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Abstract—Despite the successes of Reinforcement Learning
(RL) in recent years, tasks that require exploring over long
trajectories with limited feedback and searching in high-
dimensional space remain challenging. This paper proposes a
deep RL framework for high-dimensional circuit linearization
with an efficient exploration strategy leveraging a scaled dot-
product attention scheme and search on the replay technique.
As a proof of concept, a 5-bit digital-to-time converter (DTC) is
built as the environment, and an RL agent learns to tune the
calibration words of the delay stages to minimize the integral
nonlinearity (INL) with only scalar feedback. The policy
network which selects calibration words is trained by the Soft
Actor-Critic (SAC) algorithm. Our results show that the
proposed RL framework can reduce the INL to less than 0.5
LSB within 60, 000 trials, which is much smaller than the size of
searching space.

Keywords—Deep  Reinforcement Learning, Circuits
Calibration, High-Dimensional Searching, Attention Scheme

I. INTRODUCTION

Linearity is one of the most challenging specifications in
analog-to-digital and time-to-digital converters. In phase-
locked loops (PLLs), nonlinearity in the phase comparison
path leads to potential folding of out-of-band noise or to
aliasing, resulting in in-band spurs, especially at near-integer
channels [1]. Recently, PLL’s based on digital-to-time
converters (DTCs) have become popular due to the
fundamentally superior resolution of DTC’s over the time-to-
digital converters (TDCs), which are the limiting components
in TDC-based PLL’s [2]-[3]. Although the DTC’s topology is
simple, it is not trivial to achieve an INL of less than ~1 LSB.
Two major INL contributors are code-dependent supply
settling error and static distortion due to the mismatches
between the delay units. To mitigate supply induced INL, a
high-speed regulator [2] and a replica DTC [3] can be attached
to the supply.

The mismatch problem is more challenging due to its
random nature. An intuitive solution to the mismatch-induced
INL is to make each delay unit tunable and calibrate the DTC
after fabrication. However, the high-dimensional search space
hinders the use of this method. For example, a 5-bit DTC
would have 32 delay stages, assuming each delay stage has a
3-bit calibration word, leading to a searching space of
7.9x10%8, Most of the prior techniques for nonlinearity
calibration are based on least-mean squares (LMS)
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algorithms. In [4], an LMS-based pre-distortion technique is
proposed to mitigate the DTC nonlinearity in Bang-Bang
PLLs. Injecting dither into the loop through a DTC to
scramble the spectrum then cancel it with an adaptive filter is
another way of reducing fractional spurs [5]. Although these
calibration engines are usually power efficient, they require
substantial engineering effort and expertise. In addition, such
methods are highly specialized thus can’t be applied to any
other kinds of circuits.

Deep reinforcement learning methods have produced
stunning results in game playing [6]. Recently, reinforcement
learning algorithms have been applied in the integrated circuit
area. These RL applications can be categorized into three
broad classes: circuit design, circuit response tuning, and
circuit calibration. Circuit design automation focuses on
optimizing circuit parameters for given target design
specifications [7]-[8]. Circuit tuning problems usually
consider how to tune the digital control words to track
environmental changes such as supply voltage and
temperature drift [9]. Similar to circuit tuning, circuit
calibration methods also tune the control words of the circuits.
However, in calibration problems, usually good initial words,
the control words which can make the circuit meet design
specifications, are not given. This is because it is hard to
simulate those control words deterministically due to process
variations and inaccuracies of the system model.

Besides gradient-based methods, evolutionary algorithms
[10]-[11] are also widely used to solve non-linear, non-convex
optimization or searching problems. The key difference
between evolutionary methods and deep RL methods is that
the former methods randomly sample the next action from a
distribution while the latter methods select the next action
from a policy network.

In this paper, we present an RL framework (Fig. 1) that
can search target calibration words in high-dimensional space.
A 5-bit DTC model is built to demonstrate the concept. Our
goal is to calibrate each delay unit such that the output delay
can be a linear curve against the delay code. We consider the
linearity is good enough when the |INL|nax is < 0.5 LSB.

The key features of our framework are as follows:

e To boost the gradient required by backpropagation
training, we adopt the scaled dot-product attention
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scheme from Transformer [12] to quantify how new
the recently visited states are.

e The training can easily diverge due to the high-
dimensional search space, therefore it is necessary to
reset the calibration words after a fixed number of
trials. Inspired by the well-known upper confidence
bound (UCB) algorithm [13], we choose the reset
calibration words according to the product of their Q-
values provided by the SAC and the number of steps
in which that word is visited.

INL
Sweep DTC ] : INL vs code curve
delay code

) Deléy code

| Calib words RL

Fig. 1. Fig. 1. RL framework for DTC linearity calibration. No prior
knowledge or internal signals are provided to the RL block. The goal of the
RL agent is to find calibration words such that the [INL|max is less than 0.5
LSB.

Mapping Function
A black-box

[INL|mqx
the RL block can only observe a scalar

The rest of the paper is organized as follows. Section II
formulates the linearity calibration problem. We then
introduce our framework in Section III and demonstrate the
performance in Section I'V. Section V draws conclusions.

II. FORMULATING THE DTC CALIBRATION PROBLEM

As a proof of concept, we built all blocks in Python. To
achieve background calibration, besides implementing the
RL block on-chip, an internal feedback signal for RL is
required. We suggest selecting the average phase error as the
objective, which is widely used in traditional calibration
methods [4]-[5].

A. DTC Model for RL

In general, there are two types of DTCs. The variable-
slope DTC changes the delay by tuning the capacitive load
[2]-[3], while the constant-slope DTC keeps the RC time
constant fixed and uses a digital-to-analog converter (DAC) to
pre-charge internal nodes [14]. Thus the delay is controlled by
tuning the pre-charging voltage. The additional noise from the
DAC limits the phase noise performance. Currently, the effort
of constant-slope DTCs focuses on ultralow-power
applications [15].

We choose the variable-slope topology in order to
minimize the overall phase noise of the synthesizer. To ensure
monotonicity and improve the linearity, we designed a 5-bit
thermometric-coded DTC (Fig. 2) in TSMC 65nm CMOS
process. The number of bits is usually limited by routing
complexity. Further increasing the bits necessitates a
segmented design comprising a coarse and a fine DTC [4]. It
is reported that a TDC in 65nm process can achieve 10 ps
resolution without calibration [16], therefore we targeted at
1ps delay resolution. The DTC has 32 delay units, each unit
has 32 identical calibration cells. We size the Rpory to 50 Q and
Ci to 2 fF so that the calibration step is around 0.12 ps. By
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setting the default calibration word to 8 we can achieve a
nominal delay of ~0.900 ps.
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Fig. 2. A 5-bit DTC. Ctrl bits represent the input delay code, Calib_x bits are
calibration words.

A 2000-point Monte Carlo simulation is run to extract the
variation of the calibration step. The mean and standard
deviation values from the Monte Carlo simulation are put into
a multivariate Gaussian distribution to generate the DTC
model (Fig. 3). The output delay is modeled as

Delay (i) = Zji:l delaJ’unit(j: Ca”bj) (1

The output delay at delay code i is equal to the summation
of all the previous delay units and the i delay unit, where /
€{l1,2,...,32}. Each delay unit has a separate calibration word
Calib;, whose valid values are {1, 2, ..., 32}.
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Fig. 3. Generated DTC model. (a) Output delay vs. delay code. (b) INL
vs. delay code. (c) (d) Calibration steps. Notice that the calibration steps are
highly nonlinear.

B. Definition of RL Environment

In general, the goal of RL is to maximize the accumulated
numerical reward signal over time through its choice of
actions. The action-taker is called the agent. The thing it
interacts with, comprising everything outside the agent, is
called the environment [17]. At each discrete-time steps ¢, the
agent receives an observation of the environment, state s:.
Given sy, the agent selects an action ar and executes the action.
The environment then outputs a reward r:+; and moves to the
next state sv+1.
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During the training, it is common to reset the state to a pre-
defined starting after a fixed number of trials. The collection
of interaction tuples (s, a; Si+1, rr+1) between two resets is
called an episode.

The 5-bit DTC environment is defined as follows:

State: the state s/ is a vector of size 32 where the j element
corresponds to the calibration word Calib; € {1, 2, ..., 32} of
the j delay unit.

Action: the action a; is a vector of size 32 where each
element corresponds to the changing of calibration words. The
valid values of each element are {-2, -1, 0, +1, +2}.

Transition: the next state s:+/= s: + a.

Feedback: We choose |INL|nax as the scalar feedback.
Firstly, it is very hard to measure picosecond level delay in
practice, so we cannot assume that the RL agent can observe
the whole delay vs. input code curve. Instead, one measurable
quantity is the spectrum at the output of the PLL, and it is
reported that the fractional spurs are related to the maximum
INL of DTC [18], therefore, we assume that |[INL|max is
observable. Secondly, using |/NL|na can make the calibration
problem more challenging because now the sensitivity (Eq.
(2)) changes with the states.

= i _ 3UINLlmax)
Sij = dx;  d(calibj) 2)

To validate this claim, let’s say the |INL|ma is located in
the middle (7=16), then the sensitivity of the later stages (j =
17, ...,32) equals zero. After taking a few actions, assume that
the |INL|max moves to a later stage (7=30), now only the last
two stages have zero sensitivity. Therefore, performing
sensitivity analysis only at the beginning of the training [8§]
might not work. However, the cost of performing sensitivity
analysis is not trivial. In [8], the folded-cascode amplifier
design example has 10 design specifications and 20 variables,
performing one round of sensitivity analysis needs 200 circuit
simulations, this number already exceeds the reported number
of RL iterations. Therefore, even though the sensitivity
analysis can prune some high-dimensional problems and
speed up the convergence, we argue that the sensitivity
analysis is not applicable to linearity calibration problems.

Environment reward function: To make this method
applicable to other kinds of circuits, we simply use a straight
line to avoid embedding any prior knowledge. The
environment reward is given by Eq. (3).

+100, if [INL|jnax < 0.5
rfEnv(llNleax) = —-10,
—1.8 - |INL| ;g + 0.9, elsewhere

When the |INL|max is less than 0.5 LSB, the agent receives a
high positive reward, otherwise, the reward should stay
negative because we want to encourage the agent to find the
target calibration words as fast as possible. The positive
reward +100 is selected so that the environment reward is
much larger than the exploration reward provided by the
attention and random network distillation block. The negative

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.iee

ifINLlmax >6  (3)

reward part is a straight line that connects reward = 0 and
reward = -10. Using a reward lower than -10, such as -20, can
lead the training to diverge, thus we bound the minimum
negative reward with -10. The algorithm is robust to the
threshold |INL |max = 6, we tested with 5, 6, 7 and no significant
differences were observed.

III. THE PROPOSED RL FRAMEWORK

The overall deep RL framework is shown in Fig. 4. There
are four main parts: Soft Actor-Critic (SAC) [19], memory
buffers, the attention block and the random network
distillation (RND) [20].

- 7411 > Tenresr
Episodic State Buffer, SaVe I'ty1: Speq
Store sg~s;
St+1

Reset State Buffer
Store (Se+1,7e+1)

Experience Replay Buffer
Store (¢, @y, S¢+1,Tee1)

Fig. 4. The proposed deep RL framework. There are four main parts: The
SAC selects action based on current state; The three memory buffers store
experience tuples to train the critic and actor networks in the SAC block; The
RND and attention modules provides bonus reward to encourage exploration.

The agent is trained by the Soft Actor-Critic algorithm.
The actor network that maps state s: to action a has 4 fully-
connected layers with 128 hidden units, followed by the ReLU
activation. The output of the actor network is first bounded by
2-tanh(x), then rounded to the nearest integer. The critic
network Oy that estimates the action-value function Qx(s,ay),
has similar architecture but with 256 hidden units in each layer.
The second part is the replay buffers. Experience tuples (s, a,
st+1, ri+1) are saved in the experience replay. To train the SAC
agent, mini-batches from experience replay are sampled by
using the proportional prioritization sampling technique [21].
The episodic state buffer stores all states visited in one episode
and this buffer will be emptied at the beginning of the next
episode. The states saved in the episodic buffer will be used
by the attention block. The reset state buffer stores reset state
candidates. To select the reset state for next episode, we
proposed to search the reset state with a probability that is
proportional to their Qx(ss,a;) and the number of steps in which
that state is visited Neoun.

Softmax ({2%2 Q’Q{(S,ng(AIS)) . J%) 4)

Another important part in Fig. 4 is the bonus reward block
that quantifies the novelty of the state. Inspired by the episodic
reward concept [22] and the Transformer [12], we modified
the dot-product attention scheme to quantify the novelty of
states within one episode, while the RND captures long-term
novelty by keeping updating its weights during the training.
The details of the attention and RND are presented in Fig. 5.
Unlike the k-nearest neighbors algorithm (KNN) [22], the
attention scheme adjusts the summation weights adaptively
thus we can compare the new state s.+; with all previously
visited states, thus eliminating the need of considering how
many neighbors should be included. The other portion of the
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bonus block, RND, is shown at the bottom of Fig. 5. The RND
calculates the MSE between a frozen network and a trainable
network. The prediction error is expected to be higher for
states dissimilar to the ones the predictor has been trained on.
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Fig. 5. The bonus reward block. To encourage exploration, states that are
very different from previous states should be assigned a high bonus. The
attention contains no trainable parameters, and the episodic buffer is emptied
at the end of each episode, thus this module only captures short-term
information. The long-range novelty is captured by the RND networks.

IV. SIMULATION RESULTS

We generated four types of environments (Fig. 6). The
first row and the second row are single-peak examples. The
third and fourth rows are double-peak cases. We refer to them
as Envi, Envz, Envs and Enva respectively. The last column in
Fig. 6 shows that the INL lies between -0.5 LSB and 0.5 LSB,
this proves that our agent can calibrate all four types of
environments successfully.

To demonstrate the effectiveness of our method, we
choose the Never Give Up (NGU) agent as the baseline
method, which uses KNN episodic reward and RND to
achieve good performance in hard exploration games [22].
Note that the distributed training procedure is not included.
The other two RL methods for high-dimensional circuit design
are AutoCkt [7] and DNN-Opt [8]. The AutoCkt samples a
subset of design specifications and shows more efficiency
over random agents. Since we assume that we can only
observe one objective, the AutoCkt is not implemented,
instead, we only compare the size of searching space and the
number of iterations needed to reach the target. The DNN-Opt
[8] is not compared because the sensitivity analysis is not
applicable when the sensitivity changes with states.

We also compare our RL algorithm with the covariance
matrix adaptation evolution strategy (CMA-ES), which is one
of the most popular evolutionary algorithms with many
successful applications [23]. We first sample N calibration
word vectors (state s;) from a random initialized multivariate
Gaussian distribution, then Neiize Samples with highest fitness
scores are selected to update the mean vector ur; and
covariance matrix Cr+;. We choose Neire = 256 which is the
same as the size of mini-batch used in our RL method. The
fitness function and update rule are given by Eq. (5).

fitness = —|INL|max
1 Nelite i (5)

= =),. S

He+a Ne.lite Zl:l t

N 1
Cev1 = Cov(s}, ..., s, 'ite)
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More complicated update rules [23] can also be used.
However, as suggested in [11], the choice of evolutionary
operations is somewhat arbitrary as long as they converge,
given large enough time and number of samples. Therefore we
select a simple update.
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Fig. 6. Before / after calibration. i row represents Envi. Red stairs are ideal
linear curves. Black and blues curves are generated DTC, before and after
calibration, respectively.

We run the experiments 10 times on all four generated
DTC models and the average number of trials and success rate
are shown in Fig. 7. The maximum allowed number of
iterations is 103, the calibration is considered failed if the
maximum allowed iterations number is reached. The random
agent and CMA-ES agent fail to find any target calibration
words for the 5-bit DTC. Since their curves completely
overlap with each other, only random agent is drawn in Fig. 7.
If we reduce the size of searching space (e.g. testing on a 3-bit
DTC model), those two methods start to work. Those results
indicate that purely random or sampling-based methods have
limited exploration capability, which consist with the results
reported in [7]-[8].

For the machine learning methods, the NGU can only find
the target states on the single-peak cases, yet the success rates
are less than 100%. But it fails to solve the double-peak
examples.

We summarize the performance comparison in Table 1.
We list the average number of trials for each DTC model.
Thanks to the attention reward and the reset buffer, our
method can explore a larger space with fewer steps.
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Fig. 7. Performance on 5-bit DTC environment. (a) shows the average
number of trials over 10 runs, while (b) plots the success rate. The search is
terminated once the agent finds the target calibration word. In (c), we keep the
program running for 100 episodes and the learning curves of our method are
plotted. Each mean cumulated reward (solid line) is surrounded by a shaded
area bounded by the maximum and the minimum over 10 runs. In (a)(b), we
notice that the two double-peak DTC models (Envs, Enva) need significantly
more trials, the learning curve (Envs) is also much noisier, as shown in (c).

TABLE L. PERFORMANCE COMPARISON OF STATE-OF-THE-ART
Iterations Size of Search Space
Random Agent Failed 1077
CMA-ES Failed 107
AutoCkt [7] 170000 1014
BagNet [11] 55102 1014
NGU [22] 32618, 60354, Failed, Failed 10™°
Our Method | 24517, 22065, 50425, 44620 1019+

** Since most of the design variables in AutoCkt only have 3~4 valid values, to compare fairly we
calculate the state space by assuming that each calibration word only has 4 values (2 bits).

V. CONCLUSION

This paper presents a deep reinforcement learning
framework that is capable of searching effectively in high-
dimensional space. Attention episodic novelty and Q-value-
based reset buffer are proposed to improve the exploration.
Our algorithm’s effectiveness has been successfully
demonstrated on a linearity calibration problem and it shows
superior sample efficiency compared to the prior state-of-the-
art. Compared to prior work, our framework only requires
scalar feedback thus the effort of human designers can be
minimized. The proposed RL framework is also applicable
when there are multiple optimization objectives. This is
because multiple objects can always be combined into a single
objective by a function, as simple as the product, together with
some constraints.
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