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a b s t r a c t

The two-sample hypothesis test quantifies whether distributions p and q are different, given the
corresponding finite samples drawn from each. This problem appears in a legion of applications in
astronomy, ranging from data mining to data analysis and inference. For decades, the Kolmogorov–
Smirnov test has been astronomers’ first choice to answer this question, but it has a major drawback,
a generalization to multi-dimensional data sets is not straightforward. To fill this gap, we present
a nonparametric estimator for comparing given multi-dimensional distributions drawn from them.
This method employs a kernel function to construct an unbiased estimator of the Maximum Mean
Discrepancy (MMD) distance between the two distributions that generated the observed data. We
perform controlled numerical experiments in Gaussian, non-Gaussian, and multi-dimensional finite
sample settings and test the performance of MMD estimator in each experiment. We then discuss
some of the applications of this method in astronomy data analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Astronomical data are ubiquitous, multi-dimensional, and
time-dependent with varying quality. Modern observatories col-
lect massive amounts of data through large-scale surveys,
medium and small size programs, and single targeted observa-
tions. On-earth and space-based observatories scan the sky over
the entire electromagnetic spectrum, from X-ray wavelengths to
radio wavelengths. And now gravitational wave observatories,
with the recent discovery of gravitational waves from binary
black hole and binary neutron star systems (Abbott et al., 2016,
2017), ushered a new dimension in exploring astronomical sys-
tems. The scale and complexity of these multi-wavelength, multi-
messenger and time-dependent astronomical data from current
and near-future surveys exceed the capacities of traditional data
analysis tools and computational methods. Novel inference algo-
rithms, computational frameworks, and validation techniques are
inevitable necessities to enable new scientific discoveries.

A fundamental question that many inference algorithms and
population studies are concerned about is that if two data sam-
ples are generated from the same distribution, i.e. the two-sample
hypothesis testing. Suppose we have samples {xi|x 2 X , i 2
[1, . . . ,m]} and {yi|y 2 X , i 2 [1, . . . , n]} drawn independently
from distributions p and q respectively. The two-sample hypoth-
esis testing asks if p = q. This seemingly simple but rather

I This code is registered at the ASCL with the code entry ascl:2006.007.⇤ Corresponding author.
E-mail address: aryaf@umich.edu (A. Farahi).

sophisticated and profound question appears in a wide range of
astronomy applications, such as model comparison, model selec-
tion, hypothesis testing, goodness-of-fit evaluation, and inference,
to name a few. Despite its practical importance, the astronomical
literature has not seen a major leap in this direction. Some au-
thors explored novel approaches (Mondal et al., 2008; Freeman
et al., 2017; Modak and Bandyopadhyay, 2019); yet such studies
are scarce.

Astronomers’ first choice of the two-sample hypothesis
test is the Kolmogorov–Smirnov (K–S) test. The K–S test com-
pares the cumulative distribution function (CDF) of two sets
of data or one probability distribution function and one set of
data. While this simple, non-parametric test is popular among
astronomers, it has a major drawback that impedes its appli-
cation to a large class of problems. In its original form, this
test can only handle one-dimensional distributions for which the
CDF is uniquely defined. Despite a few attempts to extend the
K–S test beyond one-dimensional distributions (Peacock, 1983;
Fasano and Franceschini, 1987; Gosset, 1987; Lopes et al., 2008;
Harrison et al., 2015), the current popular implementations of
software packages do not support multi-dimensional distribu-
tions. Moreover, its multi-dimensional implementations often
lack theoretical guarantees or are limited in scope and applica-
tion. Other variants of the K–S test are the Cramer–von Mises
test (Darling, 1957) and Anderson–Darling (A–D) test that inherit
the same limitations of the K–S test. To this end, statisticians
proposed various approaches to perform two-sample hypothesis
testing in a multi-dimensional setting, e.g., Weiss (1960), Justel
et al. (1997), Baringhaus and Franz (2004), Gretton et al. (2012a).
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An alternative approach to quantifying the discrepancy be-
tween two samples is to use the Kullback–Leibler (K–L) diver-
gence (Kullback and Leibler, 1951). The K–L divergence is an
entropy-based method which is rapidly gaining popularity among
the astronomy community (e.g., Seehars et al., 2014; Ben-David
et al., 2015; Zhao et al., 2017; Nicola et al., 2019). However, the
K–L divergence has directionality and requires a base probability,
i.e. is an asymmetric metric. As a result, this measure is not
well-suited to the problem of two-sample hypothesis testing;
nevertheless, in certain problems, the asymmetry goes away, or
it can be symmetrized. Variations of this measure are employed
in the literature to perform hypothesis testing (e.g., Ben-David
et al., 2015; De Simone and Jacques, 2019; Nicola et al., 2019).
In contrast to the K–S test, the K–L divergence can be readily
applied to multi-dimensional distributions. In a finite sample
setting, one limitation of this method is that the K–L divergence
evaluation relies on intermediate steps to estimate the proba-
bility density of data because it requires an explicit form for
the probability density functions. Although assuming a specific
probability density function simplifies the computation, it implies
a restriction on the range of problems to which the method can be
applied to, and does not satisfy our goal of developing a general
methodology. Furthermore, computational complexity is another
major drawback of this approach. Complex space partitioning or
bias correction strategies complicate the computation of the K–L
divergence (see Wang et al., 2006, for more detailed discussions).

In this work, we introduce a distance-based two-sample test
estimator proposed by Gretton et al. (2012a). Distance metrics are
often a popular method to quantify the discrepancy between two
probability distributions. And their applications are not limited to
the two-sample hypothesis test. For example, a distance metric
that handles multi-dimensional and population-level data can be
utilized in approximate inference algorithms (Herbel et al., 2017).
A diverse set of likelihood-free methods, such as the Approximate
Bayesian Computation (ABC, Weyant et al., 2013; Akeret et al.,
2015; Ishida et al., 2015; Jennings and Madigan, 2017), rely on
comparing derived summary statistics instead of comparing two
data sets at the population level directly, an extension of these
algorithms that can compare two populations directly improves
their constraining power and broadens their applications.

The maximum mean discrepancy (MMD), a family of distance
metrics, has been developed to compute the distance between
two multi-dimensional distributions. Gretton et al. (2012a) pro-
posed a non-parametric and kernel-based estimator of MMD
given data drawn from two distributions. This estimator relies on
embedding the sample into a high dimensional ‘‘feature space’’,
known as a reproducing kernel Hilbert space (RKHS). This tech-
nique has been successfully applied to a diverse set of problems in
machine learning literature (e.g., Mitrovic et al., 2016; Muandet
et al., 2016; Ramaswamy et al., 2016; Li et al., 2017). Gretton
et al. (2012a)’s estimator does not rely on intermediate density
estimation or data binning to estimate the distance between two
probability distributions. Most importantly, this estimator comes
with theoretical guarantees. It is unbiased, is computationally
tractable, and has a fast convergence rate (Sriperumbudur et al.,
2012). These features make this novel distance estimator an en-
ticing tool for a broad range of astronomy problems, including
data mining, hypothesis testing, and inference.

The purpose of this work is threefold. First, we introduce
the MMD estimator of Gretton et al. (2012a) and compare and
contrast it with other popular methods in astronomy literature.
With a set of controlled numerical experiments, we show the
discriminating power of this estimator. Second, we provide an
application example in astronomy data analysis. As an illustrative
example, we compare the optically-selected galaxy clusters iden-
tified from the Sloan Digital Sky Survey (SDSS) DR8 data and the

Dark Energy Survey (DES) SV data. This direct comparison at the
population level allows us to perform a quality check on samples
derived from different surveys. Last, we release the open-source
software Two-sAmple TesT EstimatoR (TATTER, ).1 TATTER is
an implementation of the estimators discussed in this paper.
This tool allows the user to perform two-sample hypothesis test
seamlessly. We hope that exposure to this powerful method en-
courages the astronomy community to develop novel algorithms
and models for analyzing large, multi-dimensional data sets.

In Section 2, we begin with the problem setup and intro-
duce the two-sample hypothesis test estimators employed in this
work. In Section 3, we show the performance of these estimators
in a set of numerical experiments; and then illustrate an applica-
tion of the MMD method in Section 3.4. We conclude this work
in Section 5. There are two appendices. In Appendix A, we argue
why going to a higher dimensional ‘‘feature space’’ is propitious.
Finally, we discuss the implemented estimators’ convergence rate
of the proposed estimators and computational cost in Appendix B.

Notation: Throughout this work, h·, ·iH is employed to denote
the inner product in a Hilbert space, not an expectation value.
The expectation value with respect to probability measure p is
denoted by Ex⇠p[.].

2. Problem setup

In this section, we introduce notations and describe essential
preliminaries required to understand the proposed kernel-based
two-sample test estimator. The proof of most of the theorems
mentioned in this work is provided in Gretton et al. (2012a); thus,
we do not replicate them here. We adopt their notation, so the
reader can easily follow the proofs without the need to switch
between the notations.

2.1. Notation and problem setup

Suppose we have samples {xi | x 2 X , i 2 [1, . . . ,m]} and {yi |
y 2 X , i 2 [1, . . . , n]} drawn independently from distributions p
and q, respectively. The domain of observables2 x and y is denoted
with X . p(x) and q(y) describe the probability density function of
the observable samples x and y, respectively. We assume a finite
sample setting meaning that we do not have access to p or q
directly; instead, we have random draws from each of them. The
two-sample hypothesis testing problem asks if p = q given the
two sets of observed data.

A measure of Maximum Mean Discrepancy (MMD) squared is
defined as

MMD2[k, p, q] = Ex,x0⇠p[k(x, x0)] + Ey,y0⇠q[k(y, y0)]
� 2Ex⇠p,y⇠q[k(x, y)], (1)

where Ex⇠p[.] is the expected value under the probability mea-
sure p(x), k(x, x0) is a kernel function defined in a reproducing
kernel Hilbert space (RKHS), and x0 and y0 are independent copies
of x and y. According to Gretton et al. (2012a), two probability
densities are the same if and only if MMD2[k, p, q] = 0. There is
no restriction on the dimensionality of the domain space X which
automatically solves one of the key limitations of the K–S test. A
few examples of RKHS and an interpretation of the MMD distance
are provided in Appendix A.

In our setting, x1:m and y1:n are two observed samples from
experiment A and experiment B, where x and y are d-dimensional

1 https://github.com/afarahi/tatter.
2 Observable and random variables are used interchangeably.
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data vectors with m and n samples, respectively.3 xi and yj are
the ith and jth observed data points from the samples x and
y, respectively. For example, a sample of galaxies selected from
an optical-survey can be described with a six-dimensional data
vector xi = (Mu,g,r , size, redshift, ellipticity), where Mu, Mg , and
Mr are brightness in u, g and r bands, respectively.

MDD Estimator: An unbiased estimator of Eq. (1) in a finite
sample setting is

\MMD
2
u[k, x, y] = 1

m(m� 1)

mX

i=1

mX

j6=i

k(xi, xj)

+ 1
n(n� 1)

nX

i=1

nX

j6=i

k(yi, yj)�
2
mn

mX

i=1

nX

j=1

k(xi, yj) , (2)

where subscript u indicates the fact that this is an unbiased esti-
mator of MMD2 (Gretton et al., 2012a). We discuss the computa-
tional costs and convergence rate of this estimator in Appendix B.
Convergence rate defines how fast the estimator’s variance drops
to zero as a function of the sample size.

The user has the freedom to choose the kernel function k(., .)
and set its hyper-parameters. Representation of data with an
appropriate choice of kernel k(., .) has been shown to preserve
statistical information about the distribution (Song et al., 2013,
and for a simple justification see Appendix A). However, the
performance of the MMD estimator is sensitive to this choice.

The kernel employed in this work is a Gaussian Radial Basis
Function (RBF) kernel (see Table 3.1 in Muandet et al., 2017, for
a list of popular kernels and their properties). The Gaussian RBF
kernel has the form of

k(x, y) = exp(�� kx� yk2), (3)

where � a hyper-parameter set by the user.
Kernel Setup: The Gaussian kernel has been extensively used

in the machine learning literature and has delivered promising
results in a broad range of applications. One reason is that it
maps the domain space into an infinite-dimensional space (see
Appendix A). This allows the algorithm to capture complex, non-
linear interactions between different observables. An astronomer
might prefer to construct a kernel function motivated by the
physics of their problem (e.g., a kernel function with periodic
nature). The Gaussian kernel does not necessarily accommodate
dimensions with radically different units. We recommend that
the user renormalizes the units in practical applications. The
Gaussian kernel has one hyper-parameter that needs to be tuned.
The optimization of this hyper-parameter depends heavily on the
application and is an active area of research. We do not attempt
to optimize the results for this hyper-parameter. In this work, we
set � to

��1 = 2⇥median[{D2(xi, yj)|8 i 2 m, j 2 n}], (4)

where D(xi, yj) is the pair-wise Euclidean distance between data
points xi and yi. We find that this choice is performing reasonably
well in our numerical examples.

The MMD method is non-parametric, as it does not require
the form of p or q to be defined. As expected, this method is
symmetric under interchange of p and q. Except in evaluating the
kernel function, Eq. (2) is independent of the data dimension;
hence, the algorithm is scalable to high-dimensional data. The
MMD estimator has a fast convergence rate, with the convergence
rate of O((m + n)�

1
2 ). We compare the convergence rate of the

MMD estimator with the K–S and K–L estimators in Appendix B.

3 Instead of experiments A and B, a sample can be constructed from a
simulation, generated through a generative model, or drawn from a distribution.
This method is not restricted to experimental settings.

2.2. Estimation of the statistical significance of the null hypothesis

In a two-sample test problem, the null hypothesis is H0 : p =
q, and the alternative hypothesis is HA : p 6= q. If the probability
of observing the data, given the test statistic distribution under
the null hypothesis, exceeds a pre-determined threshold, then we
can reject the null hypothesis. The estimator’s variance under the
null hypothesis directly impacts the Type II errors for a given
significance threshold and other specifications. A Type I error
occurs when the null hypothesis is rejected, while both data sets
are generated from the same distribution (a false-positive error).
It is equivalent to the chosen excess threshold. A Type II error is
made when the distributions differ, but the null hypothesis is not
rejected (a false-negative error). It is related to the power of the
testing. There are recommended designed choices to minimize
Type II error under special specifications (e.g., Gretton et al.,
2012b). Discussing these optimization strategies is beyond the
scope of this work, but it is worth noting that there does not
exist a universally good optimization algorithm, and often there
is a bias–variance trade-off. In this work, we do not attempt to
optimize for Type II error as (1) it would increase the chance
of unintended confirmation bias, and (2) the specifications could
vary from one problem to another.

A p-value is the probability of the null distribution exceeding
the test statistic computed from the data. With this definition, the
p-value in our problem is computed via

1� p = Pr(MMD2
null[k, x, y] < MMD2

data[k, x, y]), (5)

where MMD2
null[k, x, y] and MMD2

data specify the null distribution
and an estimation of the test statistic for actual data. Here, we
employ a bootstrap algorithm to quantify the probability den-
sity function for the MMD2 statistic under the null hypothesis.
Algorithm 1 shows the steps of our bootstrap algorithm, which
is illustrated in Fig. 1. First, an aggregated data vector is con-
structed and re-shuffled. The re-shuffled aggregated data vector
is split into two data-like vectors of size m and n. Finally, the
estimator in Eq. (2) is performed on this bootstrap realization.
The above steps are repeated Nb times to get an estimation of
the probability density function under the null hypothesis. The
p-value is computed by comparing the estimated MMD with this
null distribution.

Algorithm 1 Our simulation-based bootstrap algorithm to
estimate the null distribution and p-value
1: Input: x, y,Nb, k(., .): observed samples, the number of

bootstraps, and the kernel function.
2: Output: \MMD

2
, Null, p-value: an estimation of the MMD2 for

the observed samples, drawn from the null distribution, and
p-value.

3: initialize the hyper parameters. (� , see Eq. (4))
4: \MMD

2 = MMD2(x, y, k): compute MMD2(x, y, k) with Eq. (2)
5: Z aggregate observed samples.
6:
7: for i in {1, · · · ,Nb} do
8: xboot  randomly draw m data points from Z (with

replacements)
9: yboot  randomly draw n data points from Z (with

replacements)
10: Null[i] MMD2(xboot, yboot, k)
11: end for
12:

13: p-value = count(Null > \MMD
2
)/Nb

There are approximation methods to compute Type I and Type
II errors (e.g., Gretton et al., 2009), for example, by fitting a

3
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Fig. 1. An illustration of the bootstrap procedure. Each box represents one data point. First, an aggregated data vector is constructed. Then, the aggregated data
vector is re-shuffled and split into two data-like vectors of size m and n, where m and n are the sizes of the original data vectors. We estimate the probability
density function of the MMD2 statistic under the null hypothesis from the bootstrap realizations.

Pearson distribution to its first four moments (Gretton et al.,
2012a). These methods are inaccurate and can be computationally
as expensive as the bootstrap method. Our results suggest that
the bootstrap method performs quite well. Thus, for practical
applications, the simulation-based bootstrap method might be fa-
vored, even with its computational overhead. An implementation
of Algorithm 1 is provided through TATTER.

2.3. Alternative test statistics

The key ingredient of the two-sample test is the choice of the
test statistic. In the astronomy literature, the K–S test statistic
is prevalent and has been extensively exploited. This test, which
is a non-parametric integral probability metric, characterizes the
difference between the two CDFs. Specifically, the K–S statistic
is the maximum value of the absolute difference between two
CDFs

DKS = sup
x2X

|CDF(p(x))� CDF(q(y))|, (6)

where supx is the supremum of the set of distances.
An alternative test statistic is the K–L divergence. The K–L

divergence is an entropy-based approach that recently becomes
popular among astronomers and high-energy physicists (Ben-
David et al., 2015; De Simone and Jacques, 2019). The K–L diver-
gence (DKL),

DKL(p | q) =
Z

X

p(x) ln

p(x)
q(x)

�
dx , (7)

computes a directional difference between a reference probability
distribution p and a target probability distribution q. The K–
L divergence is not invariant under exchange of p and q, thus
is not a distance metric. Due to this directionality feature, the
K–L divergence is inappropriate for the problem of two-sample
hypothesis testing; however, it is employed in the literature to
perform such a test (e.g., Ben-David et al., 2015; De Simone and
Jacques, 2019). This feature can be a limiting factor in certain
applications that require directional symmetry. To address this

limitation, we consider alternate ways of ‘‘averaging’’ the two K–
L divergences. The so-called J-divergence is equal to the average
of the two possible K–L divergence between two probability
distributions

J(p, q) = DKL(p | q) + DKL(q | p)
2

. (8)

We compare the performance of Eq. (8) with the other two test
statistics, and in the rest of this work, we refer to this symmetric
test statistic as the K–L test statistic. Unlike the K–S test, the K–L
test can handle multi-dimensional distributions.

A finite sample setting requires an estimator as the analytic
forms of p and q are out of reach. The MMD estimator is intro-
duced in Section 2.1. To estimate the K–S value, we use a Python
implementation from the Scipy package.4 We employ Wang
et al. (2006) implementation to estimate the K–L divergence.
Wang et al. (2006) proposed an unbiased k-nearest neighbors
(kNN) estimator5 of the K–L test statistic in a finite sample set-
ting. Wang et al. (2006) also show that their estimator has a faster
convergence rate with respect to the existing algorithms, and can
handle multi-dimensional data. We set the hyper-parameter k =
1 in this work. We test the sensitivity of our results to the choice
of this hyper-parameter and find that our results and conclusions
remain unchanged. TATTER provides an implementation of
the estimators discussed here and allows the user to perform a
two-sample hypothesis test with Algorithm 1.

T-test is another popular testing procedure to perform hypoth-
esis testing and is used to determine if two population means are
equal. The t-test statistic is the optimal test statistic when we are
dealing with two Gaussian distributions of same variance. We use
it to benchmark the proposed test statistics in a Gaussian setting.
The two sample t-test relies on the test statistic defined as

t = x̄� ȳ
q

s2x
m + s2y

n

, (9)

4 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_
2samp.html.
5 https://github.com/slaypni/universal-divergence.
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Fig. 2. The discriminating power of each test statistic as a function of sample size. Top Panels: The true Gaussian distributions used to draw samples from. The
mean difference between the two Gaussian distributions of unity variance is given in the title of each column. Middle Panels: Average p-value vs. sample size per
test statistic. Each sub-figure presents the average p-value over 1000 random data realizations. The gray shaded region shows the < 0.05 p-value significance region.
Bottom Panels: Statistical power vs. sample size per test statistic. Each sub-figure presents the rejection rate of the null hypothesis given p-value threshold of 0.05.
The gray region corresponds to the < 0.05% rejection rate region.

where x̄ and ȳ are the empirical means, s2x and s2y are the empirical
variances, and m and n are the sample sizes. Under the null
hypothesis, the t-statistic follows a Student-t distribution. To
reject the null hypothesis, one can compute the probability of the
tail to derive the p-value.

The statistical significance, i.e. p-value, of the K–S test and K–
L divergence is computed via the bootstrap method proposed in
Section 2.2. In Eq. (5), we replace the test statistic estimator and
the rest remains the same. We note that the Scipy implemen-
tation of the K–S test outputs a p-value. Since this p-value relies
on a two-sided asymptotic K–S distribution, we refrain using this
precomputed p-value. Our proposed bootstrap method yields a
more accurate estimation of the p-value when the data is not in
asymptotic regime, and allows the user to have a consistent way
of comparing different test statistics.

3. Controlled simulation setting

In this section, we study the performance of each test statistic
discussed in the previous section. We perform a set of controlled
numerical experiments where data points x and y are drawn
from two known distributions. We also discuss the strengths and
limitations of each estimator. Finally, we provide an application
of the proposed MMD estimator in astronomy data analysis.

In the following, we consider two probability distributions,
p and q, where p 6= q. Then, we draw m samples from each
distribution, where m = n. Given these samples, we ask if a
test statistic can reject the null hypothesis. To quantify the per-
formance of each test statistic, the average p-value is estimated
for each experimental specification. Type II error occurs when
p 6= q, but the test statistic was not sufficient to rule it out.
Smaller average p-value corresponds to a lower Type II error. For a
finite sample size, the occurrence of Type II error is inevitable, but
with a powerful test statistic, we can minimize it. An alternative
way to show a Type II error is through the rejection rate. The
rejection rate is the fraction of numerical experiments for which
the null hypothesis is rejected. Here, Type II error is equivalent
to 1 � rejection rate. When p 6= q, a rejection rate close to 1 is
desired.

3.1. Two Gaussian distributions

In the first setting, we investigate the performance of MMD,
K–S, and K–L tests with two samples drawn from two Gaussian
distributions of same variance but with different mean values.
The domain space is X = R and p and q are two Gaussian
distributions with unity variance. Their means are set to zero and
�Mean, respectively. Given p and q, m data points are randomly
drawn from each distribution. Then, Algorithm 1 is employed to
compute the p-value for each test statistic. We repeat these two
steps 1000 times to get 1000 realizations and their corresponding
p-values. We perform the steps above for multiple sample sizes
and �Mean’s, and report the average p-value per test statistic and
use the rejection rate as our performance metric.

Fig. 2 presents the performance of each metric for this setting.
The Gaussian’s mean difference, �Mean, is given in the title of
each sub-figure. Only when �Mean = 0 the null hypothesis is
correct, p = q, for the rest of the sub-figures the null hypothesis
is not true, p 6= q. The middle panel shows the trend of average
p-value for the MMD, K–S, K–L, and t-test as a function of sample
size and �Mean. The gray shaded regions correspond to < 0.05
p-value area. The bottom panel shows the rejection rate of the
null hypothesis assuming a p-value threshold of 0.05.

As expected, when the null hypothesis is true (first column),
the average p-value for all test statistics is 0.5, and the Type-
I error (rejection rate) is 5%. This finding implies that all our
bootstrap procedure gives us an unbiased estimation of the null
distribution. When the null hypothesis is false, as expected, the
t-test outperforms the non-parametric methods in rejecting the
null hypothesis and the K–L test has the worst performance. The
t-test estimator is a parametric approach with strong, restrictive
assumptions; namely, the two samples need to be drawn from
two Gaussian distributions with the same variance. Under these
assumptions, t-test is the optimal test statistic. These results also
suggest that the employed K–L divergence estimator has the least
discriminating power in a finite sample setting.

Fig. 3 presents the performance of MMD in a multivariate
normal distribution setting. Like the one-dimensional setting,

5
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Fig. 3. Performance of the MMD test statistic in a multi-dimensional setting. Data are drawn from two multivariate normal distributions of diagonal unity covariance
and with mean difference �

���!mean 2 {[0]d, [0.2]d, [0.4]d}. The top panels are the average p-values and the bottom panels are the rejection rates for data of size
m 2 {20, 40, 80}.

Fig. 4. First and Third Panels: The distribution of one random realization of data. Second and Fourth Panels: The null distribution and the estimated MMD, K–S,
K–L divergence test statistics for data shown in their left panel. Two Left (Right) Panels: Compares a Gaussian (Gamma) distribution with a log-Normal distribution
of matched mean and variance.

the difference between two multivariate normal distributions
is in their mean vector. Furthermore, we assume no correla-
tion between different Gaussian components. Fig. 3 shows the
average p-value and the rejection rate of 2000 random realiza-
tions of two multivariate normal distributions with �

���!mean 2
{[0]d, [0.2]d, [0.4]d} where d is the data vector dimension. This
example demonstrates the effectiveness of the MMD test statistic
in a multi-dimensional setting. The user should check the perfor-
mance of MMD under their model specification to ensure this is
appropriate for their application.

It is important to note that the discriminating power of the
MMD test statistic might improve with an appropriate choice
of the kernel function and hyper-parameter. We do not attempt
to optimize the kernel function for the reasons mentioned in

Section 3.4. For example, since the only difference between p and
q, in this example, is in their means, a Gaussian kernel might be
too flexible (see Appendix A for an interpretation of the Gaussian
kernel).

3.2. Asymmetric distributions

Next, we compare a Gaussian and a Gamma distribution with
a log-Normal distribution. We match the means and variances
of the distributions. Similar to the above experiments, first,
m samples are drawn from each distribution. Then, the p-value is
computed for each test statistic via Algorithm 1. Finally, the aver-
age p-value is computed for 1000 data realizations. An example
of a single data realization is shown in Fig. 4, and performance

6
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Fig. 5. Performance of the MMD, K–S, and K–L tests as discriminator of a log-Normal distribution and a Gaussian distribution of matched mean and variance. Left
Panel: The average p-value as a function of the sample size. The gray shaded region shows < 0.05 significance region. Right Panel: Rejection rate as a function of
sample size.

Fig. 6. Performance of MMD as a function of the kernel width inverse. Left Panel: The average p-value. Right Panel: Statistical power of MMD. Different colors
(line-types) correspond to different sample sizes.

of each test statistic is presented in Fig. 5. Since the mean and
variance of the two distributions are matched, only a test statistic
sensitive to higher-order statistics can effectively reject the null
hypothesis.

Fig. 4 presents one single realization with 200 random samples
from each distribution. The left panels show the distribution of
this realization. The right panels show the distribution of the null
hypothesis with 5000 bootstrap re-sampling of the data for each
test statistic. The MMD estimator achieves the lowest average
p-value and the K–L test has the poorest performance in this
setting. This experiment illustrates the fact that the MMD estima-
tor can achieve good performance while the mean and variance
of the two non identical distributions are the same. We note
that Gamma and log-normal distributions are both asymmetric
distributions with a lower bound of zero (the two right panels of
Fig. 4).

Fig. 5 shows the rejection rate of the MMD (green line),
K–L (blue dotted–dashed line), and K–S (dashed yellow line) test
statistics. While the K–S test requires⇠2000 samples to reject the
null hypothesis with a rejection rate close to > 95%, the MMD
estimator achieves a rejection rate of 95% with less than 1000
data points.

3.3. Sensitivity analysis to the kernel width

The MMD test statistic’s performance is sensitive to the choice
of kernel function and its hyperparameters. The kernel employed
in this work has one free parameter, � , which is equivalent to the
inverse square of a Gaussian kernel width. While in this work, we
do not attempt to optimize the two sample hypothesis test for

this hyper-parameter, in this section, we explore the sensitivity
of two sample test to the Gaussian kernel width. Similar to
Section 3.1, we employ two Gaussian distributions of unity width
and mean difference �mean = 0.2 to draw our data points.

Fig. 6 shows the average p-value (left panel) and the rejection
rate (right panel) based on 2000 data realizations as a function of
the inverse of kernel width. As the kernel width becomes smaller
(� > 1), MMD becomes less optimal and loses its statistical
power. By increasing the kernel width, the average p-value and
rejection rate improves and then plateau (� < 0.1). Two Gaussian
distributions of the same width have only one free parameter,
and that is the difference between their means. Therefore, larger
the kernel corresponds to less contribution from the higher-order
statistics, and eventually, the test becomes dominated by the
mean statistic (see Appendix A). Increasing the kernel width in a
Gaussian setting makes it more optimal and its statistical power
improves. But care should be taken in generalizing this argument
to non-Gaussian distributions. By definition, a non-Gaussian dis-
tribution has higher-order statistics, implying that these curves
do not plateau. There is an optimal kernel width which depends
on the sample size and the density shape of distributions.

3.4. An application in astronomy

The two-sample hypothesis test is an essential tool in studying
features of data derived from multiple surveys or comparing
simulation outcomes with empirical data. Comparing properties
of identified sources from multiple surveys and comparing their
distributions allow us to assess the homogeneity of the survey
products and learn about systematics. The two-sample hypoth-
esis test may be used to quantify if combining two samples is

7
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Fig. 7. Pairwise comparison of the observables of the redMaPPer cluster catalogs derived from the SDSS DR8 data and DES-SV galaxy catalogs for six redshift bins.
The observables are optical-richness and redshift, x = (�RM, z). The blue histograms are the null distributions, PSDSS(�RM, z) = PDES SV(�RM, z), and the markers show
the estimated MMD distance.

statistically justified. For example, two data sets are additive if
they are drawn from the same distribution. In this section, we
provide one illustrative example of the two-sample hypothesis
test with the MMD method in astronomy. The purpose of this
section is to give the reader a flavor of applications of two-sample
hypothesis test with the MMD method. In an online tutorial of
the code, we provide extra examples such as comparing labeled
images of handwritten digits.

Can we combine galaxy cluster samples derived from the
SDSS and DES surveys? Here, we take galaxy clusters as an
example. Clusters of galaxies, hosted by dark matter halos, are
the most massive structures held together by gravity (Allen et al.,
2011). The population statistic of these systems is a sensitive
probe of the cosmological parameters. It is essential to com-
pare and contrast the statistical properties of samples of clusters
identified from large-scale surveys. Suppose there are surveys
A and B. If the galaxies are selected in the same way and the
same cluster-finding algorithm is applied to these two data sets,
we do not expect the joint distribution of cluster observables to
be systematically different. If we find that they are significantly
different then there are potential systematics that have not been
accounted for and cluster samples cannot be combined.

In Fig. 7, we evaluate the MMD distance between distribu-
tions of the redMaPPer cluster observables, optical-richness and
redshift x = (�RM, z), identified from the Sloan Digital Sky
Survey (SDSS, Rykoff et al., 2014) DR8 data and the Dark Energy
Survey (DES, Rykoff et al., 2016) Science Verification (SV) data.6
�RM is a measure of the number of red-sequence galaxies above a

6 http://risa.stanford.edu/redmapper/.

luminosity threshold. MMD is insensitive to the overall normal-
ization or the total number of systems. Thus there is no need to
correct for the difference in the survey area.

In Fig. 7, the blue histograms show the bootstrapped null
distributions, i.e. PSDSS(�RM, z) = PDES SV(�RM, z), and the markers
show the estimated MMD distance. The estimated MMD distance
between the DES and SDSS cluster samples for low redshift bins,
z < 0.4, is consistent with the null hypothesis, while cluster
statistics are significantly different for high redshift, z > 0.4,
samples. The DES SV sample is deeper and has better photometry
compared to the SDSS sample. The SDSS galaxy sample is not
reliable for finding clusters with z > 0.4. This is consistent with
the results presented in Fig. 7. Low (high) redshift clusters derived
from SDSS and DES SV data have the same (different) underlying
joint distribution. These results suggest that there are systematics
in one or both data sets which have altered the joint distribution
of observables for high redshift clusters.

4. Discussion

Our results suggest that the MMD distance estimator with a
Gaussian kernel consistently outperforms a K–L divergence-based
estimator in the context of the two-sample hypothesis test. For
one-dimensional data, the K–S test and MMD test have similar
performance. For multi-dimensional data, the MMD test is a more
reliable choice than the divergence-based tests.

We note that the MMD estimator in Eq. (2) is not an op-
timal estimator, and its performance is sensitive to the kernel
choice and its hyperparameters. Suppose the forms of p and
q are known. In that case, one can develop a parametric but
an optimal estimator (the Neyman–Pearson lemma, Neyman and
Pearson, 1933). Distance based test statistics, such as MMD, are

8
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not the only class of multivariate test statistics. Another class of
test statistics employs rank statistics. Rank-based test statistics
are also proposed to perform two-sample hypothesis test (e.g,
Mondal et al., 2008; Modak and Bandyopadhyay, 2019).

In the past few years, there has been a proliferation of ap-
plications of the K–L divergence in astronomy (e.g., Bovy, 2010;
Ramos Almeida et al., 2011; Seehars et al., 2014; Ben-David et al.,
2015; Sanderson et al., 2015; Charnock et al., 2017; Wang et al.,
2017; Zhao et al., 2017; Nicola et al., 2019). Our code provides
a complementary yet powerful approach for such studies in as-
tronomy. The K–L divergence is a powerful tool in quantifying the
information loss, for example, where a complex distribution is
approximated with a simpler model. But in certain applications
where a distance metric is more appropriate, the MMD test
statistic might be a better choice.

Seehars et al. (2014) and Nicola et al. (2019) proposed the K–L
divergence as a quantifier of tension between two posterior dis-
tributions. They dubbed this new quantifier the ‘‘surprise’’. They
used a Gaussian statistic to calibrate and compute the statistical
significance of the ‘‘surprise’’ values. Zhao et al. (2017) employed
this approach and computed the ‘‘surprise’’ value for posteriors
estimated with several cosmological probes. Zhao et al. (2017)
then concluded that the employed observational data favor the
dynamical dark energy model over the constant dark energy
model. A limitation of this approach is that the K–L divergence
is not a proper metric, i.e. asymmetric under interchanging ex-
periments A and B.7 More importantly, they assumed that the
posteriors are multivariate normal distributions; hence they took
a parametric approach. In this application, the MMD distance,
without any modification, cannot be used as a tension metric
either. MMD distance with a Gaussian kernel compares all mo-
ments of two distributions, and we do not expect two consistent
posteriors have the same means, variances, and higher moments.
The estimated distance is also not directly interpretable as the
statistical significance of tension between two posteriors needs
to be calibrated. In this application, however, an MMD-based
test statistic can be employed to perform model comparison via
posterior predictive checks.

While MMD test statistic is a powerful tool, it comes with
its own challenges. The fact that the MMD method relies on
hyper-parameters is both an opportunity and a challenge. These
hyper-parameters give it flexibility and can be tuned to improve
the performance of the test. The MMD method can benefit from
developing physically motivated kernels and robust approaches
in tuning the kernel hyper-parameter(s). However, extreme cau-
tion should be exercised in designing the kernel and the tuning
procedure before applying it to data. One can tune the hyper-
parameters until it reaches the desired results. To prevent de-
ceptive interpretation or data dredging (Head et al., 2015), a
blinding procedure is highly recommended. A blinding procedure
decreases the chance of confirmation bias (MacCoun and Perl-
mutter, 2015), especially in applications of a two-sample test
where the results might be sensitive to the choice of hyper-
parameter(s). In our experiments, we decided to fix the model
hyper-parameter in the beginning and did not attempt to tune,
or ‘‘learn’’ it.

5. Conclusion

The two-sample hypothesis test is one of the most ubiquitous
problems in statistical analysis and data mining. Despite its im-
portance, there has not been significant progress in this direction
in the astronomy literature. In this paper, we present the MMD

7 Surprise(A, B) 6= Surprise(B, A), where A and B are two different
experiments.

method to perform the two-sample hypothesis test. MMD quan-
tifies the distance between two multi-dimensional distributions.
This novel method employs techniques from machine learning
literature to construct a scalable, robust, and unbiased probability
density distance estimator. This approach is non-parametric and
distribution free. This work studies the properties of the MMD
method and compares it with two other popular test statistics,
the K–S and K–L tests. Our findings suggest that the MMD esti-
mator with a Gaussian kernel outperforms the alternatives in a
realistic finite-sample setting.

We release TATTER software as a part of this work. TATTER
is an open-source software that allows user to perform two-

sample hypothesis test employing the estimators discussed in this
work. The source code, as well as a tutorial and examples, can be
found in the public code repository. TATTER implementation
supports multi-processing jobs and allows the user to run multi-
ple parallel jobs on local computing machines or external clusters
and supercomputers, without any effort on the user’s side.

Astronomical data are multi-population, multi-dimensional,
time-varying, and large-scale in nature. To extract pattern and
information from such complex data sets, it is a necessity for
the community to develop novel, scalable, and robust algorithms.
Given the features of the MMD method, we are hopeful that
exposure to this new method will empower the community to
tackle new scientific problems and will be employed in address-
ing further problems in astronomy, ranging from issues in data
mining, model comparison, and hypothesis testing to developing
new inference algorithms.
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Appendix A. An interpretation of RKHS and the MMD distance

Suppose we have distributions p and q over a set X . The MMD
is defined by a feature map � : X ! H where H is an RKHS. The
MMD value can be computed via

MMD[p, q] = kEp[�(x)]� Eq[�(x)]kH = kµp � µqkH. (A.1)

where µp/q = Ep/q[�(x)]. Now suppose �(x) = x and X = H =
Rn. Then MMD becomes

MMD[p, q] = kEp[�(x)]�Eq[�(x)]kRn = kEp[x]�Eq[x]kRn . (A.2)

This MMD is simply the norm distance between the means of the
two distributions. Therefore, this test cannot distinguish between
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two different distributions with similar mean. This is not ideal as
this mapping is not general and has limited applications. Now,
suppose there is a projection map An0⇥n where n0 < n, i.e. �(x) =
Ax, which maps the random variable x to a lower dimension. This
MMD leads to

MMD[p, q] = kEp[�(x)]� Eq[�(x)]kRn = kA(Ep[x]� Eq[x])kRn .

(A.3)

This MMD is even less discriminate, as it just compares the
projected means of distributions in a sub-space of the domain
space. Mapping the random variable x to a higher dimensional
space is more powerful. Suppose �(x) = (x, x2), the corresponding
MMD is

MMD[p, q] = kEp[�(x)]� Eq[�(x)]kRn

= k
�
Ep[x]� Eq[x], Ep[x2]� Eq[x2]

�
kR2n

=
q
(Ep[x]� Eq[x])2 + (Ep[x2]� Eq[x2])2. (A.4)

The above MMD is more powerful than the first two as it contains
more information, mean and variance. But still this is not suffi-
cient to distinguish between distributions with similar mean and
variance but different higher moments statistics. Taking x into
a higher dimensional space increases the number of moments
that appears in the MMD, which leads to an enhancement in the
discriminating power of MMD.

The Gaussian kernel is proposed as a robust kernel to com-
pute the MMD test statistic. The corresponding feature map of
this kernel has infinite dimension, which implies that its em-
bedded RKHS contains information about all moments of these
two distributions. In theory, with infinite sample size, MMD
via the Gaussian kernel is able to distinguish between any two
non-identical probability distributions. This kernel has the form
of

k(x, y) = exp(�� kx� yk2), (A.5)

with � as a hyper-parameter. Its corresponding feature map,
assuming x is one-dimensional, is

�(x) = exp(�� x2)

"
1,

r
2�
1! x,

r
4� 2

2! x2,

r
8� 3

3! x3, . . .

#
. (A.6)

In the above equation, � can be interpreted as weight of each
moment in the MMD computation. Smaller � implies that a fewer
number of moments contribute to the MMD test statistic.

Appendix B. Notes on convergence rate and computational
costs of the proposed estimators

In a finite sample setting, each estimator has an inherent
variance that goes to zero as the sample size increases. We
define ‘‘convergence rate’’ as how fast this inherent variance as
a function of the sample size goes to zero. This gives us a hint
on how much a signal can be enhanced by increasing the sample
size. Fig. 8 shows the convergence rate of the three estimators
discussed in this work.

To compute the convergence rate, we take three steps. First,
two sets of data points of size m are drawn from a Gaussian
distribution with mean zero and unity variance. Then, we esti-
mate their MMD distance, K–S value, and K–L divergence. We
repeat these two steps for 500 times. Finally, we compute the
standard deviation of the estimated test statistics per sample size
and estimator. Fig. 8 is the standard deviation of these estimators.
Because the normalization is irrelevant, all normalized with the
variance of the estimator at m = 20. Here, it is critical to
distinguish between MMD2

u[k, p, q] and MMDu[k, p, q]. The MMD

Fig. 8. The convergence rate of the MMD, K–S, and K–L divergence estimators
as a function of the sample size. The y-axis is the normalized variance of the
estimators per test statistic.

Fig. 9. The execution time of the MMD, K–S, and K–L divergence estimators as
a function of sample size.

estimator in Eq. (2) is an estimator of MMD2
u[k, p, q] and not the

original test statistic MMDu[k, p, q]. Therefore, one needs to be
careful about how to interpret this figure. If the convergence rate
of the test statistic concerned all have similar convergence rate,
with a rate of/ m�0.5, this implies that if p 6= q and a test statistic
gives us the largest signal, i.e. lowest p-value, there is no m0 > m
that another test statistic gives us a larger signal.

Given m data points from distribution p and n from distribu-
tion q, Eq. (2) implies that the computational cost of the proposed
MMD estimator is O((m + n)2). This expectation matches the
experimental results shown in Fig. 9, where the execution time
of the MMD estimator is compared with the K–S and K–L test
estimators employed in this work. To compute the execution
time, we take two steps. First, two sets of data points of size
m are drawn from a Gaussian distribution with mean zero and
unity variance. Then, we record the clock time of estimating
MMD distance, K–S value, and K–L divergence. The K–L test
estimator is computationally the most expensive algorithm of the
three. Both MMD and K–L test estimators have a similar rate
of increase in computational cost as a function of the sample
size, / m2. Zaremba et al. (2013) proposed an alternative MMD
estimator which is computationally faster by a few orders of
magnitude. However, the proposed estimator sacrifices variance
for speed. For most practical applications in astronomy, the es-
timator in Eq. (2) seems to work the best, as it has the smallest
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variance and is computationally tractable, even with large sample
size data. To manage the computational costs for a large data
set, the sample can be divided into c equal chunks. The average
MMD of all chunks is a good proxy of the MMD distance for this
sample. It brings down the execution time to O((m + n)2/c2). To
take advantage of machines with multi-processors, the TATTER
implementation supports multi-processing jobs and allows the
user to run several parallel jobs simultaneously, without any
effort on the user’s side.
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