PRX QUANTUM 2, 040340 (2021)

Distinguishing Random and Black Hole Microstates

Jonah Kudler-Flam®,"" Vladimir Narovlansky,?" and Shinsei Ryu?3-!

lKadanoﬁ Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
2Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
3Department of Physics, Princeton University, Princeton, New Jersey 08540, USA

® (Received 11 August 2021; accepted 5 November 2021; published 23 November 2021)

In this work, we study the distinguishability of random states drawn from the Wishart ensemble as well
as black hole microstates. We compute the relative entropy and many generalizations, including the Petz
Rényi relative entropy, sandwiched Rényi relative entropy, fidelities, and trace distances. These gener-
alized quantities are able to teach us about new structures in the space of random states and black hole
microstates where the von Neumann and relative entropies were insufficient. We further generalize to
generic random tensor networks where new phenomena arise due to the locality in the networks. These
phenomena sharpen the relationship between holographic states and random tensor networks. We discuss
the implications of our results on the black hole information problem using replica wormholes, specifi-
cally the state dependence (hair) in Hawking radiation. Understanding the differences between Hawking
radiation of distinct evaporating black holes is an important piece of the information problem that was
not addressed by entropy calculations using the island formula. We interpret our results in the language of
quantum hypothesis testing and the subsystem eigenstate thermalization hypothesis (ETH), deriving that
chaotic (including holographic) systems obey subsystem ETH for all subsystems less than half the total

system size.
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I. INTRODUCTION AND SUMMARY OF RESULTS

A unifying idea spanning quantum information theory,
quantum chaos and thermalization, and black hole physics
is that of (in)distinguishability of quantum states. In quan-
tum information theory, we would like to understand what
the space of quantum states are. In particular, how can we
characterize which states are close or far away and endow
the Hilbert space with a geometry? This notion of distin-
guishability is critical for storing and processing quantum
information.

Quantum chaos and thermalization is all about distin-
guishibility. A natural definition of quantum thermalization
is that the state is indistinguishable (up to a certain error)
from a completely thermal, e.g., Gibbs state. It is then
important to characterize which systems thermalize and the
mechanism for thermalization to occur. We can begin with

*jkudlerflam@uchicago.edu
Tnarovlansky@princeton.edu
Ishinseir@princeton.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL

2691-3399/21/2(4)/040340(40)

040340-1

two states that are easily distinguishable, e.g., the “all spin
up” and “all spin down” states of a quantum spin chain. If
we evolve these states with a thermalizing Hamiltonian,
the states will become indistinguishable using “simple”
measurements.

Similarly, the black hole information problem is most
naturally framed in terms of thermalization and indistin-
guishability. Black holes can be formed in many different
ways. Moreover, they have an extraordinary number of
microstates [1,2]. Even so, using semiclassical calcula-
tions, Hawking showed that all black holes with identi-
cal thermodynamic quantities (mass, charge, and angular
momentum) will radiate thermal radiation [2]. This means
that at late times, after the black hole has evaporated, all of
these microstates are completely indistinguishable, which
is in sharp tension with the unitarity of quantum mechan-
ics. To resolve this apparent paradox, different black hole
microstates must be made distinguishable directly from the
radiation.

Remarkably, all three of these broad problems may be
addressed using random matrix theory calculations of dis-
tinguishability measures. The purpose of this paper is to
make this statement precise and elucidate the intricate and
surprising connections, extending the analysis of Ref. [3].

The techniques of random matrix theory have become
ubiquitous across far-ranging fields of physics. Originally
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used to characterize the spectra of heavy nuclei [4], ran-
dom matrix theory has flourished in its applications in
quantum information theory [5], quantum chaos and ther-
malization [6], and black hole physics [7,8]. What is more
is that these fields are now understood to be deeply related
to one another and, to some extent, inseparable.

In Sec. II, we lay the foundation by reviewing the precise
definitions of distinguishability in quantum information
theory. In particular, we review various distinguishability
measures that are used to characterize how well different
states can be discriminated between. This is formalized
by the operational tasks of quantum hypothesis testing
and state discrimination. These are the most fundamen-
tal information processing tasks and make precise the
operational meaning of our subsequent results.

In Sec. III, we undertake our main technical computa-
tions. We introduce the ensemble of random mixed states
(Wishart ensemble) and a diagrammatic approach in evalu-
ating moments of the reduced density matrices. We exactly
compute the relative entropy, Petz Rényi relative entropies,
sandwiched Rényi relative entropies, fidelities, and trace
distance of random states in the limit of large Hilbert space
dimensions. This characterizes the space of generic quan-
tum states. In particular, we find that, when the logarithm
of the dimension of the sub-Hilbert space that we consider
is less than half of the total Hilbert space, then generic
states are indistinguishable up to exponentially small terms
in the system size. When the sub-Hilbert space is larger,
we find that the states are completely distinguishable up
to exponentially small terms. We find interesting O(1)
crossover behavior. We compare these “large-N” results
to finite size numerics and find precise agreement.

In Sec. IV, we begin to interpret the random matrix
theory results in the language of gravity. First, we show
that in AdS/CFT, if one considers two different black
hole microstates, the evaluation of distinguishability mea-
sures between the black hole microstates when an observer
only has access to a subregion of the boundary is for-
mally identical to the formulas present in Sec. III. This
occurs in special states called “fixed-area states” [9,10].
With this realization, we characterize the distinguisha-
bility of black hole microstates in anti—de Sitter (AdS)
space or, equivalently, high-energy states in conformal
field theories (CFTs). We subsequently apply this formal-
ism to a toy model of an evaporating black hole [11].
We conclude that before the Page time, an observer of an
evaporating black hole is only able to distinguish different
black hole microstates if one has an O(e'/“V) number of
copies of the radiation, meaning that the microstates are
nearly completely indistinguishable. After the Page time,
an observer of an evaporating black hole can easily dis-
tinguish microstates with a single copy of the radiation,
though the needed measurement will be quite complex.
In these calculations, replica wormholes play a central
role.

In Sec. V, we generalize our computations to random
tensor networks. These represent new ensembles of ran-
dom matrix theory and introduce a notion of locality into
the quantum state. We find qualitatively new features in
distinguishability with larger tensor networks being more
distinguishable than smaller tensor networks and the Haar
random states of Sec. III.

In Sec. VI, we discuss thermalization in chaotic quan-
tum many-body systems. Using an ansatz for the structure
of high-energy eigenstates in chaotic systems [12—14],
we evaluate the various distinguishability measures. We
interpret these results using the subsystem eigenstate ther-
malization hypothesis [15], a very strong version of ther-
malization. We determine that chaotic systems obeying
the ansatz also obey subsystem eigenstate thermalization
hypothesis (ETH) for subsystem sizes that are less than
half the total system, after which subsystem ETH is vio-
lated. Furthermore, we find similar structures in gravity,
generalizing the calculations of Sec. IV to black hole
microstates without fixed areas. Analogous conclusions
apply and we conclude that holographic CFTs in generic
dimensions obey subsystem ETH.

We relegate certain details and extensions of our work
to Appendices A through E. We highlight alternative
derivations using free probability theory in Appendix A.

I1. DISTINGUISHABILITY MEASURES AND
THEIR USE

A. Review of distinguishibility measures

In this section, we review various distinguishability
measures commonly used in quantum information theory.
Each measure has an operational meaning and there are
various relations between the measures. Readers famil-
iar with distinguishability measures and hypothesis testing
may move to Sec. III as there are no new results in this
section.

1. Relative entropy

We begin with the quantum relative entropy that is
arguably the most important quantity in quantum infor-
mation theory as many of the deepest results in the field
are directly derivable from its fundamental properties. The
classical relative entropy or Kullback-Leibler divergence
is defined as

. P
Dxi(P]|Q) := log [;fm log ( Q(x))} (1)

where P and Q are classical probability distributions over
a set X. The quantum relative entropy is the noncom-
mutative analog defined for two density matrices, p and
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o,as

D(pllo) := Tr(p log[p] — plog[o]). (2)

This is only well defined when the support of p is con-
tained within the support of o. Otherwise, the relative
entropy is infinite.

The relative entropy acts as a distinguishability mea-
sure, as can be seen from its basic properties. The first
is positivity, D(p||o) > 0, with the inequality saturated if
and only if p = 0. The second is referred to as the data
processing inequality or monotonicity of relative entropy
[16], which states that the relative entropy is nonincreasing
under completely-positive trace-preserving (CPTP) quan-
tum channels, N [17]:

DIN (0)IIN (0)] = D(pllo). )

This property is crucial for a distinguishability measure
because it asserts that if you are given two quantum
states, after performing operations on them, they can never
become easier to distinguish.

A particularly important quantum channel is the partial
trace operation on a bipartite Hilbert space

NZHA®HB—>HA, (4)
p = Trg[p] == pa. (5)

Under the partial trace, we lose all information about
region B, making p harder to distinguish from other states
that look similar on 4. The partial trace will play a cen-
tral role throughout the rest of the paper because we are
generally interested in how to distinguish states when only
having access to a subregion.

While the relative entropy characterizes the structure of
the space of quantum states, importantly, it is not a metric.
This is most obviously seen from the definition which is
not symmetric under exchange of p and o. This is a feature
and not a bug, as can be seen by its operational meaning
that we will soon explore.

The relative entropy is a parent quantity to many other
central information-theoretic quantities, such as the von
Neumann entropy

Sun(p4) = log[d4] — D(/OA

1 6
Z)a ( )

where d, is the Hilbert space dimension, the mutual
information

1(4,B) = D(p4pllps ® p3), (7)

and conditional entropy

S(B|4) = log[dp] — D(,OAB

I 8
m%). ®)

In these terms, the strong subadditivity of von Neumann
entropy,

Son (oB) + Sun(papc) < Sun(pa) + Suv(prc),  (9)

is a straightforward consequence of the data processing
inequality

D(TrclpapclliTrelpa ® ppc]) < D(pascllpa @ pac).
(10)

2. Rényi relative entropies

Like the Kullback-Leibler divergence, the relative
entropy can be generalized into Rényi relative entropies.
However, because of the noncommutativity of density
matrices, there are many inequivalent ways to generalize
the relative entropy such that it reduces to the classical a-
Rényi divergences, the unique set of quantities satisfying
the five axioms of a generalized divergence [18]

Dxro(Pl1Q) =

: log[ZP(x)“Q(X)l‘“], ()

oa—1
xeX

where « is a positive semidefinite real variable. We study
two complementary families that have served the most uses
in quantum information theory.

The first is the most obvious quantum analog of Eq. (11)
and is referred to as the Petz Rényi relative entropy
(PRRE) [19]

Dy (pllo) := log(Tr{p%c'~°]).  (12)

a—1

The PRRE satisfies various nice properties, such as reduc-
tion to the von Neumann relative entropy when oo — 1.
Fora € [0, 1), the PRRE is finite even when the support of
p is larger than the support of . Most importantly, the
PRRE satisfies the data processing inequality when o €
[0,2] [19-21]. One particularly useful case is at o« = 1/2,

which defines what has been called Holevo’s “just-as-good
fidelity” [22] or affinity [23]

Fu(pllo) = (T /p/o])? = e D120l (13)

which, for most purposes, is just as (if not more) useful as
the more widely used Uhlmann fidelity

Fpllo) = (Tr| ﬁpﬁ])z. (14)

Both satisfy all of Jozsa’s axioms for distinguishability
measures [24] and define metrics on the space of quantum
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states
Du(plio) i=/2[1 - VFpll)],  (15)
Dy(pllo) = arccos [/ F(pllo)], (15b)
Dy (pllo) :=2[1 —/F(pllo)], (15¢)

called the Bures distance, Bures angle, and Hellinger
distance, respectively.

The other quantum generalization of (11) we will study
is the sandwiched Rényi relative entropy [137]

log{Tr[(O.(1—0{)/20{[00.(1—05)/201)01]}'
(16)

De(pllo) ==
a—1

It is clear that this is equivalent to the PRRE when p and o
commute and reduces to the Uhlmann fidelity at o« = 1/2.
Like the PRRE, the SRRE reduces to the von Neumann rel-
ative entropy in the @ — 1 limit and is only finite if either
a € [0, 1) or the support of p is contained within the sup-
port of o. The most important property of SRRE is that it
satisfies the data-processing inequality for « € [1/2, 00).
In this way, it is complementary to the PRRE. Similar for-
mulas for Rényi analogs of entropy, mutual information,
and conditional entropies can be written in terms of the
Rényi relative entropies.

3. Trace distance

The final distinguishability measure that we study is the
trace distance, defined as

T(pllo) := 5lp — oli, (17)

where | - |; is the trace norm. The trace distance defines
a metric on the space of quantum states and takes values
between zero and one. However, unlike Holevo’s just-as-
good and Uhlmann fidelities, it does not descend from
a relative entropy. The trace distance is monotonically
decreasing under quantum operations. It will play a cen-
tral role in our discussion of eigenstate thermalization in
Sec. VL.

There are various useful relations between the above dis-
tinguishability measures that we now list. First, we note
that both PRRE and SRRE are monotonic in «, i.€.,

Dy, (pllo) < Dy, (pllo),
Dy, (pllo) < D, (pllo), a1 < o, (18)
while the SRRE lower bounds the PRRE,

Du(pllo) < Du(pllo), a>0. 19)

By Pinsker’s inequality, the von Neumann relative entropy
upper bounds the trace distance [28],

1T(pl10)? < D(pllo), 20)

while the Fuchs—van de Graaf inequalities assert that
both fidelities place upper and lower bounds on the trace
distance [29],

1 = VF(pllo) =1—yFu(pllo) < T(pllo)

< J1=F(pllo) < /1= Fyu(pllo)
1)

These are strong results that we use throughout the paper
due to the difficulty in directly computing the trace dis-
tance. They are also important, nontrivial consistency
checks of our results.

B. Operational interpretations in hypothesis testing

The most fundamental information processing processes
are quantum state discrimination (QSD) and hypothesis
testing (QHT). It should then be no surprise that this is
where the most fundamental quantities, relative entropy
and trace distance, find their operational meanings. In this
section, we make precise what it means for states to be
distinguishable by first introducing QSD and QHT, then
stating what the distinguishability measures say about our
ability to perform these tasks. For more details, we refer
the reader to the literature, e.g., Refs. [30,31].

The general setup is that we are given a state on H
that is either p or o and we wish to determine which
state we were given. We are allowed to use any posi-
tive operator-valued measure (POVM) that is a collection
of positive semidefinite operators, {M;}, that sum to the
identity operator on H. Each subscript, i, corresponds to
a measurement outcome. Because we are looking for a
binary outcome (is our state p or o?), we can consol-
idate the M, into just two elements. For outcomes i €
A, we conclude that the state is p, while for outcomes
i¢ A, we conclude that the state is o. Our POVM is
then {4,1 — A4}, where 4 := ) ,_, M;. There are many
choices for 4 and we want to optimize this choice so
as to have the least error in our conclusions. There are
two types of error. The probability of mistakenly con-
cluding that we have o when we were really given p is
given by

a(4) := Tr[(1 — A)p], (22)

while the probability of mistakenly concluding that
we have p when we were really given o is given
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by
B(4) = Tr{do]. (23)

These are referred to as the error probabilities of the
first and second kind, respectively (or types I and
10).

There are various ways of optimizing these errors [32].
The symmetric way is called state discrimination. The
smallest combined error is given by the trace distance
between the states [33,34]

minfa(4) + B(A)] = 1 = T(pllo), 24

where the optimization is taken over all POVM. If the trace
distance is very large (close to one), we are able to choose
a POVM that has very small error probabilities. If the trace
distance is small (close to zero) then the combined error
is close to one, the maximal optimized error that can be
saturated by taking 4 = 1. Likewise, the probability that
we correctly discriminate, P, is also given by the trace
distance

Pi(4) =3 mjlx{Tr[Ap] + Tr[(1 — A)o])
= 3[1 + T(pllo)]. (25)

State discrimination can be made easier if instead of given
one copy of the state, we are given multiple, n, copies.
This is the topic of asymptotic state discrimination. With
these n copies, we can ask what is the optimal POVM on
H®". The error probabilities are generalized in the obvious
way

a,(4) := TH{(1 — )p®"],  Bu(4) := Tr{4c®"]. (26)
The sum of the errors can be shown to be bounded above
by Holevo’s just-as-good fidelity

minfa,(4) + B ()] < Fu(pllo)". (27)

Unless the states are identical (Fy = 1), the error rate
exponentially decays to zero as we are given a large
number of copies. If the fidelity is small, we may need
only one copy (or very few) to confidently discrimi-
nate the states. Asymptotically (n — 00), this is strength-
ened to an equality by the quantum Chernoff bound [35,
36]

i _Jogimingfa,(4) + (D]}
m —

n— o0 n

= JE%(I —a)Dy(pllo) :==&(pllo).  (28)

The quantity on the right-hand side of this equation is
called the quantum Chernoff distance.

We progress to the asymmetric treatment of this prob-
lem, quantum hypothesis testing. The asymmetric opti-
mization is the task of minimizing one of the errors while
keeping the other error below some fixed, finite threshold
€. We define

o (€) = ﬁrrzi)rée[an(A)], B, (€) = anr&i)r;[ﬂn(A)]- (29)

n

Quantum Stein’s lemma [37,38] asserts that, for any € €
(0, 1), the type-II error decreases exponentially with the
rate given by the relative entropy

i log[ B, (e)]
m ———-

n—00 n

= D(pl|0). (30)

Quantum Stein’s lemma can be further refined to optimize
the error of the first kind, assuming that the error of the
second kind decays exponentially. Defining

min [o,(4)], 31

Qpp = )
Bn(A)<e™™

the PRRE determines this error rate if » < D(p||o)
[39-41],

. log[@,,] |:oe -1
lim —————— = max
ae(0,1)

n—o0 n o

[r = Da (,OIIU)]], (32)

while the SRRE determines this error rate if » > D(p||o)
[42],

log[l — @, —1. -
logll —anr] _ [“ [r—Da(pna)]].

(33)

With the above review, we have a thorough understanding
of how to quantify the ability to discriminate between two
quantum states. It would be desirable to generalize this to
an arbitrary, finite number of states {p;}. As we will see
in Sec. IV, this is particularly important for the black hole
information problem. In the case that we are discriminating
many states, we no longer consolidate the M; into 4 and
1 — A. Rather, each measurement outcome i can lead us to
conclude that we have state p;. If we are given the state p;
with probability p;, the error probability is given by

Pere(pi M) := Y Trlpip(1 — M1, (34)
i=1

whose optimized value we define as
P:H(Pi) = I{Ij}}?[Perr(piaA/Ii)l (35)

Rather remarkably, building on the work of Refs. [43—46],
the quantum Chernoff bound was generalized in the multi-
ple state case, referred to as the multiple quantum Chernoff
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bound [47,48]
log[Pe(p)] _
lim —M = mln[ max (1 — a)Da(pillpj)].
n— 00 n i#] ae(0,1)

(36)

The value on the right-hand side is referred to as the
multiple quantum Chernoff distance. When comparing to
Eq. (28), it is surprising that, when discriminating between
arbitrarily many more states, all one needs to do is apply a
global minimum.

In the one-shot case, bounds can be placed on P (p;),
though, to our knowledge, an equality is not known. If we
take the spectral decompositions of our POVM as M; :=

ZIT’ AixQik, an upper and bound is given by [47]

Zi<j Zk,[ min[)"ika )"jl]Tr[Qiijl]

2r—1)
<P:.(p)
< 100 — D7 )7 Y minfhu, Al Tr[QuQnl, (37)
i<j k|l

where 7 is the total number of states and 7 := max[7;]. The
upper bound can be made more intuitive, though generally
weaker, by noting that

> minlie, ] TrQxQ;] < min (1= )Da(pillp)),
k,l ’
(38)

leading to
P.(py) < 10(r ”TZJQ%%“ ) Dy (pill 07)
i<j

< S r— 1 ’T max min 1 o Da p[ ,0 |,

where in the second line we have removed the remaining
sum to mimic the form of Eq. (36) even though this for-
mula is strictly weaker when setting » = 2. In passing, we
note that determining P, is a computation that can be for-
mulated as a semidefinite program [31,49], which means

that it may be efficiently evaluated.

I11. DISTINGUISHING RANDOM STATES

In this section, we consider Haar random states. This
ensemble can be described in several ways. Perhaps the
simplest is to consider an arbitrary reference state |0) €
‘H and act with a random unitary matrix drawn from the
Haar measure, the unique left-right invariant measure over
U(dim H) : |¥) = U|0). This ensemble is particularly nice

because the averages over the o copies of Haar random
states are sums of permutations, 7, of the o copies

ZreSd &
ZreSa TI‘[ T] ’

where g, is the matrix representation of t and the denomi-
nator ensures that the state has unit norm. We are generally
interested in ensembles for mixed states that are induced
from taking a partial trace over a sub-Hilbert space. If
‘H = H, ® Hp, the reduced density matrix on A4 is given
by

W) (W[® = (40)

Dres, 8ea 11(85]
ZreSD, Tr[gf] ,

where the subscript on the permutation elements mean
that they only permute within a sub-Hilbert space. The
trace of a permutation element is straightforward to work
out, equaling the dimension of the Hilbert space, d4dj,
to the number of cycles in the permutation, C(t). The
denominator can then be written as

Y Trlgd =) (dudp)®, (42)

TESy TESy

pee = Trg[|W)(W[®] =

(41)

which can be summed exactly because we know that the
number of permutations of o elements with & cycles is
given by the Stirling number of the first kind. However,
we can easily avoid this technical point because we will be
interested in the regime where the Hilbert space dimension
is large. Therefore, only the permutations that maximize
C(7) will contribute at leading order. The unique permu-
tation that maximizes C(7) is the identity permutation that
has « cycles, so throughout this paper, we approximate the
denominator as (d,dg)”.

There is an alternative description of the same induced
ensemble of density matrices that will be useful for us
when generalizing to tensor networks. Rather than starting
with fiducial state |0), we begin with complete bases, |i)4
and |J)g, on H,4 and Hp, respectively. The Haar random
state is then represented as

W) =N Xylida ® )5, (43)
iJ

where the X;; are complex Gaussian independent and iden-
tically distributed matrix elements of dy x dp matrix X
with (unnormalized) joint probability distribution

P({Xi}) o exp[—ddpTr(XX 1], (44)

and N is a normalization constant. The reduced density
matrix on H is then [50-52]

xxt

= T (45)

L4
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Ensemble averages over n copies are given by the same
formula in terms of permutations, so at large dimensions,
o4 > XX T. This is the famous Wishart-Laguerre ensem-
ble and is equivalent to the previously introduced Haar
random states [53,54]. The advantage of working with
random Gaussian states instead of Haar random states is
due to “Wick calculus” being simpler than “Weingarten
calculus.” The difference will appear for random tensor
networks although the ensembles will still be equivalent
at large Hilbert space dimension [55]. Moreover, the class
of random tensor networks used for holography involving
projected Haar random states [56] precisely correspond to
the states we study even at finite Hilbert space dimension,
as explained in Appendix C.

We now introduce a diagrammatic approach for com-
putations of certain moments of the Wishart ensemble
involving multiple states, building on Refs. [3,57—59]. This
will prove invaluable in the following calculations.

We represent the elements of the random global pure
state as two vertical lines

1J
(W)iy = Xig:= [0, (46)
where the solid line represents H 4 and the dashed line H .
To form the density matrix, we take the outer product

iJ Kj
2 <\I’|]z‘J,jK = XZ'JX;K = | A (47)

We usually drop the index labeling of the lines to avoid
cumbersome notation. All matrix manipulations are done
on the lower ends of the lines. For example, we can take a
partial trace over H by connecting the dashed line,

[pA]i,j = ZXZJX]*J = ‘ Lo ‘ 7
J=1 (48)

square the matrix by taking two copies and connecting the
bra of the first matrix with the ket of the second,

21— I I I
[IOA]ZJ - ‘ ***** u ***** ‘ ) (49)

then take a trace by connecting the remaining solid lines to
determine the purity,

Tl =t L ) ()

For every insertion of the density matrix, we include a fac-
tor of (d4dp)~". This will give the normalization factor that
we computed from Eq. (42).

The ensemble averaging of the states are done on the
upper ends of the lines. The rule here is that we must add

up all diagrams contracting any bra with any ket. For o
insertions of the density matrix, there will be ! diagrams,
corresponding to the ! allowed permutations. Within each
diagram, we count the number of loops with each loop giv-
ing a factor of the Hilbert space dimension. One can see
that this diagrammatic sum is precisely the numerator of
Eq. (40).

We can now practice by taking the ensemble aver-
aged purity. There are two (2!) diagrams descending from
Eq. (50), i.e.,

immediately leading to d;l + dgl.

Because we are interested in distinguishing density
matrices that are independently sampled from the ensem-
ble, we must extend the diagrammatic technique. We do
this by introducing different colors for different density
matrices. When ensemble averaging, bras of one color can
only contract with kets of the same color. For example, the
overlap between independent induced states p4 (black) and
o4 (red) looks similar to the purity,

(52)

but the ensemble averaging will only include a single
diagram,

Trlpaoal =

da  (53)

because the second diagram would have connected the
black and red indices, which is disallowed. With this for-
malism, we are now ready to compute each distinguisha-
bility measure using a replica trick.

A. Relative entropy

We begin with the von Neumann relative entropy, the
topic of Ref. [3], both because it is the most fundamental
quantity and the simplest to compute using our techniques.
This will illustrate our strategy that will be used through-
out. The relative entropy may be computed using a replica
trick. That is, we first compute a certain series of moments
of the ensemble and then analytically continue to arrive
at the desired quantity. The replica trick for the relative
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entropy is given by [60]

{log(Tr[p§]) — log(Tr[psoy ' 1)}.
(34)

D(p4llo4) = lim
a—la—1

We compute the ensemble average of the two terms sepa-
rately. The first term is the Rényi entropy and, as a diagram,
looks like

Trlpd] =[---2Lde--2L " i) (s

While we make the dimensions of the sub-Hilbert spaces
large, dy,dp x N — oo, we keep their relative sizes,
dy/dp, finite. The leading diagrams maximize the total
number of loops. These are the planar diagrams as this
double line notation corresponds to the standard large-N
topological expansion. Planar diagrams correspond to the
noncrossing permutations, NC,, a well-studied object in
enumerative combinatorics and probability theory [61,62].
The ensemble averaged Rényi purity is then given by

Cn~lot) 4C
Trlp] = T,

1
— y
(d4dp) vl

(56)

where 7 is the cyclic permutation, spawning from the
matrix multiplication and trace in Eq. (55). The noncross-
ing permutations maximize the total exponent as C(n~! o
7) 4+ C(t) = a + 1 [61,62]. A more refined statement is
that the number of noncrossing permutations with C(n~! o
7) = k [and therefore C(r) = a + 1 — k] is given by the

Narayana number [61,62]
o
—1)

N __1 o
ok =\ ) \k

With this information, we can reorganize Eq. (56) as a sum
over k instead of a sum over permutations to obtain

(57)

Tr[p5] = > Noadidy™ ™, (58)
k=1

(dadp)* =

which can be rewritten again as a hypergeometric

From this diagram, it is clear that the cardinality of the
intersection of NC, and 1 x S, is given by the cardi-

nality of NC,_1, and the number of such noncrossing per-

1

mutations with C(n~" o ) = k is given by the Narayana

function [63] as

d
dy 2F1(1 —a, -0 d—A) dy < ds,
Trlp§] = ;

d
di 2F1<1 —a,—a;2; 2
dy

), dA > dg.
(39)

The A <+ B symmetry of Rényi entropies of bipartite pure
states is manifest.

Taking the logarithm and analytically continuing to o =
1, we obtain Page’s formula [64]

d
log[d4] — ﬁ, dy < dg,
lim ——log(Tr{p{]) = dBB
IOg[dB] — g, dB < dA.
A
(60)

In writing this formula, we have assumed that the loga-
rithm and ensemble average commute. In Appendix B, we
explain why this is true when the Hilbert space dimensions
are large.

The second term in Eq. (54) involves both p4 and oy
[65]:

l—«a

Tr [pAaA

L _J

]:lL,,JuL,,,\L'..J

- (61)

Because there is only a single copy of p4, when ensemble
averaging, we must contract the first density matrix with
itself. There are no constraints on how to contract the red
lines. This means that the S, permutations are broken down
tol x Sy_1:

1 C(n~lor) ;C(r)
= d;V dz".
(dqdp)* Z 4 B

TelxSy_1

Trlpao) “] (62)

We still need to maximize the exponent by choosing non-
crossing permutations, though many such permutations are
disallowed by the identity factor on the first matrix. The
diagrams are topological, so we have

), )

number N,_14; hence,

Tr[pq0; ] = (64)

1 o
SNt
(dadp)® —
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This can also be represented by a hypergeometric func-
tion as

Trlpuof ']

d
dL_a2F1<l—Ol,2—O[;2;—A>, dA<dB,
_ dp
d
diod; HF, (1 —0,2 —a;2; d—3> dy > dg.
A
(65)
Taking the o« — 1 limit, we have
lim ———log(Tr[p40% ']
d d
loglds]+ 1+ (=2 —1)log|1— 2|, dy < ds,
- dA dB
OO, dB < dA.
(66)

Therefore, we find the ensemble average of the relative
entropy to be

D(p4llog)
dy dp dy
14+ — — —1]1 1——|, d da,
= +2dB+(dA >0g|: dB} s
o0, dA > dB-

(67)

This is a satisfying, simple answer. For small d4/dp, the
relative entropy is given by d4/dp. If we think in terms
of the “number of qubits,” Ny and Np, this is exponen-
tially small in the difference (N — N,), meaning that the
states will be very difficult to distinguish whenever we

J

Tr[phon] = -2 LJ---0L 7"

B I e e I

have access to a few qubits less than half the system; the
asymptotic error rate, B (¢), is very small, meaning that we
need exponentially (in NV,) many copies of the state to iden-
tify it with confidence. Equation (67) is also monotonically
increasing in d,/dp, a consequence of the data processing
inequality when we take the partial trace as the quantum
channel. When dy — dp, the relative entropy approaches
the curious value of 3/2. This value of 3/2 was also deter-
mined in Ref. [66] using very different techniques that
serves as an additional consistency check of our results.

When d, > djp, every reduced state on H 4 in the ensem-
ble will be rank deficient with d4y — dp zero eigenvalues.
This is because the Wishart ensemble has rank at most
min(dy, dg). It is therefore overwhelmingly unlikely that
two independent states, p4 and o4, will have the same sup-
port. In particular, the support of p4 will not be contained
within the support of o4. This is the reason why the rela-
tive entropy becomes infinite in this regime; there will be
a measurement we can choose that easily distinguishes p,
and oy.

B. Petz Rényi relative entropy and Holevo’s
just-as-good fidelity

To understand more sophisticated structures in Haar ran-
dom states, we progress to the computation of the PRRE.
The PRRE has a tricky 1 — « exponent for o4, so we use
the following replica trick with two replica parameters, o
and m:

Da(pallon) = lim —— log(Tr[pfofD.  (68)

a—1

We compute this for «,m € Z*, only taking the limit to
a,m € R at the end of the calculation. The positive integer
moments in diagrammatic form are

| E—

- E (69)

where there are o black density matrices and m red den-
sity matrices. When ensemble averaging, we are only able
to contract using the subgroup S, x S,; C Sy1m, leading to
the sum over permutations

T o —m 1 —lor T
Tr[p%0 ] > ag ™ (70)

- (dydp)>tm

TESy XSm

As can be seen by the diagram, even with the restricted
sum, there are many ways to contract the lines that are

(

noncrossing, hence maximizing the exponents. These are
precisely the noncrossing permutations acting indepen-
dently on the black and red indices, so the combinatorial
factor will be given by the product of two Narayana
numbers:

Tl A% 1] 1 —\ k+j—1
TR = Gy 2 2 N

x d§+a+mfk7j ' (71)
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The reason why there is an additional “—1” in the exponent of d, is that the black and red lines are connected at the
bottom of the diagram due to the matrix multiplication. Note that this expression is a generalization of the replica trick
used in the previous section for the relative entropy, Eq. (64), if we set « = 1 and m = o — 1. As before, the double sum
can be expressed in terms of hypergeometric functions as

d d
dgmfaJrl 2F1<1 —m,—m;2; —A> 2F1(1 —a,—o;2 _A>, dy < dp,

T %] dg ! dp
Tr[pgoy'] = Jom—a+2 d (72)
B—2F1<1—m, m,2, B>2F1(1 o, Ol,2, B), dA>dB.
dy
Now that the sum that required m to be an integer is complete; it is safe to take the m — 1 — o limit to obtain
d d
Wil =, =225 )oFi (@ — Las 2 =2 ),  dy<ds,
o 1-a dp dg
Tr[pfo, ] = ds dy dy (73)
—2F1 1—0[,—0[;2;— 2F1 a—l,oz;2;— , dA>dB.
dy dy dy

When d, = dp, this precisely agrees with a formula from Ref. [66]. Taking the logarithm leads to an exact closed-form
expression for the PRRE in the large Hilbert space dimension limit:

d d
log| 2F1 (1 —a,—a;2; =2 ) oF (0 — 1,052, =2 ) | dy < dp,
dp dp

a—1 d d d
o—1 10g|:d—j2F1(1—a,—a;2;£>2F1<a—1,a;2;£>], dy > dp.

Dy (pallog) = (74)

This is a rare instance where we have an exact closed-form solution for relative entropies and can be thought of as the
“Page formula” for PRRE. Importantly, this equation contains much more information about random quantum states than
Eq. (67). A highlight is the finiteness of Eq. (74) for « < 1 in the d4 > dp regime. This explains the approach of random
quantum states to complete distinguishability. There are a few consistency checks that we can readily verify. Namely,
we note that Eq. (74) reduces to Eq. (67) if we send o« — 1, and Eq. (74) is monotonically increasing in d,/dp (data
processing inequality) and monotonically increasing in «.

An additional desirable property of Eq. (74) is that it is simple enough that we can perform the optimization needed to

compute the quantum Chernoff distance
1 1 _4d
_210g[2F1<_9__’29 _A>i|9 dA <dB’

_ 22 dp
&(palloy) = ) (75)
log| %2, p, (L L., dy>d
— 10, -5 T T4y T s > )
g , 207 ) , A B

where the optimal value of « in Eq. (28) is found to be 1/2. This definitively establishes the error rate in quantum state
discrimination for a measure one set of quantum states. Because o« = 1/2 is the optimal value, this adds to the usefulness
of Holevo’s just-as-good fidelity, which is given by

11 dg\*
Fil=,—=;2; — d d
2 1(2, 5’ ’d3>’ 4 < ag,

&3 11 dg\*
—Fl=,—=2,— |, d dp.
diz 1<2 2 dA) 4 > ap

Fy(p4llog) = (76)

In order to evaluate the quantum multiple Chernoff distance, we need to characterize the fluctuations in the PRRE. To
compute the variance, we must compute
Tr [ poc O_m]?
AY A

T T L B L N T S T [C='ds =10t ge S e =t e (77)
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Only the diagrams that connect the two blocks will con-
tribute to the variance because the disconnected diagrams
are subtracted. For small d,/dp, these contributions will
be O(d/ll_z"‘_zmdgl) or O(d;ldgl) after taking the relevant
limit. We may use a Taylor expansion of the logarithm
to determine that the variance of the PRRE, o2, will be
the same order. The higher degree central moments, and
therefore higher cumulants, will be subleading because, in
general, the nth central moment will be O(d}f""‘*”’"dgl).
Therefore, the PRRE will follow a normal distribution at
subleading order.

For a normal distribution, the probability of random
variable X being » standard deviations, o, below the mean,

w, is

—ko 1

Pr(X — u < —ro) :/ dx——
o —00 o2

— Lerre( 2 78
_Eerc(ﬁ) (78)

Therefore, if we have W independent samplings of p4 and
04, the probability that the minimum relative entropy will
be at most r standard deviations from the mean is

6—162/202

w
Pr{min[Dy (p4llo4)] > pt — ro} = [1 - %erfc(%)} .

(79)

J

If we are discriminating between W states, the quantum
multiple Chernoff distance will be

Enloallon) = 40’7’4 ~ Va2 = 2(1 - )"0 (80)
B

with probability 1 — €;. In order to be confident in the state
discrimination (P, < €3), we need

log[ez_l]
n>~
dy/Adg — 2erfc™[2 — 2(1 — €)7o

81

copies of the state. Because of o being suppressed in the
total Hilbert space dimension, this formula only mildly
depends on W even when W is of the order of the Hilbert
space dimension. Thus, the multiple Chernoff bound is
essentially just as tight as the two-state Chernoff bound.

C. Sandwiched Rényi relative entropy and Uhlmann
fidelity

Continuing our progression in difficulty, we now com-
pute the SRRE using the following new replica trick
requiring two replica indices:

1
lim
m—[(1—a)/2a] ¢ — 1

log({Tr[(of' pac)*1}-
(82)

Dy(pallog) :=

The associated diagrams are more complicated because there the red and black lines are not cleanly partitioned,

Tr (0% pacy)] =

‘L,J R S [ [T

[E— [ L_ap*tt

[E—} [E—} [

- (83)

There are still many ways to contract the above diagram without crossing lines. We take two steps. First, we need to have
the black lines contract with themselves in a noncrossing manner. For example, we may have

‘L,J o [

-0 (84)

This gives a factor of dg(r), where 7 is the noncrossing permutation of the o black lines. We can see from this diagram
that depending on how the black lines are contracted, this restricts the allowed permutations for the red lines. This is
why this computation is more complicated than for the PRRE where the black and red permutations simply factorized
as NC, x NC,,. In order for the global permutation to be noncrossing, the red permutations must be noncrossing within
each block partitioned off by the black permutations. In the above example diagram, the black “rainbow” restricts the red
permutation to be of the form NC,,, x - - -. The identity permutation on the black density matrix on the right places no
additional restrictions. In terms of equations, the diagrams may be summed as
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T oo 0m 1 c Cor~oy) €0,
[(UAPAU)]_WZCZ H Z d" " dy (85)

TeNCqy cecyc(n~lor) YENCopig|

where the product is over the cycles of 7' o 7 and | - | represents the length of the cycle.

We first focus on the d4 < dp regime where the inner sum may be computed as before, i.e.,

Y renc, 457 Tleceyety-ton dady” ™ 2F1 (=218 Im, 1 — 21¢|m; 2 dg/dp)
(dAdB)a(2m+l)
Yeenc, 4T TV dEOT e tory 2F1 (=218 1m, 1 = 20 Im3 2 1da/d5).

= 86
(dAdB)a(2m+1) ( )

Trl(of pao )] =

In the second line we have pulled out the factors of d4 and dp from the product by enforcing the global permutation to be
noncrossing. This formula does not need m to be an integer, so it is now safe to take the m — (1 — «)/2« limit to obtain

—a) /2 —a)/20\ A d R —
Tr[(ajl )2 /OAO'/il )2 ) ]: Z (—A) 2F1(|§|(0;—) 1‘H§'|—m 2, s ) (87)

d
reNC, V9B

cecye(n~lor)

The product over cycle structures makes this formula still very difficult. Fortunately, Kreweras solved exactly this com-
binatorial problem about cycle structure in his landmark paper on noncrossing partitions [61]. He found that the number
of noncrossing permutations of {1,2,...,«} with cycle structure [67] {m;} is given by, what we will call, the Kreweras
number [61,62]

ol
Kim,) , b:= " 88
i (a—b+1)'m1 Zm (83)

Therefore, we can reorganize the sum such that there are no more references to permutations, only natural numbers,

—a)/2a a)/2a . d 2imi] . -1 . / d\™
Tr[("ﬁl 20y T )] = Z K{mi}(é) ]_[ zFl(l(aa ),1+l— 5;2; ﬁ) . (39)
0

M,y = m;#0

This formula still presents a daunting task to evaluate in terms of elementary functions for generic «, though it provides a
tractable, controlled expansion in d4/dg. This is because, for small d/dg, the hypergeometric function is close to one. We
then must consider the smallest values of ) _, m;. First, taking only the leading term with ) . m; = 1 (cyclic permutation),
we obtain

o o o o d d
T (o gy )] = oFy (o~ a2 %) 4 o % ©0)
dB dB

This is not terribly useful because, as explained above, to this order, the right-hand side is exactly one, which would lead
to the SRRE being identically zero. To find a nontrivial result, we need the next term where ), m; = 2, which can be
achieved in many ways.

Lo/2]

- _d (@—1 P d
(1—a)/2a (1—a)/2a a4 J R |
Tr[ (o, P494 )] ]E : Kim; mg =1y 2F1 <T, 1+ — &,2, %)

-1 —j _d
X2F1<W,l+(a—j)—%;2;f)
B

d, dy
+oF|la—1,a;2;,— |+ O oD
dp dg
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where the floor function in the sum ensures that we do not
double count. The Kreweras number is

RN

. o
j N
2
2 92)

o,
K{m.iama—./=1} il X
2’ 2°

j=

j = a/2 will only occur when « is even. The exact forms
of the hypergeometric functions in the sum are not impor-
tant at this order because, for small d4 /dp, they are all close
to one. Therefore, only the Kreweras number is important.
We can easily compute the sum at this order for any integer
« and find that this parity effect disappears,

Tr[(ojl—a)/ZapAU[;I—a)/M)a]

d, i\’
=1 —1H)—+ 0| — 93
ot - DT+ (dB), ©3)
leading to a SRRE of
N EEE— dy dy 2
Dy(pyllog) =a— + 0| — | . (%94)
dp dp

Note that this agrees with the previously derived von
Neumann relative entropy in the relevant o« — 1 limit.

—— iog| % p (L
= og|— =535
Dr(oallon) =1 8|2, 2 "\ 272

o0,

Moreover, it obeys the data processing inequality for all
positive « if we take the quantum channel to be the partial
trace.

The Uhlmann fidelity is found [68] by setting o« = 1/2:

2
Flodllog) =1 — A4 + 0<d—A> . (95)

2dp dp

At this order, the Uhlmann fidelity is identical to Holevo’s
just-as-good fidelity, Eq. (76). The value of the fidelity
exactly at d; = dp was found in Ref. [66] to be 9/16 and
additional results may be found in Ref. [69].

We can also evaluate the SRRE exactly for any integer
moment using Eq. (89). Here, we work out the least tedious
case of @ = 2 that is also known as the collision relative
entropy [70]. In this case, Eq. (91) is actually exact and
does not contain O(d,/d)?* corrections. We only sum over
j =150

— — d 13 dy)?
Tr[(o, 1/4:0A‘7A V)= 2 LF (_ % _A)

YN\ 27,
_ 96
+1—dA/dB’ (96)
leading to a SRRE of
di\? 1
2; — _ d d
’d3> +1—dA/dBi|’ 4 < as, (97)
dA >dB,

where we have set the SRRE to infinity when d, > dp because the von Neumann relative entropy is infinite in this regime
and the SRREs are monotonically increasing with «. It is straightforward to evaluate the higher integer SRREs if desired.
It is equally important to investigate the opposite regime where d/dp is large. In this case, the inner sum in Eq. (85)

gives
ds® gy S F (=2 1 —21¢|m; 2;dp/d
THr (o™ 5 o™ — ZreNCa B nggcyc(,}—lor) A g 2F1(=2[¢ |m, |¢|m;2;dp/dy)
t[(0y' paoy)¥] = (dydyp)*@m+D
-1 m
_ ZreNCa(dB/dA)C(T)+C(n or)dj(Z +1)+1 ]_[;ecycm*‘or) 2F1(=2|¢|m, 1 —2|¢|m;2;dg/dy) ©8)
(dAdB)a(2m+l) :

Now that we have done the sums over the m permutations, we can safely take m — (1 — «) /2« and rewrite the sum in

terms of Kreweras numbers as

m—yiT" YN dp\* < (o — 1 i — 1) _ dg\™
Tr (o5 =" pacrf! ”2)]=<£> ) K{mi}HzFl<’(“a G );2;d—j)

(99)

o
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This is an exact formula, but is difficult to evaluate away
from limits. For large d4/dp, all of the hypergeometric
functions are close to one so all that matters is the total
number of noncrossing permutations, which is given by the

Catalan number
1 2
C, = ( oz)'
o+ 1\«

Therefore, at leading order, we have

(100)

(1—a)/2a __(I—0)2ana dg\“ dp\*™!
TI'[(O'A L40 4 )]=Ca a +0 Z .

(101)

Unlike for small d4/dg, there are no additional terms at
leading order. The SRRE is thus

o dB 1
1 _—
a—1 Og[dJ+a—1

dp
ol — ).
- (dA)

It is important to note that this is only well defined for o <
1. This is to be expected because of rank deficiency. In
the well-defined regime, the SRRE is monotonic in o and
manifestly obeys the data processing inequality.

We can evaluate the asymptotic expression at o« = 1/2
to find the Uhlmann fidelity

— 64dy dg\>"?
F =2 10o(=2) .
(pallos) onld, + (dA)

The prefactor comes from the Catalan number that is
nonintegral for noninteger o. We see that the fidelity is
inversely proportional to d,/dp, decaying to zero when
subsystem A occupies most of the Hilbert space. The full
(1—a)/2a (1—a) /2 .
spectrum of o P40, , and hence the fidelity,
may be evaluated using techniques of free probability the-
ory. This is completed in Appendix A. The answer is the
free multiplicative convolution of two Marchenko-Pastur

distributions.

De(palloy) = log[Cy ]

(102)

(103)

D. Trace distance

The final distinguishability measure we discuss is the
trace distance. This is the ideal measure when discussing
one-shot state discrimination (24). More general than
Eq. (17), we can define an a-norm version of the trace

distance as

To(pallog) == WLOA — 0yle, (104)
where the «-norm of an operator, 4, is defined as
Ay = (Te[Vata )" (105)

For even @ and Hermitian 4, we can dispose of the square
root:
|lg = (Tr[4%])V%%, 2a :=a. (106)
The trace norm is then the @ — 1/2 limit of this expres-
sion.
The replica trick, while only requiring a single replica
parameter, is quite difficult as we must compute all even

powers of p4 — 04, which involves arbitrary mixing of py4
and o [71]:

Trl(pa —o0)*l= Y, (=D¥Tr(zs, - 1s,).

SeP({l12,...a})
(107)

Here the sum runs over the power set of {1,2,...,«} and
| - | is the cardinality of the subset. We have ts, = p, if
ieSandts, =0y ifi ¢ S. Each term in the sum can be
expressed as an appropriate summation over the symmetric
group, though this is far from straightforward.

Consider the small d,/dg limit. In this case, the terms
that maximize C(t) will dominate the sum. This is when
is the identity. This permutation is always present, regard-
less of S and universally contributes as d/lf“, which in the
o — 1 limit contributes at O(1). To see if this contributes
to the overall sum, we need to understand the cardinalities.
The number of subsets with cardinality k& is given by the
binomial coefficient, so the identity contributes as

Tr{(p4 —00°12 ) (i)(—l)kd};“ =0.  (108)
k=0

To get a nontrivial answer, we must therefore move beyond
the identity permutation. This is to be expected because
the trace distance will be small for small d/dg and should
not be O(1). The next leading term is when C(7) = o — 1,
which corresponds to the identity on all sites except for
two that are swapped; this is always noncrossing. This
contributes universally as d5 “d,"', which will lead to
the O(d4/dp) contribution. The combinatorics are slightly
more complicated. If |S| = k then there are (k) + (“_k)

2 2
ways to have a single pairing because we can only choose
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pairings within the block of & p4’s or n — k 04’s. There-
fore, the contribution at this order is

Tr[(ps — 04)°]

* (a k oa—k b P el
2L (G) (75 e
= 28,0d%%dy5". (109)

This is not an analytic function, so the & — 1/2 limit is
quite ambiguous. We are free to work to higher orders,
though we will argue that this will not help our cause.

In the small dp/dy regime, the expansion is more
involved. The leading terms come from maximizing
C(n~' o ). We can only have C(n~! o 7) = « in the case
that S = {1,2,...,a} or is empty because otherwise T = 5
will not be an allowed permutation. At this order, we
therefore have

24y, o €2,

110
0 oa €27+ 1. (119)

Tr{(ps —0)*] = {

The parity effect arises from the exponent of the sign in the
sum. Analytically continuing the even integers to one, we
find that

- d,
TGoallon = 1 + o(d—B), (111)
A

meaning that the states are nearly maximally distant. To
understand how the trace distance approaches one, we need
to work at the next order. The noncrossing permutations
that give C(n~! o ) = a — 1 are those that are of the form
Nay X Ma,. This means that the p, and the o4 must be in

disjoint blocks, i.e., S is a set only containing consecu-
tive integers. There are (¢ — 1) ways to partition « into
nonzero integers «; and «; if we define the tuple («;, )
to be distinct from (o2, o1 ). There is an additional factor of
a coming from the rotations of S to S + 1, leading to

a—1
Tr{(o4 — o0)*1 D Y _a(—=)d; d5 ™
k=1

112
0 o €27+ 1. (112)

B {—adAldga, o €27,
Finally, when & = {1,2,...,a} or § = {J, we again can
partition the elements into «; and «; size blocks, but this
time (o, o2) and (v, 1) are indistinguishable. Therefore,
for even «, there are /2 possibilities while for odd «, there
are only (o« — 1)/2 possibilities plus the rotation factors
[72], leading to

ala — l)dgldé,_“, o €27,
0 a €27 +1,
(113)

Tr[(p4 —00)*] D {

where the odd terms are trivial because the S =
{1,2,...,a} and S = @ terms exactly cancel in the sum
due to the power of the sign. Taking the o — 1 limit of
even o, we find the trace norm at this order to be

_ d ds\*
T(pA||oA)=1——B+o( B) .

— 114
2dy dy (114)

The trace distance may be evaluated away from lim-
its using free probability techniques, as we review in
Appendix A [73], giving

VA 2dg —dy)(dy + dp) + d(4dy — 2dp) sin™ ' (J/d,/2dp)
ZﬂdAdB ’

T(pallog) = dy
|
2d,’

dA < 2dB,
(115)

dA > 2dB.

Interestingly, our asymptotic formula was exact. The trace distance at d; = dp was found in Ref. [66] to be 1/2 4+ 1/7.

Without free probability, we can still use bounds from Sec. II to place strong constraints on the trace distance. In
particular, this is helpful for the small d/dz where we were unable to find an analytic answer. First, we use Pinsker’s
inequality (20), with relative entropy (67) as an upper bound for d4 < dp, to obtain

T(palloa) = \/2+ —+2

(116)

This is only a useful bound when the right-hand side is less than one. Recall that, when d, = dp, the right-hand side will

be +/3 > 1. For small dy/dp, we have
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(117)

Toallon < |24 4 o “ 3/2
g, —_— —_— .
P41104) = d s

This means that the trace distance is very small, though
without a lower bound, we cannot yet say that we could not
find the leading order trace distance from the above expan-
sion. We can determine a lower bound using Holevo’s
just-as-good fidelity that is, in general, stronger than the
lower bound from the Uhlmann fidelity:

11 _dy\°
1 —o2F |z —=:2,—
20 27 d

4
< T(pulloag) <,/1 F ! lsz (118)
g — === 2= .
= 1(p4llog) = 207 ok 2”013

Here we have also included the upper bound that is, in
general, weaker than the upper bound from the Uhlmann
fidelity. For small d4/dp, this gives

d, d\> — d, d,\>"?
— 40(-=) <T < [|—+0(=) .
dds + (dB) = (”A"“A)—\/zda+ (dB)

(119)

This is a stronger upper bound than from Pinsker’s inequal-
ity, though the scaling is still not nailed down, only con-
strained to between linear and square root with d,/dp.
Because the scaling is at most linear, we cannot hope to
find the leading order behavior from the expansion at the
beginning of this subsection because the linear term was
zero if we are to trust the “continuation.” The Uhlmann
fidelity for small d,/dg does not strengthen the upper
bound at leading order.

We also want to characterize the dy > dp regime. While
Pinsker’s inequality does not help here because the relative
entropy is infinite, Holevo’s just-as-good fidelity sets the

nontrivial upper and lower bounds

d 1 1 _ dg\?
1——BzF1< —;2;—3)

d, 2 27d,
& 11 dg\*
— o Fil=,—=;2;— ) . (120
d/2121<2 : dA) (120)

< T(pallog) < \/1 —

For small dg/d, this is

dp dg\> — 42 (dB .
1-=40(=) <T <1--—2 4+0(=2),
4, + <dA> < T(palloy) < 28 + 4,

(121)

meaning that the states are almost as far away from each
other as possible, approaching one exponentially in Ny —
Np. The upper bound can be improved by the Uhlmann
fidelity at leading order such that the scaling behavior is
completely fixed:

dp dg\?
1-=4+0(=2
dA+ (dA)

32dp

< T <1-—
< T(palloy) = onld,

dg\>
+O<Z)' (122)

These bounds are consistent with analytic expressions
(114) and (115).

E. Small-N numerics

All of our computations thus far have been in the limit
where both d4 and dp are large. It is important to ask
whether these asymptotic results are accurate when d4 and
dp are finite. One motivation is if these predictions can
be observed in experiments and noisy intermediate-scale
quantum technology [74]. Of course, the Hilbert space
dimensions are exponentially large in the number of qubits,
so there is hope that our results are predictive for small-
scale experiments. In this section, we numerically compute
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Three representative examples of relative entropies are shown, all of which with & > 1, so they are infinite for d4/dp > 1.

Left: von Neumann relative entropy with the dashed line given by Eq. (67). Center: PRRE with o« = 3/2 with the dashed line given
by Eq. (74). Right: SRRE with « = 2 with the dashed line given by Eq. (97). The data are given for total Hilbert space dimensions of
2'4 (blue), 2'3 (green), and 3'° (red). The error bars represent the statistical fluctuations in the 103 disorder realizations that decay for

large Hilbert spaces.
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FIG. 2. Representative examples of relative entropies are shown for o < 1 such that there are no divergences. Left: PRRE for
o = 1/2 (related to Holevo’s just-as-good fidelity) with the dashed line given by Eq. (74). Right: SRRE for « = 1/2 (related to the
Uhlmann fidelity) with the dashed red line given by the answer from spectrum (A15). The gray line is the upper bound from the
PRRE. The data are given for total Hilbert space dimensions 2° (black), 2!° (blue), 3° (red), and 37 (green). The error bars represent

the statistical fluctuations in the 10* disorder realizations that decay for large Hilbert spaces.

the various distance measures and compare to the asymp-
totic formulas. This serves as a further consistency check
of our results, which we find to be extraordinarily accurate.

In Fig. 1, we plot the von Neumann relative entropy,
D;)», and D5. All of these quantities are infinite for d4 >
dp due to the rank deficiencies in the reduced density
matrix. For this reason, we are able to sample very large
Hilbert space dimensions because the bottleneck on clas-
sical computers is d4 and not the total system size. We
find very accurate agreement between the exact large-
N predictions and the small-N numerics. The fluctua-
tions in the entropies are noticeably larger for small d
because of the subleading corrections that we have thus
far ignored.

In Fig. 2, we investigate the other regime by plotting
Dy, and D 2. These quantities are related to Holevo’s
just-as-good and Uhlmann fidelities, respectively, and are
therefore well defined in the d4 > dp regime. This limits
the Hilbert space sizes we can probe, though we still find
very accurate agreement with the large-N analysis.
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FIG. 3.

Finally, in Fig. 3, we plot the trace distance, examining
both the small d4/dp and large d4/dp regimes. The large-N
expressions precisely agree with numerics and are bounded
within the fidelities.

IV. DISTINGUISHING BLACK HOLES

While studying random states is interesting in its own
right, the physical implications of our results becomes
significantly richer when we apply them to gravitational
systems. We explain how the connection between random
states and gravitational systems is more than an analogy
and in some ways, quantitatively identical.

A. Fixed-area states in holography

In quantum field theory, we compute the moments of
reduced density matrices by evaluating the partition func-
tion on certain replica manifolds [75,76]. These are glued
according to the relevant trace structure. If the quantum
field theory is holographic, we may map the calculation

S
0.500 ~a
\\\ \\
— \\ TN
g 0.100 R
. \ NN
p— \ \
< 0.050f AN
\
Q R
N~ \ ) AN
\ \
| 0.010+ x S 1
\ AN i
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\ 1o
\ AN
0.001 A}

0.100 1

da/dp

0.001 0.010

Left: the trace distance is shown with the dashed red line given by Eq. (115) and gray lines given by the bounds from

fidelities (118) and (120). Right: one minus the trace distance is shown to display the approach to one. The data are given for total
Hilbert space dimensions 2° (black), 2'° (blue), 3 (red), and 37 (green). The error bars represent the statistical fluctuations in the 103
disorder realizations that decay for large Hilbert spaces.
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to an evaluation of the gravitational path integral with
boundary conditions prescribed by this trace structure. In
the gravitational path integral, we are instructed to sum
over all geometries with the given boundary conditions. In
the derivation of the Ryu-Takayanagi formula [77], only
replica symmetric geometries were considered. In con-
trast, we find that replica symmetry breaking saddles are
important for the evaluation of relative entropies.

In general, it is very difficult to evaluate the gravitational
path integral for multiple replicas. This is because the non-
trivial coupling between the replicas leads to backreaction,
changing the bulk geometry [78]. A great simplification
in the gravitational path integral can be made if we focus
on “fixed area states” [9,10]. These are states where the
area of one or more surfaces is fixed and not integrated
over. In general, the different replicas will not backreact
among themselves, so we are left with copies of the origi-
nal bulk geometry except for potential conical singularities
appearing at the locations of the fixed surfaces.

As an example, consider the Rényi entropies of a region
on the boundary of a pure state black hole background [79].
There exist two extremal surfaces that are candidate Ryu-
Takayanagi surfaces, y; and y,, each wrapping the black
hole horizon in topologically distinct manners. Denote the
areas of these two surfaces 4 and A4,, respectively. The
moments of the reduced density matrix are

_Z(p))

Tr[lofl[] - Z(pA)a s

(123)
where the numerator is the gravitational path integral on
the replicated geometry and the denominator is the path
integral on a single copy, necessary for normalization.
Because the geometry is identical in both geometries away
from the conical singularities, the numerator and denomi-
nator will almost completely cancel. The nontrivial terms
come from the actions of the conical singularities that are
determined by their opening angles

Tr[p¢] = Z PlCO™ or)—ald ) /4Gy +[C(1)—ald2 /4Gy

TESy
x Tr[p, ' 1Te[py*] - - Te[p, 7],

where Gy is Newton’s constant, the n; are the lengths of
the cycles in 7, and p; is the bulk state labeling the black
hole microstate. These account for the bulk entropy term
in the FLM formula [80]. The sum over the permutation
group arises from all of the ways the replicas may be glued
together in the codimension-one region bounded by the
two fixed surfaces (see Fig. 4). We have chosen the bulk
state to be pure such that all of the bulk traces are one;
hence,

Tr[p%] = Z e[C(n_lOT)—a]A1/4GN+[C(f)—Oé]A2/4GN_ (125)

TESy

(124)

B

n

A

FIG. 4. An AdS black hole is shown with the asymptotic
boundary partitioned into two regions 4 and B. The two can-
didate Ryu-Takayanagi surfaces are shown in blue and red,
respectively. In the gravitational replica trick, the region bounded
by y1 and 4 is glued cyclically (1) among the replicas. The region
bounded by y, and B is glued according to the identity (1). The
region between y; and y; is not fixed by the asymptotic bound-
ary conditions and may be glued among the replicas according to
arbitrary S, permutations (7).

This sum should now look familiar as it is identical to
the sum needed for the Rényi entropies of Haar ran-
dom states, Eq. (56), once identifying d; <> e41/40N and
dp < e2/40V In this way, entropies in fixed-area states
in holography are identical to entropies in Haar random
states [81].

This connection becomes even richer when we consider
more than one gravitational state to compute the relative
entropies. Consider the following moments needed for the
von Neumann relative entropy:

. Z( O_ctfl)
Tr[ps08 "] = — 4%

“Zonzep 20

Both states have fixed areas and the same semiclassical
geometry, but come from different black hole microstates,
pp and 0. In the language of Refs. [82,83], they are orthog-
onal states in the same code subspace. Just as before,
the gravitational path integral instructs us to sum over
all topologies, meaning that the region between the two
fixed-area surfaces can be glued according to any S,
permutation.

-1
Tr[,oAaj‘_l] — Z L€ o) —ald1 /AGN+[C(v)—ald2 /4Gy

TESy

x Tr{ppo," ' Ti[6,2] - - - Tr[o, 1.
(127)
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This is generally different from the calculation in Haar
random states that only contained a sum over a sub-
group 1 x S,_1, Eq. (62). However, because p, and o,
are orthogonal, Tr[pbab" 1_l] is only nonzero if n; = 1. This
reduces the sum to

-1
T R DU S G

TelxSy_1

(128)

which is identical to (62) under the same identification.
A nearly identical argument holds for the PRRE, SRRE,
and trace distance. Therefore we conclude that not only
do fixed-area states have the same entropies as Haar ran-
dom states, but they also have identical Hilbert space
geometries.

These results have interesting implications for the distin-
guishability of black hole microstates. Namely, the asymp-
totic observer with arbitrarily small information about the
state (small A) is able to distinguish between any black
hole microstates. This is surprising because we usually
consider all black holes to look the same from outside
the horizon to any observer, especially local observers.
The catch is that the microstates are only distinguish-
able nonperturbatively in Newton’s constant, O(e~!/V).
This is because all distinguishability measures are linear
in dy/dp for small region A4 that translates to proportional
to e“1742)/4GN  This means that while distinguishability is
in principle possible, the error rates in state discrimination
will be very high unless the observer has an exponen-
tially large number of copies of the system. The distin-
guishability is nonperturbatively small up until region 4
is roughly one qubit less than half the boundary sys-
tem, at which point it becomes O(1). When the observer
has access to more than half of the boundary, the black
hole microstates become completely distinguishable up to
nonperturbatively small corrections.

We also note that these results represent nonpertur-
bative corrections to the Jafferis-Lewkowycz-Maldacena-
Suh (JLMS) formula [84] that asserts that the boundary
relative entropy equals the bulk relative entropy within
the entanglement wedge. We have considered bulk states
that are pure, orthogonal, and localized between the two
extremal surfaces; the bulk states are identical outside
of the black hole [85]. When 4 is sufficiently small, the
black hole is not within its entanglement wedge so the
bulk states are identical, i.e., the bulk relative entropy is
zero. Therefore, the JLMS formula asserts that boundary
relative entropy is zero. We have shown that there are
nonperturbative corrections to this statement.

B. The PSSY model and replica wormholes

In a landmark achievement, the Page curve [7] for an
evaporating black hole was computed for the first time in

two independent papers [86,87]. The key mechanism that
“fixed” Hawking’s calculation was the inclusion of cer-
tain wormhole saddles in the gravitational path integral,
referred to as “replica wormholes™ [11,88]. Using the toy
model of black hole evaporation presented in Ref. [11]
(PSSY), we now show the role of replica wormholes in
calculations of relative entropy. This elucidates how the
assumptions of Hawking fail. We call this a violation of
the no-hair theorem, which is a nonperturbative effect and
therefore not present in Hawking’s calculation.

The PSSY model consists of two-dimension Jackiw-
Teitelboim gravity decorated with end of the world (EOW)
branes with k flavors. The Euclidean action is given by

=S [ ]

—[1/ JVZO(R+2) + «/i_zqﬁK]
2 Jm M

+u / ds,
brane

where Sy is the large ground state entropy, g (#) is the bulk
(asymptotic boundary) metric with curvature R (K), ¢ is
the dilation, and u is the tension of the EOW brane.

The EOW brane has £ > 1 internal microstates. The
global states on the black hole and radiation that we
consider are of a maximally entangled form

(129)

1 k
= Dl 130
W) ﬁ;jw)m (130)

where |i)z represents an orthonormal basis of the states of
the radiation. Consider a second microstate

1 k
Uy = — Deli + g, 131
W) fk;wfmw )R (131)

where i + k ~ i is implied. The definitions of these states
are not microscopic in the sense that the |;)p are defined
by a gravitational path integral and are not exactly orthog-
onal. As for the fixed-area state calculation, they may also
be thought of as being orthogonal in the code subspace.
Because of the nonorthogonality, the reduced states of
Egs. (130) and (131) on the radiation are not a priori iden-
tical even though the states appear to be related only by a
local unitary transformation on B [89].
The overlap between these two states is

k k

1
(W) = 2D Wil stlli+ e =7 3 (Wi l¥i)s.

il=1 i=1

| =

(132)
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The overlap on the right-hand side is given by a gravity
amplitude
J

Wil v)p =% 33

Because i # i + 1, connecting the brane in the gravity dia-
gram is incompatible and the amplitude is zero. This means
that |W) and |¥’') are roughly orthogonal, but there are
important caveats to this statement because the overlap
should be thought of as an ensemble averaged statement.
In particular, |(¥;|¥is1)5]* is nonzero. This is completely
analogous to the Haar random story where, on average,
two independently chosen vectors will have zero overlap,
but the variance is nonzero. The analog of Eq. (133) for
random matrices is

(134)

Because, when ensemble averaging, we cannot contract
black and red indices, the average, (¥;|v;) s, equals zero.
In complete analogy, the ensemble average of

R R e Y N (135)

is nonzero (though very small) because we may now
contract red with red and black with black.

We are interested in the relative entropy of the radia-
tion for two different microstates. Hawking and even the
island formula papers assumed that the radiation is seen
as purely thermal [90] before the Page time in accordance
with the no-hair theorem, i.e., all black holes of the same
mass, charge, and angular momentum look the same from
the outside. After the Page time, while the island formula
papers did not assume the radiation to be purely ther-
mal, there was no difference between the calculations for
different microstates of the black hole. From one perspec-
tive, this is great because unitarity can be realized without

FIG. 5.

knowing the microscopic theory. On the other hand, it is
disappointing because it bypasses the question of why all
initial states appear to lead to the same final state. We
resolve this part of the information problem within the
PSSY model and believe analogous results should hold in
more realistic models of black hole evaporation.

The reduced density matrix on the radiation for the first
state is given by

k
1
pri=Trs| W) (WI = 2 > (W 1¥asli)(le  (136)
ij=1
and similarly for the second state is given by
1k
pp = Trp| W) (V'] = Z Z(l//jll/fi)BliJr D§ + g

ij=1

(137)

From here on out, we drop the subscripts labeling the
Hilbert spaces as it should be clear.

We now compute the PRRE between two states of the
radiation using the replica trick. We have

Tr[pgpx']
k

1
= ka+m Z

[ 5emny atmyf1> Jatm=1

X 8;,i,0 ¥ )

11267213 * * " St i 111 Oy 1

8;

o+m+ 1,11

(le |wz'1> s <wja+m |wia+m>

X 8ja+mfl sdatm

k

= D W) (Wi ) -

X Vi, | Vi ) (Wi +11Vi,)
X <Wia+2|wia+1><Wia+3 |Wia+2) U
X VWigim Wigm Wiy =11 Wi ) -

(138)

Left: the boundary conditions for the path integral in Eq. (138). Center: an example of a legal way of filling in the geometry.

This geometry is also planar, so it contributes at leading order. Right: an example of an illegal way of filling in the geometry because
the EOW brane with label i; cannot be connected to the EOW brane with label i} — 1. It is not hard to convince oneself that every
diagram that connects the left # and right m boundaries will always lead to an inconsistency as in the right diagram.
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This is a more complicated but still tractable gravitational
path integral. As shown in Fig. 5, the sum is over only
the noncrossing permutations in the S, x S,, subgroup of
Se+m due to the boundary conditions on the EOW brane i,
and i} — 1 being incompatible as well as i, and i, + 1
being incompatible. There are crossing permutations in
Se+m/Se X Sy that are compatible with the boundary con-
ditions, but these are subleading. The only other difference
in diagrams from the random matrix theory calculation is
that the geometries are allowed to have additional han-
dles. This, however, is unimportant because each handle
will contribute a factor of e=2% and we have assumed the
ground state entropy to be large.

To compute the PRRE, we must evaluate the grav-

itational path integral on these replica geometries. For
simplicity, we consider the case where the black hole is
in the microcanonical ensemble, i.e., instead of fixing the
lengths of the boundary, we fix the energy, E. The path
integral of an n-boundary wormhole is [11]

Z, = Sy (V2E)", (139)
where S is the microcanonical entropy at energy E.
Because of the simply power of n, after normalizing
the density matrix, the function y will drop out of the
final answer. All calculations are then identical to ran-
dom matrix theory with the identification of k¥ <> d4 and
eS < dg [91]. We choose to only write the PRRE

k k S
log | 2F} 1—05,—05;2;—S JF | « (x;2;—s , k<e®,
, e e
Dy (prllpg) = a_1 oS oS oS (140)
log[;2F1<1—a,—a;2;;>2F1<a—1,01;2;;)}, k> é5.
The quantum Chernoff bound asserts that
1 Fi(1 2 k F La;2 k k<eéS
— 10 - —0 4 —< — Lol —< 5 < 5
 logfmins[a,(4) + Bu(D]) i ) i N ‘
lim — = max S S S
n—00 n ae(0,1) e’ F1(1 —a,—a;2;e’ k) o Fi1(a — 1,a;2;e°/k) S
—log , k>e>,
k
k
—210g|: < ;_s>}’ k< €5,
- ¢ (141)
1 s 1 1 . SN2 (o S
Og k l 2’ 25 s k > > e,

where we found the maximum to be at @ = 1/2, i.e.,
Holevo’s just-as-good fidelity

min[a,(4) + Bu(A)] < Fu(orllpp)"?. (142)
While Eq. (142) saturates at large n, the right-hand side
holds as an upper bound for all integer n. Holevo’s just-as-
good fidelity, plotted in Fig. 6, is

11 k'
ZFl __3_523_ s k<ess
AN 2°2 €S
FH(PRHPR) = 28 S 1194
e o [—1/2,1/2;2; e /k] s
, k>e°.
2

(143)

When observing a black hole from the outside, our task
is not as simple as distinguishing two states. Rather, we

(

need to distinguish between all €5 > 2 states of the black
hole. On the face of it, this seems like an insurmountable
task. However, using the multiple quantum Chernoff bound
(36) and the normal distribution for relative entropies lead-
ing to Eq. (80), we determine that our asymptotic error in
the multistate discrimination is identical, at leading order,
to that of the two-state discrimination.

This has important implications on the nature of black
hole evaporation that have not been addressed in the cal-
culations of the entropy. The following island formula
(or quantum Ryu-Takayanagi formula) was the main tool
in recent calculations of entropy of Hawking radiation
[92,93]:

A,
SvN(pR) 1'1’%(11'1 |:_ + Sseml c:l(Z ):| (144)

4G
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FIG. 6. Holevo’s just-as-good fidelity (blue) and one minus

the fidelity (orange) are shown for the PSSY model follow-
ing Eq. (143). Before the Page time (log[k] = Sgn), the fidelity
is exponentially close to one. After the Page time, the fidelity
exponentially decays to zero. BH, Black Hole.

Here 4, is the area of the codimension-two quantum
extremal surface x and Seemi-c1(2,) is the von Neumann
entropy of the bulk quantum fields in the codimension-one
region, X,, bounded by x in the bulk, i.e., the entan-
glement wedge of the radiation, R. While this formula
accurately computes the von Neumann entropy of the radi-
ation, restoring consistency with unitarity, it leaves more
to be desired. In particular, the bulk entropy term is com-
pletely semiclassical and given by a quantum field theory
calculation in curved space. The calculation is agnostic to
the details of the black hole microstate. One of the central
pieces of the apparent paradox was that Hawking radiation
always looked the same on the outside regardless of the
dynamics in the black hole interior, the phenomenon of no
hair. Equation (143) instead tells us that there is detectable
hair in the radiation even before the Page time. In fact,
information about the particular microstate is present even
in the first Hawking quantum. Because the fidelity of
the radiation for any two different microstates is strictly
less than one, we can always tell the difference between
Hawking radiation coming from black holes that are in dif-
ferent microstates, even if they have the same macroscopic
parameters mass, charge, and angular momentum.

The caveat is that the difference between states of the
radiation coming from distinct black hole microstates is
exponentially small in the black hole entropy, i.e., the
deviation of the fidelity from one before the Page time is
O(e™S). This means that while in principle possible, any
reasonable observer will be hard pressed to observe this
difference. If we want the probability of error in distin-
guishing the black hole microstates to be less than €, we
need an O(e® log€) number of copies of the state of the
radiation, more precisely,

_ log(e)
" 2logGFi[—1/2,1/2; 2 k/eS])

(145)

After the Page time, there is a different caveat. The fidelity
is exponentially close to zero, so the states are essentially
fully distinguishable. Precisely, with just one copy of the
state, the error probability is bounded above as

min[ot, (4) + Bu(A)]

_ ¢ aF[=1/2,1/2:2;5/k)
= k

=0k™".  (146)

The issue is that the amount of radiation needed to perform
this discrimination is of the order of the size of the black
hole. This means that the observer will have to perform a
very complex computation, which again is not so feasible
in practice.

Now, consider what we would have concluded if we
did not include replica wormholes in the gravitational path
integral. This is the analog of Hawking’s calculation of the
state of the radiation that led to information loss. Remov-
ing replica wormholes corresponds to only including the
identity permutation in the sum. This means that

Trlpgpg'] = K47, (147)
leading to all PRREs being identically zero, regardless of
how much radiation is collected. This is consistent with the
initial paradox where the radiation was thought to be in the
same state regardless of the black hole microstate. In fact,
this was clear from Eqgs. (136) and (137) because, if the
states of the black hole are orthogonal, the reduced density
matrices on R would be identical.

Finally, we note that the computation of the relative
entropy between two states in the PSSY model was
recently studied as a way to detect the violation of global
symmetries in theories of quantum gravity [94]. The sim-
pler quantity Tr[p40,4] was evaluated as a proxy with the
full relative entropy computation left as an open ques-
tion. Equation (140) is the (generalized) solution to this
question. While an O(1) answer was anticipated for the rel-
ative entropy after the Page time in Ref. [94], we conclude
that the relative entropy is indeed infinite. It is only O(1)
slightly prior to the Page time and exponentially small but
finite at earlier times.

V. TENSOR NETWORKS

Tensor networks represent a generalization of the states
we have considered, adding in the ingredient of locality.
As such, tensor networks have been particularly useful
as toy models of holographic duality [56,95]. They are
also independently interesting as presenting new classes
of ensembles of random states with novel spectral proper-
ties [55]. In this section, we generalize the computations of
Sec. III to generic random tensor networks, finding quali-
tatively new phenomena. A specific application of these
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results is for the random tensor networks used for model-
ing holography. We clarify which random states faithfully
represent holographic states and which do not.

We begin with the warm-up example of a random tensor
network with two tensors, 77 and 75, contracted together as

TR

This is the simplest generalization of the single-tensor
network, i.e., Haar random state

—T—

The two-tensor network has one additional degree of free-
dom, the dimension of the internal bond, d;,. For T} and T,
independently Gaussian, it is straightforward to generalize
the diagrammatic approach. The state is now

(148)

(149)

|\Ij> = > : s
| (150)

where the dotted line is for dj and is always contracted.
The arrow indicates that the dotted lines must be connected
in a way that has all arrows with the same orientation. The
reduced density matrix is

PA = >
(151)

Note the directions of the arrows. We can see that
the normalization associated with each density matrix is
(d4dgdy)~". When taking the average of the moments, we
now have a double sum over the permutation group, cor-
responding to the two random tensors. For example, the
purity moments will be

1 C(ﬂilorl) C(1p) C(Tflorz)
T = Gty 2 "

71,72 E€Sa

(152)

To solve this equation at leading order, we need to maxi-
mize the exponents. That is, we must find the set of per-
mutations, {7}, 72}, that maximize C(n~' o 11) + C(12) +
C(r; !0 7). This is already a significantly harder problem
than the single-tensor network where the answer is that t
must be a noncrossing permutation. Interestingly, this max-
imization may be rephrased as a classical network flow
problem [55]. We attach a “source” to B and a “sink” to
A and determine the maximal flow, Wpax-fiow, Of the net-
work where each edge has a weight corresponding to the
logarithm of the Hilbert space dimension. We apply the
Ford-Fulkerson method in which, one at a time, we take a
path from the source to the sink through the tensors, sub-
tracting the weight of the edges by one as we go along the

path [96]. Each one of these paths is called an augment-
ing path. We repeat this process until there are no more
paths from the source to the sink such that we are left with
a residual network. The rules for each permutation are as
follows.

1. All the 7; are noncrossing.

2. The t; are nondecreasing along each augmenting
path in the network, i.e., each permutation is con-
tained within all permutations further along the
path.

3. All the 7; in the connected component of the source
in the residual network are set to the identity.

4. All the 7; in the connected component of the sink in
the residual network are set to 7.

5. All the 7; in the same connected component are
identical.

At leading order, the moments will then be
Tr[pjl] — N*(W*I)Wmax-ﬂow
~Cr—Lor ) —a ~ o ~Cr oty )—
% Z dj(" 1) adg(zz) adb(rl ) a, (153)
{r1,72}

where {71, 7o} is the set of permutations obeying the con-
straints and the dimensions with tildes are O(1) due to
multiples of N, a large parameter, being pulled out. For
example, if dy = O(N?) then dy := d;N72. In the special
case that all the d; are one, we have
Tr[p%] = Fo N~ @ D¥maxcfiow (154)
where F,, represents the number of paths satisfying the
constraints.
For example, consider the case where dy = dp = d), =
N. There will be a single augmenting path (Wmax-fiow = 1)

source » sink (155)

such that the resulting network will consist of disconnected
tensors with the constraint that 7, < 17, € NCy:

[sink| (156

The number of such permutations is given by the second
Fuss-Catalan number

> T2

1 3
FC? := , 157
¢ 20+ 1\ o (157
so the moments will be given by
I 1 3
Tr[p%] = N7, 158
r[,oA] 20+ 1 (O[ ) (158)
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The associated von Neumann entropy is

Suv(4) = log[N] — 2. (159)
This generalizes Page’s formula.
Had we instead taken, for example, v/dy = dp = dj =

N, the same augmenting path would have led to the

residual network
] e

Because T is still connected to the sink, 7; will be set to
n while 7, can be any noncrossing permutation of which
there are a Catalan number’s worth, leading to

Suv(4) = log[N]— 1. (161)
More generally, we can have a tensor network with » ten-
sors, {11, T»,...,T,}. A set of indices of these tensors will
be contracted. We refer to the dimensions of these indices
by the tensors they connect, e.g., dj;. There is also a set
of uncontracted indices that correspond to systems 4 and
B. We refer to the dimensions of these indices as dy; and
dp; that label the subsystem they belong to and the tensors
that they are indices of. The purity moments can then be
expressed as a sum over #n permutation elements:

Tilpf] =

1 “ C(n~lot)) ,C(xy)
d ‘71 i d N
(IT; daidsi [1; dy)® 2 4 s

Ty, Tn €Sy 1=1
l—[ C(r or,

(162)

Here, we must maximize the more complicated exponent
that can also be formulated as a network flow problem.
Equation (153) is generalized to

—(a— 1>Wmaxﬂowzn dcm lor)—a C(n) o

{ui} @

l—[ ~C(t Dtj) o

o] = N

(163)

where {7;} is the set of permutations obeying the updated
rules. Equation (154) still applies, though the combina-
torics may become significantly more difficult. If we are
not concerned with the O(1) constant, we only need to
determine the maximal flow. By the max-flow min-cut
theorem, the maximal flow from the source to the sink will
always be equal to the minimal cut, y,, in the network
needed to separate the source and sink into disconnected

components [96,97]. The von Neumann entropy is then

Sun () = y4log[N]+ O(1). (164)
We can now generalize this, as before, to relative entropy.
We explicitly compute the PRRE. This only changes the
permutation allowed in the sum

_ 1
Tr[pSc”] =
['OA A ] (1—[1 d yidp ]—[j dij yatm Z

TLyeees TnESa XS

n n
Cln~tory) ;C(7) C(’i_IOf')
xl_[dm.(" W l_[dij 7 (165)

i=1 j=I1

The key difference between this replica trick and that for
Rényi entropies is that 7 is not an allowed permutation in
the sum. This effects all of the C(n~! o ;) terms because
they are maximized not by o + m, but o + m — 1, which
occurs with t; = n, X 1, € Sy X S,;. This changes rule 1
of the Ford-Fulkerson algorithm to “All the 7; are in NC,, x
NC,,” and rule 4 to “All the 7; in the connected component
of the sink in the residual network are set to 1, x 7,,.” The
moments are then

Tr [pAGA]_N (atm=Dyy p\r—E4=v4)

C(n~ 1or,) —a—m FC(tj)—a—m
[T e

{z;} i=1

1—[ ~C(T orj)—a—m

(166)

where E4 is the weight of the external 4 edges before

applying the Ford-Fulkerson algorithm, which, in the

single-tensor case simply equaled the maximum flow. In
the special case where all the d; are one,

Tr[p%0™] = Fo N~ @t Dranva=Ea, (167)

First, consider the two-tensor network when all dimensions

equal N. There is a single augmenting path and £, = y,.

However, due to the restriction to S, x S,,, T; and 1, are

restricted to noncrossing within the subgroup, such that

Fym =FCPFCP, (168)

which is much smaller than FC,,,. The von Neumann
relative entropy is then given by

D(p4llog) = 4, (169)

which should be compared with 3/2 that was found for the

single-tensor network. Apparently, adding a random ten-
sor makes the state more distinguishable. Generalizing this
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conclusion, if the tensor network is a string of #n tensors

, (170)

the combinatorial factor is given by a product of the nth
Fuss-Catalan number

Fym = FCFCY

B 1 ((n + l)ot) ((n + l)m)
(a4 D(mm+ 1) o m '

(171)

The relative entropy is then

D(palloa) = Hyt1 +n — 1, (172)
where H,, := ZZ:I 1/k is the harmonic number. This func-
tion is monotonically increasing in 7.

If we are not concerned with the O(1) contribution, the
PRRE will generally be given by

—E
Y4~ 24 100[NT + O(1).
oa—1

Dy (pallog) = (173)

This implies that the quantum relative entropy is always
divergent if the 4 edges do not coincide with the minimal
cut. We will come back to this point shortly. Similarly, note
that Holevo’s just-as-good fidelity is exponentially small in
this case,

Fr(palloy) = N~2Ea=ra), (174)
This means that, for many tensor networks, two indepen-
dent states will be easily distinguishable, no matter the
relative size of 4 and B. Note that, when £, = y,4, the O(1)
and subleading terms are very interesting and are the main
topic of this paper.

Recall that holographic random tensor networks are
tensor networks composed of random tensors that are
arranged geometrically as discretized hyperbolic space
(see Fig. 7) [56]. Because of the negative curvature of this
space, the minimal surfaces for boundary regions always
lie in the bulk. This means that we always have E4 > y4,
so independent states will always be completely distin-
guishable. This seems to be in tension with the holographic
results of Sec. IV. As it seems, single-tensor networks,
which have no built in locality, exactly match holographic
states while the tensor networks that naively look like
anti—de Sitter space do not share any information theoretic
properties with holography except for the entropy.

At face value, the above conclusions are a bit unset-
tling. Fortunately, this can be remedied by more carefully
stating how a tensor network should model holographic
states. Tensor network models represent the holographic

FIG. 7. A discretization of hyperbolic space is shown as a ten-
sor network. For boundary subregion 4, the minimal cut through
the network, y,, always dips into the bulk and is smaller than the
boundary cut E.

map as a quantum error correcting code where the bulk
degrees of freedom play the role of “logical qubits™ that
are protected by being embedded in the larger boundary
Hilbert space. The logical qubits live in a code subspace.
In the random tensor networks we have been considering,
the code subspace (the ensemble of states we are sampling
from) is identical to the Hilbert space on the boundary. This
equality between bulk effective field theory and boundary
Hilbert space dimensions only occurs in AdS/CFT when
one has a large black hole whose horizon approaches the
asymptotic boundary of the space. This is the reason for
the requirement that £4 = y,; all minimal surfaces in the
large black hole geometry hug the asymptotic boundary.
In order to model other holographic states using tensor
networks, we must make the code subspace significantly
smaller than the total Hilbert space. Additionally, the bulk
density matrices should not be orthogonal. For example,
when considering perturbations about vacuum AdS, the
total Hilbert space dimension is O(e~!/“V) while the code

subspace is O(erOV). In practice, this means that, for the two
states p and o, we must take the random tensors to be cor-
related with each other, i.e., the measure for each random
tensor only has support on a proper subset of the Hilbert
space.

Another important class of random tensor networks is
random unitary circuits. In these tensor networks, all ten-
sors are random unitary operators drawn from the Haar
measure. Such networks have been the focus of intense
study because they present an exactly solvable minimal
model of chaotic many-body dynamics, only preserving
locality and unitarity. Using the replica trick and Wein-
garten calculus, many measures of entanglement and oper-
ator growth have been computed using geometric quan-
tities in these circuits. Analogously, the distinguishibility
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measures discussed in this paper will be computable. For
the dynamics of evolving a state from a product state with a
random unitary circuit, twice the time (depth of the circuit)
plays the role of v, when it is smaller than the length of the
region A, I4, which plays the role of £4. We will therefore
find that states are easily distinguishable for times ¢t < 1,/2
and very hard to distinguish afterwards. This describes
the process of thermalization where different initial states
become indistinguishable at late times. We note that this
is the exact time at which the entanglement entropy satu-
rates after a quench [98,99]. The details of this calculation,
including the precise approach to equilibrium, are left to
future work.

VI. SUBSYSTEM EIGENSTATE
THERMALIZATION

The ETH was a major development in understanding
the emergence of thermal physics from isolated quantum
many-body systems in pure states [100—102]. The state-
ment of eigenstate thermalization is that, given two energy
eigenstates, |E;) and |E;), and a “simple” few-body oper-
ator O, the expectation value varies smoothly with the
macroscopic, thermodynamic quantities such as energy

- E;i + E;
(E|OIE}) = fo(E)sy + e SBPR;, E = > z,

(175)

where f»(F) is a smooth function of the energy, S(E) is
the thermodynamic entropy, and R; is an O(1) pseudo-
random matrix. The ETH is expected to hold for generic
nonintegrable systems and violated in integrable systems.
In words, it states that expectation values of simple observ-
ables appear thermal, up to exponentially small correc-
tions.

Note that the standard, local ETH is a statement only
about local or few-body operators. A significant strength-
ening of the ETH can be made by asserting that the entire
reduced density matrix supported on a finite spatial region
appears thermal. More precisely, the subsystem eigenstate
thermalization hypothesis states that the reduced density
matrices of eigenstates, p,(1), are exponentially close
in trace distance to a universal thermal density matrix,
Puniv(E£), that only depends on the total energy [15,103]

1pA(¥) = puniv (E)|1 = O(e™>F/%). (176)
In addition, “off-diagonal” matrices are exponentially sup-
pressed:

ITes[|E) (B 111 = 85 + 0P (177)
These conditions imply the local ETH for all operators in
region A4 and are significantly stronger [104].

It is important to understand which systems obey the
subsystem ETH. Of course, for all systems, when 4 is the
entire system, the subsystem ETH completely fails because
the distance between a pure state and a thermal state is
O(1). It is then nontrivial to determine at which point
the subsystem ETH breaks down and thermal physics no
longer applies. In the following, we show that holographic
CFTs obey the subsystem ETH whenever 4 is smaller
than half the total system size. More generally, we find
that generic chaotic Hamiltonian systems, whose eigen-
state ansatzes were put forward in Refs. [12—14], obey the
subsystem ETH.

A. Generic chaotic Hamiltonians

We use the following ansatz for the tensor product
decomposition of energy eigenstates of energy E for
generic chaotic quantum many-body systems [12]:

Ey=N""2" 3" cylE)alEs)s.

E—-A<E+Ej<E+A

(178)

Here A < E, N is the normalization, |E;)4 and |E;)p are
subsystem energy eigenstates [105], and the coefficients
are complex Gaussian random variables

(179)

S
CisCyy = 8irdyy,

where, with the proper normalization, the variance is set to
one. The reduced density matrix is

pa=N"" Z

Ei—2A<E; <Ei+2A

<)

E—Ej—A<Ej<E—Ej+A

cirCiy|Ei)(Ej|a- (180)

Using this ansatz for the reduced density matrix, we per-
form the replica trick for the PRRE. In analogy with
Refs. [12—14,106] where the Rényi and von Neumann
entropies were evaluated for this ansatz, we find, in anal-
ogy with Sec. B, that in the thermodynamic limit, after
ensemble averaging,

Tr[p%o )] = N / dES1OTBE=OG (£),  (181)

where
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G, (&) = {

and

N = / dESAEFSBE=E) (183)

We use the following ansatz for the thermodynamic

entropies:
E
S4(&) =fVS<W),
E-¢&

Here s(u) is the entropy density, V is the volume of the
total system, and f* is the fractional volume of subsystem
A. The saddle point equation for the main integral is

S/(é> _S/< E_gl ) _ agGa(gl)
vi) o\ =1) Go(&1)

(185)

J

21 (1 — o, —0; 2, 4O 5BEE) ) Fy (0 — 1,05 2; 51O 58E9)),

SEE-E-S1E) (1 — @, —at; 2; SBE-E-S4©O) [ F (@ — 1, : 2; &SBE-E=S4(E)y

S4(&) < Sp(E = &),

Sy(€) > Sp(E - &),
(182)

(

and, for the normalization,

(5)-4(555)
v va-n)
We can now evaluate the PRRE in various regimes. The

saddle point equation for the normalization is simple to
solve because s'(u) is single valued; thus,

(186)

& =/E. (187)

This is not so surprising as it implies a constant energy
density. The normalization is then evaluated to

_ 27V A=) v

(188)

We now specify to f < 1/2 where we claim that £, < E/2. In this regime, we can expand the hypergeometric function

Go(E) = 1 + a(a — 1) O =SE=E), (189)
In this approximation,
0eGo (&) (@ = Dae™EIMSIE =)/ = IV +5(E /M) 190
G, (&) T—NIE-ED/ TNV 1 (o — 1)are > E1 M : (190)
This term is exponentially small for f < 1/2. Therefore, the saddle point equation for £; can be treated as an expansion
around &,,
E=6046), k1. (191)
To leading order, the saddle point equation is
ESN(E/V)(S _ ES"E/Nf 5 2(a — e ~DISENG(E V)
4 V1 —=f) (a — Dae@ —DVSE/N 4]
Es"(E E
~ EE 5 o~ Dyae® DrEmg (£, (192)
il —f) 14
Solving for §, we find self-consistency with the claim that & is very close to &:
2 — 1 — DVe® -DIsEN G (E
5o 2o —Da(f — e S (E/V) (193)

Es"(E/V)
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The saddle point solution is then

/ dE S E+SpE=E) G, (&)

_ [2=vrd _f)eVs(E/V)+a(a—1)e<2f—1)V3<E/V>+0(52)
B s"(E/V) '

(194)
Therefore, the moments are
Tr[p§o) ] = ex@ DT 1 (195)

so the PRRE is exponentially suppressed in the entropy for
all values of «,

Dy(pallo) = ae® ~DPED, (196)
This places the following strict bounds on the trace dis-
tance:

e —DVs(E/Y) e —1/2)Vs(E/V)
2 < T(palloa) = 7
This provides further evidence for the refined subsystem
eigenstate thermalization hypothesis in Ref. [15] that pos-
tulated the scaling of the trace distance on the size of
subregion 4 because the upper bound precisely matches
that scaling when replacing N4, the number of qubits in
region A, with the subsystem thermodynamic entropy.
Note also that these results generalize our result for ran-
dom matrix theory because at infinite temperature, we can
identify

(197)

WS(%) =logdy, (1 —f)Vs(%) = logdp. (198)

Next, consider f > 1/2. Unfortunately, the maximum of
the integral occurs right near the transition S4(&) =
Sp(E — &1). Because of this, we cannot simply make
a saddle point approximation. However, it is straight-
forward to argue that the PRRE will be large for
o < 1 and infinite for ¢ > 1. Note that the integrands
of the numerator and denominator of Tr[pfo J_“] are
exponentially close for S4(&;) < Sz(E — &), while the
numerator is exponentially suppressed in relation to the
denominator for S4(&;) > Sz(E — &;). Because the sad-
dle point for the denominator occurs when S4(&;) >
Sg(E — &), Tr[pfo /}_“] will be exponentially small, i.e.,
log(Tr[pfo f}*"‘]) will be negative and of the order of the
entropy. Because of the factor of (¢ — 1)~! in the PRRE,
this implies that the PRRE for @ < 1 is of the order of the
entropy and ill defined (infinite) for @ > 1, in analogy with
the random matrix theory result, Eq. (74).

We have found that whenever 4 is less than half the total
system size, the PRRE and therefore the subsystem trace
distance between any two eigenstates of the same energy is
exponentially suppressed in the entropy. The trace distance
is a metric on the space of density matrices, so these eigen-
states lie within a ball with radius O(e=5®)). The universal
density matrix then must also lie within this ball such that
Eq. (176) is satisfied.

For Eq. (177), we need to perform an additional com-
putation. The off-diagonal (i # j) matrix for two random
states is represented as

Trp [[9:) (Y]] == =-—-" 1. (199)

To compute the trace norm, we need the integer powers of

Trp [[9i) (ill Trp [lehy) (ill = 1 =-—-- L =-—--|

The moments are given by a new sum over permutations

Tr{(Tra[|¥:) (¥; N Tes[1;) (Wil D}

1 C(n~Vor) ;C(r)
= g 2

T GSodd

(201)

Here, S,qq represents the set of permutations where, within
each cycle, the difference between consecutive numbers is
always odd. For example, the cycle (1,2,5, 6) is allowed,
but (2,4, 5) is not. Crucially, the identity permutation is not
an allowed permutation. If we want to maximize the num-
ber of dashed loops for small d4/dp, T must be composed
of o noncrossing two cycles. The degeneracy is given by
the Catalan number so that

Tr{(Trg[|y:) (¥ [1Trallv; ) (il D*}

= Cody "dz® + 0@dz® ™). (202)

The trace norm is the « — 1/2 limit, such that

T ..—8‘1”‘0‘71"3/2 203
|TB[|1/fz><‘/{/|]|1—§ £+ <d—3> . (203)

When d4/djp is large, the cyclic permutation is an allowed
permutation and will dominate, leading to

Te((Tral[¥) (b [TTesl[¥) (Uil D} = d > + O(dy ).
(204)

Taking the o — 1/2 limit tells us that [Trg[|v;)(¥;[]]1 is
exponentially close to one.
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For finite energy eigenstates, this translates to

Tr{(Tr[1¥:) (W [1Tral ;) (Wil 1)}

_ N / AESIEOSBE-E) G (&), (205)

where G, (€) is now given by

C, @51 +=1)Sp(E=E)

SAE)=Sp(E=E) 1
Gul&) =1 J2u-nsy06)

SAE)=SpE-E) 5, 1.
(206)

At o = 1/2, for sufficiently small /', the saddle point will
fall in the 54O =8E=8) « 1 regime, leading to a saddle
point equation for the numerator of

()= ah)
3| — ) =5 — ).
4 Vi —x)
Because of the factor of 3, £ will be larger than &,. We
then find that

(207)

8e3/2S4(ED+(1/2)Sp(E—E1)

377 254 (E2)+S(E—£2)

[Trp[lv:) (Y 111 =~

(208)

This is exponentially small because eS4ED+SBE-ED «
eS1ED+SBE=8) and §,(£)) < Sp(E — &1). For sufficiently
large f', the saddle point will fall in the other regime
such that the numerator and denominator are identical at
a = 1/2, leading to [Trp[|v;)(¥;[]l1 = 1 at leading order.

B. Holographic states

We could now simply posit that because holographic
systems are believed to be chaotic, their eigenstates will
also have a spatial decomposition according to Eq. (178)
and, thus, will obey the subsystem ETH for f < 1/2.
However, this line of reasoning is somewhat unsatisfy-
ing because it is not constructive. Instead, we implement
a gravitational calculation, using the fixed-area state anal-
ysis from Sec. 1V, to evaluate the PRRE in normal states
without any areas fixed. Our strategy follows Ref. [106]
in manipulating the gravitational path integral into a form
identical to Eq. (181), deriving the validity of using

J

Zot,m — Z/D(ngDZ]D226_(a+m)1bulk(g)(paE)_[(a+m_ki)/4GN][brane(Zl)_[(ki_l)/4GN]Ibrane(E2)’
M;

Eq. (178) for holographic eigenstates when computing the
PRRE. Because of the similarities with Ref. [106], we keep
the derivation brief, referring the interested reader to the
original literature.

To begin, we make the assumption that black hole
microstates can be represented as a random superposition
of energy eigenstates in a microcanonical energy window
Ig =[E—AE+ Al ie.,

E.2) oc Y e PEPIE),
EiGIE

(209)

where B is an effective temperature. These states are
believed to be holographically dual to black hole geome-
tries with end-of-world branes specifying the microstate
lying behind the horizon [99,107—110], similar to the
PSSY model.

The corresponding density matrix is represented as the
path integral on a strip of width g with boundary condi-
tions determined by ¢. We consider two microstates in the
same energy window, corresponding to two independent
sets of Gaussian random variables ¢ and d. As argued in
Ref. [106], after disorder averaging, the random variables
match up the boundary conditions of the strips according to
the same Wick contractions previously discussed for Haar
random states. Therefore, the path integral is given by a
sum over all allowed Wick contractions

Z )
s Zan= Y [ Do),
1,020,1 v

(210)

Tr{p§oy] =

where the M, are the replica manifolds and ¢ are all quan-
tum fields. Using the holographic dictionary, this is a sum
over bulk geometries with asymptotic boundary conditions
M,;. In these bulk geometries, the EOW branes have disap-
peared due to the disorder averaging. This is an alternative
way to see the reduction of bulk saddles from S,, to
Sy X Sp. In general, solving the bulk equations of motion
to evaluate the path integrals on shell is very difficult. We
use the “double-defect” construction of Ref. [106] to sepa-
rate the action into a bulk contribution /i (g, ¢, E) and
actions, lyrane(X1) and lpane (X2), for cosmic branes, X
and X,, that are located at the two extremal surfaces

211)

where £; plays the role of the number of cycles in the Wick contraction corresponding to M;. The sum over M; may be
done prior to the path integral and we also take m — 1 — « to arrive at

Zym = / D¢DgDE DEye tikEH G, (54, %),

(212)
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where

Go (X1, X)) = {

and Alprane = Torane (21) — Torane (22). Next, we make use
of the fixed-area basis by postponing the integrals over the
areas of the branes until the very end, such that the integral
is rewritten as

Zoal—a = /dAldAZP(AlaAZ)Ga(Al,AZ)s (214)
where G,(41,4;) is identical to G,(X, ;) with
Ibrane(zl) <~ Al and Ibrane(ZZ) <~ AZ, and P(AlaAZ): the
(unnormalized) probability of being in the state with areas
A; and A4,, is given by

e hulk(8:9.E) (215)
Az =A1, A5, =4

P(41,4,) :=/DgD¢

For high-energy eigenstates, P(A4,A4,) will localize to a
trajectory where 4, is a function of 4, [106] such that

e hulk(&d.E)
Az, =4;

P(4,,45) ~ 8A2A2(A1)/Dgp¢
(216)

Finally, to compare with Eq. (181), we want to change the
integration variable from A4, to the energy density in region
A, €. Using the Bekenstein-Hawking formula [2], we write
the areas in terms of entropy densities

A E(Ar,42)

E —fVS(—fV ) +Aoov

A2 _ 6(‘41’142)

1o = —f)Vs(E ~ oy _f)V> +tAs,  (217)

where Ao is the divergent piece of the Ryu-Takayanagi
surface that approximately cancels in all expressions
because we are in the high-energy limit where the surfaces
are approximately purely radial until they reach the horizon
and subsequently tightly wrap the horizon. Here £ (41, 4,)
is the ADM energy that is a function of the horizon area
Ay ~ A} + Ay — 24 In a saddle point approximation,
the probability then becomes [106]

P(E) o SaEFSBE=E) (218)
In total, we find that
2w dES1OFSBE-E G (£
1 _ JdéEe (&) 219)

Z?OZ(%TO( - fdgeSA(5)+SB(E—£)

It should now be evident that this formula is identical to
Eq. (181), so we conclude that the PRRE for holographic

2P (1 — o, —a; 25 @Borane/AON ) By (@ — 1, 03 2; @M orane/ 46N,

e_Albrane/4GN 2F1 (1 —o,—o; 2, e_AIbrane/4GN) 2F1 ((X — 1, o 2, e_AIbrane/“GN),

Alyrane < 0,

213
Alyrane > 0, ( )

(

theories is exponentially small in the entropy when f <
1/2 and subsystem eigenstate thermalization will hold.

VII. DISCUSSION

We take the opportunity to now comment on future
directions that are out of the scope of this work but deserve
attention.

On the formal end, one may be worried that the basis of
our calculations have assumed finite Hilbert space dimen-
sions and tensor factorization of the Hilbert space into
‘H4 ® Hp. This is not true in quantum field theory and
is the reason why reduced density matrices and von Neu-
mann entropies are not well defined. However, the relative
entropy and related quantities are well-defined quantities
in the continuum using modular theory (see, for exam-
ple, Refs. [111,112]). For this reason, we expect that our
calculations that assumed tensor factorization are accurate
even though we ignored this subtlety. However, this expec-
tation is not guaranteed. In particular, the rank deficiency
in the reduced density matrices that led to infinite relative
entropy has no analog in the continuum because subre-
gions are described by type-III von Neumann algebras that
are roughly “full rank.”

More practically, we were only able to compute the rel-
ative entropies of the simple PSSY toy model of black
hole evaporation. We expect that this model captures the
essential features of the distinguishability of evaporating
black holes, like the wormhole contributions that restore
unitarity. It is an important future direction to complete
analogous calculations in more realistic models of black
hole evaporation. Though a complete calculation, includ-
ing all saddles like in Jackiw-Teitelboim gravity, is most
likely out of reach, one may be able to identify the saddles
that lead to O(e~!/9V) fidelity prior to the Page time and
0(1) fidelity after the Page time.

For nonevaporating black holes, our calculation was
limited to large black holes away from phase transitions.
It is clearly of interest to generalize these holographic cal-
culations to smaller, normal black holes. Moreover, there
may be interesting crossover behavior in relative entropies
near the phase transitions. In the Page states, the transitions
were O(1) [e.g., for relative entropy, the D(p4||o4) = 3/2
at the transition]. However, for finite energy states, there
may be enhanced corrections analogous to the O(v/7) cor-
rections in the von Neumann entropy [13,106,113,114].
These should be visible in chaotic, nonholographic sys-
tems as well. Preliminary numerical results were given in
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Ref. [3], though a more systematic study of both integrable
and chaotic Hamiltonians is warranted.

Finally, it would be interesting to study random tensor
networks that act as quantum error correcting codes from
“bulk” Hilbert spaces to “boundary” Hilbert spaces. These
quantum error correcting codes are more closely related
to the semiclassical holographic states than the tensor
network states studied in Sec. V. Using these tensor net-
works, various interesting corrections to the JLMS formula
[84] may be explored. We expect this to have important
implications for approximate quantum error correction and
entanglement wedge reconstruction in AdS/CFT. We fur-
thermore hope that this line of study may impact the devel-
opment of approximate quantum error correcting codes
that may be useful for quantum computation.
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APPENDIX A: DISTINGUISHIBILITY FROM
FREE PROBABILITY THEORY

We have tried to avoid the use of free probability the-
ory throughout this paper because while it is immensely
powerful, it is very technical and nonintuitive for the
wide audience that this paper is intended for. Moreover,
it lacks the clear connections to gravitational and general
chaotic systems that the replica trick has. Alas, for exact
calculations of the trace distance and Uhlmann fidelity,
we were unable to push our diagrammatic techniques far
enough, so we address distinguishability measures using
free probability in this appendix.

We begin a minimal introduction of the tools we use
from applications of free probability theory as applied to
random matrices. The interested reader is encouraged to
consult Refs. [115,116]. First, we define a unital linear
form, 7, acting on a vector space. For N x N matrices,
X, this can be taken to be the normalized trace 7(X) :=
(1/N)Tr[X]. Random variables X and Y are free if they
satisfy

T[Pr(X)O1(Y) - - - PrX)Ox(1)] =0

for any set of polynomials {P,Q} when t[P;(X)]=
7[Q;(Y)] = 0. This, in turn, implies a factorization prop-
erty

(A1)

t[PX)OM)] = [P(X)][Q(D)],

which can be seen by taking P;(X) = P(X) — t1[P(X)]
and 0;(X) = O(X) — t[Q(X)]. There are several useful

(A2)

ways to package the moments of a free random variable,
my, := t(X"). These enable the evaluation of empirical
spectral measures for random matrices. For a free random
variable X, we define the moment function as a formal
power series

My (z) := Z t(X"zZ", zeC.

m=0

(A3)

This is related to Green’s function or the Cauchy trans-
form as

(A4)

From the Cauchy transform, one may extract the spectral
measure using a Stieltjes transformation,

(M) = —% lim Im{ Gy (1 + ie)]. (AS)

Sometimes, we know that random variables X and Y have
spectral measures py and py, but want to know the spec-
tral measure of their sum, X + Y, or product, XY. The
spectral measure of their sum is defined as the free con-
volution py .y := uy H wy, while the spectral measure of
their product is defined as the free multiplicative product
Wxy = wx X wy. In order to obtain the free convolution,
it is convenient to introduce the R transform

Rx[Gx ()] +

=Z.

: (A6)
Gx (2)

The R transform of a sum of free random variables is given

by the sum of their individual R transforms,

Rx1y(z) = Rx(2) + Ry(2). (A7)

For the free multiplicative product, it is convenient to

introduce the S transform

zMx (2)Sx [Mx (2)] := 1 + Mx (2). (A8)

The S transform of a product of free random variables is

given by the product of their individual S transforms,

Sxy(z) = Sx (2)Sy(2). (A9)

The key to the usefulness of free probability for us is that

Wishart random matrices are free random variables asymp-

totically, as the dimensions become large. Their empir-
ical spectral measure is given by the Marchenko-Pastur
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distribution

Ml(\f&,(x) = max |:1 — é,O}S(x)

N VIx — (1 = c2)2][e(] + 71722 — 4]
2mwex

B

(A10)

where c¢:=dy/dp is the rectangular parameter and
X = dyA.

1. Petz Rényi relative entropy

For the PRRE, we need to evaluate Tr[pfo /}_“].
Because p, and o, are asymptotically free random vari-
ables with Marchenko-Pastur distributions, uf\f[)[,, this fac-
torizes according to Eq. (A2) as

Tr[p§]Tr[o, ]
dy
M

= /dxu(c)f,(x)x“/dxul(\fli,(x)xl_“, (Al1)

Trlp§o) 1=

These integrals may be evaluated to reproduce Eq. (73),
the result from the replica trick.
|

2. Sandwiched Rényi relative entropy

For the SRRE, we need to evaluate the averaged
moments of o \'~*"** p,40\' "> Using the replica trick,
we succeeded for integer «, but were unable to analytically
continue to real valued « in order to evaluate the Uhlmann
fidelity at o« = 1/2. Here, we evaluate the spectrum of
aj/ 2pAaj/ 2 (equivalently p40,4) to accomplish this goal.
This is the free multiplicative convolution of Marchenko-
Pastur laws /,LI(\Z)P X MI(\Z)P and has been called a gener-
alized Fuss-Catalan distribution [117]. The Fuss-Catalan
distributions themselves were first derived in Ref. [118].
The S transform for the Marchenko-Pastur distribution is

given by

Sy, (2) = H—C;]WM(Z)' (A12)
Therefore, the S transform for p404 is
Spi04(2) = ;. (A13)
[1+cM,, (2)]?
Substituting this into Eq. (A8), we find that
My ,0,(2) = [1 +M,,6,(][1 + chAUA(z)]Z. (A14)

Taking the correct root of this cubic equation and taking
the Stieltjes transformation, we find the spectral measure

1 3x+(c—1)? 3x2¥3
(o) (c) c—1 1 ( ) - B (\/F+A)1/39 (X1,x2),
pnip X e (x) = max | 0, — 8(x) — — V3 x 2283x (JP + A)\/3 12¢2x
0, otherwise,
(A15)
(
where we have defined The Uhlmann fidelity is then given by the integral
X 2
A=A +2)x + 2 — 1] F(pallo) = (/ dxjuyp X Mf\ii»(X)ﬁ) . (AI8)
’ (A16) M

P =27¢5%{[8 — (c — 20)c]x + 4(c — 1)° — 4x?},
and endpoints

84+ 20c — c¢* — \/c(8 +¢)*/?
8

~ 8420c — 4 Je(8 + )Y

= 3 :

X] = max |:0, :|,
(A17)

X2

We compare the derived distribution with numerics in
Fig. 8.

3. Trace distance
The trace distance is defined using the trace norm of the
difference of p4 and o,4. This is tailor-made for a computa-
tion in free probability because of free convolution. The R
transform for the Marchenko-Pastur distribution is

1
Rp (@) = 1——. (A19)
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The probability density function for the generalized Fuss-Catalan distribution is shown (gray lines) with comparison to

numerics. On the left, the blue, green, and red dots correspond to ¢ = 2%, 272,274, respectively. On the right, the blue, green, and red
dots correspond to ¢ = 29,22, 2% respectively. The total system size is 2!® and we disorder average over 10° realizations.

Because we are taking the difference, we must rescale the
second R transform as

R_,2) =—Rs,(—2) = Tre (A20)
Therefore, the R transform of the difference is
2cz
RpA_UA(Z) = 1_—0222 (A21)

V(2 —c)? +3x2
V3mclx|

()

1ugp B D[] (x) =

2
max [O, 1 - —:|8(x),
c

where D_; represents the rescaling, the function 7 (x) is
given by

() 9+ Dx*+ (2 —¢)?
T = = 3P

(A24)
and the endpoints of the spectrum are

1
X4+=max |:0, Z(\/4C—|— 1+ 3)3/2( /4C+ 1F 1)1/2].
(A25)

One can then evaluate the trace distance from the integral

1 C C
T(pallo) = 5 / dxpsop BD_i [uiplIx],  (A26)

leading to Eq. (115).

sinh [1Og[77(X) + 3\/ n*(x) — 1]]

Inverting the R transform, one finds the Cauchy transform

2cG(z)
1 — 2G(z2)?

1
=z.
G(2)

(A22)

Once again, one can take the correct root of the cubic
equation and take the Stieltjes transformation to find the
spectral measure [66,73]

, o Ixl e (x—,xy),
(A23)

otherwise,

APPENDIX B: COMMUTATION OF ENSEMBLE
AVERAGE AND LOGARITHM

We have been using the replica trick throughout the
paper to compute relative entropies. This has involved
evaluating ensemble averages of traces of powers of den-
sity matrices and then taking a logarithm. In general, the
ensemble average and logarithm do not commute. In this
appendix, we show that the two operations approximately
commute in the large-N limit. To properly take the average
of a logarithm, we need the additional replica trick

(Tilo5oy D7 — 1

q

log(Tr{pfoy']) = lim (B1)
q~>

For illustration, we work with the PRRE though the argu-
ment is the same for all other quantities. In diagrams, the
necessary moments are
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(Tr [pjafﬂ)q = = o o e ms e o e oy

where there are ¢ total blocks. As a sum over permutations,
this is

(Trlpgay' D?

1 —1yx
= G 2 AT, @)
AYB

TE€(Sq X Sm) 4
where in cycle notation

q—1
g =T[0+a2+q.....a+m+q).
i=0

(B4)

The leading terms come from noncrossing contractions
within each block independently, leading to C[(n~!)*? o
7] 4 C(tr) = g(o + m + 1). Contractions that connect the
blocks will be subleading with C[(n~")*? o 7] + C(z) <
q(a + m + 1) — 2. Therefore, the ensemble average fac-
torizes at leading order as

(Trlp§o ;D7 =~ (Trlp§oyT)".

Using Eq. (B1), this implies that the ensemble average and
logarithm approximately commute at large N.

(B3)

APPENDIX C: EQUIVALENCE WITH HAAR
UNITARY TENSOR NETWORKS

Frequently, random tensor networks are constructed by
projected Haar unitary states. This is in fact equivalent to
the Gaussian random networks we use. The reason is the
following. In the Haar random construction, every vertex
of degree k is a state of £ qudits projected to a random
state U|0), where U is a Haar random unitary and |0) is any
state. This gives the state (0|®¥Ut|i}) - - - |ix). Denoting the
set of k indices by one index i, this exactly corresponds to
the Gaussian tensor network with the identification U; o <
X;*. Every edge corresponds to a maximally entangled pair
in the projected Haar random network, which is just the
index contraction in the Gaussian network. The projected
unitaries indeed have a Gaussian distribution, since (see,
e.g., Ref. [119])

X5 XEX - X,)

1

= (Ui 0 UioUyy, - Uy,,)

= Z 81‘1:/5(1) e 'Sin:ja(n)wg(n’ too")

o,T€S,

X Z Sitjoty * Sinotm (Ch

[ —ge = e —ge e < T e o

(B2)

(

and zero for a different number of X and X *’s, just as for
Gaussian variables.

APPENDIX D: INTERPOLATING BETWEEN QSD
AND QHT

In the main text, we characterized the asymptotic error
rates in distinguishing states in the totally symmetric
(QSD) and totally asymmetric (QHT) cases with the quan-
tum Chernoff distance and relative entropy, respectively.
It is natural to ask if the there is a way to interpolate
between the two. This was addressed in Ref. [120] where
the type-II error B(A4) was optimized given the constraint
that «(4) < ¢! B(A)* for s > 0 and ¢ > 0. Note that this
coincides with QHT for s = 0 and QSD for s = 1. This is
referred to as s-hypothesis testing and the error rate was
proven to be given by the s-quantum divergence defined as

[
(pllo) = max ETT D

<e<l a(l—s)—1

It is instructive to examine the two familiar limits. When
s = 0, the quantity being maximized is the PRRE. We
know that the PRRE is monotonically increasing with « so
& (p||o) is given by the relative entropy in accordance with
our expectation. When s = 1, the right-hand side becomes
the definition of the quantum Chernoff distance. Using
Eq. (74), we can evaluate the s-quantum divergence for
random states. We plot the value of « that maximizes the
right-hand side as a function of s in Fig. 9. This func-
tion monotonically decreases from one at s = 0 to zero at
s = 00, passing througho = 1/2 ats = 1.

0.9} .

0.8} .

0.7+ .

0.5+ .

0.0 0.2 0.4 0.6 0.8 1.0
S

FIG. 9. The interpolation between QHT (s =0) and QSD
(s = 1) is shown for dy < dj.
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APPENDIX E: ENTANGLEMENT PLATEAU

Ref. [3] was not the first attempt in the literature to
use related information theoretic quantities to try to dis-
tinguish black hole microstates. A selection of previous
works include Refs. [104,121—125]. In particular, Bao and
Ooguri [121] used the Holevo information to distinguish
black hole microstates. The Holevo information of 4 for
an ensemble of density matrices {p;} is given by the aver-
age relative entropy from each microstate to the ensemble
average

xd) = ZP;’D<,0A,1' ZPjPA,/)
i J
= vN<Zpi,0A,i> - ZpiSuN(pA,i)- (E1)

This is bounded above by the Shannon entropy,
— >, pilogp;, which happens to be the black hole entropy,
SgH, in this case.

The authors computed each piece holographically to
leading order in Newton’s constant using the Ryu-
Takayanagi formula [126,127] and determined that there
are three phases of x(4). The microstate entropies were
computed from the two extremal surfaces of the previ-
ous section, so the transition occurred when 4 was at half
the total system size. In contrast, the ensemble averaged
state (Gibbs state) entropy does not transition to the sec-
ond extremal surface at the same time. While this was not
the perspective taken in the original paper, we attribute this
to the black hole contributing to the bulk entropy in the
FLM formula [80]. This transition occurs when 4 is much
larger than its complement and discussed thoroughly in
Ref. [128] where it is called the “entanglement plateaux.”
In summary, they found the Holevo information to be iden-
tically zero until the halfway point, then linearly increase

B B

A A

until a critical size when it saturates to its maximal value of
the black hole entropy. The relevant extremal surfaces and
behavior of the Holevo information are shown in Fig. 10.

Using fixed-area states, we can improve upon this anal-
ysis by computing nonperturbative corrections. As already
reviewed in the previous section, all pure black hole
microstates will have entropy

A, eA12=421)/4GN

Sv i) = - D
N (04,) Gy 7

(E2)

where the first (second) subscript occurs when A; (4) is
minimal.

For the entropy in the Gibbs state, we must account for
the bulk entropy

o (32e0) |

LCo o) A1 +C(1)421/4Gy

— ny nC(r)
N endi1+42) /4Gy Tripy]--- Trlpy ],

T€S),

(E3)

where the n; are the lengths of the cycles of t. The bulk
entropy terms manifestly go away when the black hole is
in a pure state. For simplicity, let us take p, to be the maxi-
mally mixed state with dimension e%BH. Finite temperature
corrections are not immediately important to demonstrate
our main conclusions but may be interesting. In this case,
the sum simplifies to

(3200 |

LlC™oT) 41 /4Gy +C(7) (42 /4Gy +SH)]
= Z . (B

enl(41+42)/4GN+SBH]

TeS,

FIG. 10. Left: two competing extremal surfaces are shown for region A. In this case, there is no bulk entropy term because the black
hole is in a pure state. Center: when the volume of 4, V4, becomes sufficiently large (> V), the area of the red curve plus the black
hole entropy is smaller than the area of the blue curve. The black hole entropy can either be viewed as a bulk entropy term or an
additional area term. Right: the Holevo information up to nonperturbative corrections as a function of the volume of 4.
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This is just a renormalization of A, /4Gy to A>/4Gy + Sgu. This makes sense because the alternative perspective would
be to fix the area of the new extremal surface that includes the black hole horizon. Computing the sum as before, we find
that

A, e A1—42)/4GN —SBH A, A,
4Gy 2 : Gy = agy T
_ N N N
Sw (ZPWAJ) = 4 —AD/AGN S 4 4, (E5)
i —= 4 Spy — , > SBH.
4Gy o8 2 4Gy~ agy T oB
In total, the Holevo information is
(A1 =42)/4GN (1 — o—SBH
¢ 2( ¢ ), Ay < A4,
A — A (A1—A42)/4GN—SBH _ p(d2—41)/4GN
xdy= =22 ¢ ‘ , As < Ay < A+ 4Gy Sgn, (E6)
4Gy 2
e2—AD/4GN (1 + eSBH
SeH + 2( ), Ay > 4y + 4Gy Seh.
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