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We investigate the behavior of the frustrated J1-J2 Ising model on a square lattice under the
influence of random dilution and spatial anisotropies. Spinless impurities generate a random-field
type disorder for the spin-density wave (stripe) order parameter. These random fields destroy the
long-range stripe order in the case of spatially isotropic interactions. Combining symmetry argu-
ments, percolation theory and large-scale Monte Carlo simulations, we demonstrate that arbitrarily
weak spatial interaction anisotropies restore the stripe phase. More specifically, the transition tem-
perature Tc into the stripe phase depends on the interaction anisotropy ∆J via Tc ∼ 1/| ln(∆J)| for
small ∆J . This logarithmic dependence implies that very weak anisotropies are sufficient to restore
the transition temperature to values comparable to that of the undiluted system. We analyze the
critical behavior of the emerging transition and find it to belong to the disordered two-dimensional
Ising universality class, which features the clean Ising critical exponents and universal logarithmic
corrections. We also discuss the generality of our results and their consequences for experiments.

I. INTRODUCTION

The influence of impurities, defects, and other types
of quenched random disorder on the symmetry-broken
low-temperature phases of many-particle systems and on
their phase transitions is an important topic in condensed
matter physics. Fundamentally, disorder effects are gov-
erned by the interplay between the symmetries of the
order parameters characterizing the phase or phase tran-
sition and the symmetries of the disorder (see, e.g., Ref.
[1] for a pedagogical discussion).
If the impurities respect the order parameter sym-

metries, they generically lead to random-Tc disorder,
i.e., to spatial variations in the tendency towards the
symmetry-broken phase. As this disorder appears in the
mass term of the order parameter field theory, it is also
called random-mass disorder. The diluted ferromagnet is
an example for this case because spinless impurities do
not prefer a particular magnetization direction and thus
do not break the spin symmetry. Random-mass disor-
der can influence phase transitions profoundly, e.g., by
rounding first-order phase transitions [2–4] or by modi-
fying the critical behavior of continuous ones [5]. Quan-
tum phase transitions can feature additional disorder ef-
fects including infinite-randomness critical points [6–8],
smeared phase transitions [9], and quantum Griffiths sin-
gularities [10–12] (see Refs. [13, 14] for reviews).
If, on the other hand, the impurities locally break the

order parameter symmetries, a stronger coupling between
the disorder and the order parameter can be expected.
The generic result is random-field disorder [15], i.e., ran-
domness in the field conjugate to the order parameter in
the corresponding field theory. More complicated scenar-
ios such as random-easy-axis disorder [16–20] can occur
if the impurities break the order parameter symmetries
only partially. Random fields can have more dramatic
effects than random-mass disorder. In sufficiently low
space dimensions (d ≤ 2 for discrete order parameter
symmetry and d ≤ 4 for continuous order parameter sym-

metry), even weak random fields destroy the symmetry-
broken phase itself via domain formation [4, 15, 21].

Recent years have seen renewed interest in phases that
spontaneously break real-space symmetries in addition to
spin, phase, or gauge symmetries, including the charge-
density wave or stripe phases in cuprate superconductors
[22–24], the Ising-nematic phases in the iron pnictides
[25–27], as well as valence-bond solids in certain quantum
magnets [28–30]. In general, impurities locally break the
real-space symmetries of the associated order parameters.
They thus generically lead to random-field type disorder
for such order parameters [20, 31–37]. In addition to
destroying the original long-range order, these random
fields can also induced novel phases of matter [20, 37].

A prototypical model for impurity-induced random
fields is the frustrated J1-J2 Ising model on a square
lattice, with ferromagnetic nearest-neighbor interac-
tions and antiferromagnetic next-nearest-neighbor inter-
actions. For sufficiently strong next-nearest-neighbor in-
teractions, it features a stripe-ordered low-temperature
phase. As site or bond dilution locally break the symme-
try between the two equivalent stripe directions, they
generate random fields for the nematic order [31, 36]
which destroy the stripe phase via domain formation.
Interestingly, the strength of the random fields can be
tuned by the repulsion between the impurities [36].

In the present paper, we revisit the diluted J1-J2
Ising model and focus on the interplay between the
random-field disorder and global interaction anisotropies
that may arise, e.g., from strain engineering, epitaxial
growth or the shape of crystallites or samples. We com-
bine symmetry arguments, percolation theory and large-
scale Monte Carlo simulations to show that the stripe
phase is restored by an arbitrarily weak global anisotropy
(modeled, e.g., by a difference ∆J between the hori-
zontal and vertical interaction strengths) that explic-
itly breaks the symmetry between the two stripe direc-
tions. Importantly, the transition temperature Tc into
the stripe phase varies with the interaction anisotropy
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distance of the stripe domain pattern from percolation
criticality is controlled by ∆J . We therefore expect the
transition temperature into the stripe phase to vary as

Tc ∼ 1/| ln(const∆J)| . (5)

In addition to random-field disorder, the vacancies also
create random-mass disorder which is known to prevent
first-order phase transitions in two dimensions [2–4]. We
thus expect the transition into the stripe phase to be
continuous. On symmetry grounds, its critical behavior
should belong to the two-dimensional disordered Ising
universality class as it spontaneously breaks the remain-
ing Z2 symmetry. This is a particularly interesting uni-
versality class because the clean two-dimensional Ising
correlation length exponent takes the value ν = 1 which
makes it marginal with respect to the Harris criterion
[5] dν > 2. Perturbative renormalization-group studies
[48–50] predict that the critical behavior of the disor-
dered Ising model is controlled by the clean Ising fixed
point. Disorder, which is a marginally irrelevant oper-
ator, gives rise to universal logarithmic corrections to
scaling. Early computer simulations [51–53], in contrast,
found nonuniversal critical exponents that vary contin-
uously with disorder strength. More recent large-scale
simulations strongly support the logarithmic-corrections
scenario (see Ref. [54] and references therein).

III. MONTE CARLO SIMULATIONS

In order to gain a quantitative understanding of the
interplay between the random fields and the global
anisotropy in the J1-J2 model, we perform extensive
Monte Carlo simulations of the Hamiltonian (2). As we
are interested in the fate of the stripe low-temperature
phase, we fix the interaction energies at the values J1 =
−J2 = 1 for which the undiluted isotropic system en-
ters the stripe phase at a temperature of about 2.08 [40].
The dilution is fixed at p = 0.25. This relatively strong
disorder leads to moderate domain sizes that actually fit
into the sample sizes we are able to simulate. The global
interaction anisotropy ∆J is varied between 0 and 0.2.

In the parameter region J1 > 0, J2 < 0, the inter-
actions of the J1-J2 model are frustrated. Therefore,
cluster algorithms such as the Wolff [55] and Swendsen-
Wang [56] algorithms do not improve the efficiency of
the simulations [57]. We therefore combine conventional
single-spin-flip Metropolis updates [58] with “corner” up-
dates that exchange the two spins on the diagonal cor-
ners of a 2 × 2 plaquette of sites. These corner updates
locally turn horizontal stripes into vertical ones and vice
versa. Specifically, a full Monte Carlo sweep consists of
a Metropolis sweep over the full lattice followed by two
corner sweeps (one attempting to exchange the top right
and bottom left sites of each plaquette, the other doing
the same for the top left and bottom right sites).
As both Monte Carlo moves are local, equilibration

is slow, and the problem is further exacerbated by the
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FIG. 4. Energy per site E/N vs. Monte Carlo sweep for a sys-
tem of linear size L = 96, ∆J = 0 and temperature T = 1.15.
The data are averages over 3000 runs, each with a different
disorder configuration. The simulations start from a random
configuration of spins (hot start). The dashed line marks the
equilibrium value of E/N . Inset: Log-log plot of the devia-
tion ∆E from the equilibrium value vs. Monte Carlo sweep.

random-field effects at nonzero dilution. This is illus-
trated in Fig. 4 which shows how the energy approaches
its equilibrium value (for a prototypical set of parame-
ters). The data demonstrate that the relaxation is slower
than exponential, it approximately follows a power law
over at least two orders of magnitude in Monte Carlo
time.
Consequently, long equilibration periods are required

in the simulations, as well as long measurement periods
to ensure that the measurements do not remain corre-
lated over the simulation run. This severely limits the
system sizes we can study. We employ equilibration pe-
riods ranging from 30,000 full sweeps for the smallest
systems (linear size L = 16) to 106 sweeps for the largest
systems studied (L = 192). The corresponding measure-
ment periods range from 30,000 to 2 × 106 full sweeps,
with a measurement taken after each sweep. We also
change the temperature in small steps and use the final
spin configuration for one temperature as the initial con-
figuration for the next. To check whether the observables
truly reach their equilibrium values (within the statisti-
cal errors), we compare the results of runs with “hot”
starts (spins have independent random values initially)
and “cold” starts (spins are in perfect stripe state ini-
tially). An example of such a comparison is shown in
Fig. 5. All data are averaged over 3,000 to 100,000 disor-
der (vacancy) configurations, depending on system size
and temperature range.
During the simulations, we compute a number of ob-

servables including the total energy per site [〈e〉]dis and
the specific heat C = (N/T 2)[〈e2〉 − 〈e〉2]dis. Here,
e = E/N stands for an individual energy measurement,
〈. . .〉 is the canonical thermodynamic average (which is
approximated by the Monte Carlo average) and [. . .]dis
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However, the fit quality is noticeably worse (χ̄2 ≈ 3 and
6, respectively). This can be attributed to the fact that
the systems with ∆J ≤ 0.01 have not reached the asymp-
totic critical regime in the size range L = 16 to 128 (see
Fig. 9).

V. CONCLUSION

To summarize, we have investigated the combined in-
fluence of spinless impurities and a spatial interaction
anisotropy on the low-temperature stripe phase in the
frustrated square-lattice J1-J2 Ising model. The impu-
rities reduce the effective interaction strength and thus
create random-mass disorder. They also locally break
the C4 rotation symmetry of the lattice, and thus create
effective random fields coupling to the nematic order pa-
rameter that distinguishes the two possible stripe direc-
tions. In the absence of a global anisotropy, these random
fields destroy the stripe phase via domain formation.
A global interaction anisotropy that explicitly breaks

the C4 lattice symmetry competes with the random fields
and restores the stripe phase at sufficiently low tem-
peratures. By combining percolation theory and results
about the domain structure of a biased random-field Ising
model, we have predicted that the transition temperature
Tc into the stripe phase varies as Tc ∼ 1/| ln(∆J)| with
the interaction anisotropy ∆J . This means very small
∆J are sufficient to restore a robust stripe phase.
We have also studied the resulting phase transition into

the stripe phase. Our Monte Carlo results provide strong
numerical evidence for the transition to be continuous
and to belong to the disordered two-dimensional Ising
universality class which is characterized by the clean Ising
exponents and universal logarithmic corrections.
Our explicit calculations have implemented the global

anisotropy via a difference between the nearest-neighbor
interactions in the two lattice directions. Other sources
of global anisotropies that break the symmetry between
the two stripe directions are expected to have analogous
effects. For example, a global anisotropy in the impurity
distribution that favors impurity pairs on, say, horizon-
tal nearest neighbor sites over pairs on vertical nearest
neighbor sites introduces a bias into the random field dis-
tribution. Horizontal stripe domains thus proliferate and
form a massive spanning cluster, just as in our case.
Let us also comment on the possibility of a nematic

phase. In the absence of a global anisotropy, (∆J = 0),
the phase transition between the paramagnetic high-
temperature phase and the stripe low-temperature phase,
if any, could in principle split into two separate transi-
tions, the first breaking the C4 lattice symmetry, pro-
ducing nematic order, and the second breaking the Ising
spin symmetry. In the clean J1-J2 Ising model, a nematic
phase has not been observed, and same holds for the di-
luted model studied in Ref. [36] in which the random-
field physics is suppressed by impurity anti-correlations.
The J1-J2 Heisenberg model, in contrast, hosts a nematic

phase [66]. We emphasize that a nematic phase transi-
tion cannot occur in principle in the presence of of a
nonzero anisotropy ∆J 6= 0. The anisotropy breaks the
C4 lattice symmetry explicitly, spontaneous breaking of
this symmetry is thus impossible [67].
Our results have demonstrated that the random-field

effects generated by spinless impurities (and, by analogy,
bond dilution or other types of quenched randomness)
on an order parameter that breaks a real-space symme-
try are very sensitive to weak global spatial anisotropies.
This may complicate the experimental observation of the
random-field physics, for example if the samples feature
residual strain. A systematic variation of the anisotropy
to test the predictions of the present paper may be
achieved, e.g., by applying uniaxial pressure.
We note that the interplay and feedback between the

random-field induced domain formation and the mag-
netic degrees of freedom leads to enhanced fluctuations
and slow dynamics even in the absence of a global
anisotropy, as was recently demonstrated by mapping
the J1-J2 Hamiltonian on an Ashkin-Teller model in a
random Baxter field [68].
It is interesting to compare our results to those for

the square-lattice J1-J2 Heisenberg model. Even though
magnetic long-range order at nonzero temperatures is
impossible in the Heisenberg case due to the Mermin-
Wagner theorem [69], the clean J1-J2 Heisenberg model
features vestigial nematic order [66] associated with the
unrealized stripe phase (for |J2| > J1/2). Fyodorov and
Shender [32] argued that random bond dilution creates
random fields for the nematic order just as in the Ising
case, destroying the nematic phase. Recently, Miranda
et al. [20] demonstrated that this conclusion holds gener-
ically for both bond disorder and site vacancies. As a
result, the system is a nontrivial paramagnet for nonzero
temperatures, and a spin-vortex-crystal glass for zero
temperature and weak disorder [20].
Impurity-induced random fields also emerge in three-

dimensional frustrated magnets. For example, in XY
pyrochlore magnets, they have recently been shown
to destroy long-range order beyond a critical disorder
strength, leading to the formation of a cluster-glass state
[37].
The use of strain to manipulate and “engineer” phases

and properties of many-particle systems has recently at-
tracted considerable attention. For instance, it was re-
alized that strain can lift the degeneracy of the ground
state manifold of a frustrated Heisenberg antiferromag-
net on a Kagome lattice, tuning the system through a
sequence of unconventional phases [70]. Our results can
be understood as an example of using strain engineering
to restore the stripe phase.
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Rev. E 63, 066109 (2001).

[44] J. D. Stevenson and M. Weigel, EPL (Europhysics Let-
ters) 95, 40001 (2011); Comp. Phys. Commun. 182, 1879
(2011).

[45] Note that situation differs from the random-field Ising
model where the random fields completely break the or-
der parameter symmetry.

[46] D. Stauffer and A. Aharony, Introduction to Percolation

Theory (CRC Press, Boca Raton, 1991).
[47] J. Cardy, Scaling and renormalization in statistical

physics (Cambridge University Press, Cambridge, 1996).
[48] V. S. Dotsenko and V. S. Dotsenko, Adv. Phys. 32, 129

(1983).
[49] B. N. Shalaev, Fiz. Tverd. Tela (Leningrad) 36, 3002

(1984), [Sov. Phys.– Solid State 26, 1811 (1984)].
[50] R. Shankar, Phys. Rev. Lett. 58, 2466 (1987).
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