
Journal of Computational Physics 448 (2022) 110761

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A hierarchical matrix approach for computing hydrodynamic

interactions✩

Xin Xing a, Hua Huang b, Edmond Chow b,∗

a Department of Mathematics, University of California, Berkeley, CA, United States of America
b School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 6 October 2021

Keywords:

Rotne–Prager–Yamakawa tensor
H2 matrix

Interpolative decomposition

Proxy surface method

For simulations of large numbers of small, spherical particles in a Stokes flow, the
long-range hydrodynamic interactions approximated by the Rotne–Prager–Yamakawa (RPY)
kernel can be summed rapidly using, for example, the fast multipole method (FMM) or
the particle-mesh Ewald (PME) method. In this paper, we develop new fast methods
for computing these sums using the H2 hierarchical matrix representation, for open
and for periodic boundary conditions. To the best of our knowledge, the method for
infinite periodic sums using the H2 hierarchical matrix representation is the first such
method developed. We also consider a more general RPY kernel that handles polydisperse
particle radii, and show analytically and experimentally that the proxy surface method
for efficiently constructing the H2 hierarchical matrix representation remains effective in
this case. Numerical tests demonstrate the well-controlled accuracy of the H2 summation
methods and their linear-scaling computation and storage cost. We find that the H2 matrix
approach has lower cost for computing the summations compared to FMM and PME, but
higher precomputation cost (required for each particle configuration). This precomputation
cost can be amortized over several summations when computing Brownian displacements
or forces in Brownian and Stokesian dynamics simulations with very large numbers of
particles.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Hydrodynamic interactions

Particles immersed in a fluid will experience forces and move in response to fluid motion. In turn, particle motions will
create fluid motions that affect the motion of other particles. These interactions between particles, mediated by the fluid,
are called hydrodynamic interactions. These interactions are particularly significant for small particles in a slowly-moving,
viscous fluid, e.g., suspensions of particles such as proteins and other macromolecules in a living cell. In these scenarios, hy-
drodynamic interactions may play a large role in diffusion, rheological properties, ordered structures, and collective motions
[1–5].

Physical simulation has been a primary tool to explore the complex dynamics of particle suspensions. To model the
hydrodynamic interactions between pairs of spherical particles of finite radius in Stokes flows, the Rotne–Prager–Yamakawa

✩ Supported by National Science Foundation under grants ACI-1609842 and ACI-2003683.
* Corresponding author.

E-mail addresses: xxing@berkeley.edu (X. Xing), huangh223@gatech.edu (H. Huang), echow@cc.gatech.edu (E. Chow).

https://doi.org/10.1016/j.jcp.2021.110761

0021-9991/ 2021 Elsevier Inc. All rights reserved.

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

(RPY) tensor kernel [6,7] is the most common approximation that is used. The resulting hydrodynamic effect on a particle is
then taken to be the summation of the particle’s pairwise interactions with all other particles. Hydrodynamic interactions are
long range—the RPY kernel falls off as 1/|r| where |r| is the distance between particles—and thus short-range truncations
of the interactions generally cannot be used. The topic of this paper is the acceleration of the above summations when
computing the hydrodynamic interactions for large numbers of particles.

For a system of N particles in the above setting, and ignoring the rotation of the particles, the resulting velocity v i of
the ith particle due to a set of forces f j on the particles j = 1, . . . , N is

v i =

N
∑

j=1

K (xi, x j) f j,

where x j is the position of particle j, and K (xi, x j) is the RPY kernel,

K (x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

6πηa
I, x = y

1

8πη|r|

[(

I +
rrT

|r|2

)

+
2a2

|r|2

(

1

3
I −

rrT

|r|2

)]

, x �= y

where r = x − y. Here, we have assumed nonoverlapping particles only for brevity of the introduction (see (3) for the defi-
nition in the overlapping case), a is the radius of all the particles, η is the fluid viscosity, and I is the 3 × 3 identity matrix.
A particle’s “interaction” with itself corresponds to hydrodynamic drag. Computing the 3N × 1 vector v of all velocities has
the form of a matrix-vector multiplication

v = K f , (1)

where f is the vector of forces and K is the 3N × 3N symmetric positive definite kernel matrix associated with the RPY
kernel and the particle positions. The set of sums represented by v in (1) can be computed efficiently via the fast multipole
method (FMM) or the particle-mesh Ewald (PME) method, among others. In FMM and PME, the kernel matrix K is not
formed explicitly.

1.2. Brownian simulations

Brownian forces on particles due to random collisions with fluid molecules are correlated hydrodynamically, and it is
the computation of these forces or displacements that makes hydrodynamic interactions the bottleneck in large Brownian
simulations when such interactions are modeled. Their calculation also involves RPY summation of the form (1) as we
discuss now.

In the Ermak-McCammon algorithm [8] for Brownian dynamics (BD), the 3N × 1 vector x of particle positions evolves in
time t as

x(t + �t) = x(t) + K f �t + kB T (∇·K)�t + g,

〈g〉 = 0, 〈g gT 〉 = 2kB T K�t,
(2)

where K , f , and g are quantities at the current time step, �t is the time step size, and kB T is the Boltzmann constant times
the temperature. For the RPY kernel, ∇ ·K vanishes. The quantity g is a Brownian displacement sampled from a Gaussian
distribution with covariance proportional to K . This covariance condition is a consequence of the fluctuation-dissipation
theorem that relates fluctuations in Brownian forces with friction. Thus the Brownian displacements of the particles are
correlated through hydrodynamic interactions.

The standard way to compute a Brownian displacement g is to first compute the lower triangular Cholesky factor or
principal square root S of K and then compute g = (2kB T�t)1/2Sz where z is a standard Gaussian random vector. However,
in large-scale cases where FMM or PME is used, the matrix K , as mentioned, is not formed and thus not available to
be factored. In these cases, the Brownian displacements are computed with p(K)z where p(K) is a matrix polynomial
approximating the square root of K in some interval. The polynomial could be a Chebyshev polynomial [9] or one generated
by a Krylov subspace method [10–14]. Note that p(K) itself is not computed, but only its action on z, which only requires d
matrix-vector multiplications with the matrix K , where d is the degree of the polynomial, with larger d giving a less biased
sample. In other words, we only need operations of the form (1).

In Stokesian dynamics (SD) simulations [15–18], the Brownian forces are Gaussian and correlated with covariance matrix
R = K−1 + R lub where R lub is a sparse “lubrication” matrix which improves the modeling of short-range hydrodynamic
interactions compared to using the RPY kernel alone. In SD codes, solves with R or, equivalently, I + K R lub are required,
and an iterative solver used for large-scale models requires repeated matrix-vector multiplications with a given RPY kernel
matrix K [19–22].

2

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

1.3. FMM, PME, and hierarchical matrix representations

FMM has been applied to compute the RPY summation (1) in O (N) time. Two approaches using the FMM have been
taken: writing the RPY summation in terms of Coulombic summations [23,24], and using the kernel-independent FMM [25].
The above approaches were applied for particle systems with open boundary conditions. For periodic boundary conditions,
PME has been used [26,19,27–29], giving the RPY summation in O (N logN) time. (In principle, a periodic FMM could also
be applied for the RPY summation in the case of periodic boundary conditions.) In this paper, we develop alternative fast
methods for the RPY summation by using the H2 hierarchical matrix representation. We develop O (N) algorithms for both
open and periodic boundary conditions.

Hierarchical matrix representations, also called rank-structured matrix representations, exploit hierarchical block low-rank
structure in matrices in order to accelerate operations with these matrices. In particular, this structure can be exploited
to compute the kernel summation (1) in O (N) time and space with a specific hierarchical matrix representation called
H2 [30,31]. Kernel summation using this representation is intimately related to the FMM [32–34]. The main difference is
that FMM requires a degenerate approximation of the kernel function (e.g., a multipole expansion), while forming the H2

matrix representation requires algebraic or hybrid analytic-algebraic techniques, e.g., [35–37], which can give more compact
representations (lower ranks of the blocks) but with higher precomputation cost to “construct” or “build” the representation.

More precisely, H2 matrix representations are based the property that, for two well separated (to be defined in Section 3)
sets of particles, X and Y , and for smooth kernel functions, the kernel matrix block K (X, Y) containing interactions be-
tween the two sets of particles has small O (1) numerical rank. Compressing all such blocks of maximum size in the kernel
matrix into low-rank form leads to the H2 matrix representation. Compression using algebraic techniques such as SVD and
rank-revealing QR decomposition, however, can lead to expensive, quadratic H2 construction cost. For kernel functions from
potential theory, compression using a hybrid analytic-algebraic technique called the proxy surface method [38–41] can effi-

ciently compress K (X, Y) via algebraically compressing an intermediate, small matrix K (X, Y p). The artificial proxy particles
Y p , replacing Y in its interactions with X , lie uniformly on a surface separating X from Y . This paper will focus on using
the proxy surface method. An extension of the proxy surface method to more general kernel functions, such as Gaussians,
has also been developed [42].

Another class of hierarchical matrix representations, referred to as fast direct solvers, which includes recursive skele-
tonization [41] and hierarchically semiseparable matrices [43,44], may also be used for kernel summation and additionally
allow for possible efficient symmetric decomposition of a kernel matrix K for computing Brownian displacements directly.
However, compared to the linear complexity of using the H2 representation, these special representations generally require
quadratic precomputation (even with the proxy surface method) and storage costs for a kernel matrix K defined by parti-
cles in 3-dimensional space. Experimentally, we have found these high costs to outweigh the benefit of having a symmetric
decomposition of K , but further development of fast direct solvers may make them viable for Brownian simulations in the
future.

1.4. Contributions of this paper

In this paper, we consider a more general version of the RPY kernel, where the radii of the particles may differ. This is
important in simulations of, for example, proteins in the cytoplasm, where different proteins are modeled by particles of
different sizes corresponding to their hydrodynamic radii [45]. This general RPY kernel, defined in (3) later in this paper, is
a function of two particle radii as well as two particle positions, making it unclear whether the proxy surface method can
be used in this case. In this paper, we show analytically that the proxy surface method remains effective for the general
RPY kernel when we choose the radii of the proxy particles to be zero.

In this paper, we also address the use of H2 matrix representations with periodic boundary conditions. More precisely,
the central cell (simulation box) is repeated in all directions and tiles all of space. We show that the RPY interactions be-
tween the central cell and each adjacent image cell can also be represented in the H2 matrix representation. We further
show that the remaining interactions, i.e., the summation of the RPY interactions between the central cell and all nonad-
jacent image cells, can be represented in low-rank form and thus also has linear multiplication cost. To the best of our
knowledge, our algorithm for such infinite periodic sums using the H2 hierarchical matrix representation is the first such
algorithm developed. It does, however, bear similarities to periodic FMM algorithms, e.g., [46–48].

Compared to FMM and PME, the H2 matrix representation helps compute RPY summations more rapidly, but there is a
high precomputation cost to construct the representation itself. In large-scale BD simulations, this precomputation cost can
be amortized over the number of matrix-vector multiplications needed to compute p(K)z, i.e., a sample of the Brownian
displacement. Further, in some BD simulations, the same K using the particle configuration at one time step can be used for
multiple time steps without significantly altering the resulting macroscopic properties [13], allowing further amortization of
the precomputation cost. In large-scale SD simulations, the precomputation cost can be amortized over the large number of
matrix-vector multiplications required for a given K at a single time step.

Our methods are implemented in an open-source, general-purpose, high-performance H2 matrix package called H2Pack
[49].

3

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Fig. 1. Example of an H2 matrix representation with a binary partition tree for points in 1D space and open boundary conditions. Each colored block
K (Xi , X j) (at different levels) is associated with two nonadjacent boxes i and j at the same level, and is represented in low-rank form. Each white block
is associated with two adjacent or identical boxes at the same level. White blocks at the leaf level are represented in dense form in the H2 matrix
representation.

2. Background

2.1. General RPY kernel and notation

Consider a set of N particles located at x1, x2, . . . , xN with radii a1, a2, . . . , aN , respectively. Let xi denote the pair {xi, ai}
and let X = {xi} denote the set of all particles. For two particles x = {x, a} and y = {y, b}, the RPY kernel K (x, y) : R4 ×

R4 → R3×3 for the case of polydisperse or nonuniform particle radii (see Ref. [50]) is defined as

K (x, y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

8πη|r|

[(

1+
a2 + b2

3|r|2

)

I +

(

1−
a2 + b2

|r|2

)

rrT

|r|2

]

, r > a + b

1

6πηab

[

16|r|3(a + b) − ((a − b)2 + 3|r|2)2

32|r|3
I + · · ·

3((a − b)2 − |r|2)2

32|r|3
rrT

|r|2

]

, |a − b| < r < a + b

1

6πηmax(a,b)
I, r < |a − b|

(3)

with r = x − y and fluid viscosity η. Above, we have included the case where particles may overlap. For two sets of particles
X∗ and Y∗ , K (X∗, Y∗) denotes the RPY interaction block consisting of all K (xi, y j) with xi ∈ X∗ and y j ∈ Y∗ . We use ai
and b j to denote the radii of such two particles xi and y j in K (X∗, Y∗), respectively. Given a set of particles X , the kernel
matrix in the nonperiodic case is defined as K (X, X) and in the periodic case is formally defined as

∑

s K (X, X + s) where
{X + s} denotes all the images of X translated by lattice vectors s.

2.2. H2 matrix representation

Given a set of particles X , an H2 matrix representation of the kernel matrix K (X, X) starts with a hierarchical partition-
ing of X . A cubic box enclosing all particles is adaptively and recursively bisected into smaller cubic boxes until the number
of particles in each finest box is less than a prescribed constant. This hierarchical partitioning of X can be described by a
partition tree T , which is an octree in the 3-dimensional (3D) case. Each node of T corresponds to a cubic box and to the
set of particles with centers in this box. For simplicity, we assume T to be perfect (fully populated in each level). The case
of nonperfect partition trees is discussed in [49].

For each node i ∈ T , let Xi denote the set of particles centered in box i and let Y i denote the set of particles centered
in all boxes that are separated from box i by at least one box of the same size as box i. Such a set of particles Y i and boxes
that contain these particles are said to be well separated from Xi or box i. See Fig. 2 later in this paper for an example of Xi

and Y i (denoted as X∗ and Y∗ in the figure). Using this notation, block K (Xi, X j) denotes the interactions between particles
in box i and in box j, and K (Xi, Y i) denotes the interactions between particles in box i and all particles well separated
from box i (assuming Y i is not empty). An H2 matrix representation of K (X, X) is built upon the property that K (Xi, Y i)

for each node i always has small O (1) numerical rank.
An H2 matrix representation consists of (i) dense blocks K (Xi , X j) with leaf nodes i and j whose boxes are adjacent or

identical to each other (i = j), and (ii) low-rank approximations of blocks K (Xi, X j) with well separated nodes i and j at the
same level that are not contained in larger low-rank blocks at upper levels. Fig. 1 illustrates an H2 matrix representation
for particles in 1-dimensional (1D) space hierarchically partitioned into boxes. The root node in the partition tree is defined
to be at level 1. Note in the figure that only levels 3 and 4 are interesting; for a node i in levels 1 or 2, all Y i are empty.

Using an H2 matrix representation, the matrix-vector multiplication of K (X, X) can be computed with linear cost [30,31,
49] by appropriately traversing the above dense and low-rank approximated blocks and accumulating the partial products.

4

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Fig. 2. 2-dimensional (2D) illustration of the proxy surface method.

2.3. Interpolative decomposition

In H2 matrix representations, we use a particular form for the low rank approximations called interpolative decompo-

sition (ID). Given a matrix A ∈ Rm×n , a rank-k ID approximation of A has the form U A J where U ∈ Rm×k has bounded
entries and A J ∈ Rk×n contains k rows of A. For a fixed approximation rank or an error threshold, an ID approximation of
A can be computed algebraically by using the QR decomposition of AT with column pivoting.

To construct an H2 matrix representation, first compute an ID approximation of K (Xi, Y i) for each node i in the partition
tree with nonempty Y i ,

K (Xi, Y i) ≈ U iK (X id
i , Y i), X id

i ⊂ Xi . (4)

Then, for two nonadjacent boxes i and j at the same level of the partition tree, it holds by definition that X j ⊂ Y i and
Xi ⊂ Y j , and thus block K (Xi, X j) can be approximated by

K (Xi, X j) ≈ U iK (X id
i , X id

j)U T
j , (5)

using the ID approximations (4) associated with nodes i and j.
In constructing an H2 matrix representation of K (X, X), the ID approximation (4) of K (Xi, Y i) is computed explicitly

for each leaf node i, and implicitly for each nonleaf node i using a nested approach [49], i.e., U i for a nonleaf node i is
expressed in terms of the U matrices for its children. This is called the nested basis property of H2 matrix representations
and is necessary for its linear-scaling matrix-vector multiplication.

2.4. Proxy surface method

Calculating an ID decomposition efficiently is the key behind the efficient construction of many kinds of rank-structured
matrix representations. When the block to be approximated is large, the algebraic method of using the pivoted QR decom-

position to compute the ID approximation is very costly. We now discuss the proxy surface method [38–41] which can
compute the ID approximation efficiently in many cases.

First define a set of particles X∗ with centers in a box denoted as X , and another set of particles Y∗ centered in the
union of boxes, denoted as Y , that are well separated from X . For a kernel function K from potential theory, the proxy
surface method computes the ID approximation

(X∗, Y∗) ≈ U K (X id
∗ , Y∗),

where U and X id
∗ are the result of an algebraic calculation of the ID approximation

K (X∗, Y p) ≈ U K (X id
∗ , Y p),

where Y p is a small set of proxy particles that are uniformly sampled on the boundary of the far field ∂Y that encloses
X , i.e., the proxy surface, as illustrated in Fig. 2. Since Y p is a small set, the matrix K (X∗, Y p) is small and the algebraic
calculation of its ID approximation is inexpensive. For kernel functions from potential theory, the effectiveness of the proxy
surface method can be justified by Green’s theorem [51].

3. H2 RPY summation: nonperiodic case

The H2 matrix representation for the RPY kernel matrix K (X, X) for a set of points X can be constructed in a straight-
forward fashion, using the proxy surface method to calculate the low rank ID approximations as described in the previous

5

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

section. However, the proxy surface method was originally designed [38] as a fast method for computing an ID approxi-
mation for kernel matrix blocks associated with point sources and kernel functions from potential theory. Since our general
RPY kernel (3) involves finite and nonuniform particle radii, rather than just particle locations, it is not clear that the proxy
surface method calculates accurate ID approximations in this case.

We provide a theoretical error analysis of the proxy surface method for the RPY kernel with nonuniform particle radii
in Appendix A. The analysis shows that the ID components U and X id

∗ computed by the proxy surface method in this case
define a good vector function approximation,

K (X∗, y) ≈ U K (X id
∗ , y), (6)

for any particles y = {y, b} with centers in domain Y , i.e., y ∈Y . Plugging Y∗ into this function approximation exactly gives
the ID approximation of K (X∗, Y∗). In the analysis, we choose the radius of the proxy particles to be 0. In practice, a small
radius relative to the width of the box containing X∗ can also be used.

It is worth noting that the proxy surface method and its analysis in Appendix A only work for the non-overlapping
RPY interaction in (3). To make sure the particle interactions between two nonadjacent boxes do not involve overlapping
particles, we assure that all finest boxes have edge length greater than twice the maximum radius of all the particles in
X when partitioning X hierarchically into boxes. In other words, all overlapping particle interactions are always performed
directly and described explicitly in dense blocks K (Xi , X j) with adjacent or identical leaf boxes.

The proxy surface method for computing an ID approximation of K (X∗, Y∗) with O (ε) relative error is shown in Algo-
rithm 1.

Algorithm 1 Proxy surface method for the RPY kernel.
Input: X∗ , Y∗ , ∂Y , relative error threshold ε
Output: U and X id

∗ for an ID approximation K (X∗, Y∗) ≈ U K (X id
∗ , Y∗)

Step 1: sample a set of particles Y p with zero radii uniformly on ∂Y
Step 2: calculate U and X id

∗ by an algebraic ID approximation of K (X∗, Y p)

K (X∗, Y p) ≈ U K (X id
∗ , Y p), (7)

with relative error threshold ε

In Step 2 of the algorithm, since the RPY kernel is a tensor kernel, we use a “grouped” version of the ID approximation.
In the grouped version, the row subset K (X id

∗ , Y p) in (7) always contains either all or none of the three rows associated
with each particle in X∗ . This grouping is necessary to efficiently satisfy the nested basis requirement of H2 matrix repre-
sentations.

The grouped ID approximation can be computed algebraically by the QR decomposition of K (X∗, Y p)
T = K (Y p, X∗) using

“group-column” pivoting. Every three columns of K (Y p, X∗) associated with a particle in X∗ are grouped together. The
column pivoting step in QR is applied over the groups and is followed by three consecutive Householder transformations on
the three columns in the pivot group. Such an ID approximation to K (X∗, Y∗) is said to have error below a threshold ε0 if
the approximation to every grouped three rows has error in the Frobenius norm bounded by ε0. A relative error threshold
can be defined similarly as in the general pivoted QR decomposition.

Using Algorithm 1 for the general RPY kernel, we have found experimentally that the number of proxy particles required
in the algorithm depends on the desired accuracy of the ID approximation, but not on the absolute size of X or Y or the
number of points in X∗ or Y∗ . This observation also applies to the original proxy surface method for the 3D Laplace kernel
[51]. More specifically, to obtain an ID approximation of K (X∗, Y∗) with relative error up to 10−k , numerical results show
that it is sufficient to select 6(k + 1)2 proxy particles corresponding to (k + 1) × (k + 1) regular grid points on each face of
the proxy surface.

Using a numerical computation, Fig. 3 plots the relative approximation errors of the proxy surface method, showing
it has accuracy similar to that of algebraic compression methods. From the results, we note that when a relative error
threshold ε is used for the algebraic ID approximation of K (X∗, Y p), the defined ID approximation of K (X∗, Y∗) has relative
error comparable to or even smaller than ε.

Finally, Algorithm 2 shows the H2-based RPY summation algorithm for a nonperiodic system of particles (open boundary
conditions). The first step constructs an H2 matrix representation of K (X, X) for a given set of particles X . By using
the proxy surface method, the cost of this step is linear in the number of particles. The second step performs the H2

matrix-vector multiplication with a multiplicand f , which also has linear cost. The second step can be repeated for a new
multiplicand (without repeating the first step) for the same particle configuration.

In the implementation of Algorithm 2, the dense K (Xi, X j) and the intermediate blocks K (X id
i

, X id
j
) in the approximation

(5) are not stored and are dynamically computed when needed. In the precomputation step, U i and X id
i

for all nodes i at
the same level can be constructed in parallel, and the construction proceeds from the leaf level to the root level. In the H2

matrix-vector multiplication, the dominant computation is the multiplication with all the dense blocks K (Xi , X j) and the
intermediate blocks K (X id

i
, X id

j
). All these block multiplications are independent and can be computed in parallel. See [49]

for a detailed discussion on the parallel implementation of H2 matrix construction and matrix-vector multiplication.

6

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Fig. 3. Relative errors of the low-rank approximations of K (X∗, Y∗) in the Frobenius norm with different ranks. Three methods are tested: SVD, ID using
pivoted QR, and ID using the proxy surface method. The dashed line denotes the relative errors of the intermediate ID approximation of K (X∗, Y p) in
Algorithm 1. The test RPY block K (X∗, Y∗) is constructed by 400 particles X∗ randomly distributed in the box X = [−l/2, l/2]3 of edge length l = 30 and
39200 particles Y∗ in the annulus Y = [−5l/2, 5l/2]3 \ [−3l/2, 3l/2]3 . The proxy surface method has 6 × (7 × 7) = 294 proxy particles Y p on the cubical
surface ∂[−3l/2, 3l/2]3 . Particles in X∗ and Y∗ have radii randomly sampled from a uniform distribution in [1, 10].

Algorithm 2 H2-based RPY summation for nonperiodic systems.

Input: the set of particles X , relative error threshold ε, multiplicand vector f
Output: the product K (X, X) f with relative error O (ε)

Step 1: Precomputation

• generate a hierarchical partition of X , denoted by a L-level tree T
for l = L, L − 1, . . . , 1 do

for node i in level l do
if Y i is nonempty then

• compute U i and X id
i

from an ID approximation of K (Xi , Y i) with relative error threshold ε using Algorithm 1 and the nested ID approximation
approach in H2 matrix construction (see [49, Sec. 2.2] for detailed steps)

end if

end for

end for

Step 2: Multiplication

• apply H2 matrix-vector multiplication (see [49, Alg. 3] for detailed steps) to compute K (X, X) f

4. H2 RPY summation: periodic case

We now consider the RPY kernel and particle systems with 3D periodicity. The following discussion can be easily gener-
alized to other kernel functions and to quasi-1D or quasi-2D periodic systems in 3D space.

Consider a cubic unit cell [−l/2, l/2]3 of edge length l containing N particles, X = {xi}. The set of lattice vectors for this
periodic system is denoted by L = {(k1l, k2l, k3l) | k1, k2, k3 ∈ Z}. The RPY summation for this system is

v i =
∑

s∈L

N
∑

j=1

K (xi, x j + s) f j, i = 1, . . . ,N, (8)

where {v i} and { f i} are 3-dimensional vectors associated with the particles in X , the notation x j + s refers to the translation
of particle x j by s without modifying its radius, and K (x, y) is the RPY kernel. Define the periodic RPY kernel as

KL(x, y) =
∑

s∈L

K (x, y + s),

such that the summation in (8) corresponds to the matrix-vector multiplication v = KL(X, X) f . It is worth noting that this
definition of KL(x, y) is formal since the summation in (8) is conditionally convergent and is computed in practice by an
Ewald summation [52] under the assumption

∑

j f j = 0.

To construct the H2 matrix representation of KL(X, X), we first partition X hierarchically, as in the nonperiodic case.
This partitioning, which defines the partition tree T , applies to each image of X as well. Next, we use the proxy surface
method to compute an ID approximation (using the nonperiodic kernel),

7

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

K (Xi, Y
(i)
p) ≈ U iK (X id

i , Y
(i)
p), X id

i ⊂ Xi,

for every node i ∈ T (including the root node). Here, Y (i)
p denotes the set of proxy particles selected in Algorithm 1 for Xi .

According to the analysis of the proxy surface method in Appendix A, it holds that the computed U i and X id
i

define a good
ID approximation K (Xi, Y∗) ≈ U iK (X id

i
, Y∗) for any set of particles Y∗ that are well separated from the particles in Xi . Due

to the translational invariance of K (x, y), it further holds that for any image of Xi , i.e., Xi + s with s ∈ L, the quantities U i

and X id
i

+ s define a good ID approximation

K (Xi + s, Y∗) ≈ U iK (X id
i + s, Y∗), (9)

for any Y∗ that is well separated from Xi + s.

Let N be the set of 27 lattice vectors that define the 3 × 3 × 3 cells around and including the central cell. The matrix-

vector multiplication in (8) can be split as

KL(X, X) f =
∑

s∈N

K (X, X + s) f +
∑

s∈L\N

K (X, X + s) f . (10)

For each s ∈ N , K (X, X + s) can be represented in H2 format using the components {U i} and {X id
i

} just like in the
nonperiodic case. Specifically, the H2 matrix representation of K (X, X + s) consists of (i) the dense blocks K (Xi, X j + s)

with leaf nodes i and j such that Xi is adjacent or identical to X j + s, and (ii) the low-rank approximations of blocks
K (Xi, X j + s) given as

K (Xi, X j + s) ≈ U iK (X id
i , X id

j + s)U T
j ,

with nodes i and j on the same level such that Xi and X j + s are well separated, and K (Xi, X j + s) is not contained in
a larger low-rank block at an upper level. This low-rank approximation is derived from the computed ID approximations
for Xi and X j + s. Each multiplication K (X, X + s) f in the first term of (10) can thus be efficiently computed using H2

matrix-vector multiplication.

For the second term in (10), note that X+ s is well separated from X for any s ∈L \N . Thus, according to (9), K (X, X+ s)

can be well approximated by U0K (X id
0 , X id

0 + s)U T
0 , where 0 indicates the root node (X0 = X). Summing all these approxi-

mations of K (X, X + s) together gives
∑

s∈L\N

K (X, X + s) ≈
∑

s∈L\N

U0K (X id
0 , X id

0 + s)U T
0

= U0

⎛

⎝

∑

s∈L\N

K (X id
0 , X id

0 + s)

⎞

⎠U T
0

= U0

(

KL(X id
0 , X id

0) −
∑

s∈N

K (X id
0 , X id

0 + s)

)

U T
0

= U0B00U
T
0 , (11)

where B00 denotes the bracketed term in the third equation and U0B00U
T
0 gives a low-rank approximation to the overall

matrix summation. The second term in (10) can thus be approximately and efficiently computed as U0(B00(U
T
0 f)) with

O (|X ||X id
0 |) computation cost.

Overall, the H2-based multiplication algorithm for the periodic case is shown in Algorithm 3. The intermediate block
B00 is precomputed by plain Ewald summation and stored because the evaluation of KL(x, y) is usually expensive. In
comparison with the nonperiodic case (Algorithm 2), the periodic case additionally computes {U i} and {X id

i
} for nodes i with

empty Y i , i.e., the nodes in levels 1 and 2 of the partition tree, and the intermediate block B00 . The total precomputation
and storage costs of Algorithm 3 both scale linearly and are only slightly more expensive than those of the nonperiodic case.

After the precomputation, the multiplication step involves 27 H2 matrix-vector multiplications and one multiplication by
the low-rank approximation U0B00U

T
0 , and has linear computation cost in total. We note that many calculations in the 27

H2 matrix-vector multiplications and the low-rank multiplication are shared and only need to be computed once, such as
the matrix-vector multiplications by each U T

i
and U i . All dense blocks K (Xi, X j + s) and intermediate blocks K (X id

i
, X id

j
+ s)

are dynamically computed in the multiplication step.

5. Numerical experiments

We refer to the H2 matrix-vector multiplication algorithm for the RPY kernel, i.e., RPY summation, with either nonpe-
riodic or periodic systems, as H2-RPY. To demonstrate its accuracy and efficiency, we test the method on particle systems

8

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Algorithm 3 H2-based RPY summation for periodic systems.

Input: the set of particles X , unit cell vectors (that define the lattice vector set L and the 27 neighboring lattice vectors N for the splitting in (10)),
relative error threshold ε, multiplicand vector f

Output: the product KL(X, X) f with relative error O (ε)

Step 1: Precomputation

• generate a hierarchical partition of X , denoted by a L-level tree T
for l = L, L − 1, . . . , 1 do

for node i in level l do
• compute U i and X id

i from an ID approximation of K (Xi , Y (i)
p) with relative error threshold ε using Algorithm 1 and the nested ID approximation

approach in H2 matrix construction (see [49, Sec. 2.2] for detailed steps)
end for

end for

• compute and store B00 = KL(X id
0 , X id

0) −
∑

s∈N K (X id
0 , X id

0 + s), with the first term computed using plain Ewald summation

Step 2: Multiplication

• apply H2 matrix-vector multiplication (see [49, Alg. 3] for detailed steps) to compute K (X, X + s) f for s ∈ N

• compute U0(B00(U
T
0 f))

• accumulate the above multiplication results:

KL(X, X) f =
∑

s∈N

K (X, X + s) f + U0B00U
T
0 f

with different volume fractions, 0.01, 0.1, 0.2, and 0.3. For context, the volume fraction of macromolecules in the cytoplasm
of living cells is believed to be between 0.2 and 0.4 [53], while the volume fraction of DNA in the nucleoid of bacterial cells
is believed to be between 0.1 and 0.2 [4]. For each test system, particles are randomly distributed inside a cubic box with
their radii randomly and uniformly sampled from the interval [1, 10]. Unless otherwise indicated, timings and relative errors
for H2-based matrix-vector multiplications are averaged over five trials (with the same kernel matrix).

The H2-RPY method is implemented within an existing H2 matrix package called H2Pack [49]. Comparisons are made
with existing codes, RPYFMM [24] and StokesDT [28]. The tests are executed using multithreaded parallelism on a dual Intel
Xeon Gold 6226 CPU computer with 180 GB of main memory, using all 24 cores and one hyperthread per core.

The H2-RPY method only takes one parameter, ε, the threshold for controlling the relative error. For ε = 10−k , Algo-
rithm 1 for computing the ID approximations in H2 matrix construction uses 6(k +1)2 proxy particles (see Section 3). In Al-
gorithm 3 for periodic systems, the Ewald summation for constructing KL(X id

0 , X id
0) sets the Ewald parameter α = π

1
2 |V |−

1
3

for a cubic unit cell of volume V and sets the range of both the real-space and the reciprocal-space summations to 4 image
cells in all directions. This is a very accurate setting, suitable for ε as small as 10−11 , but this Ewald summation is not
a significant cost since KL(X id

0 , X id
0) is a small matrix. In the hierarchical partitioning of the given particles, a box is not

further bisected when its edge length is smaller than four times the maximum particle radius (to avoid overlapping RPY
interactions between non-adjacent boxes, see Section 3), or when it contains fewer than 300 particles. The value of 300 is
commonly chosen in FMM codes for computational efficiency but may vary for different computer architectures.

5.1. Accuracy

Recall that a relative error threshold ε is input to the proxy surface method to control the accuracy and cost of an H2

matrix representation. The actual relative error of the representation can be estimated by the accuracy of matrix-vector
multiplication using the representation. More precisely, if we denote the computed result of the multiplication as b̄ and the
numerically exact result as b (directly computed using the RPY kernel), we compute the relative error

relerr =

√

∑

i∈S

(

bi − b̄i

)2

√

∑

i∈S b
2
i

, (12)

where the multiplicand vector is selected randomly from a standard multivariate Gaussian distribution. Since the exact
multiplication can be expensive to compute for large cases, we only measure the accuracy for a set S of 2000 indices
randomly chosen from the particle indices.

To test the accuracy of the H2 matrix representation of the RPY kernel matrix, we use four nonperiodic and four periodic
systems of 1.28 ×106 particles with various volume fractions. For different input relative error thresholds, Table 1 shows the
resulting relative error for H2-based matrix-vector multiplications (averaged over five trials). From the results, the relative
errors of our H2-based matrix-vector multiplications are all well controlled by the specified relative error thresholds. Given
the same error threshold, the multiplication in the periodic case tends to have larger actual relative errors than in the
nonperiodic case, which is expected since more matrix blocks are approximated in the periodic case.

9

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Table 1

Relative error of H2-based matrix-vector multiplications with different pre-
scribed relative error thresholds for constructing the H2 matrix representations.

Rel. err. threshold ε 1.0e-2 1.0e-4 1.0e-6 1.0e-8 1.0e-10

Nonperiodic systems

Volume fraction 0.01 5.2e-3 6.0e-5 7.4e-7 1.5e-8 3.4e-10

Volume fraction 0.1 4.9e-3 6.6e-5 9.5e-7 1.4e-8 3.3e-10

Volume fraction 0.2 5.0e-3 8.7e-5 9.1e-7 1.7e-8 3.6e-10

Volume fraction 0.3 4.7e-3 6.8e-5 1.2e-6 1.8e-8 2.8e-10

Periodic systems

Volume fraction 0.01 1.3e-2 1.2e-4 1.6e-6 3.1e-8 3.3e-10

Volume fraction 0.1 2.0e-2 1.6e-4 1.6e-6 3.0e-8 6.7e-10

Volume fraction 0.2 3.4e-2 2.8e-4 2.7e-6 2.8e-8 7.0e-10

Volume fraction 0.3 1.9e-2 2.0e-4 2.3e-6 4.1e-8 8.8e-10

Fig. 4. Execution time for the precomputation (“build”) and matrix-vector multiplication (“matvec”) of H2-RPY with different relative error thresholds. The
two dotted lines correspond to linear and quadratic scaling.

5.2. Computation and storage costs

We first consider a set of particle systems with fixed volume fraction 0.1. Fig. 4 plots the execution time for the precom-

putation and matrix-vector multiplication of H2-RPY with different relative error thresholds. The precomputation refers to
the construction of the H2 matrix representation, i.e., the computation of ID components {U i} and {X id

i
} in the nonperiodic

case, and the computation of {U i}, {X id
i

}, and B00 in the periodic case. Fig. 5 plots the corresponding storage costs.
From the results, both the precomputation and matrix-vector multiplication have linear computation and storage costs.

For smaller relative error thresholds, the computation and storage costs become more expensive due to the larger approxi-
mation ranks required for ID approximations of RPY kernel blocks to meet the threshold.

We observe that the precomputation costs with relative error thresholds 10−2 , 10−6 , 10−10 are around 3, 20, and 70
times the corresponding matrix-vector multiplication cost, respectively, in the nonperiodic case, and 2, 10, and 35 times
in the periodic case. Thus, the overhead of precomputation is relatively much smaller when lower accuracy is desired. The
overhead of precomputation can be amortized if many matrix-vector multiplications are required for the same particle
configuration, for example, in the iterative calculation of Brownian forces or displacements.

Table 2 further lists the execution time and storage cost for several systems with 1.28 × 106 particles but with different
volume fractions. The computation and storage costs both have negligible differences for systems with different volume
fractions. The additional H2 construction time for periodic systems compared to nonperiodic systems is mainly due to
computing U i and X id

i
components for nodes near the root level. Computation of B00 in Table 2 requires approximately 0.3

seconds. The H2 matrix-vector multiplication is approximately twice as expensive for periodic systems than for nonperiodic
systems, mainly due to the multiplications with intermediate blocks K (X id

i , X id
j + s), which are more numerous in the

periodic case. In comparison, the overhead of periodic FMM over nonperiodic FMM is much smaller [46,54,55]. The reason
for this is that the multipole-to-local operators in FMM (the analogue of intermediate blocks in H2 representations) are the

10

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Fig. 5. Storage costs of H2-RPY with different relative error thresholds. The two dotted lines correspond to linear and quadratic scaling.

Table 2

Execution time for the precomputation and matrix-vector multiplication of H2-

RPY and the corresponding storage costs for 1.28 × 106 particles with different
volume fractions. The relative error threshold 10−6 is used for all tests.

Volume fraction 0.01 0.1 0.2 0.3

Nonperiodic systems

H2 construction (sec.) 49.09 47.65 47.02 46.68

H2 matvec (sec.) 2.41 2.41 2.42 2.41

H2 storage (GB) 20.92 20.92 20.97 20.96

Periodic systems

H2 construction (sec.) 53.26 51.49 51.00 50.83

H2 matvec (sec.) 5.04 5.05 5.03 5.02

H2 storage (GB) 22.19 22.19 22.23 22.24

same for all cluster pairs with the same relative position, which can reduce the computational cost of the multipole-to-local
transformations in the periodic case.

5.3. Comparison with FMM for nonperiodic systems

To our best knowledge, no efficient FMM package is available for computing RPY interactions in systems of different-sized
particles. Therefore, we compare H2-RPY with FMM only on systems of same-sized particles. RPYFMM [24] is a state-of-the-
art package for FMM with the RPY kernel, and provides parallel implementations for both shared and distributed memory
computations. Table 3 compares the numerical results of RPYFMM and H2-RPY method for several systems with different
relative error thresholds while fixing the volume fraction to 0.1 and the particle radii to 1.0. For systems of different volume
fractions, the numerical performance of both methods do not vary significantly.

As can be noted, the H2-RPY method has faster matrix-vector multiplications than RPYFMM but has relatively expensive
precomputation cost. The better multiplication efficiency is due to the fact that H2-RPY compresses RPY interaction blocks
more effectively (i.e., with smaller ranks) using the proxy surface method than FMM using multipole expansions. This
advantage of H2-RPY further increases when particles lie on low-dimensional manifolds [49].

5.4. Comparison with SPME for periodic systems

Smooth particle-mesh Ewald (SPME) summation can be used straightforwardly to compute periodic RPY interactions, and
can be generalized to work with systems of different-sized particles. For this method, let α denote the Ewald parameter
that balances between real-space and reciprocal-space calculations, let rmax denote the cutoff for interactions computed in
real-space, and let p denote the order of the B-spline interpolation used on the nfft × nfft × nfft reciprocal-space grid. The
performance of SPME heavily relies on a careful selection of parameter values to balance computation cost and accuracy. In
comparison, H2-RPY takes a single parameter that can directly control the multiplication accuracy.

We use the StokesDT package [28] for SPME calculations with systems of different-sized particles. StokesDT provides
parallel implementations for both shared and distributed memory computations. For a given system of particles, all the

11

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Table 3

Execution time (in sec.) and average relative multiplication error of RPYFMM
and H2-RPY for different-sized systems and different relative error thresholds
ε. For all the test systems, the volume fractions are set to 0.1 and the particle
radii are set to 1.0. “Build” refers to the precomputation of H2-RPY.

Number of
particles (×104)

RPYFMM H2-RPY

matvec error build matvec error

ε = 10−3

16 0.34 2.38e-03 0.47 0.10 4.58e-04

32 0.88 2.37e-03 0.87 0.18 5.29e-04

64 1.44 2.06e-03 1.60 0.37 5.17e-04

128 2.34 2.53e-03 3.61 0.95 4.98e-04

ε = 10−6

16 1.00 9.50e-07 6.20 0.26 3.89e-07

32 2.12 1.39e-07 14.17 0.59 4.13e-07

64 5.88 1.23e-07 25.81 1.17 4.68e-07

128 7.61 1.74e-07 51.59 2.50 4.60e-07

ε = 10−9

16 1.64 2.71e-09 31.49 0.51 6.78e-10

32 3.79 3.29e-09 67.41 1.04 8.36e-10

64 8.94 3.49e-09 139.10 2.36 9.32e-10

128 11.89 3.15e-09 276.77 5.28 9.93e-10

Table 4

Execution time (in sec.) and average relative multiplication error of SPME and H2-RPY for periodic systems
with different volume fractions. Parameters for SPME are listed and tuned to have multiplication errors around
10−4 while minimizing the computation cost. “Build” for SPME refers to the construction of the real-space term
as a sparse matrix. For all tests with H2-RPY, a relative error threshold ε = 10−4 is used.

Number of
particles (×104)

SPME H2-RPY

build matvec error α, rmax , p, nfft build matvec error

volume fraction 0.01

8 0.19 0.25 2.39e-04 0.03,100,6,256 0.94 0.14 8.44e-05

32 0.47 0.48 2.47e-04 0.03,100,6,256 3.10 0.62 1.15e-04

128 2.24 2.79 1.94e-04 0.03,100,6,512 11.91 2.67 1.16e-04

512 11.95 16.06 1.77e-04 0.03,100,6,1024 40.68 8.60 1.46e-04

volume fraction 0.1

8 0.23 0.29 5.86e-05 0.07,50,6,256 0.91 0.14 1.43e-04

32 0.52 0.49 4.96e-04 0.07,50,6,512 3.02 0.62 1.37e-04

128 2.53 2.80 7.43e-05 0.07,50,6,512 11.64 2.68 1.73e-04

512 13.28 16.15 3.23e-05 0.07,50,6,1024 39.70 8.61 1.93e-04

volume fraction 0.3

8 0.35 0.16 7.77e-05 0.07,50,8,128 0.90 0.14 1.58e-04

32 1.34 0.82 5.99e-05 0.07,50,8,256 3.03 0.62 1.69e-04

128 5.68 2.53 3.16e-04 0.07,50,8,256 11.72 2.71 1.68e-04

512 26.29 11.95 4.20e-05 0.07,50,8,512 39.63 8.60 1.67e-04

parameters of SPME mentioned above, i.e., α, rmax , p, and nfft , are manually tuned to give minimal execution time while
having relative multiplication errors around 10−4 . Table 4 compares the execution time and relative multiplication error of
SPME and H2-RPY for several systems of different volume fractions. H2-RPY is asymptotically faster than SPME, i.e., O (N)

vs. O (N log(N)) which makes H2-RPY matrix-vector multiplication faster for large problems, as observed in the table, but
H2-RPY has a significant precomputation cost.

5.5. Brownian dynamics simulations with H2-RPY

In this section, we compare the use of H2-RPY and SPME for computing hydrodynamic interactions in BD simulations.
BD simulations are performed for suspensions of particles in a periodic box. Besides hydrodynamic interactions modeled
by the RPY tensor (3), the particles are also subjected to a harmonic steric repulsive potential like in our earlier studies
[3,4]. We used the Ermak-McCammon BD algorithm (2) with the refinement that the RPY kernel matrix K is only updated
every λRPY = 25 time steps [13]. When K is updated, the Brownian displacements for λRPY time steps can be computed
simultaneously using the block Lanczos method. The velocities K f (t) due to the external forces f (t) at a time step are
updated every time step, with matrix K not older than λRPY time steps. This choice of λRPY = 25 is a conservative value that
saves computational cost and does not noticeably alter the macroscopic properties of the simulation [13].

12

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Table 5

Average timings (in sec.) per λRPY = 25 steps for the precomputation (‘build’),
computing the Brownian displacements (‘K 1

2 z’), and computing the velocity
components ‘K f ’. The precomputation and Brownian displacement computa-

tion are done once every λRPY time steps, while K f is computed λRPY times.

N

×104
SPME H2-RPY

build K
1
2 z K f build K

1
2 z K f

Monodisp. 8 0.12 12.0 0.81 0.27 9.3 2.24

16 0.24 22.4 1.33 0.54 21.4 5.81

32 0.51 80.9 4.57 0.95 39.7 9.37

Polydisp. 8 0.14 31.0 2.69 0.27 9.3 2.26

16 0.25 51.7 3.53 0.54 21.3 5.89

32 0.52 193.0 12.50 0.98 40.1 9.45

For computing the Brownian displacements with the block Lanczos method, we used a relative error threshold of 10−2 ,
following [56,28]. Both H2-RPY and SPME were set to obtain a relative accuracy of 10−3 . The BD simulations were validated
by comparing the estimated translational diffusion coefficients of particles from BD simulations with H2-RPY and with SPME
for monodisperse particle suspensions of 5000 randomly distributed particles (after suitable equilibration) with volume
fractions ranging from 0.1 to 0.5, and matching these values with those reported in the literature [56,28].

To compare the performance of H2-RPY and SPME, we simulated large suspensions of 80,000, 160,000, and 320,000
particles with volume fraction of approximately 0.2 in a periodic box. Both monodisperse and polydisperse particle systems
were used. In the latter case, particle radii were chosen from a uniform random distribution on the interval [0.9, 1.1]. Table 5

lists the average timings per λRPY = 25 time steps of BD for the K matrix precomputation, for generating λRPY samples of
Brownian displacement vectors, and for computing the velocities K f at each of the λRPY time steps. The average is over 250
time steps.

First, we note that with λRPY = 25, the precomputation timings are small compared to that of the other computational
components. Next, consider the timings for K f using SPME. SPME with polydisperse systems requires about twice the
computation as monodisperse systems [52]. The 80,000 and 160,000 particle systems use nfft = 128, but the 320,000 particle
system requires nfft = 256 to achieve the target SPME relative accuracy of 10−3 . This explains the nonsmooth increase in
timings with problem size for SPME.

In the polydisperse case, computing K f is faster using H2-RPY than with SPME for the 320,000 particle case, but slower
in the other cases. H2-RPY is expected to be preferred for very large particle systems.

Now consider the timings for simultaneously computing λRPY Brownian displacement vectors, denoted by K
1
2 z. Here, we

observe that the timings for H2-RPY are usually much smaller than for SPME. The reason is because H2-RPY can compute
matrix-vector multiplications with a block of λRPY > 1 vectors much faster than λRPY times the time required for one matrix-

vector multiplication. This, in turn, is mainly because temporary blocks K (Xi, X j) and K (X id
i

, X id
j
) in H2-RPY can be reused

immediately for multiple vectors, rather than recomputed for each vector. Further, data read once from main memory into
cache memory can be applied to multiple vectors rather than have to be read multiple times from main memory, once
for each vector. SPME does not have similar gains when simultaneously computing with a block of vectors. Although some
efficiencies can be gained in the real-space sparse matrix-vector multiplication with a block of vectors, the FFT used in the
reciprocal-space portion of the SPME sum does not benefit, since FFT twiddle factors are already stored in cache memory,
and only the vectors themselves need to be read from main memory.

6. Conclusion

We presented an H2-based fast summation algorithm for RPY kernel matrices for both periodic and nonperiodic systems
of different-sized particles. The proxy surface method is the key for efficiently constructing H2 matrix representations of
corresponding RPY interaction matrices. A brief error analysis of this compression method is provided to theoretically justify
its effectiveness. The overall summation algorithm is implemented in H2Pack [49] and could be easily adopted in existing
simulation codes.

The H2 matrix approach has lower cost for computing the summations compared to FMM and PME, as shown in
the numerical experiments, but higher precomputation cost. This precomputation cost can be amortized over the several
summations needed when computing Brownian displacements or forces in an iterative fashion in Brownian and Stokesian
dynamics simulations with very large numbers of particles.

CRediT authorship contribution statement

Xin Xing: Conceptualization, Methodology, Software, Writing – original draft. Hua Huang: Methodology, Software. Ed-

mond Chow: Conceptualization, Validation, Writing – review & editing.

13

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Effectiveness of the proxy surface method for the general RPY kernel

Following [51] for the 3D Laplace kernel, the effectiveness of the proxy surface method, Algorithm 1, for the general RPY
kernel is justified as follows. In Algorithm 1, the two ID approximations of K (X∗, Y p) and K (X∗, Y∗) have their rows written
as

K (xi, Y p) ≈ uT
i K (X id

∗ , Y p) xi ∈ X∗, (A.1)

K (xi, Y∗) ≈ uT
i K (X id

∗ , Y∗) xi ∈ X∗, (A.2)

with uT
i being the three rows of U associated with the ith particle. These two row approximations are exactly the evaluation

of the function approximation

K (xi, y) ≈ uT
i K (X id

∗ , y), y = {y,b} with b� 0, y ∈ Y, (A.3)

at Y p and Y∗ , respectively. Denote the error of this function approximation as ei(y) = K (xi, y) − uT
i
K (X id

∗ , y) ∈ R3×3 . The
proxy surface method first computes uT

i
and X id

∗ via an algebraic ID approximation of K (X∗, Y p) which defines a function
approximation (A.3) that is accurate at Y p , i.e.,

‖ei(Y p)‖F = ‖K (xi, Y p) − uT
i K (X id

∗ , Y p)‖F � εid,

with a pre-specified error threshold εid . This defined function approximation turns out to be accurate for particles in the
whole domain Y (to be shown next). Plugging Y∗ into (A.3) thus gives a good approximation (A.1) to K (xi, Y∗) and overall
gives a good ID approximation of K (X∗, Y∗).

The boundedness of ei(y) can be proved as follows. With a sufficient number of proxy particles on ∂Y , it is reasonable
to assume that, when ei(Y p) is bounded, ei({y, 0}) (note that {y, 0} denotes a particle of radius 0 centered at y) is also well
bounded on ∂Y , i.e.,

max
y∈∂Y

‖ei({y,0})‖∗ � max
{y,0}∈Y p

‖ei({y,0})‖∗ � O (1)‖ei(Y p)‖F , (A.4)

where ‖ · ‖∗ gives the maximum absolute value of all entries in a matrix (note that ei(y) is of dimension 3 × 3). On the
other hand, based on properties of the RPY kernel, the error function ei(y) with any y ∈ Y can actually always be bounded
by its values on ∂Y as described by the following proposition.

Proposition 1. For any ID components uT
i
and X id

∗ , the function approximation defined in (A.3) at any y = {y, b} with y ∈ Y has its
error bounded as

max
y∈Y

‖ei({y,b})‖∗ � (1+ O (1)b2) max
y∈∂Y

‖ei({y,0})‖∗.

Proof. Note that each ei(y) is a linear combination of functions in {K (x j, y)}x j∈X∗ . In the following, we prove a more
general proposition that any linear combination of {K (xi, y)}xi∈X∗ , say f (y) =

∑

i w iK (xi, y), always satisfies

max
y∈Y

‖ f ({y,b})‖∗ � (1+ O (1)b2) max
y∈∂Y

‖ f ({y,0})‖∗, b� 0.

Two basic formulas are used. First, if particles {x0, a0} and {y0, b0} are separated, i.e., |x0 − y0| > a0 + b0 , the RPY kernel

K (x0, y0) is derived from the Oseen kernel T (r) = 1
8πμ

(

1
|r|

I + rrT

|r|3

)

as

K (x0, y0) =

∫

∂B(y0,b0)

dσ (y)

∫

∂B(x0,a0)

dσ (x)T (x − y)

=

∫

∂B(y0,b0)

dσ (y)(1 +
a20

6
�)T (x0 − y) (A.5)

= (1+
a20 + b20

6
�)T (x0 − y0), (A.6)

14

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

where B(x, a) denotes a ball of radius a centered at x. Second, f ({y, b}) can be split based on (A.6) as

f ({y,b}) = f ({y,0}) +
b2

6

∑

i

w i�T (xi − y). (A.7)

First note that each entry of T (r) as a scalar function of r �= 0 meets the condition for the Hopf maximum principle. For
example, the (1, 1) diagonal entry T11(r) and the (1, 2) off-diagonal entry T12(r) satisfy the elliptic PDEs

�T11(r) −
2

r1

∂

∂r1
T11(r) = 0, r �= 0,

�T12(r) −
2

r3

∂

∂r3
T12(r) = 0, r �= 0,

where rk is the kth coordinate of r. Meanwhile, f ({y, b}) depends linearly on {T (xi − y)}xi∈X∗ as

f ({y,b}) =
∑

i

w iK (xi, {y,b}) =
∑

i

w i(1+
a2
i
+ b2

6
�)T (xi − y),

and thus also has its entries satisfying the condition for the Hopf maximum principle when y ∈ Y . Therefore, the Hopf
maximum principle gives that

max
y∈Y

‖ f ({y,b})‖∗ � max
y∈∂Y

‖ f ({y,b})‖∗, b� 0. (A.8)

Based on the splitting of f ({y, b}) in (A.7), it remains to show that

‖
∑

i

w i�T (xi − y)‖∗ � O (1)‖ f ({y,0})‖∗, y ∈ ∂Y.

Consider a point y0 ∈Y \ ∂Y . Let ε > 0 be a scalar such that B(y0, 2ε) is within Y . Using (A.5), f ({y0, 2ε}) can be bounded
as

‖ f ({y0,2ε})‖∗ = ‖
∑

i

w i

∫

∂B(y0,2ε)

dσ (y)(1 +
a2
i

6
�)T (xi − y)‖∗

= ‖

∫

∂B(y0,2ε)

dσ (y)

(

∑

i

w i(1 +
a2
i

6
�)T (xi − y)

)

‖∗

= ‖

∫

∂B(y0,2ε)

dσ (y) f ({y,0})‖∗

� 4π(2ε)2max
y∈Y

‖ f ({y,0})‖∗

� 4π(2ε)2 max
y∈∂Y

‖ f ({y,0})‖∗,

where the last inequality is from (A.8). Similarly, ‖ f ({y0, ε})‖∗ can be bounded by 4πε2 maxy∈∂Y ‖ f ({y, 0})‖∗ . Combining
the two estimations, we have

‖ f ({y0,2ε}) − f ({y0,ε})‖∗ = ‖
ε2

2

∑

i

w i�T (xi − y0)‖∗ � 20πε2 max
y∈∂Y

‖ f ({y,0})‖∗,

which leads to

‖
∑

i

w i�T (xi, y0)‖∗ � 40π max
y∈∂Y

‖ f ({y,0})‖∗, y0 ∈ Y \ ∂Y. (A.9)

Due to the continuity of f ({y, 0}) and T (xi − y) in Y , this inequality also holds on ∂Y . Based on (A.9), (A.8), and (A.7), we
have the final error bound

max
y∈Y

‖ f ({y,b})‖∗ � max
y∈∂Y

‖ f ({y,b})‖∗ � (1+
20π

3
b2) max

y∈∂Y
‖ f ({y,0})‖∗. �

15

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

Combining the assumption (A.4) and Proposition 1, we obtain an error estimate for the proxy surface method: each three
rows of the computed ID approximation of K (X∗, Y∗) are bounded as

‖K (xi, Y∗) − uT
i K (X id

∗ , Y∗)‖F �
√

3|Y∗|max
y∈Y∗

‖ei(y)‖∗

�
√

3|Y∗|(1+ O (1)A2
Y∗

) max
y∈∂Y

‖ei({y,0})‖∗

�
√

3|Y∗|O (1 + A2
Y∗

)‖ei(Y p)‖F

�
√

3|Y∗|O (1 + A2
Y∗

)εid

where AY∗ denotes the maximum radius of all particles in Y∗ . This primitive error bound shows the effectiveness of the
proxy surface method.

References

[1] J.F. Brady, G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech. 155 (1985)
105–129.

[2] T. Frembgen-Kesner, A.H. Elcock, Striking effects of hydrodynamic interactions on the simulated diffusion and folding of proteins, J. Chem. Theory
Comput. 5 (2) (2009) 242–256.

[3] E. Chow, J. Skolnick, Effects of confinement on models of intracellular macromolecular dynamics, Proc. Natl. Acad. Sci. USA 112 (48) (2015)
14846–14851.

[4] E. Chow, J. Skolnick, DNA internal motion likely accelerates protein target search in a packed nucleoid, Biophys. J. 112 (11) (2017) 2261–2270.
[5] J. Skolnick, Perspective: on the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules, J. Chem. Phys. 145 (10) (2016)

100901.

[6] J. Rotne, S. Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys. 50 (11) (1969) 4831–4837.
[7] H. Yamakawa, Transport properties of polymer chains in dilute solution: hydrodynamic interaction, J. Chem. Phys. 53 (1) (1970) 436–443.
[8] D.L. Ermak, J.A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69 (4) (1978) 1352–1360.
[9] M. Fixman, Construction of Langevin forces in the simulation of hydrodynamic interaction, Macromolecules 19 (4) (1986) 1204–1207.

[10] L.A. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi’s method, USSR Comput. Math. Math. Phys. 31 (1991) 1–9.
[11] E. Gallopoulos, Y. Saad, Efficient solution of parabolic equations by polynomial approximation methods, SIAM J. Sci. Stat. Comput. 13 (1992) 1236–1264.
[12] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209–228.
[13] T. Ando, E. Chow, Y. Saad, J. Skolnick, Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations, J. Chem.

Phys. 137 (6) (2012) 064106.
[14] E. Chow, Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions, SIAM J. Sci. Comput. 36 (2) (2014)

A588–A608.

[15] G. Bossis, J.F. Brady, Dynamic simulation of sheared suspensions. I. General method, J. Chem. Phys. 80 (10) (1984) 5141–5154.
[16] J.F. Brady, G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech. 20 (1) (1988) 111–157.
[17] L. Durlofsky, J.F. Brady, G. Bossis, Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech. 180 (1987) 21–49.
[18] A.J. Banchio, J.F. Brady, Accelerated Stokesian dynamics: Brownian motion, J. Chem. Phys. 118 (22) (2003) 10323–10332.
[19] A. Sierou, J.F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech. 448 (2001) 115–146.
[20] M.N. Viera, Large scale simulation of Brownian suspensions, PhD thesis, University of Illinois at Urbana-Champaign, 2002.
[21] Q. Meng, J.J.L. Higdon, Large scale dynamic simulation of plate-like particle suspensions. Part I: non-Brownian simulation, J. Rheol. 52 (1) (2008) 1–36.
[22] Q. Meng, J.J.L. Higdon, Large scale dynamic simulation of plate-like particle suspensions. Part II: Brownian simulation, J. Rheol. 52 (1) (2008) 37–65.
[23] Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, S. Jiang, A fast multipole method for the Rotne–Prager–Yamakawa tensor and its applications, J. Comput.

Phys. 234 (2013) 133–139.
[24] W. Guan, X. Cheng, J. Huang, G. Huber, W. Li, J. McCammon, B. Zhang, RPYFMM: parallel adaptive fast multipole method for Rotne–Prager–Yamakawa

tensor in biomolecular hydrodynamics simulations, Comput. Phys. Commun. 227 (2018) 99–108.
[25] S. Jiang, Z. Liang, J. Huang, A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions, Math. Comput. 82 (283) (2013)

1631–1645.

[26] E.K. Guckel, Large scale simulation of particulate systems using the PME method, PhD thesis, University of Illinois at Urbana-Champaign, 1999.
[27] D. Saintillan, E. Darve, E.S.G. Shaqfeh, A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibers, Phys.

Fluids 17 (3) (2005) 033301.
[28] X. Liu, E. Chow, Large-scale hydrodynamic Brownian simulations on multicore and manycore architectures, in: 2014 IEEE 28th International Parallel

and Distributed Processing Symposium, IEEE, 2014, pp. 563–572.
[29] A. Saadat, B. Khomami, Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions, Phys. Rev. E 92 (2015) 033307.
[30] W. Hackbusch, S. Börm, Data-sparse approximation by adaptive H2-matrices, Computing 69 (1) (2002) 1–35.
[31] W. Hackbusch, B. Khoromskij, S.A. Sauter, On H2-matrices, Lect. Appl. Math. (2000) 9–29.
[32] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer. 6 (1997) 229–269.
[33] W. Fong, E. Darve, The black-box fast multipole method, J. Comput. Phys. 228 (23) (2009) 8712–8725.
[34] Z. Gimbutas, V. Rokhlin, A generalized fast multipole method for nonoscillatory kernels, SIAM J. Sci. Comput. 24 (3) (2003) 796–817.
[35] M. Bebendorf, S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing 70 (1) (2003) 1–24.
[36] L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196 (2) (2004)

591–626.

[37] L. Ying, A kernel independent fast multipole algorithm for radial basis functions, J. Comput. Phys. 213 (2) (2006) 451–457.
[38] P.G. Martinsson, V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys. 205 (1) (2005) 1–23.
[39] W.Y. Kong, J. Bremer, V. Rokhlin, An adaptive fast direct solver for boundary integral equations in two dimensions, Appl. Comput. Harmon. Anal. 31 (3)

(2011) 346–369.
[40] A. Gillman, P.M. Young, P.G. Martinsson, A direct solver with O (N) complexity for integral equations on one-dimensional domains, Front. Math. China

7 (2) (2012) 217–247.
[41] K. Ho, L. Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM J. Sci. Comput. 34 (5) (2012) A2507–A2532.
[42] X. Xing, E. Chow, Interpolative decomposition via proxy points for kernel matrices, SIAM J. Matrix Anal. Appl. 41 (2020) 221–243.

16

X. Xing, H. Huang and E. Chow Journal of Computational Physics 448 (2022) 110761

[43] S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl. 28 (3)
(2006) 603–622.

[44] J. Xia, S. Chandrasekaran, M. Gu, X.S. Li, Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl. 17 (6) (2010) 953–976.
[45] T. Ando, J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. 107 (43) (2010)

18457–18462.

[46] M. Challacombe, C. White, M. Head-Gordon, Periodic boundary conditions and the fast multipole method, J. Chem. Phys. 107 (1997) 10131.
[47] K.N. Kudin, G.E. Scuseria, Revisiting infinite lattice sums with the periodic fast multipole method, J. Chem. Phys. 121 (7) (2004) 2886–2890.
[48] W. Yan, M. Shelley, Flexibly imposing periodicity in kernel independent FMM: a multipole-to-local operator approach, J. Comput. Phys. 355 (2018)

214–232.

[49] H. Huang, X. Xing, E. Chow, H2Pack: high-performance H2 matrix package for kernel matrices using the proxy point method, ACM Trans. Math. Softw.
47 (1) (2020) 3.

[50] P.J. Zuk, E. Wajnryb, K.A. Mizerski, P. Szymczak, Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular
bead models, J. Fluid Mech. 741 (2014) R5.

[51] X. Xing, E. Chow, Error analysis of an accelerated interpolative decomposition for 3D Laplace problems, Appl. Comput. Harmon. Anal. 49 (2020)
316–327.

[52] C. Beenakker, Ewald sum of the Rotne–Prager tensor, J. Chem. Phys. 85 (3) (1986) 1581–1582.
[53] K. Luby-Phelps, Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol. 192 (2000)

189–221.

[54] F. Ethridge, L. Greengard, A new fast-multipole accelerated Poisson solver in two dimensions, SIAM J. Sci. Comput. 23 (3) (2001) 741–760.
[55] H. Cheng, J. Huang, T.J. Leiterman, An adaptive fast solver for the modified Helmholtz equation in two dimensions, J. Comput. Phys. 211 (2) (2006)

616–637.

[56] T. Ando, E. Chow, J. Skolnick, Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions:
algorithm and limitations, J. Chem. Phys. 139 (2013) 121922.

17

	A hierarchical matrix approach for computing hydrodynamic interactions
	1 Introduction
	1.1 Hydrodynamic interactions
	1.2 Brownian simulations
	1.3 FMM, PME, and hierarchical matrix representations
	1.4 Contributions of this paper

	2 Background
	2.1 General RPY kernel and notation
	2.2 H2 matrix representation
	2.3 Interpolative decomposition
	2.4 Proxy surface method

	3 H2 RPY summation: nonperiodic case
	4 H2 RPY summation: periodic case
	5 Numerical experiments
	5.1 Accuracy
	5.2 Computation and storage costs
	5.3 Comparison with FMM for nonperiodic systems
	5.4 Comparison with SPME for periodic systems
	5.5 Brownian dynamics simulations with H2-RPY

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Effectiveness of the proxy surface method for the general RPY kernel
	References

