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Entanglement of local operators and the butterfly effect
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We study the robustness of quantum and classical information to perturbations implemented by local operator
insertions. We do this by computing multipartite entanglement measures in the Hilbert space of local operators
in the Heisenberg picture. The sensitivity to initial conditions that we explore is an illuminating manifestation
of the butterfly effect in quantum many-body systems. We present a “membrane theory” in Haar random unitary
circuits to compute the mutual information, logarithmic negativity, and reflected entropy in the local operator
state by mapping to a classical statistical mechanics problem and find that any local operator insertion delocalizes
information as fast as is allowed by causality after taking the large local Hilbert space dimension limit. Identical
behavior is found for conformal field theories admitting holographic duals where the bulk geometry is described
by the eternal black hole with a local object situated at the horizon. In contrast to these maximal scramblers,
only an O(1) amount of information is found to be delocalized by local operators in free fermionic systems and

random Clifford circuits.
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Chaos in classical systems is described by the sensitivity
of phase space trajectories to initial conditions. Systems dis-
playing chaos will generically have nearby trajectories diverge
exponentially at early times, characterized by a Lyapunov ex-
ponent. This sensitivity to initial conditions is a manifestation
of the butterfly effect; a small change, such as a butterfly
flapping its wings, can have extraordinary consequences on
the state of the system at later times.

Quantum chaos is an old topic with many developments
(see, e.g., Refs. [1,2]) that addresses the connection between
classically chaotic systems and their quantizations; how do
highly nonlinear classical dynamics emerge from the lin-
ear unitary evolution of the Schrodinger equation? Recently,
there has been considerable excitement across multiple fields
of physics due to a quantum manifestation of the butterfly
effect [3-5] characterized by out-of-time-ordered four-point
correlation functions (OTOCs)
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where V, W are local operators in the Heisenberg picture
and (- --)p means that the correlation function is evaluated
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at inverse temperature §. This directly probes the spreading
of a local operator’s spatial support. In analogy to classical
chaos, (1) can exhibit a quantum Lyapunov exponent, Ay, at
early times,

Cplx, 1) ~ 1 — 079 4o )

and tends to zero at late times, describing the “scrambling” of
the quantum information of the initial state. Importantly, this
exponential behavior of the OTOC is not a generic feature
of quantum chaotic systems. In fact, it has only been found
for large-N theories [3—10] and does not generically occur
in realistic (finite-N) quantum chaotic systems' (see, e.g.,
Refs. [11,12]).

The OTOC also leaves certain information-theoretic ques-
tions open about chaos. How close are the quantum states
of subsystems with and without the perturbation? How much
and how fast is information delocalized (scrambled) by the
perturbation? To what extent does the choice of local operator
influence the scrambling process? In this paper, we address
these questions by studying the local operator entanglement,
quantum correlations of local operators.” We can study the
local operators directly by computing correlation measures
not in the original Hilbert space, 7, but in the “doubled”
Hilbert space H ® H3 where the operator lives:

O(x, 1) = M O)e M — |O(x, 1)) . 3)

'0ur working definition of quantum chaos is an energy spectrum
whose statistics mimic random matrix theory.

’Here, we take the opportunity to draw the reader’s attention to
what, to our knowledge, is the earliest work on operator entangle-
ment [13].
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FIG. 1. We represent the local operator as a quantum circuit. Lo-
calized information spreads out (red) under time evolution by chaotic
Hamiltonians but recoheres when evolved backwards to t = 0.

In practice, this is done by “flipping the bra vector to a ket,”

0, ) =N Y &E 50, (x) [n) M), (4)

m,n

where we have expanded in the energy eigenbasis and im-
posed an appropriate normalization. Entanglement in the
Hilbert space of local operators has been considered previ-
ously in Refs. [14-20].

Let us now try to understand how correlations in this
state, (4), characterize the butterfly effect by showing how
information flows under this time evolution. Consider the
trivial case where the operator, O, is the identity, 1. The
identity should have no effect on the state. This is shown
in Fig. 1 where the time-evolution operator moves around
quantum information. For chaotic systems, the initially lo-
calized information becomes spread out at time ¢ and mixed
in the local Hilbert space without the severe constraints im-
posed by integrability. This is when the operator (identity)
is inserted. Because the identity acts trivially, the backwards
time evolution brings the information back into a localized
packet.> This means that the mutual information between

3This forward and backward evolution is reminiscent of other quan-
tum chaos diagnostics such as the Loschmidt echo and OTOC. It
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FIG. 2. The Heisenberg evolution of a (nontrivial) local operator
is shown. For chaotic channels, local information delocalizes in time.
Then, the perturbation by operator O affects the state such that this
information cannot recohere under backwards time evolution, but
rather continues to grow (decoheres).
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FIG. 3. We show the partitioning used throughout the paper. Left:
The BOMI configuration for symmetric intervals A and B. Right: The
TOMI configuration for finite interval A and semi-infinite intervals
B 1 and Bz.

subregions is simply proportional to their overlap in the spatial
direction.

We progress to nontrivial operators. When these operators
are inserted, they may scatter the information (see Fig. 2). For
a chaotic system, the butterfly effect implies that the local
perturbation created by the operator may ruin its coherence;
hence it remains delocalized after the backwards time evolu-
tion. Given long enough times, the information will be spread
out over the entire system.

We propose that an illuminating diagnostic of the amount
of quantum information initially in region A that is scrambled
by operator O is the tripartite operator mutual information
(TOMI),* defined as

13(AvBlaBz)=I(A7Bl)+I(AvBZ)_I(AvB)a (5)

where B = By U B, is the entire output Hilbert space, H,.
This characterizes how much total (classical plus quantum)
information from A is lost unless the entire output system
is measured. The local operator entanglement allows us to
understand how different operators scramble information.
Analogously, we also study tripartite operator logarithmic
negativity (TOLN) to characterize the purely quantum infor-
mation that is scrambled. This is defined by replacing the
bipartite operator mutual information (BOMI) on the right-
hand side of (5) with bipartite operator logarithmic negativity
(BOLN). We show the generic setup in Fig. 3. While the
operator choice for OTOC may be seen as a disadvantage
because it can be misleading (e.g., spin-spin OTOC in the
Ising model [4]), it should be seen as an advantage for local
operator entanglement because the mutual information probes
correlations of all operators; not all butterflies have the same
effect.

Summary of results

Here, we summarize our central findings. We also present
a cartoon summarizing results for /5 in Fig. 4.

1. Random unitary circuits

Random unitary circuits are tractable toy models of local
Hamiltonians displaying chaotic phenomena. In Sec. I, we put
forward an effective description of the entanglement dynamics

would be interesting to further explore the connections between these
quantities.

“This quantity was studied for the nonlocal time-evolution operator
in Ref. [21].
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FIG. 4. We show the behavior of the tripartite local operator mu-
tual information for the four systems that we study in this paper. —I5
characterizes how much information has been scrambled. The red
line represents holographic conformal field theories (CFTs) and Haar
random unitary circuits at large local Hilbert space dimension which
saturate the physical bound. In contrast, random Clifford circuits
(black dotted line) saturate to an operator-dependent O(1) value and
free fermions (green dashed line) have vanishing late-time /5.

of local operators in terms of the free energy of a membrane
in spacetime. This effective description is discussed in further
detail for Rényi entropy, logarithmic negativity, and reflected
entropy by mapping the random unitary circuit to a classical
statistical mechanics problem in Appendix A.

We find for Haar random unitary channels with large local
Hilbert space dimensions that local information is entirely
delocalized by the local operator, regardless of the operator
chosen. This manifests by the tripartite information increasing
in magnitude as fast as is allowed by causality, ultimately
saturating to the lower bound on all quantum systems which
is proportional to the number of degrees of freedom in sub-
system A.

In contrast, when the quantum channel is composed of
random unitary elements from the Clifford group instead
of the full unitary group, we find that a very small amount
of information is scrambled; this value is independent of sys-
tem sizes but dependent on operator choice. This is notably
different from the observed maximal scrambling behavior of
Clifford circuits for the unitary time-evolution operator [22].
We explain this discrepancy by emphasizing the importance
of Clifford gates being unitary 3-designs. Moreover, we find
that, depending on the operator, the mutual information and
logarithmic negativity behave differently. This demonstrates
how quantum and classical information may be scrambled in
different ways in quantum channels.

2. Free theories

We study free fermions as an example of a noninteracting
system. In particular, we consider the tight-binding Hamilto-
nian for simplicity. The local operator is taken to be a fermion
parity operator acting on a single site. The resulting local op-
erator state is Gaussian, allowing us to employ the correlator
method to compute the local operator entanglement entropy.

When the input and output subsystems are spatially iden-
tical, the mutual information starts off at a maximal value
before beginning to dip at some time determined by causality.
After the wave front of the operator leaves the subsystems,
the BOMI begins to relax back to its initial value, though
we do not have a proof that the BOMI fully relaxes back to

its original value due to finite size effects. This O(1) change
(not extensive with system size) in the BOMI is a signature of
the noninteracting nature of free fermions. Very little (if any)
information is scattered or delocalized. The TOMI is quite
similar. It is initially zero but decreases once the operator is
within the subregion. Eventually, the TOMI attains its most
negative value before it slowly relaxes back to zero. The late-
time behavior of TOMI indicates the lack of scrambling from
operators in the free fermion system.

3. Chaotic CFTs

The local operator entanglement of holographic two-
dimensional (2D) CFTs is studied in Sec. III. These are
conformal field theories with large central charge and
sparse low-lying spectra, and are considered maximally
chaotic due to their early time exponential behavior in the
OTOC [3-5]. Another way in which they saturate the fun-
damental bounds of quantum information scrambling is the
decay of the tripartite entanglement of the time-evolution
operator [22-24].

When the input and output subsystems are symmetric, the
BOMI for the local operator begins at its maximum value.
After the operator has had time to reach the intervals, it
begins to decrease linearly at the maximum rate allowed
by causality. Unlike the free fermion BOMI, the BOMI for
holographic CFTs decreases all the way to zero. This tells us
that the local operator eventually delocalizes the information
completely and is consistent with the expectation that these
conformal field theories are maximally chaotic. The TOMI
for holographic CFTs is also found to decrease from zero to a
maximally negative value at the maximal rate

lim 13(A7 Bl? BZ) = _zszeg-, (6)
—>00

where S, * is the UV finite thermodynamic entropy of sub-
region A at a temperature determined by a regulator; i.e., it
does not contain the standard UV divergence of von Neumann
entropy in continuum theories due to short distance modes
near the entangling surface. We stress that these results are
significantly stronger than analyses of operator entanglement
in the past because this maximal scrambling of information
occurs regardless of any details about the operator. The small-
est perturbation entirely destroys the quantum information of
the state.

An additional notable phenomenon is that the BOMI and
TOMI have step function discontinuities associated to when
the local operator enters and leaves the associated subregions.
The magnitude of these step functions is determined by the
conformal weight of the operator. Only for heavy operators
(A ~ c) are the discontinuities macroscopic.

Finally, we note that these findings precisely match with
the results for the Haar random unitary circuits with bond
dimension g in Sec. I once identifying the bond dimension
with the Cardy density of states

q=e¥, )

where c is the central charge and S is the effective temperature
which serves as a regulator. One caveat is that the membrane
computation for the random unitary circuits does not have the
discontinuities previously mentioned. This discrepancy may
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either show a difference between the two theories or the anal-
ogy may be restored once we account for O(1) contributions
in the membrane theory.

4. Holography

In Sec. IIIC, we identify the geometric dual to the local
operator state (3). Because this state lives in two copies of the
original Hilbert space, it is natural that the dual geometry has
two identical asymptotic boundaries. This is the eternal black
hole dual to the thermofield double state with the temperature
playing the role of the cutoff. The local operator perturbs the
eternal black hole in a similar manner to Refs. [3,25]. Itis a
massive particle that back-reacts on the geometry. We are able
to compute the operator mutual information directly from the
geometry using the Ryu-Takayanagi formula which precisely
matches the CFT calculation.

I. RANDOM UNITARY CIRCUITS
AND MEMBRANE THEORY

In this section, we motivate intuition by comparing two
effective theories of entanglement dynamics, the quasiparticle
picture and the membrane theory, which model integrable and
chaotic dynamics, respectively.

The quasiparticle picture has been proposed as a uni-
versal description of entanglement dynamics in integrable
theories [26—28]. This posits that when an integrable system
is sufficiently excited above its ground state, the entangle-
ment between subsystems may be entirely accounted for by
quasiparticle pairs that carry entanglement content that travel
at known speeds. These dynamical inputs may be fixed by
thermodynamic Bethe ansatz techniques. The entanglement is
inherently bipartite by construction because only Bell pair-
like correlations are accounted for. This description largely
matches our results for free fermions as the local operator
state is an excitation above the ground state of the Hamiltonian
HeL-I)®H.

Severe breakdowns of the quasiparticle picture occur for
nonintegrable systems because multipartite entanglement be-
comes increasingly important (see, e.g., Refs. [29-36]). Thus,
the information about entanglement can no longer be carried
by quasilocal objects. Recently, a compelling case has been
made that, for quantum chaotic systems, the entanglement
dynamics are captured by a co-dimension-one membrane in
spacetime, a manifestly nonlocal object [37,38]. The dynam-
ical input into this membrane theory is the tension of the
membrane which may be explicitly computed in certain cases.
A particular instance where this may be computed is for Haar
random unitary circuits. In this section, we will study these
circuits and adapt the membrane theory to local operator en-
tanglement.

A. Haar random unitary circuits

We begin with a simpler problem of computing just the
late-time behavior of local operator entanglement by mod-
eling the random unitary circuit as one big Haar random

FIG. 5. Left: The network that computes the late-time value of
the second Rényi operator mutual information for the time-evolution
operator. Right: The network that computes the second Rényi
local operator mutual information. The blue rectangles are random
unitary operators and the green circles are local operators.

operator.’ In the following sections, we will refine these
results in order to understand early time behavior and the
membrane theory.

The advantage of modeling chaotic dynamics with Haar
random unitary circuits is that analytic results are tractable due
to well-known results from random matrix theory. In general,
we will only need the Weingarten formula which computes
the integral of monomials of unitary operators with the Haar
measure [40],

/[dU] i1, J1 12 i j{Ut;kh

Z 8"’ o)

o,T€S,

- 85,5, Weld, o),

l"la(n)gjljr(l)

®)

where d is the rank of the unitary. The sum is over elements
of the permutation group and Wg is the Weingarten function.
We will consider the large-system-size limit such that the term

with 077! = e (the identity) is dominant and approximately
1
We(d, e) = -+ 0™ %), )
leading to
/[dU] i,J1 U, 2t l]ljjz
— n Z itigq) ’" n(n>8/110u> ’ Sj,,j;,(n)- (10)
oceS,

In Fig. 5, we show the diagrams that compute the aver-
age of Trp? (the purity) for the states |U(t)) and |O(x,1)).
Assuming that the average and the logarithm approximately

3Tt has been shown that local random unitary circuits are approxi-
mate k-designs at a circuit depth scaling as O(Nk), where N is the
total number of qudits [39]. In this section, we will need at most
k = 4, so this quantifies what we mean by “late time.”
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commute for large system sizes, this computes the average
second Rényi entropy. While it is in principle possible to
compute all the averaged Rényi entropies,

S, = log Trp", (11)

1—n
and analytically continue to n = 1, we will only consider
n = 2 for simplicity. In fact, such an analytic continuation was
computed for operator entanglement of the time-evolution
operator in Ref. [41].

We warm up with the time-evolution operator and then pro-
ceed to local operators. For a g* x g" time-evolution operator,
the corresponding state is normalized as

U@ = — Uy i) ® 1) = —U, ; 12
| (t))—qﬁ; @l = gpliy. (12)

Here, the two indices represent the input and output Hilbert
spaces, respectively, as the total state is an element of the
Hilbert space of U(g"). The density matrix is then

1
pi) = LUUL ;- (13)

We can bipartition both the input and output systems arbitrar-
ily:

1
p(t) = q_LUABCDU:’B’C’D" (14)
The reduced density matrix on AC is

1
pac(t) = q—LUABCDU:/Bc/D, (15)

where summation over repeated indices is implied. The aver-
age purity is then

Trpfxc @)

1 * *
= qj/[Cl'U]UA/BIC/D,UABICDIUAtsezcz)zUA/Bzc/D2

1
= — dUulu, U wenU Ulpe
7 (AU BiciD, Up ;¢ UnaBaCoD Un gy,

X (84,4,08,8,8¢,¢;8p,0,0414,8¢¢,88,8,0p,0,) - (16)

The Weingarten formula involving only four unitaries needed
for the above is simple enough that we may write it out
explicitly in terms of Kronecker deltas:

1
=
1
qL(g*t — 1)

8ty 810y 851 71810y + 8iriy 80ty 8111580t

(8111180t 81158 sy, + 8iviySini 851 11810y )-
a7
This leads to

— 1
Trp3-(t) = W((]aqzchqzd + gt gt

a 2b 2c

@ + a7

Pt

1 a _cC
=q2L_](qqu+qq)

1 b _c a_ d
—m(qq +4%q%). (18)
Thus
$i¢ = —log [qu — @' + 4"
- m(qch + qaqd):|- 19)

Here, a, b, ¢, and d are the number of qudits in subsystems A,
B, C, and D, respectively. For the tripartite mutual informa-
tion, we take A to be O(1) and B; and B, to be semi-infinite,
O(L). Then,

“2) = 1
2) 72 -
128)17123)2 ~ log [qﬂ(qL aqL/Z + qaqL/Z)

1
_ ( L—a L/2+ a L/Z)}
A
L
n (5 n a) logq — 0, (20)
I%) = 2alog q, 2y

where a is the length of the subsystem. Therefore, TOMI tends
to —2alog g. If we had taken the output subsystem to be size
L — €, then

. 1 —a a I
Iy = —log[qu_l(qL 4 +4°qd")
_ 1 ( L—a L7€+ a e)

—qL(q2L 1 q9 4 94

—(L—€e+a)logg
— log[g“ ™+ ¢ +q 1+ (e —a)logg.

Thus, the condition for nontrivial mutual information is

@ ~ 0,
ABe ™ 12(a —€)loggq,

€>a
€ <a. 22)
This means that at late times in a chaotic quantum channel,
one needs at least a fraction (L — a)/L of the system to re-
cover any information from A.

We now progress to local operator entanglement. As shown
in Fig. 5, we have twice the number of unitaries for the purity.
In the limit of large Hilbert space dimension such that we can
make the approximation of (10), this is still tractable by brute
force. Our state associated to the local operator is

1
0)) = —==U; ;05U j+ 23)

V(OT0)

so the density matrix is

1
@] _ M. * * T .
1Y (t) = WUH,/I Ojl-ii Ul/l,j_{ Uiz,jzofz,i’zlji,z*jé' (24)
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Again, we bipartition the input and output Hilbert spaces

1
pC(t) = WUAI&CID] Oy,

* % +
X Uy gc;0, Un,,00, Ony o0, Unsicyny s (25)
so that we may define the reduced density matrix on AC,

1
o _ _ - | *
Pac = 1or0) Uaipeip Ongrein Uy e,

* T
X Up,6,0, Oy 30,0, Uy By - (26)
The Haar averaged purity is
O \2
TF(PAC)

1
_ I i
- (OT O) 2 (OAZBZCZDZ OA333C3D3 OA(,Bf,CGDf, OA7B7C7D7)

X

(SDID; 8cic; 04,4568, B,0B,B,64,4,0D,D, 6| 2

X

8434, 0838,8,40D5D,0¢;C5 64,4, D5 D OB, By OB5 B

X

83600, 05 8¢1Co 4,4, 08,8,8¢,¢4 D15 )

X

* *
/ [dU] [UAl Biai0Ug g orpr Unisicins Uy g o,

X

* *
UASBSCSDS UA;B;CéD; UAngCng UAgB’SC,%Dg] . (27)

We can see from (10) that this integral will involve 24 terms,

even after the approximation. After the contraction of many

Kronecker deltas, one finds at leading order

q'q°+4'q" | 4'q"+q’q (0'00'0) 28)
qZL q2L ((9+ 0)2 :

In general, the second term will be subleading. The immediate

consequence is that the answer is operator independent. We
then find

2
Te(pQ) ~

a+c 2L—a—c
%} (29)

§2 ~ log |:
AC qu

The mutual information is

ffc) >~ 2Llogg — log |:

~ qcfa +q2Lfcfa

To find the TOMI, we take ¢, d = L/2:

(qc +q2Lfc)(qa +q2L7a)
qa-‘rc + q2L—u—c

i3(2) ~ —2aloggq + log?2. (€2))]

The second term is subleading. Because this saturates the
bound on tripartite mutual information, we know the state
must be approximately maximally entangled, so all of the
Rényi entropies are approximately equivalent. Thus, we find

I ~ —2alogq, Vn. (32)

This is the lower bound on /3 allowed by quantum mechan-
ics. Given that this is an important point that will continue
come up in this work, we now show the simple derivation.
L5 is composed of three individual mutual informations. The

mutual information is positive semidefinite, so
(A, By, By) =2 —I(A, B U By). (33)

The mutual information between subregion A and the entire
output B; UB, is a time-independent quantity in finite-
dimensional systems. The input and outputs are maximally
entangled by construction, so the mutual information is twice
the logarithm of the Hilbert space dimension,

L(A, By, By) > —2log |Hal. (34)

This is only well defined for subsystems in discrete models.
When we move on to quantum field theories, we must regu-
late the Hilbert space with (6) as the analog. This will lead
to strange effects such as the regularized dimension of the
Hilbert space associated to a finite region being time depen-
dent.

B. Random Clifford circuits

The random unitary calculations above effectively capture
the late-time behavior of chaotic channels. However, to study
interesting early time behavior, we have a couple of options.
One option for modeling strongly interacting dynamics for
large system sizes is random Clifford circuits. These are ran-
dom unitary circuits that are composed of the Clifford group:
Phase, Hadamard, and controlled-NOT (CNOT) gates. Using the
stabilizer formalism, measuring entanglement in these circuits
is tractable with computational times scaling polynomially.
For entanglement of the unitary evolution operator, it was
shown that these circuits maximally scramble and behave
extremely similarly to holographic quantum channels [22].
However, it is also known that these circuits do not have oper-
ator growth. Under Clifford evolution, Pauli strings transform
to Pauli strings without any superpositions. Relatedly, even
though the late-time averaged OTOC is zero, the variance is
order 1. This is due to Clifford gates being unitary 3-designs.
As is clear from Fig. 5, one must take the fourth moment of
the unitary group in order to compute $ for local operators.
Because Clifford gates are 3-designs, a priori, they may have
distinct behavior from the Haar random unitaries and chaotic
channels in general.

Indeed, this is what we find. The late-time value of the
TOMI is a constant, independent of the size of subregion or
total system size. However, it does depend on which oper-
ator we are evolving. Moreover, the operator has left- and
right-moving components, so given a configuration where the
input subregion spatially overlaps with the partition of the
output Hilbert space, twice the information will be scrambled
compared to if the operator is initially outside of the interval
overlaps. For simplicity, we have used the three local unitary
operators that generate the Clifford group as our local op-
erators. This behavior is reminiscent of a free or integrable
theory; however, we find that there are no recurrences, even
for the finite system, a feature of the stochastic time evolution.

In Fig. 6, we show the time evolution of the operator
mutual information and operator logarithmic negativity® for

®We use the Clifford Normal Form for a single Party (CNFP)
algorithm of Ref. [42] to compute the negativity or equivalently the
total number of Bell pairs shared between regions.
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FIG. 6. The change in the bipartite mutual information and logarithmic negativity for the CNOT gate (left) and Hadamard gate (right) under
random Clifford evolution. The intervals are symmetric and of lengths / = {10, 20} with the local operator inserted five lattice sites to the left
of the intervals. Note that, after averaging (500 realizations), the size of the system plays no role. Many of the plots lie directly on one another.
The changes in negativity and mutual information are different for the CNOT gate but the same for the Hadamard.

symmetric intervals. At early times, when the operator has
not yet reached the intervals, the correlations are maximal,
proportional to the area of the intervals. However, once the op-
erator has time to reach the intervals, the correlations decrease
because some information is being scattered as in Fig. 2. We
observe the following interesting features that distinguish this
quantum channel from chaotic channels, particularly the Haar
random unitaries that we have studied:

(1) The amount of information scattered is independent of
the size of the subregions.

(2) The amount of information scattered is operator de-
pendent. In particular, the CNOT gate scatters more than the
Hadamard gate.

(3) The quantum and classical information delocalize dif-
ferently. For certain operators, the saturation value of I3 is
equivalent to &, while for others the saturation value of 5 has
greater magnitude than &; (see Fig. 7). The latter indicates that
some purely classical information has been scrambled.

C. Membrane theory

While the quasiparticle picture is an effective description of
entanglement propagation for all integrable systems, it fails to
capture the qualitative features of entanglement production in
chaotic systems. It is highly desirable to obtain an analogous
universal description of entanglement dynamics for chaotic
quantum systems. Recently, it has been proposed that these
chaotic theories have effective hydrodynamical descriptions

o &(1=10)

£3(1=20)
---- I(I=10)
—— I5(1=20)

where the von Neumann and Rényi entropies may be com-
puted by the area of a spacetime co-dimension-one membrane,
M, which is characterized by its tension, 7 [17,37,38,43]:
SM(A) = / dt T (v, x, 1), (35)
Ma
where x is the position of the membrane and v is the spacetime
velocity of the membrane (dx/dt). The membrane M, is the
extremal surface with respect to the integrand of (35) that
is homologous to subregion A. Though derived from finite-
dimensional quantum circuits, there are strong parallels of this
construction to the holographic description of von Neumann
and Rényi entropies in the anti—de Sitter (AdS)/CFT cor-
respondence [44—47]. In essence, both prescriptions require
finding the area of an extremal surface that is homologous to
the subregions of interest.

With motivations from the holographic description of re-
flected entropy [48], it was later proposed that mixed state
entanglement measures may also be computed by the area of
a different co-dimension-one membrane [35]:
dt T™ (v, x,1).

SW(A,B)=2 / (36)

Ey(A,B)
We denote this membrane Ey because in the language of
AdS/CFT, this surface is the entanglement wedge cross
section, a natural geometric object in the bulk that generalizes
the Ryu-Takayanagi surface [49]. In the membrane theory, the
entanglement wedge of AUB is the co-dimension-one

0.0 o &£(I=10)
&s(1=20)
—0.51 - I(I=10)
— 15(/=20)
—1.01
—-1.51
(b)
-2.01 . . : ]
0 25 50 75 100

FIG. 7. 500 realizations for CNOT gate (left) and Hadamard gate (right). Notably, the CNOT gate scrambles both classical and quantum
information while the Hadamard gate only scrambles quantum information. This can be seen by the fact that &; is larger than I; for the CNOT
gate, but identical to /3 for the Hadamard. Again, the operator is inserted five sites to the left of the symmetric intervals.
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FIG. 8. Left: Cartoon of a random unitary circuit that would be
analyzed for unitary time-evolution operator entanglement. Right:
The random unitary circuit for the local operator is somewhat dif-
ferent because the U and U cancel each other outside of the light
cone of the local operator, leaving maximally entangled Bell pairs.

spacetime region whose boundary is My UAUB.
Ew (A, B) is then defined as the extremal surface separating
subregions A and B within the entanglement wedge. We
note that for random unitary circuits with large local bond
dimension ¢, the entanglement spectrum is effectively flat and
the line tension is thus equal for all Rényi entropies. While
these membrane descriptions were well motivated by analysis
of random unitary circuits for states after global quenches
and for operator states of the unitary evolution operator, for
local operator states, only a highly symmetric case has been
analyzed [17]; we show that it is straightforward to generalize
to generic configurations, giving an intuitive explanation for
our late-time result (32) from the previous section. The line
tension for the local operator entanglement is dependent on
space and time, not just velocity. The line tension is the same
as it was for unitary operator entanglement within the light
cone of the local operator,

__Jlogg, v <l
T, x,1) = {vlogq, v>1, (7
while outside the light cone
T(v,x,t)=vlogg, V. (38)

This may be quickly seen by considering the minimal cut
through the quantum circuit displayed in Fig. 8. A more so-
phisticated derivation is explained in Appendix A by mapping
the random unitary circuit to a classical spin model. In the

NS
AN

large-¢ limit, the number of bonds cut is asymptotically equal
to the Rényi entropy. This becomes (37) and (38) in the scaling
limit.

It is instructive to work out a few examples. We show
three time steps for the entanglement entropy of symmetric
intervals of length / in Fig. 9. Initially, the two intervals A
and B in the input and output Hilbert spaces, respectively, are
maximally entangled with one another, so their total entropy
is zero. Using (38), the corresponding minimal membrane is
of zero area (left) because it has v = 0. Once the light cone
of the operator reaches outside of the intervals, it can break
the entanglement between them and entangle them with the
rest of the system. This is seen in the intermediate time step
where the area of the minimal membrane grows linearly. At
sufficiently late times, the entropy saturates to its maximum
value, 2/ log g, which is described by the disconnected regime
on the right in Fig. 9. In summary, we find

0, t<l1)2
Saup = {2t —1/2)logq, 1/2 <t <3l/2 (39)
2lloggq, t > 3l/2.

Because the individual entropies of the intervals are constant
in time, we find the mutual information is

2l loggq, t<1/2
I(A,B) = 12(3l/2 —t)logqg, [/2<t<3l/2 (40)
0, t > 3l/2.

We can also compute the full time dependence of the
tripartite operator entanglement shown in Fig. 10. We take
A=(0,1), By = (—00,0), and B, = (0, 00) for simplicity,
but the late-time value will be universal. We find

I(A,By) =0, I(A, By) =max[0,2logq(l —1)],
I(A, B) =2lloggq, 41
which leads to a tripartite mutual information of
I; = max[—2!/log g, —2t log q]. (42)

The saturation value is identical to the late-time result of the
previous section (32)] and is of maximal magnitude.

We can play the same game for reflected entropy. However,
the relevant membrane is now given by the extremal cross
section of the co-dimension-zero region bounded by M and
the spacetime boundary. For the symmetric case shown in

2llogq

|
T
l
2

FIG. 9. The membrane picture for the local operator is shown. The operator gains nontrivial support along light cones determined by the
butterfly velocity (cyan). We show the minimal membranes for symmetric intervals. At early times (left), / and Sz are maximal. The black lines
show the minimal membrane for S,p and the orange lines show the minimal membrane for Sg. After t = é (middle), the mutual information
decreases while Sg remains constant. Finally, when the minimal membrane becomes disconnected after r = % (right), the mutual information

reaches zero and Sy discontinuously jumps to zero.
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FIG. 10. We show the membrane configurations for the only time-dependent term in the tripartite mutual information and reflected entropy.
At early times (left), Ey (orange) decreases linearly and the membrane for Sy p (black) increases linearly. At intermediate times (middle), Ey
stops decreasing but S(A U B) continues to increase. At late times (right), the membrane is disconnected, so I = Sz = 0.

Fig. 9, we find a step function

2logq, <L
Sp = { &4 2 43)
0, t > 5

This is dramatically different than the mutual information.
Similarly extreme differences were found between the mu-
tual information and reflected entropy for irrational CFTs
and random unitary circuits following a global quantum
quench [35] and in operator entanglement of the reduced den-
sity matrix [50]. Interestingly, this discrepancy has never been
observed for integrable theories. Multipartite entanglement
must play a significant role, but the problem certainly deserves
further attention.

For the semi-infinite configuration shown in Fig. 10, we
have

@2l —-t)logg, t<I
Sg = 1 !logg, l<t<?2l (44)
0, 20 <t.

Because the other terms in the tripartite quantities are constant
in time for the given configuration, we find

S =1-llogq, I<t<2l (45)
—2llogq, 2l <t.

Some of the CFT techniques that we use in subsequent sec-
tions are specific to von Neumann entropy and will not apply
to the negativity and reflected entropy, so we do not evaluate
these in CFT. While these calculations seem tractable, we
leave this to future work and expect that the random uni-
tary circuit analysis precisely describes the CFT computations
once identifying the bond dimension with the Cardy density
of states (7), g = e .

II. FREE FERMION SYSTEM

In this section, we will compute the local operator entan-
glement for a (14-1)-dimensional lattice free fermion system
described by a quadratic Hamiltonian, H = Zx’y ci?—[xycy,
where ¢, and ¢ are the real space fermion annihilation and
creation operators at site x on the lattice. Specifically, we will
take the nearest-neighbor tight-binding Hamiltonian to be our
free fermion Hamiltonian:

H=-7Y cle, +Hc (46)
X

This Hamiltonian is diagonalized by a Fourier transform
Ay = e /L, Ak_xl = ¢ */\/L, where L is the total length

of the system. The tight-binding dispersion relation is E; =
—2f cos k. As the computation of local operator entanglement
for generic ration conformal field theory (RCFTs) is rather
involved, we will study the free fermion system numerically
instead.

In order to compare (match) free fermion numerics with
field theory results, UV regulators will have to be introduced
in the operator state and taken to be much larger than the
lattice spacing in order to suppress lattice effects [22,23].
However, the introduction of UV regulators in the local opera-
tor state will greatly complicate the expressions so we refrain
from doing so. We thus consider the local operator state with
no regulators,

|0@)) = NeT ™ 0a1), €

where H = Hg — Hy, Oy = O ® 1, and |R2) is the infinite-
temperature thermofield double state. The numerical results
are not expected to agree precisely with field theory calcu-
lations although they should capture the overall qualitative
behavior. Here, the maximally entangled state can be written
in terms of real-space fermions as

N
2 =TT (2% )o. (48)

As a local operator, we choose to work with the single-site
fermion parity operator at some arbitrary site z,

O =1-2clc, = (-1)%%. (49)

This operator is the exponential of a quadratic fermion op-
erator, so it is a Gaussian operator. Hence, we can utilize
the correlator method to compute operator entanglement en-
tropies. Since the parity operator squares to one, the state is
already normalized. The initial local operator state is then
given by the maximally entangled state with a sign flip at site
Z:

1\ AT AT
0A|sz>=]"[(1+( I%CA"’CB*")w» (50)

Noting that the time evolution of the fermion operators under
Hp — Hy is given by

. . 1 . !
ethCT ef’Ht P ez(kaka+(71) tEk)CT ,
Ix L la

ka

. . 1 : !
iHt —iHt __ i(kx—ka—(—1)"tE;)
e cye =7 kg e Clas (5D
a

m
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0.0/
-0.51
3
-1.01
(a)
500 1000 1500
t

0.0
_=0.2:
—0.41/| (b)
500 1000 1500
t

FIG. 11. We show the evolution of the operator entanglement for the fermion parity operator at a single site (—1)". Left: The change in the
operator mutual information is shown for symmetric intervals of length 50 with the operator inserted 25 sites away from the intervals. After a
time corresponding to the distance from the operator to the intervals, the BOMI begins to drop. Once it passes through the intervals, it relaxes
but asymptotes back to the value at which it started according to a power law with exponent between —1/2 and —1. This indicates that little
information has been scattered. Right: The TOMI is shown for /4 = 50 and the partition of B lying at the center of A. The local operator is
again located 25 sites away from A. We see minor delocalization of information when the operator has support in region A, but relaxes at late

times back to zero.

where (—1)* = —1 and (—1)# = 1, the correlation matrices
are given by

' 1
Creay = (OW)ep,enlO) = 2810y,

1
Fiesy = (O)le; €}, |OW) = S€1s8c,

_ € k=t (= 1) 1Extpz—py+(~1)1E,)
L2 '
k,p

The relevant operator entanglement entropies can then be
computed by diagonalizing subblocks of the correlation ma-
trix.

We plot the results in Fig. 11 and find very different
behavior than the random unitary circuits. In particular, the
BOMI decreases from its initial value once the operator has
time to enter the subregions. Then, it relaxes back once it
has left the subregion. A similar analysis is made for the
TOML. It is presently unclear whether the values relax all
the way back to their initial value because the lattice model
has slow quasiparticle modes that take a very long time to
travel through the intervals. This, however, is not so important
because we clearly see that the operator scrambles very little
(if any) information; i.e., the information in the free fermion
channel is robust to perturbations, a quality we expect to be
generic for free systems.

(52)

III. CONFORMAL FIELD THEORY
AT LARGE CENTRAL CHARGE

A. Setup

In this section, we compute the local operator entanglement
for 2D conformal field theories at large central charge. These
represent candidate theories possessing bulk gravitational du-
als well described by semiclassical physics. We now set up
the path-integral representation of operator entanglement. We
take a local operator situated at position X in the Heisenberg
picture and expand in the energy eigenbasis as

OX, 1) =M OX)e™ ™M
=D &5 O (X)e " ) (m].

nm

(53)

We then perform the state-operator map to create the local
operator state in a doubled Hilbert space,’

|OX, 1)) = NZei(E,ﬁEm)t*Enel*Em€20”m(X) In), |m)s
m,n

(54)

where AV is a normalization constant that ensures that the state

has unit norm

1

WP = 2 H T :
Trle 2@ +e)H (X, 2¢,)OF(X)]

Crucially, we have included regulators €; and €, in order to

smear the operator and cut off the high-energy modes.
Consider the density matrix corresponding to the state (54)

in Euclidean signature,

pe =N Y (n|OCOIm)(BIOT(X)|A)n)
n,m,A,B

x (Al; ® |m) (B|2e*IAEne*TBEAe*IcEme*fDEB .

(55)

(56)

After performing our computations of BOMI and TOMI in
Euclidean space, we will perform the analytic continuation

Ty —> € —it, T3—> € +it, Tc— e +Iit,

p —> € — it.

(57)

We bipartition the Hilbert spaces and write the density matrix
elements in terms of the field configurations on these biparti-
tions,

(Wa,, Wi|(®5,, @1]pg|Wa,, V)| D5, D2)
= N2<\IJA| . ‘1’1 |€7TAHO(X)€77CH |(j)B] B cbl)
x (®p,, B2le ™" OT(X)e ™ |Wy,, Wy),  (58)

where the states corresponding to complex conjugated
fields are defined by (®,, ®p|n) = (n|®,, ®p), (n|D,, ®p) =
(®,, ®p|n). Consider two subsystems A and B in the first

"It is understood that all states in the second Hilbert space are
charge-parity-time (CPT) conjugated.
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FIG. 12. The replica manifold for S4p. The base manifolds are
cylinders because the regulator sets the theory to finite temperature.
The input and output intervals lie on opposite sides of the cylinder.

and second Hilbert spaces, respectively. The reduced density
matrix for the union of these two regions is

PAUB = Nﬂfd‘l’l /dq_Dl
X <\I’AI , \Ijl |€7TAHO(X)67TCH|CBBI s @1)
x (®p,, @1 |e T OT(X)e ™ |Wy,, ¥y).  (59)

In order to compute the entropy and thereby the mutual infor-
mation, we must perform the replica trick where we cyclically
glue the path integrals defining the above state. This replica
manifold is shown in Fig. 12.

Equivalently, we can consider a replicated theory on a sin-
gle cylinder and introduce Z, twist operators that implement
the cyclic gluing, where n is the number of replicas. The
circumference of the cylinder is

B =2(e1 + &). (60)

In the replicated theory, we consider the operator O,, which
is the tensor product of the operators from each copy of

J

the replica manifold O, =0 Q0O ® ---® O. If O has the
conformal dimension (hp, ko), then the corresponding oper-
ator in the replicated theory O, has the conformal dimension
(nho, nhe). The twist operators have conformal dimensions

- c 1

The operator entanglement entropy for two disjoint regions A
and B is then computed by the following correlation functions:

. (OF(wy, 01)Oy(w2, W)
Saup = hm1 1 log
n— —n

on(ws, W3)0, (W4, W), (Ws, Ws5)G,(We, We)) g
(O (wy, w)O(wy, W2))’ 7
(62)

where we introduce the following coordinates on the cylinder,

wy =X +itg, wry=X+i(tg+ 1c+ D),

ws =Y, +i(tg+1p), we =Y +i(tp+ Tp).

(63)
These coordinates are to be analytically continued at the end
of the calculations:

w3 = X1,

wy = Xy,

a.c. . - a.c. .
w; — X —t +ie, w; — X+t —ie,

wy S5 X —t+i(B—e), WS X41—i(f—e),

ws = Y +if/2, s —> Y —if/2,

we —> Y1 +if/2, We —> Y1 —if/2. (64)
Similarly, the local operator entanglement entropy for the
individual intervals can be obtained by tracing out the other
interval,

1
=1 |
$1 = lim o |

(0 (w3, W3)6,(wa, Wa) Ol (wy, W1)Op(w3, wZ))ﬁ]
(O (wy, W) O(wa, W2))p)" '

(O,L(wl , )G, (wg, We)o,(ws, wS)On(wZ’ ﬁ)z))ﬁ

1
=1 1
Sg nlgil—n og[

2
Performing the standard cylinder to plane map z = e # *, the
two-point function in the normalization is simply given by

27 2hot+2ho (212 (3,2 );,O
(OF (i, B1)O(ws, 1)) = <—) e
p 22 %12

B. Bipartite and tripartite information

The local operator Rényi entropy for each individual setup
must be computed separately as the monodromies of the
conformal blocks are highly dependent on the spacetime lo-
cations of the operators in the correlators. The computations
are thus rather repetitive so we leave them in Appendix B. In
computing entropies, we use the four-point functions given

(O (wy, W1)O(wa, W2))p)"

]. (65)

(

by the heavy-heavy-light-light (HHLL) vacuum conformal
block [51]:

| = (1 = g\ 2
—)

X aFy(hp, by, 2051 — (1 —2)°).  (66)

Fin(hplz) = (1 — Z)hL(a—l)(

In our case, the light operators are the twist operators, i, =
hu, by = 0 for the vacuum conformal block, and

_ 24
§=5=,/1—"ho, (67)
C

where we are considering scalar operators with hp = ho.
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The six-point function in (62) can be approximated by
two four-point functions using the operator product expan-
sion (OPE) 0,(1) x &,(x,x) ~ 1 4+ O((1 —x)*) where s €
Z. Each four-point function will contain the local operators
O, O as well as the twist operators o, . If both twist oper-
ators in each four-point function correspond to the end points
of the same interval, we say that the six-point function is
computed in the disconnected channel. On the other hand, if
both twist operators in each four-point function belong to sep-
arate intervals, we say that the six-point function is computed

J

in the connected channel. Holographically, the disconnected
channel corresponds to bulk geodesics starting and ending
on the end points of the same interval, while the connected
channel corresponds to geodesics beginning on an end point
of one interval and ending on an end point of the other interval.

Combining the various local operator entanglement en-
tropies listed in Appendix B, we obtain the bipartite local
operator mutual information. In the following, we list the
mutual information (for the connected channel) for various
subsystem configurations. Below, we set €] = €.

1 mmetric intervals, X < Xo =Y, < X; = [Y1:
@1 Sy ic i Is,X <X =Y, <X =Y,
0, t<Xp—X
X, - X Y, - Y B
I = —1og sinh X — X)) sinh 7th — 1) + < log[tcma2 e~ 7 XH= ], Xo—X <t<Xi—X. (68)
3 p 6 5)\2, (X +i— 112
—log[(%)eﬂ‘3 =], =X —X.
ii) Partially overlapping intervals , X <X, <Y, < X| < ¥;:
(ii) Partially lapping i BLX <X, <Y, <X <Y,
0, t<Y,—X
rrS 2
wn € sinh ”(X‘ﬁ_XZ) sinh ”(Y‘B_YZ) c log[ ’?(X”’YZ)], h—-X<t<X—X
Iy ==1o + - A 69
3 8 cosh ”(X'f;Y‘) cosh ”(X%*YZ) 6 | —log [Mezﬁ X+ YZ)], X - X<t<¥V—-X (69)
lOg [(smné) e%(xﬂfw)]’ Y, —X <t.
(iii) Disjoint intervals, X <X, < X <Y, < Yi:
]
0, t<Xi—X
3
¢ sinh Z&=X2) gjnp ”(Y‘/;YZ) ¢ | —log [Sl 2 ] X —X<t<Yh-—-X
Iig" = 3 log X =T oo | T Z 78 % (X+1-12) (70)
3 cosh M= cosh T2 6 —1og[ ], h—-X<t<Y —X
—log [(vg?ﬂa)zg“s LS N '
(iv) Partially overlapping intervals IL Y, < X <Xp <Y < X;withX, — X <V - X <X —X <X —Y»:
0, O<t<Xp,—X
€ sinh ”<ng2> sinh ”mﬂ%) ¢ | +1og [S"’ z ]2, X —X<t<Y—-X
lig™ = 3 log | — 2T Gosh 202 %o, Yi—-X <t <X —X 1
log[smmS B X +i— Xl)] X, —X <1.
(v) Partially overlapping intervals III, ¥, < X <X, < X; <Yy withX, - X <X - X <X -, <Y — X:
y pping
0, O<t<X,—X
wn € sinh Z&—X2) ginh ”(Ylﬂ—yz) c | +1log [m 7 ]2, X —-X<t<X —X
l =gl 206 T cosh 20251 | T 60, Xi—X <t<¥—X 72
_log[smné ,‘;'(X+17Y1)]’ Yl X <t
[
Two comments are in order: regions A = [Xp, X1], B = [1», Y1], and B, = [V3, Y»]. and

(i) The bipartite local operator mutual information is con-
stant until both intervals are within the light cone of the local
operator.

(i) In these results, the time-independent part of the bi-
partite local operator mutual information in the 8 — 0 limit
is simply given by 3”ClAmB, where [ynp is the length of the
overlap of the two mtervals A and B.

With the various bipartite local operator mutual informa-
tion at hand, we proceed at last to the tripartite local operator
mutual information. As a specific setup, we consider sub-

insert the local operator to the left of subregion A so that Y3 <
X <X <Y, <X <Y,. We also send Y, — o0 and Y3 —
—o0 so that B; and B, form a bipartition of the output. The
tripartite mutual information is obtained by taking the appro-
priate limits of (69), (71), and (72). Those expressions are for
the connected channel, and the actual bipartite local operator
mutual information is given by Iyr = Max (I35, I} d““’“ ) for
R:B],Bz and B =Bl UBz.

We plot Iup,, Iap,, Ias, and I(A, By, By) in Fig. 13 both for
light and heavy local operators. The bipartite local operator
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FIG. 13. Bipartite local operator mutual information Iyp, (blue), I4p, (orange), and Iy (green), and tripartite local operator mutual
information I5(A, By, B,) (red) for large-c CFTs. We are considering a light scalar (§ = § = 0.99) on the left and a heavy scalar (§ = § = 10i)

on the right. The positions of the boundaries and local operators are X; = 5, X, =
reg

set to €; = €; = 0.1. The dashed line at the bottom is given by —25,

mutual information for each semi-infinite interval Iyp, and I4p,
vanishes after a certain time while the bipartite local operator
mutual information I45 for A and the entire output B remains
constant even at late times. The tripartite local operator mutual
information thus converges to —Iyp,

27TC(X1 Xz)

—287%, 73
1261 ( )

lim L(A, By, By) = —
11— 00

where S, ¥ ~ M is the regulated entanglement entropy

for A [23] This saturates the lower bound for /53 as fast as
is allowed by causality just like the random unitary circuits
in Sec. I and the tripartite unitary operator mutual infor-
mation of holographic CFTs and random unitary circuits in
Refs. [22,23].

Small discontinuities in the local operator mutual informa-
tion depend on the weight of the local operator. For a light
operator, these discontinuities are small. Here, the dependence
of the bipartite and tripartite local operator mutual information
on the local operator comes from their conformal dimension,

§=586=+v1- %ho When the local operator is light, i.e.,

ho < 0 < 8 < 1, as it enters the expressions of bipartite

ﬂ,
Trig. Functi
local operator mutual information in the form of w,

its logarithm is much smaller than the kinematical factors that
enter the expressions in terms of exponentials. On the other
hand, when the local operator is heavy, ho > 57, § is purely
imaginary, and hence the trigonometric functions become
hyperbolic functions, and the piecewise constant operator-
dependent terms give rise to more noticeable discontinuities.
(Here, keep in mind that the bar does not refer to complex
conjugation but instead refers to the antiholomorphic confor-
mal dimension.) Since I3 and [;p’ decay to zero, and the
late-time values of I;3" and SiE 4~ are operator independent, the
tripartite local operator mutual information for heavy opera-
tors still satisfies equality (73).

In Sec. I, we found precisely the same results as the large-c
calculations for light operators, i.e., no discontinuities. This
can be quantitatively verified once using the identification (7).
It is interesting to consider if and how the discontinuities cre-
ated by heavy operators can arise in the membrane theory. In
Sec. I, we had neglected O(1) contributions that can arise from
the initial state. It is reasonable that by carefully accounting

—5,Y, =0, and X = —10, respectively. The regulators are

for these O(1) contributions, one can find the discontinuities
that depend on the specific operator.

Before concluding the section, let us comment on one of
the key differences between the unitary operator entangle-
ment and the local operator entanglement. During the analytic
continuation, the cross ratios for the case of unitary opera-
tor entanglement are real and do not follow any nontrivial
trajectories [23]. On the other hand, the cross ratios for lo-
cal operator entanglement are complex and can encircle the
branch point at the origin during analytic continuation as
shown in Fig. 14. The nontrivial time-dependent behavior of
the cross ratios is a direct consequence of the insertion of
local operators. As a result, the dominant conformal block
can acquire a monodromy, which contributes to the late-time
behavior. This behavior is essentially the same as the cross
ratios that appear in the computation of OTOCs [4,52,53]. In
some sense, one can think of the four-point functions in the
computation of S4p as an OTOC with the operators V and W
from (1) being the twist field and local operator O, respec-
tively. The exponential decay of this OTOC (coming from
the monodromy of the vacuum conformal block) manifests
itself as the linear decrease in bipartite local operator mutual
information.

C. Holographic description

We conclude this section by introducing the geometry that
is holographically dual to (54). It is the two-sided black hole
with a massive object discussed in Refs. [6,25,54].

.c.

N

FIG. 14. Anexample of the trajectory of a cross ratio on the com-
plex plane during analytic continuation, relevant for the calculations
of the local operator entanglement.
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In the holographic CFT, we study the time evolution of
BOMI and TOMI on R!!. Therefore, the gravity dual for
which we compute the operator entanglement entropies is the
geometry in the AdS-Schwarzschild patch,

dz?

ds* = K —(1 =Mt} , + ————
22 LR — Mz2

+ dx2:|, (74)

where /M = 27 /B. In order to consider the gravitational
dual to (54) (with €; = ¢; =€), we take the period to be
B = 2(€) + €3) = 4€. The Kruskal coordinates are related to
the AdS-Schwarzschild patch of two wedges of AdS; as

— l_f \/>ZIR
1+\/_z
— - mze—mwk
l—i—«/Mz
V1T —Mz? U+vVv
+RY——° ginh (WMt =R—,
it ( L.R) T oV
V1= U -V
:I:R— h (v Mt = ,
\/Mz cosh (vVMt, ) = R
A%
cosh (v/Mx) = coshyr,
x/_z 14
A%
«/_z sinh (v/Mx) = v sinhyr.  (75)

The resulting metric is

—4dVdU + (—1 + UV )2 dy>

ds* = R?
(14+UV)?

, (76)

where U and V are defined in the region —1 < UV < 1.
The conformal boundaries, where the two copies of the CFT
live, is at UV = —1, the horizons are at UV = 0, and the
singularities are at UV = 1. The regions which correspond to

J

the left and right CFTs are defined by
left: {0 < U, -1 UV <0},
right: {U < 0,—-1 < UV <0} a7
We now place a massive object located at
(z,x) = (a,0), ViLg, (78)

in the coordinates of (74). The geometry back-reacted by the
massive object can be constructed by first considering the
metric of the AdS; black hole in the global coordinate,

R%dr?
r+R—pu

where the black hole [of mass m = u/ (8GyR?)] is located at
the center of the cylinder. The parameter p is related to the
conformal dimension of local operator O:
24h
s=J1—L = J1-=29
R? c
This metric can then be mapped by the following boost and
coordinate transformation so that the resulting metric de-
scribes the massive object at the origin of the coordinates in
the AdS-Schwarzschild patch:

ds* = —(r* + R* — p)dt* + +r2dvy?, (79)

(80)

MU + e MV
VR +r2sint =R——M—, 81
+r 1 +0uv S
Rcosh Ar(1 —UV
VR +r2cost = cosh Aa( )
1+U0V
A]U_ 7A|V
X coshlﬂ—tanhAZL ,
1-UV
(82)
i riZUY inh (83)
iny = in
rsiny =Ry snh
Rcosh A>(1 —=UV)
rcosy =
1+U0V

eMU —e My
X —_—_—m
( 1-UvV

where (U, V, ¢) is the Kruskal coordinate. In terms of the
(U, V) coordinate, r is given by

— tanh A, cosh 1//), (84)

_ R(1 —UV)cosh A,
N 1+UV

sinh v 2+ eMlU — e~ MV
cosh A, 1-U0V

2
— tanh A, cosh glr) . (85)

Since (U, V, ¥) are transformed to (z, fz g, x) as in (75), the boost parameters A; and A, can be determined by requiring that

the massive object at (z, ¢, x) =

A1 =0, tanh A,

(e, 0, 0) in the AdS-Schwarzschild patch corresponds to r = 0 in global coordinates:

=1 —Ma2 (86)

The above transformation gives the metric in Kruskal coordinates that takes into account the back-reaction from the massive

object. For our purpose of computing entanglement entropies, let us write the global coordinates for the two wedges (r~,
T, Yg) in terms of the AdS-Schwarzschild coordinates:

and (%,

7, wL)

= ()[L[Mw2 sinh? (vMx) + (v/1 — Mz2 cosh (v/Mt,) £ /1 — Ma? cosh (vV'Mx))*1'/?,
z

RN1 —
VRZ 4+ (rP)?sinT = F——nrx——
VMz

nh(\/_t,,)
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R 1= Ma? RV — M2 R
VR 4 (7 cos T = —— cosh (v/Mx) £ v - CRIL=MZ (VMt,), r”sin(1,) = —— sinh (v'Mx),
oMz o

Z Mz

rP cos () = :FMiaz[‘/l — Mz2 cosh (v'Mt,) £ /1 — Ma? cosh (VMx)], (87)

for the left (p = L) and right boundaries (p = R), respectively.

The left and right regions in Kruskal coordinates correspond

to the geometries, which are back-reacted by the massive

object and their asymptotic regions are AdS-Schwarzschild.
Now, in terms of global coordinates the holographic entan-

glement entropy S, is given by [29]

¢ [2r1rz cos (|t — 12[8) — cos (|Yr1 — wzw)]

Sa=glog| 52

(88)

where the boundaries of subsystem A are at (r;, 72, ¥») and
(r1, 71, ¥1). Since the holographic entanglement entropy is
diffeomorphism invariant, we are able to compute holographic
entanglement entropy in the two-sided black hole with the
massive object by using (88).

As the final step, let us determine the parameter «. The
expectation value of the energy momentum tensor for the state
in (4) is equal to the three-point function which is universal
in 2D CFTs. This can be done by requiring that the energy

J

(

density in the gravity side should be equal to that for the state
in(4)withe; = ¢, = €:

(O, DI TER 10, 1))

LR\ __
(To") = (O DO 1)

(89)

€1=€r=¢€

This is related to its holographic counterpart (TnL’R)hol as
(TER Yot = (TERY o = 5= (TEF) [55,56]. Using this dictio-
nary, « is determined as

o’M = 1. (90)

Then, the massive object is pinned to the horizon of the
AdS-Schwarzschild coordinates and the origin of Kruskal co-
ordinates as in Fig. 15.

In AdS-Schwarzschild coordinates, the subsystems A and
Baredefinedas A = {z,t;, x|z =a,t;, =t,X, < x < X;}and
B={z,tg,x|z=a,tg =1,Y, < x <Y}, respectively, where
a < 1 is the inverse UV cutoff. For Ma? = 1, the small-a
expansions of the variables in (88) for A, B, and A U B are
given to leading order as follows:

[sinh® (v/Mt) 4+ DEDE R
A |t — 77| = arccos (WMD) + Dy 2], ri = —v/MNy,
~NrpiNpro a
- — k| = arccos [ —cosh (VM (X; — X»)) N cosh? (v/Mt) + Dng}
: ? L ~NipiNpio ~NrpiNpio ’
[sinh? (vMt) + DRDE R
B: |t — 15| = arccos (VM?) + Dy D, i|, R = —/MNggi,
~/Nrr1Ngr2 a
-y [—cosh (VM(Y; — Y»)) N + cosh? (v/Mt) + D§D§]
— = arccos ,
: ? L ~/Nrr1Ngr2 ~/Nrr1Ngr2
[ —sinh? (vVMt) + DRDF
AUB:|riR—riL’=arccos (VM1) L,
L ~/NRriNLL;
[ —cosh (WM (X; - Y; — cosh? (v/M¢t) + DRDE
[ —wf| = arccos WME D, SELDhEY } O
L ~/NrriNLLi ~/NgriNLLi

where i = 1, 2. Here, we assume |X,| < |X;| and |Y>| < |V},
and we introduced

Df-‘ = cosh (\/A_lX,-), Df = cosh (x/l\_lY,-),

Nyt = sinh® (vMt,) + (D7), 92)
Ny = sinh® (v/M1,) + (D9)’,
for p,q = L, R. The above equations can be used to com-
pute the operator entanglement entropies in terms of Poincaré

coordinates. By choosing the minimum one of (88) to be
the operator entanglement entropy, we verify that the time

(

evolution of holographic BOMI and TOMI match precisely
with those in Sec. III B.

IV. DISCUSSION

In this work, we have studied a strong version of the
butterfly effect in quantum many-body systems from an
information-theoretic perspective. We have found that local
operators in chaotic theories entirely delocalize information,
regardless of the details of the operator. In certain “large-N”
theories such as holographic CFTs and random unitary cir-
cuits with large local Hilbert space dimension, we have found
this delocalization process to occur at the fastest possible rate
allowed by causality. In contrast, we have found that free
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CFTLMLRight —— CFTrignt

FIG. 15. The location of the massive object in the AdS-
Schwarzschild and Kruskal coordinates. The left panel is for
the AdS-Schwarzschild patch, and the right one for the Kruskal
coordinates.

theories and random Clifford circuits are robust against these
perturbations.

There are several interesting avenues for further study
of local operator entanglement. These include higher-
dimensional calculations which may be made possible
through the holographic membrane theory [43,57]. Holo-
graphically, it should also be tractable to compute the
entanglement wedge cross section in the massive-particle ge-
ometry of Sec. IIIC. It will be important to understand if
the reflected entropy remains parametrically larger than the
mutual information as this is a novel phenomenon never seen
for simpler quantum systems and is hinting at the fundamental
role of multipartite entanglement. Moving beyond holography
and maximally chaotic systems, it would be fascinating to
understand this notion of the butterfly effect in more generic
quantum systems. In particular, it is important to understand
the universal features in generic interacting RCFTs and ir-
rational CFTs as has been previously done for OTOC, local
quenches, global quenches, and unitary operator entangle-
ment [24,30,32,34-36,52,53,58,59]. Similarly, it is desirable
to understand nonconformal theories that are not maximally
scrambling such as spin chains and random unitary circuits
with finite on-site Hilbert space dimension [17-20,60-65]
and interacting integrable systems that exhibit diffusion, a
tractable example being the Rule 54 chain [18,66].

Note added. Recently, a preprint appeared on arXiv [67].
Our analysis in Appendix A is consistent with Ref. [67]. For
further discussion, a more detailed version of the analysis of
Appendix A will be published elsewhere [68].
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APPENDIX A: MEMBRANE THEORY FOR NEGATIVITY
AND REFLECTED ENTROPY—MAPPING
TO CLASSICAL SPIN MODEL

In this Appendix, we make progress in the derivation of the
membrane theory for logarithmic negativity and reflected en-

tropy conjectured in Refs. [22,35] and used in the main text.®
We do this using the formalism developed in Refs. [38,63]
for Rényi entropies. We will work in the ¢ — oo limit where
significant simplifications may be made. It will be interesting
to understand finite-g effects in the future. The ¢ — oo limit
is relevant to irrational CFTs where the effective bond dimen-
sion is determined by the Cardy density of states (7), g = e .

Progress can be made because of analytic formulas known
for averaging over an arbitrary number of Haar random uni-
tary matrices,

.. (AD

where o and 7 are elements of the permutation group S, and
n is the number of unitaries (and duals) averaged over. After
applying this independent averaging on every unitary matrix,
we end up with an effective hexagonal lattice of classical S,
spins. We are thus instructed to compute the partition function
on this lattice. It has been shown that the partition function
simplifies by summing over the t variables and we end up
with a triangular lattice with positive three-spin interactions
involving the Weingarten function [64]:

] oc

; = z Wg(O'A ° ‘L'_l)qzn—|0'1§1°r|—|r‘1oo-c’

%A 7€S,

(A2)

These interactions are still quite complicated but they simplify
greatly in the ¢ — oo limit where they equal ¢! foocl=n_The
| - | for a permutation element denotes the total number of
cycles in that permutation.

Rather than considering spin configurations in the partition
function, it is more convenient to consider S, domain wall
configurations. With these simplifications, we can reduce the
problem of computing the partition function to finding the
dominant “bulk saddle” completely analogous to the story
for conformal field theories in the large-N limit [69], though,
so far, the discussion has been quite general and we have
not specified to the entanglement entropy. In order to apply
this general framework to the specific quantities that we are
interested in studying, we must apply appropriate boundary
conditions.

8We emphasize that this derivation is valid for the global quench
and operator entanglement circuits. However, for the local operator
entanglement considered in this paper, the future and past light cones
are correlated, which requires extra care. In Sec. I, we treated them
as independent. Technically, one must average over the future and
past light cones together. In this case, the resultant geometry is just
the future light cone and the effective spins live in the symmetric
group with Sy — Spy. In the large-¢ limit, we wind up with identical
results to the heuristics shown in this section, so, for simplicity, we
omit the subtlety. We note that there also may be O(1) effects from
the operator choice similar to the initial state choice contribution in
Ref. [17].
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A B A B A B
1 @ 1 1 7 n 1 1 T . 1

FIG. 16. Cartoons of the Ising-like partition functions are shown in the “ordered phase.” From left to right, these are the partition functions
for the Rényi entropy, negativity, and reflected entropy. The differences are present in the boundary conditions for the spins at the top boundary.
The labels in the bulk represent the permutation elements of the spins in the dominant phases. All t’s are summed over. Focusing on the middle
figure, Vais.a (Yaisp) is the length of the domain wall between the green (red) sections on the yellow (pink) section, Yem.a (Veon.s) is the length
of the domain wall between the blue section on the yellow (pink) sections, and Ey is the length of the domain wall between the yellow and

pink sections.

1. Mutual information

For the Rényi entropies, one must impose Z,, permutations
on the boundaries within the regions of interest while im-
posing identity elements everywhere else (see Fig. 16). This
imposes the correct trace structure. The Z, permutation is
represented as

on=(1,2,...,n), (A3)

where we are using cycle notation to label the elements of S,,.
To leading order in ¢, the replica partition function is

Z,(AUB) el g

Trpll, = ZAUBY — qun(\fl m+vas(lo, ot|=n) (Ad)
TES,

Here, y.on and ygis represent the areas of the extremal surfaces
in the circuit of different topologies. In the large-g limit, when
Yeon > Vdis» We need to maximize |7|. This is achieved when t
is the identity element, e, because |e| = n. Analogously, when
Ydis > Veon, W€ need to maximize |0, ' 7], which occurs
when t = o,,. Thus, to leading order, the Rényi entropies are
all equal:

Sn(A) = min[yeon, yais] log g. (A5)

This may be described by a membrane theory because it is
equivalent to finding the minimal membrane in the circuit with
membrane tension log g.

2. Negativity
For the logarithmic negativity, we must compute even pow-
ers of the partial transposed density matrix
Z(PT)
T; n
Tr(lo A%) = nzn
1

(A6)

For this partition function, we must modify the boundary con-
ditions of the S, spin model to incorporate the simultaneous
cyclic and anticyclic gluing of the replica manifold. In cycle
notation, the anticyclic permutation is

o' =mn—1,..,1). (A7)

n

Spins in region A have Z,, permutations while spins in B have
Z,, permutations in the opposite directions. All spins on the
boundary outside of AU B are set to the identity. Because
regions A and B have different boundary conditions, there
can now be a domain wall between them in the bulk. This
complicates the computation by necessitating a double sum

over the permutation group (see Fig. 16):

A%R =
n — E E qVA,dis(‘Un oty |=n)+yp.dis(|0,0T2|—n)
7n
1 T ES,, 1%} GS,,
+ Ew (|17] " oTa|=1)+¥a con (171 | =)+ ¥B.con (I T2| —12) (A8)

We will now perform a zero-order analysis of this double
sum and show various subtleties that arise that are not present
in the case of Rényi entropies. The simplest regime is when A
and B are sufficiently distant. In this case, we must maximize
both |7;| and |7,| which means that we take both of them to be
the identity. This contributes to the partition function as

ZIEPT) (1=n)(ya,dis+VB.dis)
7 Oq ' s, (A9)
1

In the opposite regime where we expect correlations to be
present between A and B, ignoring the term with Ey, we must
maximize both |0, !5 7y| and |0, o 72| which means that we
take 11 =0, and 1, =0, ! This contributes to the partition
function as

Z(PT)

Ew (2—n)+(1—n)(Ya,con+¥B.con)
zi 21 '
1

(A10)

While these two choices for permutations seem most natu-
ral, due to the term proportional to Ey,, there exists another
permutation (with degeneracy) that can become important.
These permutation elements can be thought of as being
halfway between o, and o, !, leading to the following con-
tribution:

Z(P)

) q(1_n/2)(VA.dis+yB.dis)_(n/z)(yA.con+VB.con).
Zil

(Al1)

The three contributions described above are the most clear
leading contributions to the partition function. However, we
have not proven that other permutations are not also important
or even that it is valid to take a single dominant contribution.
If we make the assumption that these are the only important
saddles and that it is sufficient to throw away the rest, we find
as g — 0o

Z(PT)
E™W =log nZ"
1
. n
= —min [(n — DYeon + (n = 2)Ew, (n — 1)y4is, E)/con
n
+ (5 = 1)ran)]0ga. (A12)
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where yeon = Yeon.A T Veon,B and Yais = Yais.a + Yais,g. Here,
we have approximated the logarithm of the sum of the three
contributions as a “min” function due to the ¢ — oo limit. In
reality, we are summing the many terms of the form ¢*. For
the disconnected regime (Yeon = Viis), the middle term will
dominate for n > 1, leading to

EM = (1 — n)yais logg. (A13)
Naively taking the replica limit, this vanishes, implying that
the logarithmic negativity is zero. This makes sense because
it corresponds to the regime where the intervals are either
sufficiently distant or we are at sufficiently late times when
thermalization has occurred.

The connected regime (Ygis > Yeon) 1S more subtle. First
note that the first and third terms are identical when n = 2.
Being linear in n, this means that one of the terms is minimal
for all n > 2 and the other is minimal for n < 2;i.e., thereis a
replica transition. This is a novel phenomenon that we did not
see for Rényi entropies. To determine which term is dominant
in which regime, take n = 1 for simplicity. In this case, we are
comparing the size of Ey versus (Vgis — Yeon)/2. It is a simple
geometric exercise to show that Ey is always the greater of
these two; thus the first term would appear to be dominant for
n < 2 while the third term is dominant for n > 2. If we are to
take the analytic continuation seriously, we would determine
that the logarithmic negativity is given by

€ = Ewlogg. (A14)
This is precisely the membrane theory used in Refs. [22,35].
Moreover, it shows how the entanglement wedge cross section
in the context of negativity can emerge outside of holographic
conformal field theories. However, this analytic continuation
was too naive.

We warn the reader that the above derivation was not rigor-
ous both due to dropping all subleading terms in the double
sum and in the analytic continuation to one. We have not
proven that other terms are not important. We leave a more
rigorous proof (or disproof) that involves computing the full
negativity spectrum to future work [68]. One peculiarity in
this result that must be resolved is the following: Recently,
the logarithmic negativity has been analytically computed for
arbitrary tripartitions of Haar random states [70]. Haar random
states are expected to accurately describe the late-time states
after random local quantum circuit evolution, an intuitive idea
that has been made precise in Ref. [39]. However, if one com-
pares the results from Ref. [70] with those predicted by (A14)
at late times for a finite size system, one finds disagreements.
Rather than Ey, Ref. [70] found an answer that is more remi-
niscent of a Rényi mutual information. Resolving this tension
is an important future direction.”

9We note here that this tension may indeed have been resolved by
the calculations of Ref. [67] which generalized the computation of
the negativity spectrum of a single random tensor [70] to arbitrarily
large random tensor networks. This suggests that (A14) is not correct
in the regime we are probing.

3. Reflected entropy

We are able to run through similar analysis for the reflected
entropy by imposing yet another boundary condition on the
effective spin system. The partition function is indexed by two
replica numbers:

Z}’Lm

log Gy (A15)
The computation of these partition functions has an associated
replica trick (see Ref. [48] for details). For our purposes,
we simply need to recall the cycles defined for the relevant
twist operators so that we may set appropriate boundary con-
ditions on the S, spin model. In region B, the permutation
element is

S("):
R n—1

ggB:H(k,k—l—n,...,k—l—n(m—l))- (A16)
k=1

Each factor consists of m — 1 elementary swaps, so in total,
the domain wall between this element and the identity is
composed of n(m — 1) elementary domain walls. Similarly,
the permutation elements acting on region A give n(m — 1)
elementary domain walls, but the cycles are of a different
form:

n

g = [ [k k+n, ... k+n(m/2—1)k
k=1

+1+nm/2,....,k+14+n(m—1)). (A17)

The product of these permutation elements is
0g, 00, =(1,2,....n)(n(m/2+ 1), n(m/2 + 1)

—1,...,nm/2+ 1), (A18)

which is composed of 2(n — 1) elementary domain walls. The
reason why we are concerned with this product is it may
dominate the replica partition function in the sums over the
permutation group. The total replica partition function at large

qis
A E E qVA,dis(\Ugj\lOTI|*"m)+ylf,di.~(|tf;BI oty|—nm)
n,m =
T1ESum T2ESum

+ Ey (|7} ota|=nm)+ya con (|71 | =1m)+¥3 con ) | T2 | —nm)

(A19)

We consider just two contributions that can dominate the
sum. The first is most likely dominant when A and B are suf-
ficiently separated or we are at late times. That is, 7}, 7 = e,
the identity. In this case, we have

Zym D q(VA,dierVB,dis)ﬂ(l*m)_ (A20)

The other regime is when 1 = 0,, and 7, = o, in which
case

Zn,m 5 qz(I_nl)EW+(VA.con+VB,con)n(l_m). (A21)

Assuming these are the only important saddles, we have

log Zn,m = - Iqumin[(yA,dis+ yB,dis)n(m_ 1), 2(7’1— I)EW

+ (VA,con + VB,con)n(m - D] (A22)
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The n — 1 limit is

log Z} ,, = —nlog g min[(ya.ais + ¥B.dis)(m — 1),
X (Ya,con + ¥B,con)(m — 1)]. (A23)
When Yeon > Vais, we therefore have
log 2 — . (A24)
Zi

Thus, the reflected entropy is zero in the disconnected regime.
In the connected regime when yeon < Vais, We have

Zn m
log —= = max [2(1 — n)Ew, n(1 — m)(Vais —

1,m

ycon )] .
(A25)

J

The second term is undesirable so we wish to take n — 1
before m — 1. This was previously noted in Refs. [34,59]
as necessary for picking the correct “entanglement wedge.”
However, this order of limits subtlety is only present because
we have taken ¢ — o0. At finite ¢, there should be no ambi-
guity. A better understanding of the necessity of this order of
limits deserves further attention. Taking the proper order of
limits, the reflected entropy becomes

Sg = 2Ew (A26)

as advertised. Again, we stress that we have made serious
assumptions about the dominating terms in the sums over the
permutation group. A more thorough analysis of this issue is
being pursued [71].

APPENDIX B: RENYI ENTROPIES OF THE HOLOGRAPHIC CFTs

In this Appendix, we compute the local operator Rényi entropy for the holographic CFTs discussed in Sec. III. Consider the
local operator entanglement entropy for a single subregion R = A or B residing on either the first or second Hilbert space:

g _ 1 log |:(OZ(w1, w1)O, (w2, W2)o, (Wi, Wi )Gy (Wy, Wy)) g
R 7 1—n (OF(wy, w1)O(wa, W)) g

G—z)z21

By conformal transformation y = =2z’

}. (B1)

S%) can be expressed in terms of correlation functions on the complex plane as

n 1 2 " |ZkZ |2hn n n
S = ——log || = S bl Tim )P g OOF (. 20O (DGt )00 (B2)
I—n B | gy [+ X1 Q=00

This expression is completely general. Let us now specialize to the case where subregion R is subregion A or B. As in the main

text, we always take €; = ¢; in this Appendix.

1. Sa

Setting w; = w3 and w; = wy, the Rényi entropy is

Sy =

The holomorphic and antiholomorphic cross ratios are

ac. —isin 2’:;' sinh %
X — - : X —ie)
sinh (X tﬁXerle]) sinh T(X—t /3X] i€y)

[ (2)"
log| | — ———— lim
I—n B/ (sinh l(xlﬂ—xz))“hn X1 J—00

X" 7™ (OF (1 1O (X1 %) o0 } (B3)

2me; (X1 —X)
A ac isin =5 sinh === B4
X sinh n(x+z73x2ﬂel) sinh n(X+t73X1+iel) .

Configuration 1: Local operator left of subregion. For our purposes, the only relevant configuration for Sy is that the cross
ratios have the following behavior as we send the regulators to zero:

A €1=€—0 A a=—0 |0, t<|Xx—X|] or t>Xi—X
1m0 x “—*{2, X, —X| <1 <X —X. (B3)
The four-point functions can be approximated by the HHLL vacuum conformal block [51]. The Rényi entropy becomes
5 }
1 X; — X 1 1—(1—=x" 1-(01-=x
57 = S5 og [ﬁ sinh u] S5 oy Uond) 1-U-x) (B6)
" P " Sxit(l=xt) * 8xM(1-x7)
The term that depends on the cross ratio takes the following simple forms in the two relevant limits:
1—(1—x) 1—(1—x) sm”—‘s
m (I-x)7 m (I-=x)* 2 (B7)

i — =
=05 x(1—x)'7

1 )
=28 x(1—x)> 8
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The von Neumann entropy for subsystem A when X < X; is

X, — X c (0, t<Xp—Xort>X—X
= — log E sinh M sin (B8)
3 6 IOg 2, X —X<t<X —X.
2. Sp
This corresponds to wy = ws and w; = wg in (B2). The holomorphic and antiholomorphic cross ratios are
X — cosh ”(X*HEGI*YI) cosh N(X*f;ielfyz) o X COSh Jr(XMl;tel* )] cosh 7T(X+tJ/gi61*Yz) : (B9)

Configuration 1: Local operator left of subregion (X <Y, < Y;). The chiral and antichiral cross ratios have the following
limits:

B €1=62—0 _p a=e—0 |0, t<Y,—Xort>Y —X
Xi >0 ’ {2, Yo—X <t <Y —X. (B10)
Repeating a computation similar to that for S4, we find
B 7(Y; — ) 0, . t<Yr—Xort>Y —X
SB - —IOg (; Slnh — 6 IOg (SIDST)’ Y2 —X <t < Yl _X (Bll)

Configuration 2: Local operator within subregion and closer to right boundary. When the local operator is within the subregion,
ie., Y, < X <Y, the cross ratios have the following trajectories:

g a=a—0 |2, t<X-—-Y, _p a=a—0 |2, t<Y —X
Xi 10, t>X-Y, X “10, t>Y —X.

Since both cross ratios vanish at different times for generic setups, we have to consider whether the local operator is closer to the
right or left boundary separately. First, consider the former, where X — Y, > ¥; — X, with €; = €,. The von Neumann entropy
for holographic CFTs is

log(m), t<Y—X
S — 1 ﬂ h—( l_YZ) ¢ sin 5> B12
—gog —sin 5 te log( ) Yi—X <t <X—Y, (B12)
0, t>X—Y,.

Configuration 3: Local operator within subregion and closer to left boundary. Finally, we consider the case where Y, < X < V)
but Y — X > X — Y,. Since the cross ratios x; and x; each depend on either ¥, or Y; but not both, their individual trajectories
are unchanged from the previous configuration and are given by (B12). For a holographic CFT, the von Neumann entropy is

sWS i WO
og (222 <x v
Sy = 4 /3 h7T(Y1 Y) c| " o ?
3= 3log 5 +g 10g(—s‘"57>, X—-YV<t<V—X
0, t>Y1—X.

(B13)

The expressions for the von Neumann entropy when the local operator is within the subregion (B12) and (B13) are symmetrical,
as they should be.

3. San

The Rényi entropy for two regions (62) can be written in terms of the complex plane coordinates. Let the coordinates of the
twist operators be arbitrary for now so that we can specialize to either the connected or disconnected case later:

. 1 27\ ¥ i
S = ——log| (=) 220z |zzzeza P (OF (21, 21)On(z2, 22000 Zas Za)0n(Zs 20)0nZes Ze)Tu(zar Za))c |- (B14)
1—n B

By the conformal transformation { =
written as

@—=22)za1

e introducing a resolution of identity, the six-point correlation function can be

<OZ(ZI s Zl)On(ZZ’ ZZ)Un(Zaa Za)6n(zb» Zb)Un(ZCa Zc)ﬁn(zda Zd)>C

- 1 E )]s 5 e

i=1.2,a,b,c.d P I=IM|=IN| [=|31|=|N|

X <OZ(OO)Un(1)O_'n(§b’ Eb)h)p,Ma Vp,M)(Vp,va,Nb—n(;w Ec)a'n(fdv Ed)on(o))(Ca (BI5)
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where G is the Gram matrix and the sums are over primary fields and descendants. For the second four-point function, we
perform the conformal transformation n = éi Noting

Ac\" ™ 1210241 \ W | n\"  (zerZa )
M) T ot ) -G
9z )/, © " ¢ ¢

2h
12 abed 2y Za2 (Za12p12c12a1) e Zc2%al

the Rényi entropy for subsystem A U B is given by

. 1 270\ |zazpzeza !
s = e[ () B e ey Y Y (@60

ZabZ
|ZabZea p I=IMI=IN|[=|#|=|N|

x lim g 2o g 2ho (O (¢1, £1)0w(1DG0(Eos TVt Vi) VoV 510w (15 (1 ﬁd>0n<0>><c]. (B17)
1,§1—>00
The holomorphic cross ratios are
Ziazpp  Sinh % sinh % Z1ezgo  Sinh % sinh %

= — - q = = — - .
ZpZaa  Sinh % sinh % ’ Z1dZe2  sinh ’“g“‘ sinh %

(B18)

The calculation up to this point is completely general as we have specified neither a theory nor a channel, nor have we
performed any analytic continuation. Note that the expression is symmetric in terms of the operator coordinates.

a. Connected channel
To obtain the connected channel, set
W, = w3, Wp =W, We=Ws, W= Wy. (B19)

The cross ratios are

ac sinh (X —t—X,+ie€y) cosh 7w (Yy—X+t+iey) ac sinh (X +t—X,—i€y) cosh w(Yi—X—t—iey)
{con B B é.con B B
Slnh (X, —X+1+i€;) COSh T (X—t=Yi+ie)) ’ Sll‘lh T (X —X—t—i€;) COSh w(X+t—Y —ie;) ’
B B B B
cosh T[(X—t;‘YrFlE]) sinh JI(XQ—};-H-HQ) cosh T[(X+[;Y2—l€|) sinh ”(Xz_)iz;_t_lel)

con ac _con ac
nd Sinh JT(X—ZTSXZ‘H'E]) COSh 7T(Y2_Xﬁ+t+i€1) ’ nd Sinh 7T(X+173X2—i61) COSh ﬂ(YQ—Xﬂ—l—iél) : (BZO)

Let us compute S4p for various configurations.
Configuration 1: Symmetric intervals, X < X, =Y, < X = Y;. Sending the regulators to zero, the cross ratios go to

€1=€,—0 —on €1=6—0 1, t<Xg—X
;_ISOH E— 1, é.bwn - {eZm' > Xl -X
con €1=€2—0 _con €1=62—0 1, 1< X2 —X
—_— 1, —_— ; B21
nd nd {e—Zm’ t > X2 —X. ( )

Atearly time r < |X, — X|, before any monodromy can be acquired, the twist fields have the following OPE:

0u(1) X G, (55", ) ~ T+ O((1—¢™)),  ou(1) x Gu(nS™, 75") ~ T + O((1 — 1)), rselr. (B22)

This implies that the six-point conformal function factorizes into two four-point conformal functions:'?

Z Z Z (697 G(’)] Nglgilrgoog'nhogznho
p I=|M|=|N|I=\M|=|N| ’
X (OF(€1, 200 (D)3 (25° T [vpats Vi) Vpv vy 10w (DG, (03, 7157 On(0))
= lim "0 (08 (61, )05 (1 — £ 1 = 5 0,(0)

£1,81—>00

x lim 2o 2o (0 (61, 50, (15, (1 — 1™ 1 = 75 0,(0)) .- (B23)

£1,61—>00

0This OPE simplification is not rigorous but is justified for large-c theories in the n — 1 limit. It will generally be incorrect when n # 1.
See, e.g., Ref. [34] for an example where a different operator dominates this OPE.
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Using the HHLL vacuum conformal block for each four-point function,

2 8hy, 2h,
1 T |Z3Z()ZSZ4| "
.(n) og

Scon n 1 < )

l—n 2 |Z36254|4h”
COH con COns S CDI’]S;l
S ; 7 ( é-con) 5 { 5 ( ;con) 2 (1 n;on) 5 F]d ] (1 n;on) 2h,
X 5 5 . (B24)
;COH _ é—bconé 1 — n;‘m 1 — nglomi
We take the €; = €, — 0 limit before taking the n — 1 limit to obtain the von Neumann entropy at various times:
) 0, t<X,—X
c :3 c <1nﬂ8 2l(X+1‘—Xz)
Sf‘%n. =—log(=) += log[ ] X —X<t<X —X (B25)
3 6 5\2 4 (x4t
log[(%) er z )], t>X]—X.

Configuration 2: Partially overlapping intervals I, X < X, <Y, < X; < Y;. Consider the configuration of two partially
overlapping intervals where neither the ends of the intervals are aligned nor are the intervals disjoint. More precisely, let
X <Xy <Y, <X <Y, with €] = €. The chiral and antichiral cross ratios follow the following trajectories:

1, t<X;—X

con. €1=€2—0
_—

9 1ove, g a8l X —X<i<¥—X
Tt >Y =X,
con €1=€2—0 _con €1=€2—0 1’ t<X2 -X
et B T M e f X —-X<t<V—X (B26)

e > Y, —X.

The six-point function factorizes as before. Again, we use the HHLL vacuum conformal block to obtain the von Neumann
entropy:

0, t<Xo—X

Sll’l =5

log X —X<t<Y—X

2
c ,3 7T(X1—Y1) JT(Xz—Yz) C
SCOI‘I. _1 h h — 10
AB — 3 og |:<_7T) Ccos ’3 Cos ’3 j| + 6 g

5 7X+ Y;
““6” =), h-X<t<X —X.
738

(
[smnésmf 2"(X—H Y2)] Xi—X<t<¥1—X
og|

(smané)z & X421 - Yo)]’ Y, — X <1.

(B27)

Configuration 3: Disjoint intervals, X < X, < X; <Y, < Y;. The holomorphic and antiholomorphic cross ratios follow the
same trajectory under analytic continuation as in the case of partially overlapping intervals, (B26). Taking the ¢; = ¢, — 0 limit
before taking the n — 1 limit gives

O, t<Xo—X
sin 28\ 2
o _ € [(BY . mGi-¥) w6 —¥y] el () H-X<t<h-X
SAB = —log — ) cosh cosh + g <in T sinnge%(xﬂ_yﬁ
log [———1]. h-X<t<V—X

10g [(smné)z 27(2X+21‘ Y YZ)] Y1 —X <t.
(B28)

Configuration 4: Partially overlapping intervals II. Consider again the situation where the intervals have a nontrivial
intersection but the local operator is now contained within subregion B. More precisely, let ¥ < X < X, and Y7, X; > X. The
cross ratios (B20) have the following limits:

I, t<Min{X,-X, Y — X}

gor L2228, 2R L1 Min{X - XY - X) <t < Max{X; — X, Y — X) (B29)
et > Max{X; — X, Y, — X},
con €i=0—=0 | =1, t <X —-Y, _.n a=e—>0 |—1, t<Xo—X
a ’ {1, t>X—Y, M 1 r>X X (B30)
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Since ¢, — 1, the six-point function factorizes as before. Let us further restrict ourselves to the case where X — Y, > X; — X >

Y] — X > Xo — X with €; = ¢; as usual. The vacuum conformal block gives

B 2R 7 ]
sin 5 Eln 5
86

),

B

[

[

6

X, — Y-
hﬂ(z 2)

C hud
Siy = = log 5 )

3

L. )
cosh cos =
:3 88

]+

2
.7 . o\ g X=X
sin Z2 sin (8)e 7 ¢ v

O<t<X,—X
X —X<t<Y1—X
i - X<t<X —X

R 88
— 2l —
sin (d)e P KH=Xp)

),

), Xi—X<t<X-Y
X-Y,<t.

(B31)

Configuration 5: Partially overlapping intervals IIL Y, < X < Xo <X <YiandX; — X <X — X <X -V, <Y — X.

B 2R 7]
sin % sin
88

):

B

(7

hJT(Xz 1)
B

Cc

con.

2
X -1
SuB =3 ) coshn( lﬁ 1)cos

]+

),

2
. < T (X+t=Y])
sin e B !

),

b. Disconnected channel

O<t<X,—X

X —X<t<Xi—X
Xi—X<t<X-Y
X—-YTh<t<?h1—X
t>Y —X.

(B32)

Let us now consider the bipartite local operator mutual information for A U B in the disconnected channel. This corresponds
to geodesics beginning and ending on the same interval for holographic theories. The Rényi entropy is given by (B17) with

w, = w3, Wp = Wy, W, = ws, and wy = weg. The chiral and antichiral cross ratios are

. (X —t+ie|—X;) 7 (Xo—X +t-+iey)
Cdiscon 213242 ac, sinh B sinh 5
b = = — A _ __
214232 sinh Z& ’;’El X2) inh X )§3+t+zel)
- . (X +t—ieg—X;) 7(Xa—X —t—i€y)
gisoon _ Z13%42 ac sinh 3 sinh ;
b =—— — — L .
214232 sinh Z&+! ﬁlfl %) ginh T ); 1—i€r)
TX—ttie —¥) T —X+i+ier)
discon _ 215%62 ac, COSh 3 cosh y
B X—ttie =) n (X titie) ’
216752 cosh Z¢ 5 cosh ==
- = n(X+t—ie;=Yr) a1 —X—t—ie;)
jdiscon _ Z15Z62 ac. ©Osh 5 cosh 5
d T3 z —1 —_ _ 7 .
Z16252 cosh ZX+ o ) cosh 202 Xﬂ =)

€1=€r—>

. . 0 . . . . .
Since X < X5, {bd‘sc"“ ——— 1 for all time, and the six-point function factorizes as

8h,
27\ ™" 12azpzezal

. i 4h, di 4hy,
SX;) — lim log |:<_> 1— é.bdlscon 1— ndlscon
a.5—o0 L —n B |ZabZea | ™ |
2nho
X 4’1

20 (O1 (61, £0)0w(1)5, (g55500, Z50) |0, ){ O 0 (15, (55, ﬁji““)on(m)(c} :

The cross ratios for the disconnected channel are related to the cross ratios for the single-interval entropies as follows:

_A
=X>

discon

— Ny

Conformal invariance implies the following identity for four-point functions:

1— é.giscon — X[As 1— Eéliscon 1 — XlBs 1— 74

=discon

:)‘(IB_

(9i(00)¢; (D) (u, @)1 (0))c = (¢i(00)pr (1)pr(1 — u, 1 — i)g;(0))c-

Applying this to the bipartite local operator entanglement in the disconnected channel, we find that

Siil;con.(n) _ Si\n) " Sz(an)-
Thus, the bipartite local operator mutual information in the disconnected channel vanishes:

discon.(n) __
[fiseontm — g,
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One obtains a simple step function for the entropy when the subregion is a single interval on either Hilbert space. When the
subregion is composed of two intervals, one on each Hilbert space, there is no contribution to the local operator entanglement
entropy when the operator is within the spatial intersection of both intervals. The local operator entanglement for two intervals
Sap also begins a linear increase due to the acquisition of a monodromy by the conformal blocks when both left or right
boundaries enter either the holomorphic or antiholomorphic light cone. This will lead to a linear decrease in the bipartite operator

mutual information.
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