charging voltage. The additional noise from the 
DAC limits the phase noise performance. Currently, the effort 
of constant-slope DTCs focuses on ultralow-power 
applications [15]. 

We choose the variable-slope topology in order to 
minimize the overall phase noise of the synthesizer. To ensure 
monotonicity and improve the linearity, we designed a 5-bit 
thermometric-coded DTC (Fig. 2) in TSMC 65nm CMOS 
process. The number of bits is usually limited by routing 
complexity. Further increasing the bits necessitates a 
segmented design comprising a coarse and a fine DTC [4]. It 
is reported that a TDC in 65nm process can achieve 10 ps 
resolution without calibration [16], therefore we targeted at 
1ps delay resolution. The DTC has 32 delay units, each unit 
has 32 identical calibration cells. We size the Rpoly to 50 Ω and 
CL to 2 fF so that the calibration step is around 0.12 ps. By 

setting the default calibration word to 8 we can achieve a 
nominal delay of ~0.900 ps. 

 
Fig. 2. A 5-bit DTC. Ctrl bits represent the input delay code, Calib_x bits are 

calibration words. 

A 2000-point Monte Carlo simulation is run to extract the 
variation of the calibration step. The mean and standard 
deviation values from the Monte Carlo simulation are put into 
a multivariate Gaussian distribution to generate the DTC 
model (Fig. 3). The output delay is modeled as 

 
The output delay at delay code i is equal to the summation 

of all the previous delay units and the ith delay unit, where I 
ϵ{1, 2, …, 32}. Each delay unit has a separate calibration word 
Calibj, whose valid values are {1, 2, …, 32}.  

 
Fig. 3. Generated DTC model. (a) Output delay vs. delay code. (b) INL 

vs. delay code. (c) (d) Calibration steps. Notice that the calibration steps are 
highly nonlinear. 

B. Definition of RL Environment 
In general, the goal of RL is to maximize the accumulated 

numerical reward signal over time through its choice of 
actions. The action-taker is called the agent.  The thing it 
interacts with, comprising everything outside the agent, is 
called the environment [17]. At each discrete-time steps t, the 
agent receives an observation of the environment, state st. 
Given st, the agent selects an action at and executes the action. 
The environment then outputs a reward rt+1 and moves to the 
next state st+1.  
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During the training, it is common to reset the state to a pre-
defined starting after a fixed number of trials. The collection 
of interaction tuples (st, at, st+1, rt+1) between two resets is 
called an episode. 

The 5-bit DTC environment is defined as follows: 

State: the state st is a vector of size 32 where the jth element 
corresponds to the calibration word Calibj ϵ {1, 2, …, 32} of 
the jth delay unit. 

Action: the action at is a vector of size 32 where each 
element corresponds to the changing of calibration words. The 
valid values of each element are {-2, -1, 0, +1, +2}. 

Transition: the next state st+1= st + at. 

Feedback: We choose |INL|max as the scalar feedback. 
Firstly, it is very hard to measure picosecond level delay in 
practice, so we cannot assume that the RL agent can observe 
the whole delay vs. input code curve. Instead, one measurable 
quantity is the spectrum at the output of the PLL, and it is 
reported that the fractional spurs are related to the maximum 
INL of DTC [18], therefore, we assume that |INL|max is 
observable. Secondly, using |INL|max can make the calibration 
problem more challenging because now the sensitivity (Eq. 
(2)) changes with the states.  

 
To validate this claim, let’s say the |INL|max is located in 

the middle (j=16), then the sensitivity of the later stages (j = 
17, …, 32) equals zero. After taking a few actions, assume that 
the |INL|max moves to a later stage (j=30), now only the last 
two stages have zero sensitivity. Therefore, performing 
sensitivity analysis only at the beginning of the training [8] 
might not work. However, the cost of performing sensitivity 
analysis is not trivial. In [8], the folded-cascode amplifier 
design example has 10 design specifications and 20 variables, 
performing one round of sensitivity analysis needs 200 circuit 
simulations, this number already exceeds the reported number 
of RL iterations. Therefore, even though the sensitivity 
analysis can prune some high-dimensional problems and 
speed up the convergence, we argue that the sensitivity 
analysis is not applicable to linearity calibration problems. 

Environment reward function: To make this method 
applicable to other kinds of circuits, we simply use a straight 
line to avoid embedding any prior knowledge. The 
environment reward is given by Eq. (3). 

 
When the |INL|max is less than 0.5 LSB, the agent receives a 
high positive reward, otherwise, the reward should stay 
negative because we want to encourage the agent to find the 
target calibration words as fast as possible. The positive 
reward +100 is selected so that the environment reward is 
much larger than the exploration reward provided by the 
attention and random network distillation block. The negative 

reward part is a straight line that connects reward = 0 and 
reward = -10. Using a reward lower than -10, such as -20, can 
lead the training to diverge, thus we bound the minimum 
negative reward with -10. The algorithm is robust to the 
threshold |INL|max = 6, we tested with 5, 6, 7 and no significant 
differences were observed. 

III. THE PROPOSED RL FRAMEWORK 
The overall deep RL framework is shown in Fig. 4. There 

are four main parts: Soft Actor-Critic (SAC) [19], memory 
buffers, the attention block and the random network 
distillation (RND) [20]. 

 
Fig. 4. The proposed deep RL framework. There are four main parts: The 

SAC selects action based on current state; The three memory buffers store 
experience tuples to train the critic and actor networks in the SAC block; The 
RND and attention modules provides bonus reward to encourage exploration. 

The agent is trained by the Soft Actor-Critic algorithm. 
The actor network that maps state st to action at has 4 fully-
connected layers with 128 hidden units, followed by the ReLU 
activation. The output of the actor network is first bounded by 
2·tanh(x), then rounded to the nearest integer. The critic 
network Qθ that estimates the action-value function Qπ(st,at), 
has similar architecture but with 256 hidden units in each layer. 
The second part is the replay buffers. Experience tuples (st, at, 
st+1, rt+1) are saved in the experience replay. To train the SAC 
agent, mini-batches from experience replay are sampled by 
using the proportional prioritization sampling technique [21]. 
The episodic state buffer stores all states visited in one episode 
and this buffer will be emptied at the beginning of the next 
episode. The states saved in the episodic buffer will be used 
by the attention block. The reset state buffer stores reset state 
candidates. To select the reset state for next episode, we 
proposed to search the reset state with a probability that is 
proportional to their Qπ(st,at) and the number of steps in which 
that state is visited Ncount. 

 
Another important part in Fig. 4 is the bonus reward block 

that quantifies the novelty of the state. Inspired by the episodic 
reward concept [22] and the Transformer [12], we modified 
the dot-product attention scheme to quantify the novelty of 
states within one episode, while the RND captures long-term 
novelty by keeping updating its weights during the training. 
The details of the attention and RND are presented in Fig. 5. 
Unlike the k-nearest neighbors algorithm (KNN) [22], the 
attention scheme adjusts the summation weights adaptively 
thus we can compare the new state st+1 with all previously 
visited states, thus eliminating the need of considering how 
many neighbors should be included. The other portion of the 
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bonus block, RND, is shown at the bottom of Fig. 5. The RND 
calculates the MSE between a frozen network and a trainable 
network. The prediction error is expected to be higher for 
states dissimilar to the ones the predictor has been trained on.  

 
Fig. 5. The bonus reward block. To encourage exploration, states that are 

very different from previous states should be assigned a high bonus. The 
attention contains no trainable parameters, and the episodic buffer is emptied 
at the end of each episode, thus this module only captures short-term 
information. The long-range novelty is captured by the RND networks.  

IV. SIMULATION  RESULTS 
We generated four types of environments (Fig. 6). The 

first row and the second row are single-peak examples. The 
third and fourth rows are double-peak cases. We refer to them 
as Env1, Env2, Env3 and Env4 respectively. The last column in 
Fig. 6 shows that the INL lies between -0.5 LSB and 0.5 LSB, 
this proves that our agent can calibrate all four types of 
environments successfully. 

To demonstrate the effectiveness of our method, we 
choose the Never Give Up (NGU) agent as the baseline 
method, which uses KNN episodic reward and RND to 
achieve good performance in hard exploration games [22]. 
Note that the distributed training procedure is not included. 
The other two RL methods for high-dimensional circuit design 
are AutoCkt [7] and DNN-Opt [8]. The AutoCkt samples a 
subset of design specifications and shows more efficiency 
over random agents. Since we assume that we can only 
observe one objective, the AutoCkt is not implemented, 
instead, we only compare the size of searching space and the 
number of iterations needed to reach the target. The DNN-Opt 
[8] is not compared because the sensitivity analysis is not 
applicable when the sensitivity changes with states.  

We also compare our RL algorithm with the covariance 
matrix adaptation evolution strategy (CMA-ES), which is one 
of the most popular evolutionary algorithms with many 
successful applications [23]. We first sample N calibration 
word vectors (state st) from a random initialized multivariate 
Gaussian distribution, then Nelite samples with highest fitness 
scores are selected to update the mean vector µt+1 and 
covariance matrix Ct+1. We choose Nelite = 256 which is the 
same as the size of mini-batch used in our RL method. The 
fitness function and update rule are given by Eq. (5). 

 

More complicated update rules [23] can also be used. 
However, as suggested in [11], the choice of evolutionary 
operations is somewhat arbitrary as long as they converge, 
given large enough time and number of samples. Therefore we 
select a simple update.   

 
Fig. 6. Before / after calibration. ith row represents Envi. Red stairs are ideal 
linear curves. Black and blues curves are generated DTC, before and after 

calibration, respectively. 
 

We run the experiments 10 times on all four generated 
DTC models and the average number of trials and success rate 
are shown in Fig. 7. The maximum allowed number of 
iterations is 105, the calibration is considered failed if the 
maximum allowed iterations number is reached. The random 
agent and CMA-ES agent fail to find any target calibration 
words for the 5-bit DTC. Since their curves completely 
overlap with each other, only random agent is drawn in Fig. 7. 
If we reduce the size of searching space (e.g. testing on a 3-bit 
DTC model), those two methods start to work. Those results 
indicate that purely random or sampling-based methods have 
limited exploration capability, which consist with the results 
reported in [7]-[8]. 

For the machine learning methods, the NGU can only find 
the target states on the single-peak cases, yet the success rates 
are less than 100%. But it fails to solve the double-peak 
examples. 

We summarize the performance comparison in Table I. 
We list the average number of trials for each DTC model. 
Thanks to the attention reward and the reset buffer, our 
method can explore a larger space with fewer steps. 
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Fig. 7. Performance on 5-bit DTC environment. (a) shows the average 

number of trials over 10 runs, while (b) plots the success rate. The search is 
terminated once the agent finds the target calibration word. In (c), we keep the 
program running for 100 episodes and the learning curves of our method are 
plotted. Each mean cumulated reward (solid line) is surrounded by a shaded 
area bounded by the maximum and the minimum over 10 runs. In (a)(b), we 
notice that the two double-peak DTC models (Env3, Env4) need significantly 
more trials, the learning curve (Env3) is also much noisier, as shown in (c). 

TABLE I.  PERFORMANCE COMPARISON OF STATE-OF-THE-ART 

 
**. Since most of the design variables in AutoCkt only have 3~4 valid values, to compare fairly we 

calculate the state space by assuming that each calibration word only has 4 values (2 bits). 
 

V. CONCLUSION 
This paper presents a deep reinforcement learning 

framework that is capable of searching effectively in high-
dimensional space. Attention episodic novelty and Q-value-
based reset buffer are proposed to improve the exploration. 
Our algorithm’s effectiveness has been successfully 
demonstrated on a linearity calibration problem and it shows 
superior sample efficiency compared to the prior state-of-the-
art. Compared to prior work, our framework only requires 
scalar feedback thus the effort of human designers can be 
minimized. The proposed RL framework is also applicable 
when there are multiple optimization objectives. This is 
because multiple objects can always be combined into a single 
objective by a function, as simple as the product, together with 
some constraints. 
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