Signatures of a quantum Griffiths phase close to
an electronic nematic quantum phase transition
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In the vicinity of a quantum critical point, quenched disorder can lead to a quantum Griffiths
phase, accompanied by an exotic power-law scaling with a continuously varying dynamical exponent
that diverges in the zero-temperature limit. Here, we investigate a nematic quantum critical point
in the iron-based superconductor FeSep.89S0.11 using applied hydrostatic pressure. We report an
unusual crossing of the magnetoresistivity isotherms in the non-superconducting normal state which
features a continuously varying dynamical exponent over a large temperature range. We interpret
our results in terms of a quantum Griffiths phase caused by nematic islands that result from the

local distribution of Se and S atoms.

At low temperatures, the Griffiths phase is masked by the

emergence of a Fermi liquid phase due to a strong nematoelastic coupling and a Lifshitz transition

that changes the topology of the Fermi surface.

Introduction A central characteristic of finite- and
zero-temperature phase transitions is how the spatial
and temporal correlation lengths evolve as the transition
is approached. For clean and continuous phase transi-
tions, scaling theory predicts power-law divergences of
both correlation lengths as a function of control param-
eter, with the critical exponents reflecting the universal-
ity class. Moreover, the spatial and temporal correlation
lengths are closely related by the dynamics of the system
[1-4]. In the presence of quenched disorder, this relation
may be lost. Quenched disorder is perfectly correlated
in time, but can harbor a spatially varying order param-
eter. In this situation, a smeared phase transition can
occur, where ordered islands form within a disordered
bulk [5, 6]. Moreover, when order parameter fluctuations
within the islands are non-negligible, a Griffiths phase
can emerge which leads to continuously varying critical
exponents as a function of temperature and control pa-
rameter, fundamentally different to clean systems [7-13].

Experimentally, quantum Griffiths phases have been
identified in ferromagnetic alloys [14, 15], heavy-fermions
[16, 17], the hidden-order phase of URu.Si; [18], and
superconducting thin films [19-22]. In the latter sys-
tems, sharp crossings of the magnetoresistivity isotherms
emerged as a distinctive experimental signature [23-26].
A scaling analysis revealed a temperature-dependent crit-
ical exponent zv that diverges in the low-temperature
limit. This is a hallmark of a quantum Griffiths phase
(v is the critical correlation length exponent, and z the
dynamical exponent) [8-13].

In this Letter, we report the experimental realiza-
tion of an unconventional quantum Griffiths phase in a
electronic nematic system. Specifically, we report the
magnetoresistivity of the quasi-2D bulk superconduc-
tor FeSep.g9S0.11 when tuned to the vicinity of its zero-
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FIG. 1. (a) Pressure-temperature phase diagram and (d) crys-
tal structure of FeSeo.8950.11. The relative position of samples
B and C under a pressure of p = 4.7kbar are indicated by
vertical lines. (b,c) The spatial distribution of small S atoms
induces locally varying critical pressures p.(r) and random
local strains. Close to the nematic quantum phase transition
(QPT), this leads to the formation of nematic islands. The
scale shows the experimental mean free path length A [27].

temperature nematic quantum critical point (QCP) using
a hydrostatic pressure of 4.7 kbar (Fig. 1(a)) [27]. Only at
the nematic QCP, the magnetoresistivity isotherms show
a remarkably sharp crossing at about 30T over nearly
two decades in temperature up to 30 K. Scaling of the



magnetoresistivity yields a critical exponent zr which
increases by more than two orders of magnitude and di-
verges at low temperatures, in agreement with the quan-
tum Griffiths scenario. This divergence is much stronger
than previous reports of non-nematic systems where a
comparatively modest enhancement of zv was observed
only. We argue that the Griffiths phase is induced by the
local distribution of isoelectronic Se and S atoms that
promote the formation of nematic islands in the vicinity
of the nematic QCP, as shown in Fig. 1(b) and (c). Below
a crossover temperature T' ~ 10 K, the quantum Griffiths
phase and the nematic QCP appear to be masked by
an emergent non-zero energy scale which coincides with
the re-entrance of Fermi liquid behavior attributed to a
strong nematoelastic coupling, as well as a topological
Lifshitz transition of the Fermi surface.

Methods Single crystal of FeSe;_,S, with z = 0.11
sulfur substitution were grown using the KCI1/AICl3
chemical vapour transport method as described elsewhere
[28]. High-pressure, high-field measurements for samples
B and C were carried out in the 45T hybrid DC facil-
ity in Tallahassee. We used Daphne Oil 7575 as pres-
sure medium which ensures hydrostatic conditions for
much higher pressures than reported here, and we used
the Ruby fluorescence shifts below 4K to determine the
pressure. Low-field measurements up to 13.5 T were car-
ried out on sample A in a QuantumDesign PPMS in Ox-
ford. Here, Daphne Oil 7373 was used, and the pressure
was determined by the superconducting transition of tin.
Samples were aligned with the magnetic field parallel to
the crystallographic ¢ axis to avoid breaking an in-plane
symmetry. Transport measurements were performed us-
ing a standard 4 or 5 contact setup, using the AC LockIn
technique with a low frequency f =~ 20Hz, and a low
excitation current I, = 1mA within the (ab) plane.

Results Figure 2(a) and (b) show the temperature de-
pendence of the magnetoresistivity of two different sin-
gle crystals B and C of FeSeyg9Sgp.11 under a hydro-
static pressure of p = 4.7kbar, which are in the imme-
diate vicinity of their nematic QCPs (p. = 4.8(3) kbar
for sample B and 5.2(3) kbar for sample C, respectively
as shown in Fig. 1(a) and in the Supplemental Mate-
rial (SM) [27, 29, 30]). All magnetoresistivity isotherms
cross around a similar magnetic field, poH* =~ 28.6 T for
sample B and 28.0 T for sample C, with similar resis-
tivities p* ~ 32 uQ2 cm and 34 p€2 cm, respectively. This
crossing occurs over nearly two decades in temperature
0.3K < T < 30K and its significance becomes evident in
the resistivity plots as a function of temperature in con-
stant field, shown in Fig. 2(c). For H < H*, the resistiv-
ity follows a metallic-like behavior with dp/0T > 0 before
the sample becomes superconducting below 79" ~ 10K
(Fig. 2(d)). Equivalently, the onset magnetic field, HS,
between the superconducting and normal phases can be
identified in magnetic fields smaller than H* in Fig. 2(e)
whose zero-temperature extrapolation coincides with H*
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FIG. 2. (a,b) The isothermal magnetoresistivity of samples
B and C at a pressure of p = 4.7kbar cross at uoH* ~ 28T,
p* ~ 33 uQ cm. Up and down sweeps show no hysteresis. The
pressure difference in brackets represents the distance to the
critical pressure (see Fig. 1(a) and in the SM [29]). (c) The
same data as in panel (a), but as a function of temperature
in fixed field. (d) The actual and extrapolated zero-field re-
sistivities, p(T") (solid line) and pr—o (points, see the SM
[29]). Error bars are smaller than the symbol size. The red
dashed line is a fit to Fermi liquid behavior (po ~ 4.9 uQ cm,
A = 0.036 uQ cm/K?). (e) The first derivative reveals the on-
set of superconductivity, indicated by arrows. Large quantum
oscillations (QO) can be seen for H > H*. (f) The extrapola-
tion of the superconducting (SC) onset coincides with H* only
at T'= 0. All reported data are measured at p = 4.7 kbar.

(Fig. 2(f)). Thus, the magnetoresistivity crossing occurs
strictly within the non-superconducting normal phase for
all finite temperatures (H* > H%(T)), implying that
this behavior describes the normal phase in the vicinity
of the nematic QCP.

In high magnetic fields above H*, the resistivity shows



insulating-like behavior (9p/8T < 0), before it saturates
below T =~ 2K (Fig. 2(c)), similar to previous reports
[31]. Despite this insulating-like behavior, the large mag-
netoresistivity is a feature of the metallic, compensated
multi-band system FeSe;_, S, [31-33]. Quantum oscilla-
tions are visible for temperatures below ~ 5K (Fig. 2(e)),
demonstrating the existence of a Fermi surface and high-
lighting the high quality of the samples [27, 34]. A two-
band analysis of the magnetoresistivity allows us to ex-
trapolate the zero-field resistivity from high magnetic
fields [29], which indicate Fermi liquid behavior below
a crossover temperature Trr, &~ 10K, shown in Fig. 2(d)
[27, 31]. The orbitally averaged effective masses from
quantum oscillations show non-divergent electronic cor-
relations in the vicinity of the nematic QCP, as discussed
in detail in Ref. 27, likely due to a coupling between the
nematic order parameter and the lattice [35-38].

Next, we use a prototypical power-law scaling ansatz
to describe the magnetoresistivity of FeSeg g9Sg.11, previ-
ously applied in thin-film materials, including dirty films
of FeSe [19-26]. In d dimensions, the scaling is given by

p(H,T)/p* _ T(2—d)/zf (N0|H . H*|/T1/zu) (1)

with f(0) = 1 and the critical exponent zv [39]. Clearly,
a crossing of the magnetoresistivity isotherms at a finite
p* is only possible for a two-dimensional system. Indeed,
FeSe; .S, have strongly two-dimensional electronic and
superconducting properties [27, 33, 40-43].

In the case of a typical QCP, zv is a constant given by
the appropriate universality class, which would lead to a
constant slope in Fig. 3(a) (see also the SM [29]). This
is evidently not the case here where we identify a power-
law dependence of zv(T) ~ T%, with non-universal ex-
ponents a ~ —1.5 for sample B and ~ —1.0 for sample
C, as shown in Fig. 3(b). Using this extracted zv(T), all
magnetoresistivity data collapse onto a single curve for
both samples, reflecting the form of the scaling function
f, shown in Fig. 3(c). Deviations for this scaling only
occur for the superconducting transition at lowest fields
and temperatures, and at the highest temperatures and
fields. These deviations indicate the limits of the scaling
relation, as shown in the SM [29].

This scaling analysis reveals an interesting and un-
expected feature. While a zero-temperature divergence
of the effective critical exponent zv(T) is a key signa-
ture of quantum Griffiths phases, the power-law diver-
gence observed here is much stronger than the logarith-
mic (‘activated’) divergence predicted within the infinite-
randomness criticality scenario [13, 21, 29|, as shown in
Fig. 3(b). In fact, a power-law divergence of zv(T) is in-
compatible with the presence of a typical QCP because
the temperature term 7%/2*(T) in Eq. 1 remains finite for
T — 0, which implies the persistence of a non-zero en-
ergy scale at lowest temperatures. Interestingly, we find
that zv deviates from the activated behavior dependence
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FIG. 3. (a) Log-log plot of the first derivative at the crossing
field H* (refer to Fig. 2(e)). Error bars are smaller than
the symbol size. The slope of the dashed line corresponds to
1/zv(T). (b) Temperature dependence of zv extracted from
panel A (crosses) and from the piece-wise extraction shown
in the SM (dots) [29]. Error bars indicate a lo confidence
interval. (c) Scaled magnetotransport data using zv ~ T~ 15
(sample B) and zv ~ T~%9 (sample C). The superconducting
transitions (SC) deviate from this scaling form. (d) The low-
field, low-temperature resistivity in the mixed state follows a
power-law form p(H,T) = p(H)T*. The inset shows a nearly
exponential decay of a(H). For puoH > 22T the analysis
becomes unreliable, and for poH > 28 T, the exponent turns
negative. All reported data are measured at p = 4.7 kbar.

below T' =~ 5-10 K which coincides with a re-entrance of
Fermi liquid behavior, Fig. 2(b). This suggests a suppres-
sion of order parameter fluctuations due to a finite cou-
pling with the lattice, or a dimensional crossover induced
by a changing Fermi surface topology [27, 31, 33, 43].
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FIG. 4. Evolution of superconductivity for sample A. (a)-(c) Magnetoresistivity and (d)-(f) the corresponding first derivatives
showing the development of the superconducting transition in magnetic fields for pressures across the nematic quantum phase
transition. (g) Three-dimensional H-p-T superconducting phase diagram. The inset shows the extrapolated critical fields, H, off

on

o8 and HS, defined in panels (d)-(f), in the zero-temperature limit. The relative positions of samples B and C under a

pressure of 4.7 kbar in the phase diagram are indicated by dashed and the dotted lines, respectively (see also Figs. 2 and 3).

Error bars indicate a 1o confidence interval.

We now focus on the nature of the underlying phases
separated by H*. Figure 3(d) shows that for fields
smaller than H*, the resistivity within the superconduct-
ing mixed state follows a power-law form p o< T*#) over
almost one decade in temperature. We attribute this
power-law form to a disordered vortex-liquid phase that
freezes into a vortex-glass in the zero-temperature limit,
as found in underdoped cuprates [25]. Crossing over into
the high-field regime above H* where quantum oscilla-
tions are present, the resistivity reflects the behavior of a
metallic phase with a partial charge-carrier localization,
as discussed in the SM [29)].

To elucidate the origin and extend of the low-field
disordered vortex phase, we investigate the pressure
dependence of the superconducting to normal transi-
tions in magnetic fields on sample A (p. =~ 5.8kbar
[27]). Figure 4(a)-(f) shows the magnetoresistivity and
its derivative up to 13.5T inside the nematic phase
(0.9kbar), close to the nematic quantum phase transition
(5.5kbar) and within the tetragonal phase (8.8kbar).
In the nematic and tetragonal phases, the normal-to-
superconducting transition widths are nearly tempera-
ture and field independent. In contrast, a visible broad-
ening of the transition is found close to p., but only for
high fields and at low temperatures, thus coinciding with
the vortex-liquid phase in sample B. To quantify this
additional broadening, we extract the superconducting
offset and onset critical fields, Hf and H9, as shown
in Fig. 4(d)-(f). Furthermore, we define a critical mag-
netic field HS, where the magnetoresistivity derivative
has an additional shoulder before it returns to its high-
temperature normal state background, which is observ-
able only in the vicinity of p. (Fig. 4(e)). Figure 4(g)
summarizes all extracted critical fields and their zero-
temperature extrapolations, see also the SM [29]. In-

terestingly, the zero-temperature superconducting tran-
sition width peaks at the nematic quantum phase transi-
tion, doubling the extent of the superconducting mixed
state. The width of the H$(0) peak in pressure is esti-
mated to be o, ~ 0.7(2) kbar, which agrees well with an
estimate for the pressure range of the quantum Griffiths
phase, as discussed below. Figure 4(g) also shows that
the zero-field superconducting transition does not display
any similar broadening. This demonstrates that the peak
in HS is a low-temperature and high-field effect, ruling
out effects of possible pressure inhomogeneities [29].

Discussion Quantum Griffiths phases were previously
detected in inhomogeneous superconductor-to-insulator
transitions in thin films, including FeSe [19-26]. Here,
in bulk FeSeq g9S0.11, the situation is very different. The
scaling relation only describes the normal state resistivity
and holds for magnetic fields up to 45 T and temperatures
up to 30K, vastly exceeding the bulk superconducting
phase. We therefore propose that the quantum Griffiths
phase in FeSeg ggSg.11 emerges from the suppression of
the nematic phase with pressure [27, 30, 44] and the for-
mation of rare nematic islands in a tetragonal matrix
due to the random distribution of sulfur atoms (Fig. 1),
as suggested before (see the SM to Ref. 5). To demon-
strate how this can lead to a quantum Griffiths phase,
we sample a random distribution of 11 % S atoms over
a square lattice, and average the effective sulfur density
x(r) over the experimental quasiparticle mean-free path
length A ~ 350 A [27], as shown in Fig. 1(b) and (c). The
intrinsic local variation Az (r) ~ 0.4% (std. dev.) gives
rise to regions with higher (lower) S content which have a
locally lower (higher) critical pressure p.(r). This is the
prototypical case of random-mass disorder that smears
the quantum phase transition over a region Ap.(r). By
comparing the reported nematic transition temperatures



from pressure and isoelectronic substitution studies, we
estimate Az (r) o< Ap.(r) = 0.4 kbar [30, 31, 33, 45]. This
estimate is similar to the observed pressure range of a
broadened superconducting transition, o, = 0.7(2) kbar.
This suggests that the peak in H$(0) occurs either due
to enhanced superconducting fluctuations within the ne-
matic islands, and/or superconducting nematic islands
below the percolation threshold, which get suppressed at
H™*. These effects could also provide a favorable environ-
ment for the observed inhomogeneous superconducting
vortex phase in the vicinity of the nematic QCP. Finally,
we note that the spatial arrangement of the S atoms lo-
cally breaks the C; symmetry of the lattice and thus
introduces random-field effects. In the two-dimensional
regime, they may limit the size of the nematic domains,
but for weak disorder, the corresponding breakup length
is exponentially large [46].

It is rather surprising that FeSey.g9Sg.11 appears as a
clean system where quantum oscillations can be observed
at lowest temperatures, and yet signatures of a quantum
Griffiths phase are detected as well. Thus, in the vicinity
of the electronic nematic quantum phase transition, addi-
tional effects must be considered, such as the nematoelas-
tic coupling that quenches the two-dimensional quantum
critical nematic fluctuations below a cross-over tempera-
ture Trr, ~ 10K. As a result, Fermi liquid behavior with
finite electronic correlations is restored [27, 31, 33, 43],
and the quantum Griffiths phase is cut off, leading to the
overly strong divergence of zv. Additionally, a band with
likely 3D character is formed due to a Lifshitz transition
of the Fermi surface in the proximity of the nematic QCP
[27, 33] which may change the effective dimensionality of
the system at low temperatures.

The observation of a quantum Griffiths phase in an
iron-based superconductor has a number of important
implications and provides new insights into the nature of
nematic quantum phase transitions. Most notably, the
power-law behavior of zv(T') could provide new insights
into the dynamics of (quenched) nematic quantum fluc-
tuations. Moreover, our study provides evidence that the
quantum Griffiths phase affects the mixed state of the su-
perconducting phase. Alternative systems to search for
nematic quantum Griffiths phases are those iron-based
superconductors in which nematic and tetragonal phases
form over limited compositional ranges around QCPs
[31, 33, 47, 48]. Experimental probes include uniaxial
strain to suppress nematic fluctuations and hence to tune
Griffiths phases [49]; NMR and Raman studies to probe
the essential role of lattice disorder [50]; STM studies to
follow the formation of nematic islands [51]; specific heat
measurements to search for predicted power-law behavior
at low temperatures [14, 16, 20, 52]. Thus, we hope that
our results will guide further theoretical and experimen-
tal research in understanding nematic quantum Griffiths
phases.
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Sample variation and pressure dependence

The samples A-C reported in the main manuscript
were discussed in a previous study dedicated to quan-
tum oscillations [1]. We mapped out the suppression of
the nematic phase in FeSeg ggSg.11 for sample A under
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pressure and identified a critical pressure p. = 5.8 kbar at
which the nematic phase is suppressed [1]. Sample A was
measured inside a piston cylinder pressure cell in fields
up to 13.5T, and the pressure was determined from the
superconducting transition of Sn at low temperatures.

In this Letter, we focus on the magnetotransport be-
havior of samples B and C, which were measured simul-
taneously in a piston cylinder pressure cell in a hybrid
magnet with field sweeps between 11.4-45T. Here, the
applied pressure was determined by means of the Ruby
florescence method below 4 K.

Even though all samples originate from the same batch,
it is important to note that very small variations in sul-
fur content are expected to occur between different crys-
tals. This is mainly due to the thermal gradient gen-
erated during the chemical vapor growth [2] and hence

T(K)

FIG. SM1. (A) Temperature dependence of the zero-field re-
sistivity under pressure for samples A, B and C. The lower
inset shows a faster cooling rate for samples B and C below
17K restricting the temperature interval for comparing sam-
ple resistivities. Resistivities of samples B and C below 17K
are shown as gray lines. The top inset shows a photograph
of sample A, with the tetragonal unit axes a and b and the
current direction I indicated. The magnetic field was applied
along Hl|c. (B,C) First derivative of the zero-field resistiv-
ities shown in panel A from which the structural transition
temperature Ts can be extracted.
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FIG. SM2. Pressure evolution of the residual resistivity ra-
tio (RRR) of samples A, B and C. This ratio, which is a
contact-layout independent measure, can be used to estimate
the pressure offset for samples B (top) and C (bottom), as
indicated by the horizontal arrows.
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FIG. SM3. First derivatives of the magnetoresistivity for sam-
ples B (top) and C (bottom) at different low temperatures up
to 45 T. Note the presence of a strong low-frequency quan-
tum oscillation visible in sample C at low temperatures, but
absent in sample B.

a locally varying growth temperature along the ampule
which leads to locally varying gas pressures. In order to
minimize the sample variation, we screened more than
20 samples in zero field at ambient pressure. We chose
to study in detail the cleanest samples with the largest
residual-resistivity ratio from transport measurements
with a similar nematic transition temperature. All sin-
gle crystals used naturally grew as platelets with well
defined facets along the tetragonal unit axes, with the
crystallographic ¢ axis perpendicular. The inset to Fig-
ure SM1A shows a photograph of sample A. Electrical
contacts were attached such that the current was applied
along the tetragonal a axis. For all studies, the mag-
netic field was applied along the ¢ axis. Note that in the
nematic phase, the unit cell rotates by 45° along c.

In order to compare all samples, and to estimate their
proximity to the nematic quantum phase transition, we
use the pressure scale established for sample A, where
the nematic quantum phase transition occurs for 5.8 kbar
[1]. A “pressure correction” is applied for samples B and
C based on their low-temperature resistivity dependen-
cies, in order to account for varying sulfur contents. We
note that the nematic phase is suppressed both with pres-
sure and with increasing sulfur content and hence we ex-
pect that a higher sulfur content leads to a reduction
of the critical pressure. Fig. SM1A show the resistivity
versus temperature for all samples A-C. Evidently, the
low-temperature resistivity is suppressed with increas-
ing pressure, as shown for sample A. The resistivity of
Sample B at 4.7 kbar traces almost exactly the cooling

curve of sample A at 5.5kbar, leading to a first pres-
sure correction App ~ 0.8 kbar whereas for sample C,
Apc =~ 0.5kbar. The resistivity derivatives as a function
of temperature can be used to extract the structural tran-
sition temperature T, as demonstrated in Fig. SM1B and
C. These results suggests that T of sample B at 3.5 kbar
is similar to that of sample A at 4.9 kbar, which would
correspond to a pressure offset of Apg = 1.4kbar. Fur-
thermore, at 4.7kbar (sample B) no transition can be
resolved, suggesting Apg 2 1.2. For sample C, we can-
not deduce a definitive pressure correction as no transi-
tion could be resolved, which are likely to occur at higher
temperatures. Nevertheless, we can infer an upper limit
Ape < 0.8kbar.

Another method to compare the pressure evolution of
samples A-C is to compare their residual resistivity ra-
tios (RRR) between the room temperature resistivity and
that at the onset of superconductivity. Determining the
pressure offset from RRR has the added benefit, in com-
parison to the absolute resistivity (Fig. SM1A) that it is
insensitive to uncertainties in the contact layout. RRR
of sample A increases substantially as the nematic phase
is suppressed, and almost doubles between zero pressure
and p¢, as shown in Fig. SM2. The best match of the
RRR values between sample A and those of samples
B and C, is achieved if one assumes pressure offsets of
App ~ 0.9kbar and Apc = 0.4kbar, respectively.

Next, we directly address the position of each sam-
ple in the nematic phase diagram. The disappearance of
a low-frequency quantum oscillation frequency has been
previously interpreted as a Lifshitz transition which oc-
curs at the nematic quantum phase transition [1, 3]. A
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FIG. SM4. Pressure-temperature phase diagram of
FeSeo.89050.11- The position of samples B and C within the
nematic phase based on sample A is indicated as a function
of the reported pressure. These variations for high quality
single crystals from the same batch occur due to the small
variation in Se/S ratio. The horizontal bars indicate the pres-
sure uncertainty due to the pressure correction for sample B
and C (red, blue), and the experimental pressure range of the
quantum Griffiths phase, as discussed in the main manuscript.
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FIG. SM5. Pressure evolution of the magnetoresistivity crossing in samples B and C for temperatures T' < 15 K. The shaded area
marks the field range over which crossings can be observed. Pressures given in the top-left corner indicate the measured value,
whereas the pressure value given in the bottom-right corner indicate the distance to the nematic quantum phase transition.

low-frequency quantum oscillation is clearly present for
sample C, but absent in sample B at 4.7 kbar, as shown in
the first derivative of the magnetoresistivity in Fig. SM3.
Hence, we can infer that sample C is still within the ne-
matic phase at 4.7 kbar, whilst sample B is at the nematic
quantum phase transition (within experimental pressure
resolution).

Based on all these different approaches, our best esti-
mates for the pressure offsets in samples B and C, which
we attribute to small variations in the sulfur content, are
as follows:

App =~ (1.0 = 0.3) kbar (1)
Apc ~ (0.6 + 0.3) kbar (2)

These pressure offsets mark the position of samples B and
C under pressure within the nematic phase, having sam-
ple B at p = 4.7kbar basically located at the nematic
quantum phase transition, (within experimental uncer-
tainty) as shown in Fig. SM4.

Evolution of the magnetoresistivity crossing with
pressure in different samples

Fig. SM5 shows the magnetoresistivity data for sam-
ples B and C as a function of temperature and pressure
up to p = 4.7kbar using common temperature range for
all pressures 0.3K < T < 15K for a easier comparison.
The order of the panels in Fig. SM5 corresponds to their
relative position within the nematic phase as determined
from Fig. SM4. With increasing pressure, or equivalently
with decreasing distance to the nematic quantum phase
transition, the field range of magnetoresistivity crossings
becomes narrower, and it moves to higher fields (shaded
area in Fig. SM5). The crossing collapses to a single
point in sample B at 4.7 kbar which is the data set that
is extensively discussed in the main paper.

Superconductivity

Figure SM6A shows the temperature and pressure de-
pendence of the critical fields HO, HY' and HS de-
scribing the offset, onset and additional shoulder of the
normal-to-superconductor transitions of sample A (see
main paper for their definitions). Also shown are the
low-order polynomial fits used to extrapolate the zero-
temperature values Hof(0), H25'(0) and HS(0). A linear
polynomial has been used unless the data clearly dis-
plays a visible curvature. For a refined error estimate
of HS(0), both linear and third order polynomials are
shown as well. Importantly, the polynomial order used
does not qualitatively change the main finding, i.e. a
peak in HS(0) at the nematic quantum critical point,
shown in Fig. SM6B and C.

Figure SM7 compares the evolution of the zero-field
and of the zero-temperature superconducting transitions
as a function of pressure across the nematic quantum
phase transition. Panels A and B show that the transi-
tions from the normal to the superconducting phase in
zero field and finite temperatures are sharp for all pres-
sures, which rules out effects from possible pressure in-
homogeneities. The extracted evolution of T°% and T
with pressure are shown in Panel C. When compared to
the evolution of the zero-temperature limits of H and
H?2"™ (Panel D), this shows that the overall suppression
of TOV/°™ and H zsz /o™ are similar. The marked difference
is the emergence of the peak in HS which exists only in
the low-temperature/high-field limit.

Normal state magnetoresistivity

We estimate the normal zero-field resistivity at low
temperature for sample B at 4.7 kbar by extrapolating
from the high-field magnetoresistivity data above the
onset of superconductivity using a two-band model, as
shown in Fig. SM8A. Assuming an electron- and a hole-
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correspond to low-order polynomial fits (typically first order, maximum third order). The dashed lines represent first order fits
for comparison. The thin vertical lines indicate T°% and TS™ extracted from the cooling curves [1]. (B,C) Zero-temperature
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of the fitting function. Panel B shows the same data as the inset of Fig. 4(g) of the main paper.
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FIG. SM7. Evolution of the zero-field superconducting transition across the nematic quantum phase transition. (A) Cool-down
resistivity curves across the superconducting transition and (B) the normalized derivatives thereof. The transition remains
sharp and single-stepped across the nematic quantum phase transition, in contrast to the field-induced transition shown in
Fig. 4 of the main paper. (C) Pressure dependence of the onset and offset temperatures 72" and T2 in zero field. (D)
Pressure dependence of the onset and offset critical fields HS, H and HS extracted in the zero-temperature limit (identical

to the inset of Fig. 4(g)) of the main paper.
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FIG. SM8. (A) A two-band model is used to describe the
magnetoresistivity data above the onset of superconductiv-
ity. (B) The extrapolated zero-field resistivity, pm—o, are
obtained from the fits in panel A (dots) and the zero-field
resistivity data is shown by the solid line. The red dashed
line is a fit to the Fermi liquid behavior, po + AT? at low
temperatures with po =~ 4.9 uQ cm and A ~ 0.036 2 cm/K2.
Deviations below T' &~ 2 K are caused by the presence of quan-
tum oscillations at high fields. Panel B is reproduced from
Fig. 2(d) of the main paper for reference.

like band with charge carrier densities and mobilities n.,
Ny, Ue, Lh, respectively, the magnetoresistivity is given
by

_ (pemne + pnnn) + pepin (Benn + nepn) B
p(B) - 2 2,2 2 o (3)
e (tene + pnnn)” + epZpi (ne —ny)” B

where e is the electron charge. We can re-write the above
expression as

1
= —+
e(Bnnn + pene)
prenepinnin (e + pn)? B

e (HeMe + pnnn)’ + ep2pi2 (ne — np)? (ptene + pnnn) B
(4)

p(B)

from which we identify the zero-field limit pg_o =
(e(pnnn + pene))~t. Next, we substitute

2
o= /J‘2 HeTle LR TR, (/‘Le + p'g) (5)
€ (Nene + Nhnh)
2 1203 (ne — mi)’
B=pp———7% (6)

(ene + pnnn)?

and we assume a non-magnetic environment B = poH
which allows us to write
aH?

P(H):PH—>0+W- (7)
In this notation, «a effectively measures the strength
of the magnetoresistivity which depends on the charge
carrier densities and their mobilities. Furthermore, (3
measures the deviations away from a compensated two-
band system, i.e. if ne = np then § = 0. From
previous ARPES, quantum oscillation and magnetore-
sistivity studies, it is well known that ambient pressure
FeSeq.8950.11 is a compensated four-band system, which
is dominated by two large, nearly compensated bands
[1, 3-5]. The above two-band model fit therefore pro-
vides a simplified description and we expect 8 > 0, ef-
fectively encapsulating the contributions from the two
smaller bands.

From Fig. SM8A, we find a good description of the data
with only minor deviations visible at temperatures below
T < 2K and fields poH 2 35T which we attribute to the
appearance of quantum oscillations. The extracted tem-
perature dependence of pg_,o(T) is shown in Fig. SM8B,
together with the zero-field cool down resistivity. For
temperatures T < 10 K the extracted zero-field resistivity
is consistent with Fermi liquid behavior p ~ T2, in good
agreement with the previously reported low-temperature
dependence of sample A [1]. Overall, this confirms that
the normal state resistivity is consistent with predictions
for a multi-band Fermi liquid.

Temperature dependent scaling of the
magnetoresistivity

From Equation 1 in the main manuscript, we can ex-
tract the exponent zv from the slope of a log-log plot of
the derivative of the magnetoresistivity,

log [0p/0(poH)] | r=m* = —1/2vlog(T) + const, (8)

which is shown in Fig. 3(a) in the main manuscript for
temperatures above the onset of quantum oscillations
(~ 2K). Consistent results are obtained using a second
method in which the scaling relation, Eq. 1, is applied
to all curves in fields H > HZ3 over small temperature
intervals, which allows us to extract zv per interval, as
discussed below.
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FIG. SM9. (A)-(J) Representative examples of the scaling analysis over finite temperature ranges. The spread of the scaled
magnetoresistivity data is minimized by varying zv as the only parameter. The magnetoresistivity crossing point was either
fixed in field poH* = 28.6 T (Panels A-C), obtained from the intersection with the T = 15K dataset (Panels D-F), or from
the intersection with neighbouring temperature runs (Panels G-J). (K) The temperature dependence of the magnetoresistivity
crossing field obtained by the same methods. (L) Temperature dependence of zv. The solid line shows a fit to a generalized
power-law form, with the obtained fitting parameters given. (M) Same data as in Panel L. The solid line shows a fit assuming
activated behavior. Symbols in panels L and M correspond to the same crossing method as indicated in panel K. Errors in
panels L and M represent a 1o confidence interval.

Fig. SM9 shows in detail the scaling analysis of the
magnetoresistivity crossing in sample B, which is sum-
First, the magnetoresistiv-
ity over any given temperature range is being rescaled
using a manually estimated value for the zv parameter
(panels A-H). Subsequently, zv is obtained by fitting the
upper and lower branches independently using a high or-
der polynomial (consistently 7th order, excluding field

marized in the main text.

data below the onset of superconductivity), and then by
minimizing the total residual to a global minimum by
varying zv as the only free parameter. The differences
between the panels concern the method how the magne-
toresistivity crossing was determined. In Panels A-C, the
crossing was set to a constant field ygH* = 28.6 T and
p* = 32.1 ufd cm, consistent with the derivative analysis
presented in the main paper (shown as a dashed line in



Panel J). In Panels D-F, the crossing field H*(T) is de-
fined as the intersection of the magnetoresistivity at tem-
perature T with the magnetoresistivity at 7'~ 15 K. The
advantage of this procedure is that it can be carried out
for all temperatures reliably, and the fields obtained are
shown in Panel K (crosses). Finally, in Panels G-J, the
crossing is defined between two adjacent temperatures
measured (shown as large diamonds in Panel K). Equiv-
alently, the crossings are given by tracing the trajectory
0p/0T = 0 as a function of T' and H (shown as small
diamonds in Panel K). This method becomes unreliable
at lowest temperatures for two reasons: firstly quantum
oscillations are not governed by the scaling relation and
thus, the true crossing can be masked; secondly, zv be-
comes very large at low-temperatures so that the tem-
perature dependence term in the scaling relation 7~/#¥
becomes effectively constant, and the crossing is smeared
by noise.

While the various extraction methods yield different
crossing fields in Fig. SM9K, the extracted values for zv
are only marginally affected (Fig. SM9L). Importantly,
the divergence of zv towards low temperatures is not in-
fluenced by the chosen method. Next, to test for devi-
ations from a pure power-law form at highest or lowest
temperatures, we employ a generalized power-law form
given by:

2w(T) = zvg + AT — To| ™" (9)

where 2y describes the high-temperature (i.e. the non-
Griffiths) part, and T, describes the temperature at
which zv diverges. Within experimental uncertainty (er-
rors are given as a lo confidence interval), zv is found
to diverge close to zero temperature (Tp ~ 0.18(5) K)
(Fig. SMIL). However, the true uncertainty in Ty is pre-
sumably larger than the statistical value obtained from
the fit in Panel L. This is because the temperature un-
certainty for the T' =~ 370 mK dataset could be in ex-
cess of 40mK, as the sample inside the cell is away from
the outside thermometer. Finally, zv is consistent with
mean-field behavior in the presence of long-range inter-
actions for which zvy = 0.5 [6]. Fig. SMIM shows the
best fit of zv(T') assuming activated behavior [7], which
clearly fails to describe the data, in contrast to the good
description assuming power-law behavior (Fig. SMIL).

Extend of the quantum Griffiths phase

Figure SM10 shows the range over which the scaling
relation, Eq. 1 of the main manuscript, applies to de-
scribe the magnetoresistivity of sample B at a pressure
of p = 4.7kbar. Evidently, the scaling relation applies to
nearly the entire H-T phase space studied. The upper
limit marks a crossover from the quantum critical region
at low temperatures to the classical region where the scal-
ing form breaks down. The lower limit coincides with the

30 p = 4.7 kbar
25F Sample B
20
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~ applicable
10
{o
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FIG. SM10. Limits of the applicability of the scaling relation,
Eq. 1 of the main manuscript, to the magnetoresistivity of
sample B at a pressure of p = 4.7kbar. At the upper and
lower limits, deviations of the scaling form occur. The lower
limit coincides with the onset of superconductivity (SC).

onset of superconductivity, demonstrating that the scal-
ing relation describes the normal (non-superconducting)
state.

Parallel resistor network of mixed phases

In the highest measured magnetic field of ugH = 45T,
the resistivity p(T") above 10K displays an approximately
exponential increase, characteristic for insulating-like be-
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FIG. SM11. High-field and low-field resistivity as function of
temperature. (A) In high fields, the data can be described
by a phenomenological parallel network of metallic and insu-
lating behavior. Experimental data points and fits are incre-
mentally offset by +5 uQ cm for clarity. (B) At low-fields, the
resistivity below 2K follows a power-law form which implies
p — 0fort — 0, and Tc = 0. The inset shows the nearly
exponential field-dependence of the power-law exponent.



havior, as shown in Fig. SM11A. At lower temperatures,
a cross-over occurs around 5K, and p(T') saturates be-
low 2K which is the regime where quantum oscillations
become the strongest (Fig. 2 in the main paper). This be-
havior can be described using a phenomenological model
consisting of a parallel network of insulating and metallic
conductivities, oins and oy, respectively, given by

oY (T) = po(45T) + AT? (10)
Tins (T) = s exp((U/ksT)") (11)
/)(T7 45 T) = (Um + U-ins)_1 . (12)

Here, we assume Fermi liquid-like behavior for the metal-
lic part of the conductivity with A = 0.036 € cm/K?,
as obtained for the extrapolated zero-field resistivity
shown in Fig. SMS8, and which is consistent with pre-
vious observations [1]. For the insulating contribution
to the total conductivity, U is a characteristic energy
scale, and s describes the high temperature conductiv-
ity which is lost for T — 0 (kp is the Boltzmann con-
stant). The exponent § depends on the appropriate con-
duction process and the dimensionality: for activated
behavior, § = 1, whereas variable-range Mott-hoping
gives 8 = 1/(1 + d) where d is the spatial dimension [8—
10]. Including the effects of a Coulomb gap, the Elfros-
Shklovskii variable-range hopping leads to § = 1/2 for
all dimensions [11, 12]. Consequently, this phenomeno-
logical model gives p(T — 0,H) = po(H) which en-
sures a finite metallic conductivity at low temperatures,
whereas p(T') decays as exp(—U/T) for higher tempera-
tures, ensuring insulating-like behavior there, as observed
in Fig. SM11A. Treating pg, U and s as fitting parame-
ters, we compare the fits of this model for different fixed S
to the experimental data in Fig. SM11A. We find that for
all values of , the model broadly captures the tempera-
ture dependence of the resistivity observed. We therefore
cannot infer which conduction process is the most fitting,
but it appears that activated behavior (8 = 1) provides
the poorest description. Thus, we speculate that a par-
tial localization might take place in high magnetic fields,
reminiscent of the high-field insulating phases of systems
where quantum Griffiths phases were observed [7, 13-20].
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