Hardening Circuit-Design IP Against
Reverse-Engineering Attacks

Animesh Chhotaray and Thomas Shrimpton

University of Florida

Abstract. Design-hiding techniques are a central piece of academic and industrial efforts
to protect electronic circuits from being reverse-engineered. However, these techniques have
lacked a principled foundation to guide their design and security evaluation, leading to a long
line of broken schemes. In this paper, we begin to lay this missing foundation.

We establish formal syntax for design-hiding (DH) schemes, a cryptographic primitive that
encompasses all known design-stage methods to hide the circuit that is handed to a (potentially
adversarial) foundry for fabrication. We give two security notions for this primitive: function
recovery (FR) and key recovery (KR). The former is the ostensible goal of design-hiding
methods to prevent reverse-engineering the functionality of the circuit, but most prior work
has focused on the latter. We then present the first provably (FR,KR)-secure DH scheme,
OneChaff, 4. A side-benefit of our security proof is a framework for analyzing a broad class of
new DH schemes. We finish by unpacking our main security result, to provide parameter-setting
guidance.

Keywords: - cryptography - provable security - design hiding - hardware obfuscation - logic
locking - logic encryption - IC camouflaging

1 Introduction

Modern integrated-circuits (ICs, or “chips”) are the product of a globally distributed supply-
chain [TI19]. Much of this is driven by economics: the cost of building and operating a chip
fabrication facility is exorbitant, so circuit designers are forced to send their digital intellectual
property (IP) to external foundries for fabrication. In 2018, just ten foundries accounted for more
than 95% of the chip-fabrication market [Tre18]. Given the lack of choice they have concerning
who will fabricate and package their IP into chips, IP authors are motivated to protect their high-
value circuit designs from being reverse-engineered by untrusted foundries, as this can lead to IP
theft, counterfeiting, or other misuse.

These threats are enabled when the foundry obtains (effectively) the gate-and-wire layout for
the circuit to be fabricated. Thus, the last decade has seen a surge in research on methods to “hide”
the circuit IP [SPJ19]. We refer to such methods as design-hiding (DH) schemes. An important
constraint on DH schemes is that the IP author still needs the foundry to fabricate something
useful; simply applying traditional encryption to the gate-and-wire layout and handing the resulting
ciphertext to the foundry does not suffice. (We discuss relation to other cryptographic primitives
like program obfuscation, multi-party computation and function secret-sharing in Section 3.1.)

Framing the problem. Figure 1 gives a simplified picture of the setting in which DH techniques
are typically deployed. An IP author attempts to hide (Figure 1(a)) the underlying functionality F'
that its plaintext circuit computes by presenting the foundry with an opaque version of the circuit.
The threat assumption here is that the foundry will attempt to uncover F' that enables profitable end
goals (e.g., counterfeiting). Upon receiving the opaque circuit, the foundry is meant to fabricate it
(Figure 1(b)) into physical chips that compute whatever the opaque circuit does. These chips will
likely not compute F, but this functionality can be restored (Figure 1(c)) by the IP author or its

2 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

e _ gooomn O
1o S| =
O e e, EE
IP author Original Circuit Opaque Chip End user
]
; i Restore | *=
Hide Fabncate’ Restored
N Chip
e, O
- 7}_3: uh-u Q
Opagque Circuit Foundry IP author
(a) (b) (c)

Figure 1: Simplified view of the setting for Design-Hiding schemes. The IP author is involved in
hiding (a) and restoring (c) chips. The (potentially malicious) foundry controls fabrication (b) of
chips.

designated proxies. Intuitively, the IP author should be the only party capable of producing a chip
that computes F, via its restoration process.

Chips that have been restored may enter the market and are available for purchase by the
end-user.

Characterizing prior approaches. Broadly speaking, prior work on DH schemes falls into three
categories: logic locking [RKMO08, ZAMKHS 19, SLP*19], IC camouflaging [RSSK 13, VPHT 16,
SLP*19], and split manufacturing [RSK 13, SAFT16]. Logic-locking' techniques are employed
when an IP author must outsource the entire fabrication process to an untrusted, third-party foundry.
Here, the foundry is provided a complete circuit description (modulo, perhaps, a small block of
uninitialized write-once, tamper-resistant memory) to fabricate. This is the setting most commonly
considered in the literature on circuit-design hiding. Split manufacturing primarily aims to prevent
an untrusted foundry from inserting hardware-trojans into the IP author’s circuit [DFS16]; as the
name suggests, the fabrication of chips is spread across multiple parties, one of which is (typically)
the IP author or a trusted proxy. When the trust model is altered, so that the IP author trusts the
foundry but not the end user, IC camouflaging methods [CBWC12, VPHT 16] can be employed.
Here, the foundry fabricates an opaque circuit that contains several “camouflaged” logic cells. An
end user that purchases fabricated chips from the market does not know the functionality of these
camouflaged cells and hence will fail to recover the hidden design.

Our focus will be on adversarial foundries. As such, IC camouflaging is out of scope. Split
manufacturing targets adversarial foundries, but it requires (effectively) that the IP author has
fabrication capabilities. This is most often not the case, in practice. Thus, we drill down on
the logic-locking approach to hiding IP from untrusted foundries, and building DH schemes that
are provably secure in the attack model assumed by logic-locking schemes. Here, the foundry
has unrestricted access® to the opaque circuit and full control over the entire fabrication process,
making this a challenging setting. We note that the foundry may also play the role of an end-user
by purchasing packaged (restored) chips from the market. By running the chips on inputs of its
choosing, it may learn the value of the original circuit design on a subset of inputs. Finally, we
note that although our focus is on the logic-locking setting, our syntax also covers IC camouflaging
and split manufacturing techniques.

Advancing the state of the art. Almost all logic-locking schemes have been shown to be
vulnerable to efficient attacks, e.g., [SRM15, XSTF17, SZ17, SRZ18, YMSR17a, SLM*17a,
SLR™19, ZJK17, Chel8, SS19, YTS19] that allows the foundry to define the functionality F in

IThis is one of several monikers used in the hardware community, others include hardware obfuscation, logic encryption,
design withholding and encryption.

2We use the racially neutral term unrestricted access instead of whitebox access to a circuit/function. Similarly, we use
oracle access instead of blackbox access.

Animesh Chhotaray and Thomas Shrimpton 3

full, given the opaque circuit and the ability to obtain input-output pairs (X, F/(X)). We believe
the root cause to be the lack of a principled, provable-security foundation for the area, i.e., a formal,
syntactic definition of what a logic-locking (more generally, a DH) scheme is, and one or more
formal security notions that capture the intended attack model and adversarial goals. We are not
alone in this belief: in their 2019 paper that broke SFLL-HD [YSN*17], Sirone and Subramanyan
state

“Our results reinforce the observation that all logic locking schemes appear to be
vulnerable to attack. We assert this is because the logic locking community has not
adopted notions of provable security from cryptography.” [SS19]

Crucially, the CCS’17 paper that presented SFLL-HD claimed provable security, because it resisted
three prominent attacks. Sirone and Subramanyan’s subsequent FALL attack [SS19] highlights the
danger of such claims. A scheme should claim security, explicitly scoped by a principled and well
defined security notion, only if it provably thwarts all (suitably efficient) attacks that are admitted
by that notion.

In light of all of this, we make three primary contributions to the state of the art:

1. We formalize DH schemes as an abstract, syntactic object. A DH scheme will consist of two
component algorithms, Hide and Restore, that correspond to the hiding and restoration phases
just discussed. In addition, we elevate the fabrication step, of turning circuit descriptions
(necessarily visible to the foundry) into fully packaged chips (which require considerable
resources and expertise to “open” and analyze), to an explicit algorithm Fab. This has
important implications for security that have previously not been surfaced.

2. We establish security notions that capture the capabilities, and goals, of an adversarial
foundry. These notions make formal the attack model considered in prior works, and attends
to details that have sometimes been quietly elided, e.g., a priori knowledge about the hidden
function F’ that the foundry may have.

3. We give the first DH scheme, OneChaff, 4, that provably protects a broad class of functions
(or their circuit representation) against reverse-engineering attacks. Along the way, we
observe that certain types of “simple” functions cannot be protected by any DH scheme.

2 Overview of Contributions

We now provide a more detailed overview of our contributions, before engaging with the technical
core of the paper.

Formal foundations for DH schemes: Syntax. Notably absent from the area is a provable-
security foundation for the design and analysis of DH schemes. Very few papers in the area offer
anything along these lines. The works that do [YSNT17, MZGT17, LSMT16, SPJ19, SLPT19]
fall short of what is needed, e.g., by giving syntactic descriptions that are imprecise or clearly
mismatch existing schemes.

Such a foundation begins with a precise definition of a DH scheme as a syntactic object, i.e.,
what are the component algorithms that must be realized in a concrete scheme.

So, we begin by providing a formal syntax (in Section 5) for DH schemes, and our formal-
ization captures all currently known methods of design-stage circuit hiding. Specifically, a DH
scheme is a pair of algorithms (Hide, Restore) that abstract the portions (a) and (c) of Figure 1,
respectively. Loosely, the design-hiding algorithm Hide takes as input a circuit Cr (and some
design parameters 6), and it returns an opaque circuit C'1,, along with the associated hiding key Ko .
The design-restoring algorithm Restore takes an opaque chip Cy,, a hiding key Ko and design
parameters 6 as inputs; it returns either a restored chip Cg or an error symbol L, i.e, an indication
that restoring has failed.

4 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

The opaque circuit is transformed into a chip by a separate chip-fabrication algorithm Fab
that takes a circuit C7, and design parameters as inputs and returns a chip Cr. Notice that we
use the heavy typeface in Cy, to distinguish between unrestricted access to circuits (e.g. Cr,) and
oracle access to chips. This is necessary as otherwise the foundry can purchase a restored chip
and use invasive attacks [EHP19] to read the hiding key from (tamperproof) memory. In this
work, we consider such attacks to be out of scope as protecting against invasive attacks will likely
require design of special hardware like active shields [CDG™ 14] and are hence, orthogonal to the
development of DH schemes. We note that no prior work considered the fabrication process, which
turns circuits into chips, as a first-class syntactic primitive. The effect is that fabrication-specific
security issues could not be cleanly surfaced. We will see that making the fabrication process
explicit uncovers an important connection between the security of DH schemes, and detecting
stealthy hardware trojans (in packaged chips). More on this in a moment.

Formal foundations: Security notions. Given a precise description of what a DH scheme is,
we next define formal notions of what it means for a DH scheme (however it is realized) to be
secure. An intuitive definition of reverse-engineering the opaque circuit is to recover from it, the
hidden IP F' by any means. But literature has tended to focus on attacks (and countermeasures)
that attempt to recover the secret hiding key K. Thus, we give two formal notions of security
(in Section 6): function recovery (FR) and key recovery (KR). In both notions, the adversary is
provided unrestricted access to the opaque circuit, and various oracles that abstractly capture the
powers of a foundry.

In the KR notion, the adversary’s goal is to return a key K that is equivalent to K¢, in the
sense that when one restores the functionality of an honestly fabricated chip using either K or Ko,
we get restored chips with identical functionalities.

The FR notion captures a stronger attack model. In it, the adversary’s goal is to find any chip
that is functionally equivalent to F'. As one expects, KR-insecurity implies FR-insecurity: if you
can recover a key K equivalent to K, then you can win the FR game by returning an honestly
fabricated chip restored with K. The converse is not necessarily true, i.e., reverse-engineering
the hidden functionality of the opaque circuit does not necessarily require recovering something
equivalent to the hiding key.

We note that certain kinds of functions cannot be protected by any DH scheme in the logic-
locking setting, where the foundry may purchase honest chips and thereby learn input-output pairs
of its choosing. For example, if the domain of the chip is small, the functionality of the chip can be
recovered by querying the chip on its entire domain. In the case of Boolean functions, those whose
decision-tree representations have small depth/size cannot be hidden [KM93], nor can those whose
Fourier spectra contain relatively few significant components [GOS™ 11]. So, while our security
notions are agnostic to structural characteristics of the function(s) one wishes to hide, our security
results will surface this concern.

We also note that our security notions allow for fully malicious foundries that may fabricate
arbitrary, “dishonest” chips, and submit these to be restored with the secret hiding-key K. The
chip may have been fabricated from the opaque circuit, but (say) with an embedded hardware trojan
that outputs Ko when triggered on a particular input. Unless knowledge of the secret K suffices
to allow the Restore algorithm to detect such a trojan (and alert the IP author not to proceed), the
restored chip can be run by the foundry (acting as user), leaking K and allowing it to win the
FR game. Given the state of the art in trojan detection, we know of no remotely practical DH
scheme that can be FR-secure against fully malicious foundries. Thus, we restrict our attention to
designing DH schemes that are secure against honest-but-curious foundries, i.e., ones that will try
to reverse-engineer the functionality of the IP, but will only fabricate chips that adhere to the IP
author’s opaque circuit. This is in keeping with all prior work on DH schemes.

A new family of DH schemes: OneChaff. We introduce a family of DH schemes that we
call OneChaff (see Section 7), and analyze a particular scheme OneChaff; 4 in this family. In
OneChaff, 4, the Hide algorithm takes inspiration from SFLL-flex [YSNT17] as it encodes a single

Animesh Chhotaray and Thomas Shrimpton 5

n-input-bit Boolean function H (one “chaff” function) and an uninitialized lookup table Tab in
the opaque circuit. While SFLL-flex allows arbitrary H, in our OneChaff, 4 scheme, the chaff I
matches the hidden function F', except on A € N uniformly chosen inputs. These are the so-called
distinguishing inputs (DIs) for the pair (H, F'). The hiding key K encodes the correct input-
output behaviors on the DIs. (Practical Hide algorithms will have A < 2™.) On input of a key K,
chip Cy, and design parameters 6, the Restore algorithm in OneChaff, 4 loads the key K into the
(write-once, tamper-resistant) uninitialized lookup table of the chip. Under honest operation, key K
is equal to K.

Proving security of OneChaff, , for Boolean functions. After giving our foundations for DH
schemes and introducing the OneChaff family of schemes, the remainder of this work is spent show-
ing that OneChaff, 4 provably prevents full recovery of Boolean functions in the presence of honest-
but-curious adversarial foundries. While most real-world circuits do not compute functions return-
ing a single bit, several prominent logic-locking schemes [XS16, YMRS16, YSST17, YSN*T17]
only aim to hide Boolean functions. Moreover, no provably secure scheme exists for circuits
implementing functions from this “base” class. We note that for circuits with multiple output bits,
one can attempt to hide Boolean sub-functions that are determined by the transitive fan-in cone*
(TFC) of individual output bits.

Our main security result (Theorem 3) gives an upperbound on the probability that a computa-
tionally bounded, honest-but-curious foundry manages to win the FR game against OneChaf, 4.
To the best of our knowledge, this is the first positive provable-security result on DH schemes.

Security holds for Boolean functions that are not “simple” in the sense we mentioned earlier
(no DH scheme can hide those) under some assumptions about the a priori knowledge that the
adversary has about F'. All prior schemes assume that the adversary has no a priori knowledge of F'.
Such an assumption is unrealistic and also makes the adversary weak as the initial “guess” space of
the adversary is the set of all Boolean functions. In our FR analysis of OneChaff, 4, we assume
that the adversary knows a priori the hamming weight h, i.e., the number of inputs that cause F'
to output one. This narrows the initial “guess space” to Boolean functions that have hamming
weight of h. Also, the hamming-weight parameter allows us to capture the fact that the number of
functions in the guess space of the adversary increases exponentially in . Hence, functions with
hamming weight close to 2"~ ! will be more secure compared to functions with hamming weights
close to zero or 2. This is also intuitive and in agreement to a result from learning theory that
states that a random Boolean function (with sufficiently large domain) will not be simple, as it will
lack the highly concentrated Fourier spectral structure that is typically needed for a function to be
learnable. Note that a random Boolean function will have expected hamming weight close to 271,

Our analysis essentially bounds the number of functions that remain in the adversary’s guess
space after some number of true input-output observations (X1, F'(X1)),..., (Xq, F(X,)) are
(adaptively) obtained. Intuitively, if a large number of functions remain in the guess space, then
the probability of winning the FR-game will be small, and conversely if the adversary is able to
eliminate all but a few functions, the adversary’s winning probability will be close to one.

From Theorem 3, and the analysis leading to it, we can glean some useful observations. In
particular, the IP author should use OneChaff, 4 to protect Boolean functions (or Boolean sub-
functions) that have large domains, and hamming weights not too close to 0 or 2". Functions
with small domains cannot be hidden by any DH scheme, at least not without severely restrictive
assumptions on the adversary. When the hamming weight tends towards O or 2", the function tends
towards a constant function. Intuitively, as the (known) hamming weight of the hidden function
moves away from 2"~ ! towards either O or 27, the number of possible functions decreases. This
makes it more likely, although not necessarily “likely”, that the hidden function can be guessed
after seeing the opaque circuit and some true (X, F'(X)) pairs. Finally, the IP author should choose
to make A as large as is feasible. Intuitively, if A is small, the number of functions that remain
in the adversary’s guess space after it gets access to the opaque circuit (that encodes chaff H and

3The transitive fan-in cone of an output bit in a function is the smallest subgraph in the DAG (circuit) representation that
connects the primary inputs to the output bit.

6 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

X1

e s o B
2

« 4 AND — | AND
x, | OR X OR Skl
Xq ‘

(a) (b)

Figure 2: Random-logic locking (RLL) of a simple circuit. a) IP author’s original circuit Cr b)
Opagque circuit C', obtained using RLL. When K = 0, the opaque circuit is correctly restored, i.e.,
Cr(0,X) = Cp(X) for all inputs X = x1292324. The randomness in RLL is in the selection of
the wire where the XOR gate will be inserted; in this example, RLL had seven choice of wires in
CFp.

a lookup table 'l”z%) will also be small compared to large A. Note that the new guess space will
contain only functions that have a hamming weight of h (due to its a priori knowledge of the
hamming weight of F') and that also differ from H on A DIs (by construction).

3 Related work

After more than a decade of research on practical logic-locking schemes (see Figure 2 for an
example), almost all constructions are broken by attacks that recover the secret hiding key. A
majority of these attacks exploit algorithmic weaknesses in the constructions. For example,
in 2015, Subramanyan et al. [SRM15] developed a powerful attack that used a SAT solver to
iteratively narrow the space of possible keys; for several logic-locking schemes [RKMO0S8, BTZ10,
RPSK12a, RPSK12b, DBDN*14] the SAT-attack algorithm [SRM15](Algorithm 1) can eliminate
all incorrect keys using a small number of (X, F'(X)) pairs.

The logic-locking schemes that were broken by the SAT attack were, in fact, designed to
prevent the adversary from successfully mounting a key-recovery (KR) attack. The authors of
these schemes claimed security based on the following: (a) these schemes admit large keys and
the correct key is sampled uniformly at random; and (b) the schemes are resilient against specific
attacks, the SAT attack not among them. From a provable-security viewpoint, these are necessary
but not sufficient to claim security in any realistic adversarial model. Moreover, the security goal of
preventing key recovery misses the original intent of DH schemes; namely, to prevent the adversary
from learning the functionality of the IP author’s circuit. Thus, preventing function recovery (FR)
is arguably a more pertinent security goal.

We note that the SAT attack, and other key-recovery attacks that preceded it, are admitted by
our formal KR-security notion. That notion and our formal FR-security notion share the same
abstract attack model, and Theorem 1 shows that KR insecurity immediately implies FR insecurity
Thus, the existence of these attacks implies that prior logic-locking schemes cannot achieve our
notion of function recovery security.

Post 2015, the security goal shifted from preventing key recovery, to thwarting the SAT at-
tack. Several SAT-attack-resistant DH schemes [XS16, YMRS16, YSST17, SLM*17b, YSNT17,
RMKS18, KAHS19] were designed. Some of these schemes [XS16, YMRS16, YSS™17] thwarted
the SAT attack by increasing the number of true input-output pairs that were needed to recover
the key, thereby making the SAT attack infeasible in practice. However, in this pursuit, they
effectively leaked the entire functionality of the IP author’s circuit. In AntiSAT [XS16], SAR-
Lock [YMRS16], TTLock [YSS*17] and SFLL-HD-0 [YSNT17], the circuit that results by
restoring the opaque circuit with an incorrect key differs with C'r on only one or two inputs.
The remaining schemes [SLM™17b, RMKS18] tried throttling the SAT solver (e.g. Cryptomin-
iSAT [SNCO09])— the workhorse in SAT attack. As far as we know, all SAT-attack-resistant

Animesh Chhotaray and Thomas Shrimpton 7

schemes are claimed to be broken [XSTF17, SZ17, SRZ18, YMSR17a, SLM*17a, SLR*19,
ZJK17, Chel8, CCB19, CCB18], except the recent constructions: SRCLock (2018) [RMKS18]
and FullLock (2019) [KAHS19]. It is worth noting that both SRCLock and FullLock are designed
to thwart SAT-style attacks by introducing key-controllable “switching” networks [NASRO04, SL.91]
which are known to present difficult instances for SAT-solvers; the positions in the original cir-
cuit where the networks are inserted are arbitrarily selected (similar to RLL and its variants
[RKMOS8, BTZ10, RPSK12a, RPSK12b, DBDN™14]). The switching networks typically have a
unique topology and hence will be easily identifiable in a circuit containing other components.
Since an adversary gets full view of the opaque circuit via its unrestricted access, it can potentially
remove these networks to get a “simplified” opaque circuit. We suspect that such a strategy can
reduce the security of FullLock and SRCLock to the security of RLL and its variants. We leave
verification of this hypothesis for a future work.

3.1 Relation to existing cryptographic primitives.

Our security notions capture an attack on the privacy of the IP author’s circuit design. Thus, it is
natural to think of related cryptographic primitives: program obfuscation, multi-party computation,
encryption and function secret sharing.

PROGRAM OBFUSCATION. Design hiding is orthogonal to recent work in cryptography on pro-
gram/circuit obfuscation (e.g. [BR14, BGIT01]). Loosely, obfuscation in the latter setting makes
the syntactic requirement that the obfuscated circuit have the same input-output functionality as the
original circuit. In the design-hiding setting, at an abstract level, the opaque circuit implements a
set of functions. It is only when the chip is restored, via the secret key, that the chip must faithfully
compute the intended function.

MULTIPARTY COMPUTATION. Secure multi-party computation [Yao82, EKR* 18, BHR12, Lin05]
allows two or more parties to “securely” compute some arbitrary function on inputs that are secrets
of the respective parties.

Though MPC has become increasingly feasible to deploy in real-world systems [BHKR13,
KMR14, ZRE15, NNOB11, CT16, KMR12, INO14, MNP*04, KSMB13, Mall1, SHS™15], we
cannot use it to design secure DH schemes in the logic-locking setting because of the fundamental
differences in the threat models.

Logic locking involves two parties: the IP author (whose IC design needs to be protected),
and the adversarial foundry (who is responsible for fabricating multiple opaque chips from the
opaque circuit). The two popular settings of two-party computation that have some similarity to
the logic-locking setting are: secure-function evaluation (SFE) [BHR12, KMR12, EKR*18] and
private-function evaluation (PFE) [BHR12, EKR ™18, CT16, Lin05], and the threat models of both
are different compared to logic locking.

In SFE, the function that is evaluated is public, and the input of the other party is private.
Clearly, SFE is not suitable in the logic-locking setting as it requires the IC design of the IP author
to be public. In PFE, the function that is evaluated is a private input of one party, and the input to
the function is private to the other party. The logic-locking setting satisfies this aspect of PFE as
the IC design is the private input of the IP author. However, the adversarial foundry gets a lot of
side information about the concealed IC design due to its unrestricted access to the opaque circuit
and oracle access to an honestly-restored chip. This violates the PFE security goal as the party
that does not have access to the function — secret input of the other party — should learn only
the value of the function on the secret input. Hence, PFE is also not suitable in the logic-locking
setting.

ENCRYPTION. In order to fabricate chips, the foundry parses the layout (described using the
GDSII format) of a circuit design to replace the API calls to its hardware library with physical
circuits. Thus, one cannot simply encrypt (say) the layout file before handing it to the foundry:
secure encryption schemes produce ciphertexts that are indistinguishable from random bit-string,
which almost certainly will not encode a valid circuit. Even if it did, that circuit would have no

8 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

relationship to one realizing the intended functionality, thereby forfeiting the economic benefit of
outsourced fabrication. And clearly the foundry cannot be allowed to decrypt the ciphertext, if it is
not trusted in the first place.

FUNCTION SECRET SHARING. In 2015, Boyle et al. [BGI15] introduced a cryptographic primitive
called function secret sharing (FSS) that partitions a function F' into multiple shares — the shares
are distributed among multiple parties — such that an adversary that does not have access to all
the shares learns nothing about F'. The threat model of FSS prevents the adversary to learn the
value of F' on any input. In fact, if the adversary gets oracle access to F' akin to the DH setting, the
security of the FSS construction [BGI15][Section 3] for point functions in the two-party setting
falls apart as the adversary can use a single oracle query to identify the point function that was
protected by FSS in the security experiment.

4 Preliminaries

Basic notation. When X, Y are strings, we establish the following notations. We write X || Y to
denote the concatenation of X and Y'; X[¢] for the i-th element of X; and | X| to denote the length
of X. We extend the last two notations to ordered objects (e.g., a sequence, list, table).

When T is any ordered object, we write T'[¢] for the i-th element, and |T'| to denote the number
of elements in 7. In pseudocode, our convention will be: all such T are initialized to T'[i] = L for
all values of i, where L is a distinguished symbol. Likewise, all sets will be initially empty. We
use the notation (V') to denote the encoding of object V" as a bit string. The method of encoding is
left implicit, and it is silently overloaded to accommodate whatever is the type of V.

When m is an integer, we use the standard notation [m] to denote the set {1,2,...,m}. We
write v1, Vs, ..., v, <5 V to denote sampling (with replacement) » > 0 uniform elements of V,
where V' is some non-empty set. An unembellished <— denotes deterministic assignment. This
notation is also used for randomized algorithms, i.e., x <—s A(- - -) means that algorithm A runs on
its indicated inputs, and halts with an output that is assigned to . (In this case, the distribution on
output values is determined by A, and is not necessarily uniform.)

We write A©1:©2> to denote that algorithm A has oracle access to the superscripted oracles.
For randomized algorithms X that may return a distinguished symbol 1, the support of the
algorithm Sup(X) is defined only over non-_L outputs. An adversary is a randomized algorithm.

Functions and their representations. When D, R are non-empty sets, we write Func(D, R)
for the set of all functions F': D — R. We write Func(n,m) as shorthand for functions with
D ={0,1}"and R = {0,1}™. When m = 1, Func(n, 1) is the set of all Boolean functions. We
will use three representations of functions in this work: circuits, chips and lookup tables. While
circuits and chips will be used to describe the design phase of the IC supply chain and are important
to denote the type of access (oracle or unrestricted) to a circuit that an adversary gets as part of the
threat model, lookup tables will be used primarily for functional analyses.

Formally, a circuit CF is a directed acyclic graph that implements some mapping F' €
Func(D, R). Access to circuits will always be unrestricted. This captures a reality of our setting,
in which the foundry is handed a description of a circuit to be fabricated. Once a circuit C is
fabricated, we will refer to it as a chip and use the heavy typeface Cp to make this distinction clear.
Crucially, access to Cp is not unrestricted; rather an adversary can only use Cg to make oracle
queries. This syntactic choice is to make invasive attacks [EHP19] on chips (to leak secrets) out of
scope as they are orthogonal to the (algorithmic) development of design-hiding schemes — the
central primitive in our work.

The lookup-table representation of a function ' with domain D and range R is a table
Tr = ((X1,Y1),(X2,Y32),...), where X; € Dand Y; = F(X;).

In all representations of functions, when the underlying mapping is implicit/understood, we
will omit the subscript.

Animesh Chhotaray and Thomas Shrimpton 9

When F, G are two n-bit to m-bit functions, the hamming distance between F' and G is the
number of inputs X; on which the value of the functions differ. We use Z7 (F, G) to denote the
set of such distinguishing inputs, i.e., I7 (F,G) = 7 (G, F) = {x € {0,1}" | F(z) # G(2)}.
Formally, hd(F, G) = |Z7(F, G)|. We write F' = G whenever hd(F, G) = 0.

We will also find it useful to define the hamming weight of Boolean functions. When F' €
Func(n, 1), the hamming weight of F is defined as the number of inputs that map to one, i.e.,
hw(F) = [{X € {0,1}™ | F(X) = 1}|. Also, for Boolean functions, we will use sets X;(F') =
{X | F(X) =1}, where i = 0 or 1, to denote the set of inputs for which F' map to 1 or 0. Notice
that these two sets fully define F' as we can construct the truth table of F' using Xo(F') and X (F).

For any function F' € Func(n, m), we define the A-neighborhood of F' as Na(F) = {H €
Func(n,m) | hd(F, H) = A}.

5 DH Schemes

We begin by defining design-hiding scheme as a syntactic object. Loosely speaking, the syntax
describes the inputs and outputs of the core algorithms that any DH scheme must realize, as well as
what it means for a DH scheme to operate correctly.

Definition 1. Fix integers n,m > 0. A design-hiding (DH) scheme 11 = (Hide, Restore) for
Func(n, m), with key length k,: {0, 1}* — N is a tuple of algorithms with the following syntax.

* The randomized design-hiding algorithm Hide:
Inputs: a circuit Cr implementing F' € Func(n,m), and a string of design parameters 6.
Outputs: the distinguished symbol L (“error”), or a tuple consisting of (1) a secret key Ko €
{0,1}%2(®) (2) and an opaque circuit Cr,, where L € Func(n + ko (), m).
Requirements: For all (F, @), either Pr[Hide(Cr,0) = L] =1 or Pr[Hide(Cr,0) = L] = 0.

* The deterministic design-restoring algorithm Restore:
Inputs: akey K € {0, 1}k0(9), a string of design parameters 6, and a chip C..
Outputs: a restored chip Cr or L. When Ko — the key that is used by Hide to produce C7,
— is the key input to Restore, we refer to the resulting chip Cp as an honestly-restored chip.
Requirements: for every input (K, 6,Cp), it must be that Cp < Restore(K,0,Cr) # L
implies that F' € Func(n,m).

We assume that if an algorithm is called on a point outside of its domain, in particular if any of its
inputs are _L, then the algorithm returns L. <&

The syntax that we have just established is fashioned to capture the techniques — logic locking,
IC camouflaging, and split manufacturing — that an IP author uses to (a) protect the “privacy” of
its high-value circuit-design C'r from adversarial entities in the post-design phase of the IC supply
chain, and (b) make functionally-correct chips available to the end user. Let us elaborate using the
logic-locking setting.

The IP author often outsources the fabrication of C'r into physical chips Cp to third-party
foundries. (We will formalize this transformation in the next section.) The foundries are potentially
malicious entities. Hence, the IP author cannot give the foundries the circuit design C'r (in
plaintext). The design-hiding algorithm Hide abstracts the mechanism by which the IP author
turns C'r into an opaque circuit C, that “hides” the functionality F' using a secret key K. The
circuit Cp, takes k,(0) 4+ n bits of input, where n is the length of the input to F. Here, the
additional k,(6) bits encode the key K, which will be used to restore the functionality of the
chips (that the foundry produces) to the original, intended functionality F'. Specific instantiations
of Hide include the locking process in logic-locking schemes like random logic-locking (RLL)
[RKMOS] and its variants [RPSK12a, RPSK12b, DBDN ™ 14, PM14], SAT-attack-resistant schemes
[YSNT17, XS16, YMRS16, YSST17, KAHS19], etc. We insist that for a given pair (F,), either
Hide works always (returns valid Ko and L) or it always fails (returns).

10 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

The meaning of the parameter string 6 depends heavily on the particular instantiation of the
design-hiding scheme. For example, it may encode the number of “key gates” to be inserted
in an RLL scheme [RKMO8], or the target hamming distance in SFLL-HD [YSN™17]. It may
also encode other design constraints, such as the maximum size and depth of a locked circuit,
restrictions on gate types, and so on.

We envision that the IP author will securely store the key Ko, and send the opaque circuit C'p,
to the foundry, instead of the (plaintext) circuit C'r. The foundry will fabricate and package one or
more opaque chips; if the foundry is honest, then each chip will implement L. We formalize this in
a moment.

Intuitively, the design-restoring algorithm Restore abstracts the mechanism by which a fab-
ricated and packaged chip C, is restored to its original, intended functionality F'. Loosely, this
entails fixing the k,(6) “key bits” in the input to Cy, to K. In logic locking, the opaque chips are
restored by (at least) having a key installed in some tamper-proof, one-time writable memory unit
within the chip.

Fabrication and DH-scheme correctness. In order to define the correctness for a DH scheme,
we need some mechanism for turning an opaque circuit into a chip. This is exactly the role
of the fabrication process that the foundry is meant to provide. Thus, let Fab be a randomized
chip-fabrication algorithm: it takes as inputs a circuit Cz, and a string of design parameters 6, and
it outputs either a chip Cy,, or the error symbol L.

Definition 2. A DH scheme IT = (Hide, Restore) is correct with respect to chip fabrication Fab if,
for any (F,0) and any (Ko, CL) € Supp(Hide(CF,0)), we have

Pr[Cg s Restore(Ko,0,Fab(CL,0)): (Cqa # 1) = (G=F)]=1,
where, the probability is over the coins of Fab. <&

In words, this requirement asserts that whenever (F,) is a pair that results in an opaque
circuit C, with associated key K, it must be the case that an honestly-restored chip computes F
exactly.

We will find it useful to define an honest chip-fabrication algorithm. Loosely, we say that
a chip-fabrication algorithm Fab is honest if the chip that it produces computes exactly what
it is supposed to compute. Formally, this requires that for any circuit C';, and parameters 6,
Pr {(Cﬁ s Fab(Cp,0): (C; # 1) = (L= L)} = 1, where the probability is over the coins
of Fab. We note that the correctness of a DH scheme does not require honest Fab; indeed,
Fab(C',, 0) may produce a chip C; such that for some Y € Dom/(F), L(K,Y) # L(K,Y) for
(say) a small set of keys K # K. For example, a hardware trojan [CB11] can be embedded in
the description of Fab such that a fabricated opaque chip C; implements L(Ko, -) honestly; on

keys K #+ Ko, L may leak information about K.

6 Security notions

We consider two notions of security for DH schemes. Both notions deal with an adversarial foundry
that attempts to recover the original functionality that the opaque circuit hides. The adversary gets
unrestricted access to the opaque circuit, as this is something that a real foundry would receive in
order to carry out fabrication. It is also given oracles that capture various capabilities that a foundry
is likely to have.

Function recovery. We begin with a notion of function recovery for a design-hiding scheme
IT = (Hide, Restore). The pseudocode for the FR experiment is given in Figure 3. The experiment
is parameterized by the DH scheme II, some design parameters € that IT uses, and an honest
chip-fabrication algorithm Fab. It takes as inputs: an adversary’s attack algorithm A, and a set
F C Func(n,m). Intuitively, the set F captures the a priori uncertainty/knowledge that the

Animesh Chhotaray and Thomas Shrimpton 11

Experiment Exp(Fl% 0y,ka6(F> A) Experiment Exp FHFTG) Fap(Fr A)
F«sF;i<0 F<sF;i«+0
(Ko,CL) <3 Hide(Cp,H) (Ko,CL) «—$ Hide(Cp,Q)
CG s AFAB,RESTORE,RUN(CL’ 0) K s AFAB,RESTORE,RUN (OL, 9)
Ret [G = F)| Cg <« Restore(K, 8, Fab(Cr, 6))
Ret [G = F]
oracle FAB(Z): oracle RESTORE(C;): oracle RUN(j, X):
if Z = e then //make intended chip if (Cﬁ ¢ H UN then Ret L Cp + u[]]
Cr < Fab(Cr,0) Cp < Restore(Ko,0,C;) Ret P(X)
H+ HU{CL} if Cp # L then
Ret Cpr, i< i+ 1L U]+ Cp
else //make arbitary chip Return 7
<CN7 ’7> —Z
Cn s Fab(Cn,7)
N+~ NU {Cn}
Ret C

Figure 3: Experiments for function-recovery (FR) and key-recovery (KR) notions for DH
scheme II = (Hide, Restore, Test), given F C Func(n, m) and design parameters 6, when chips
are fabricated according to Fab.

adversary has about the function F' that the DH scheme II is used to protect. Clearly, there must be
some uncertainty, since otherwise, the adversary already knows the functionality of the IP author’s
circuit design. Note that the design of I does not depend on F.

The experiment begins by sampling F uniformly from F. A circuit Cr (that implements F’)
and the design parameters 6 are inputs to the hiding algorithm Hide, which returns the key Ko,
and the opaque circuit C,. The adversary is given C', and as inputs, and it is provided oracles
named FAB, RESTORE, and RUN. These oracles model processes that an adversarial foundry can
employ while trying to recover F'.

When the foundry is honest-but-curious, it will only produce chips that are fabricated from the
opaque circuit that the IP author generates using the DH scheme II, and the design parameters 6.
In the fully-malicious setting, the adversary can produce any arbitrary chip using arbitrary circuits
and arbitrary design parameters.

For our security experiments, we define an honest-but-curious adversary as one that always
queries FAB with zero arguments, i.e., Z = <. On the other hand, a fully-malicious adversary can
call FAB with any circuit C'y, and any design parameters +y of its choice, i.e., Z = (Cn, 7).

When Z = ¢, the FAB oracle runs Fab with C, (generated in the FR experiment) and 6 as inputs
to get an honest chip Cr,. Otherwise, FAB parses Z to get (C,) and runs the Fab algorithm on
(Cn,) to get an arbitrary chip Cy of its choice. We use the sets # and N to keep track of the
honest and arbitrary chips, respectively.

The RESTORE oracle models the adversary’s ability to obtain honestly-restored chips, i.e., chips
that are restored with the secret key K. We allow the adversary to query RESTORE on any chip
that it obtained from FAB, i.e., chips in set H U N. We use U to keep track of honestly-restored
chips. The RESTORE oracle does not return the restored chips in order to prevent the adversary
from reading the secret key from the description of the chip. Instead, we return the index of the
restored chip in /. Notice that we do not restrict the adversary to run the deterministic Restore
algorithm locally on any triple (K,~,Cy) of its choice.

The RUN oracle captures the foundry’s ability to see the output of any honestly-restored chip
Cp (that is stored in /) on any input of its choice. The oracle takes as input the index j of Cp in
U and X € {0,1}", and returns the value P(X). (By notation, Cp implements function P.)

The goal of the adversary in the FR experiment is to output a chip C as its guess for F'. The

12 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

adversary is said to win the FR experiment if /' = G. Notice that we prevent trivial wins — by
returning honestly-restored (honestly-fabricated) chips — by not allowing the adversary direct
access to chips that are restored by the RESTORE oracle.

We define the FR advantage of the pair (F, A) against DH scheme II, design parameters 6,
and honest-fabrication algorithm Fab to be

AdV?rlﬁe),Fab(]:7 A)=Pr [EXP(Fl%e),Fab(}—v A)=1|,

where the probability is over the indicated experiment. We say A is (¢, ¢, ¢s, ¢»)-resource when its
time complexity is ¢, and it makes g queries to the FAB oracle, g5 queries to the RESTORE oracle,
and g, queries to the RUN oracle. By convention, an FR adversary does not make pointless queries
to any oracle, i.e. queries that cannot increase its advantage.

Key recovery. The notion of key recovery (KR) is similar to the FR notion, except the adversary’s
goal is to recover a key K, and the key is then used to get an honestly restored chip C¢ that is
obtained by running the honest Fab algorithm on (Cf,, 6). In the final step of the KR notion, we
check whether the function G that the chip C¢ implements is functionally equivalent to F'. We
define the KR advantage of A as

Adv (it pup(F, A) = Pr [EXPFHPTQ),M(]: JA) =11,

where the probability is over the indicated experiment. The resources are the same as those for the
FR advantage.

Note that one might think it more natural to define key recovery as determining the secret
key Ko. We define it as we do because some of the existing DH schemes, including RLL [RKMOS]
and strong logic obfuscation (SLO) [RPSK12a], admit multiple keys K € {0, 1}%(?) that map to
the hidden function F, i.e., F' = Restore(Ko,0,Cr) = Restore(K,0,Cp). (These keys are said to
constitute an equivalence class of the hidden function.) Thus, our KR notion captures (for example)
the SAT attack of Subramanyan et. al [SRM15], which recovers some key in the equivalence class
of the hidden function. It also captures other key-recovery attacks [XSTF17, YMSR17a, SS19]
that exploit structural and functional characteristics of the opaque circuit.

It is intuitively clear that FR security implies KR security for any design-hiding scheme. We
formalize this relation in Theorem 1.

Theorem 1. Fix integers n,m > 0, F C Func(n, m), and design parameters 6 for a DH scheme
1T = (Hide, Restore). Let Fab be honest. For any KR-adversary A, there is an FR-adversary B
such that

Adv?ﬂ%&),Fub(}—v A) < AdV?r?e),Fab(]:»B)-

Here, A is (t,qy5,4s,qr)-resource and B is (O(t), O(qy), O(gs), O(gr)) resource; t = O(qy +
qs + QT)~ ¢

The proof of this theorem is straightforward. Given the KR-adversary A guesses K, the FR
adversary B can generate C¢ by fixing the k,(#) input bits in the opaque circuit C', with K (using
the deterministic algorithm Restore), and then using Fab to fabricate the restored circuit. With Cg,
B wins the FR experiment with probability no less than the probability with which A wins the KR
experiment.

The converse, i.e., KR security implies FR security, is not true. Consider that the opaque circuit
that the hiding algorithm outputs is an encoding of the original circuit, and the secret key is sampled
uniformly at random from {0, 1}128. While admittedly pathological, this example suffices to make
the point.

Fully-malicious adversaries break KR security. Hardware trojans are malicious modifications
to a target circuit that are hard to detect [CB11]. For example, a key-leaking hardware trojan in
a cryptographic IP core (say, AES) leaks the secret key, when the IP core is run on a small and

Animesh Chhotaray and Thomas Shrimpton 13

Experiment ﬁ\ﬁ,(n’g) (F,B) oracle TRUE(X):

F+sF Ret F/(X)
(Ko, CL) <3 Hide(CF, 9)

Cg s BTRUE(CL,H)

Ret [G = F)|

Figure 4: FR-game in the honest-but-curious setting. All three oracles in the original FR-security
experiment are replaced with TRUE.

specific sequence of triggering inputs. A standard assumption in trojan-insertion attacks requires
the adversary to have unrestricted access to the target circuit in order to make trojans stealthy.

In our security experiments, an adversarial foundry gets unrestricted access to the opaque
circuit C', that the experiments generate using Hide. When the foundry is fully malicious, it can
insert a key-leaking hardware trojan (7") in C, to leak the key Ko.

Consider the following (slightly informal) KR attack in the fully-malicious setting against
any DH scheme II where: Restore fixes the k,(0) key-input bits to restore the original, intended
functionality. (Logic-locking schemes like RLL. [RKMOS] and its variants [RPSK12a, RPSK12b,
DBDN14] and SAT-attack-resistant schemes [YSN117, XS16, YMRS16, YSST17, KAHS19]
fit this description perfectly.)

* Query FAB with C¥' to get a chip CZ, where C'' denotes the opaque circuit C, with trojan 7.

* Query RESTORE with C% to get the index p of an honestly-restored chip Cp. Let Z be the
sequence of triggering inputs for the trojan 7', and v = |Z|. By design, Cp contains the trojan T
and leaks the key K, when Cp is run on inputs in Z.

* Query RUN v times with inputs (p, Z[1]), (p, Z[2]), . . ., (p, Z[v]) to recover Ko.

This attack breaks the KR security of II. In order to thwart this attack, Resfore has to detect
arbitrary, key-leaking hardware trojans. We do not know how this can be achieved in the setting
of design-hiding schemes such as logic locking — the main focus of our work — where the IP
author outsources the entire fabrication process to an external foundry. Therefore, our upcoming
security theorems will assume that the adversary is honest-but-curious. Recall that none of the
existing DH schemes considered Fab as part of the syntax. Hence, by default, these schemes are
designed in the honest-but-curious setting.

Note that Dziembowski et al. [DFS16] showed that it is possible to design “trojan-resilient
circuits using split manufacturing as a DH scheme; as mentioned earlier, split manufacturing
requires the IP author to fabricate a portion of the circuit and hence is not a common setting in IC
supply chain; instead we focus on the stronger logic-locking setting in this work.

T3]

Simplified FR-notion in the honest-but-curious setting. Recall that in the security experiments,
the goal of the adversary is to recover the full-functionality of F'. In the honest-but-curious setting,
the foundry effectively will have oracle access to F' and unrestricted access to L. Let’s see this in
the context of the FR-security definition.

Let C, be the opaque circuit that the IP author generates using Hide. In the honest-but-curious
setting, the foundry uses Fab honestly. By definition of honest Fab, any opaque chip that Fab
produces will implement L. Thus, running (the deterministic) Restore algorithm on the honestly-
fabricated opaque chips with K will result in chips with identical functionalities. Since the
adversary gains no additional information about F' from multiple queries to the oracles FAB and
RESTORE, we can fix gf = 1 and g5 = 1, where the only (useful) query that A makes to FAB is
Z = (Cy,0), and the only (useful) query that A makes to RESTORE is CL = Fab(Z). Notice that

this results in I/ to store a single restored chip Cp = Restore(Ko, 0, ((/32) at index one. Using
its ¢, queries (1, X;) to RUN oracle, the adversary will learn g, pairs (X;, F'(X;)). Thus, in the

14 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

honest-but-curious setting, we can replace all the oracles with a single TRUE oracle, that takes X;
as input and returns F'(X;). We show these changes in the security experiment ﬁﬁ,(n,g) (+,-); See
Figure 4.

Notice that the changes are all either syntactic (i.e., no change to the advantage) or conservative
(i.e., cannot decrease advantage) with respect to the original FR experiment. This observation gives
rise to the following simple, but useful lemma.

Lemma 1. Fix DH scheme 11 and parameters 0. For every honest-but-curious FR-adversary A
that is (t,qy, qs, q)-resource, there exists a closely related adversary B such that

Pr[Expits) sy (F, A) = 1] < Pr[FRu(F, B) = 1

where B makes at most q queries to TRUE (see Figure 4), and runs in time O(t). ¢

As discussed in Section 3, almost all existing DH schemes [RKMO08, BTZ10, RPSK12a,
RPSK12b, DBDN*14, XS16, YMRS16, YSS*T17, SLM*17b, YSN*17] have been shown to be
KR-insecure, i.e., these schemes have large (close to one) KR advantage due to various key-recovery
attacks [SRM15, XSTF17, SZ17, SRZ18, YMSR17a, SLM™17a, SLR™19, ZJK17, Chel8, SS19,
YTS19]. Per our Theorem 1, if a DH scheme is KR-insecure, then it is also FR-insecure, i.e., large
FR advantage. The few (recent) schemes [RMKS18, KAHS19] that have not been shown to be
broken were designed specifically to thwart SAT attack. In order to prove FR-security, we need to
show that a DH scheme thwarts all FR-attacks — not specific KR-attacks. In the next section, we
will construct an FR-secure DH scheme.

7 A Framework for Designing Secure DH schemes

In the FR-security experiment as well as in FA‘ﬁ, the adversary’s guess space is the set F C
Func(n, m) before it gets full access to the opaque circuit. As the adversary learns new information
via unrestricted access to the opaque circuit C'7, and oracle access to F, it can prune its guess
space to a smaller set M; C F of functions. Let D; be the probability distribution of M.
Then, the probability that B wins FR will be upperbounded by 2~ H=(P1) where H. (D1) is the
min-entropy of D;. In this section, we will describe a framework that an IP author can use to build
a DH scheme (with formal descriptions of Hide and Restore) such that it can concretely define the
distribution Dy, and find concrete FR-security guarantees of its construction.

Abstractly, the opaque chip Cy, can be viewed as a circuit that encodes a set Ry, C Func(n, m)
of n-bit to m-bit functions (not necessarily distinct) that are selected by Hide (either implicitly
or explicitly), and each key K in set K = {0, 1}**(9) is associated with some function in R .
Minimally, correctness will require that the hiding key K is associated with the true function F'.
We define a chaff function H € Func(n,m) as one that is not functionally equivalent to F'; we
refer to the inputs on which H differs (in output) from F' as “distinguishing” inputs.

In our framework, we insist that the set R 1, be “extractable” from the opaque circuit, i.e., given
C', and the description of Hide, the IP author knows the full-functionality of each function in R .
This is a reasonable assumption as during the design of circuit, the functionality of a circuit is
fixed first as part of the system specification and architectural design, and then the topology of the
circuit is decided. In RLL [RKMOS] and its variants [RPSK12a, RPSK12b, DBDN* 14, KAHS19,
RMKS 18], the functionality of the chaff functions is not decided during the design of Hide. Rather,
the chaff functions are an artifact of random structural modifications — the positions of key gates
in the original circuit. So, for a non-pathological circuit, i.e., circuits with sufficiently complex
functionality and reasonably large domain, it is almost impossible to extract the functionality of
the chaff functions. Consequently, it is difficult to evaluate the FR security of such schemes in our
framework. As mentioned earlier, RLL and its variants (designed before SAT attack) as well as
SAT-attack-resistant schemes [XS16, YMRS16, YSS*17, SLMT17b, YSNT17] (designed post

Animesh Chhotaray and Thomas Shrimpton 15

M M
X H F U X o H F U
1 x =Y
X1 F(X1)
X is in Tab? X2 | Fix2) X is in Tab?
Tab Tab

(a) (b)

Figure 5: a) An opaque circuit generated by any OneChaff scheme. b) An honestly-fabricated-and-
restored chip. Adversary gets unrestricted access to (a) and oracle access to (b).

SAT attack) are FR-insecure due to various key-recovery attacks [SRM15, XSTF17, SZ17, SRZ18,
YMSR17a, SLM*17a, SLRT19, ZJK17, Chel8, SS19, YTS19].

7.1 OneChaff: a family of DH schemes

We present a family of DH schemes called OneChaff with the following common features:

* the design-hiding algorithm returns an opaque circuit that contains a single chaff H with A € N
distinguishing inputs and an uninitialized lookup table (see Figure 5(a));

* the hiding key encodes the set of distinguishing inputs and the correct value of the hidden
function on the distinguishing inputs;

* the design-restoring algorithm, in an honest run, initializes the lookup table with the hiding key
(see Figure 5(b)).

Notice that the description of OneChaff leaves H unspecified; specific OneChaff schemes will
define H explicitly.

From a high level, OneChaff captures almost all SAT-attack-resistant DH schemes [XS16,
YMRS16, YSST17, YSNT17] all of these schemes encode a single function (that is derived
from the hidden function) and a “restore” mechanism. While SFLL-flex [YSN™17] uses a lookup
table in the opaque circuit to restore the intended functionality of the hidden function, the remaining
schemes use the following hamming-distance-based predicate: for some positive integer h < 2™, is
the hamming distance between the key input and primary input h? Except SFLL-HD [YSNT17],
h = 0 in remaining schemes.

Several attacks [SS19, YMSR17a, YTS19, YMSR17b] have shown that K can be efficiently
recovered by exploiting algorithmic weaknesses in the hamming-distance-based restore mecha-
nisms. In the following sections, we will describe a OneChaff scheme called OneChaff, 4 and
prove that it is FR-secure in the honest-but-curious setting for a broad class of functions. Let
0 = (n,m,A), where n,m > 0,and A € [2" —1].

Description of Hide. Given F, the Hide algorithm in OneChaff, 4 selects F' as the anchor function
and samples a single chaff uniformly from its A-neighborhood, i.e., H <—s Na(F’). Equivalently,
the chaff H is initialized to F" and then, on a random subset Z7 (F, H) = {X1, Xo,..., XA} of
the domain of F, the value of H(X;) < {0,1}™ \ {F(X;)}; when m = 1, H(X;) + —F(X;).

Formally, the opaque circuit C, returned by Hide computes the function L: ({0,1}™ U {4 })* x
(0,13 U {4 D) x {0,1}" — {0,1}™ defined by

174 iU, = X

L(((U1,V1)a(UQ»V2)7~~7(UA7VA))’X):{ (X) otherwise

16 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

where the distinguished (non-string) symbol 4 is understood to mean “uninitialized”. We implicitly
assume that all string-valued U; are distinct so that L is well defined, and that if any U; = 4, then
all U; = 4. Thus, L computes H and a family of functions R, = Na(H), one of which is F'.

In practice, we envision C', to be a circuit that encodes H and an uninitialized table 'Eﬁ), whose
gate-and-wire representation allows for a subcircuit Cy (computing H) to be easily parsed out;
overloading the (-) notation, we will sometimes write C, = (H, ﬁ)) to reflect this. This way, one
can evaluate C'y given C', and, by loading Tab in O, with a list of A pairs in {0, 1}™ x {0,1}™,
any of the functions in Na (H).

Note that Hide is abstracting the process by which an IP author goes from the “idea” (i.e.,
informal specification) of a functionality F' to an opaque circuit described in some format that is
suitable for fabrication (e.g., a GDSII file). This process typically involves writing a program for
the desired functionality in some high-level language like Verilog, and then converting the program
to a circuit description by an EDA tool. This process can be augmented to sample A random
domain points, and incorporate these to yield a program (hence a circuit) for the chaff function H;
the size of Tab will be nA. Thus, the efficiency of Hide in OneChalff, 4 should be roughly same as
that of the original process, at least when A < 2™.

Description of Restore. The Restore algorithm parses the input (design) parameters 6 to de-
termine n, m, A. It then expects a key K = ((U1,V1),...,(Ua,Va)) where each (U;,V;) €
{0,1}™ x {0,1}"™, and a chip C, that was fabricated from a circuit Cy, = (H, T"z;g) When these
expectations are met, Restore loads the pairs (U;, V;) into the uninitialized lookup table. (When
not, it returns | .) We write C1 1 K for this, the notation suggesting that K is “uploaded” into C.
Thus, when provided with an honestly fabricated chip from the opaque circuit Cf, returned by
Hide(F,0), and the corresponding key Ko, the restored chip Cr, T Ko properly computes the
hidden function F'. Note that, we abstract away the physical mechanism by which uploading the
(Ui, V;) is implemented, and assume that if this mechanism is able to detect upload failure, Restore
returns L.

7.2 Efficiency of OneChaff, 4

Hide is efficient. The opaque circuit C'y, that Hide generates consists of a chaff function H — that
differs from F' on A random inputs, and an uninitialized lookup table Tab. Since the IP author
knows the full functionality of F, it can follow a two-step approach in order to create H from F'.
In the first step, it creates a set of A random n-bit inputs and finds the value of F on those inputs.
Next, it sets the value of H on the A inputs X; to =F(X;); on the remaining inputs H and F have
identical values. Hence, runtime of Hide to create H will be O(nA) + T'(H) , where T'(H) is the
time needed to create the circuit for H. Note that the IP author would have anyways spent T'(F')
time to build the circuit for ' in the honest setting. So, effectively, the additional runtime of Hide in
OneChaff, 4 is O(nA) + T(H) — T(F). (Time to create Ko will also be O(nA) as |Kp| = nA.)
When A <« 2™, T'(H) will be roughly same as T'(F'). Moreover, such an implementation does
not leak any additional information about F' apart from H when the adversary gets full view of the
opaque circuit.

Restore is efficient. Since Restore involves uploading the nA-bits hiding key Ko to Tab, it’s
runtime will be O(nA).

7.3 FR security of OneChaff, 4

In FR, given unrestricted access to Cp, = (H, f\aT)>, the IP author knows that the foundry can
(at best) extract the set Ry, = Na(H) and compute My = F N Na(H) to reduce the size of its
original guess space F. Using queries to TRUE, the foundry can further reduce the guess space to
My € Mg by removing functions in M whose distinguishing-input sets contain query inputs.

Animesh Chhotaray and Thomas Shrimpton 17

In practice, the IP author will not know the set 7 because that captures the foundry’s initial
guess at the set of possible functions F' that may be what the IP author intends to hide. (Recall
that the FR-notion samples F' <—s F, suggesting that the foundry’s initial set is the correct set.)
More plausibly, the author may assume that the foundry’s initial guess is based upon knowledge of
likely “properties” of F'. These properties may be gleaned from discussions with the IP author,
statements in fabrication contracts, historical and market information, etc. The IP author may
use these assumed-known properties in its description of Hide, Restore, or into the parameters 6.
In particular, it can use these assume-known properties to compute its estimates of the sets M,
and M that can help the foundry reduce the guess space. We will use these observations in our
upcoming analysis.

Scoping the set 7. In what follows, we will focus on the case that m = 1, i.e., 7 C Func(n, 1).
We focus on Boolean functions for a few reasons. First, even if the circuit representation of
the hidden function has n’ > n bits of input and m > 1 bits of output, we can take as a first
consideration whether or not one can securely hide the transitive fan-in cone (TFC) of any particular
output bit. For a collection of output bits that have disjoint transitive fan-in cones, one can consider
hiding these in parallel.

Second, focusing on Boolean functions makes the analysis less complicated. In particular, for
all distinguishing inputs U; € Z7 (F, H), V; = =F (U;); otherwise V; <—s U, \ F/(U;). Note that
when m > 1, the TFCs of different output bits may not be disjoint. In such a case, the adversary can
potentially use information it learns about one TFC to learn about the functionality of a different
TFC.

Third, barring SFLL-flex [YSNT17], in the remaining SAT-attack-resistant DH schemes (Anti-
SAT [XS16], SARLock [YMRS16], TTLock [YSS™17] and SFLL-HD [YSNT17]), F is Boolean.

Simple functions cannot be hidden. We borrow the definition of “simple” functions from
learning theory; simple functions are those that can be efficiently learned via a reasonably small
number of input-output values of F'. Now, if F consists predominantly of simple functions, then no
DH scheme will be secure* in hiding functions sampled from . For example, functions that have a
small domain can be learned by brute force. In addition, results from computational learning theory
tell us that functions whose decision-tree representation have small depth/size can be learned via
the Kushilevitz-Mansour algorithm [KM93]. More generally, methods exist to (approximately)
learn Boolean functions whose Fourier spectra are sparse (e.g., dominated by relatively few Fourier
coefficients) [GOST11].

To loosely capture a measure of the density of “simple” Boolean functions within a given set F,
we give the following definition.

Definition 3. [“Simple” functions in F.] Let 7 C Func(n, 1) be a set of Boolean functions. Let
t,q > 0 be integers, and let § € [0, 1] be a real number. Let Fi.q,5 € F be a subset such that the
following holds: 3 a g-query, ¢-time adversary A such that, Vf € F; , 5, when g «—s AS) we have
Pr[z<s{0,1}": g(x) = f(x)] > §. Furthermore, define €, , 5 = |F¢,4,5|/|F|. In particular,
€t,4,1 18 the fraction of F that can be exactly learned (by some A) with ¢ input-output values and
time-complexity ¢. o

Our security bounds for OneChaff, 4 will reflect the term ¢; 4 1, although we stress that correspond-
ing bounds for any DH scheme would also have to reflect this term (perhaps not explicitly) because
any “simple” function will not be hideable.

In general, specifying a set F for which ¢; 4 1 is small enough for practically meaningful security
statements (for reasonable ¢, q) is challenging, as this would require results of the following kind:
There exist no adversary that can learn any function in F \ F; 41 with ¢ queries in time ¢. We
are not aware of any such results. Also, note that it is not sufficient for J to be large (although it

4Shamsi et al. [SPJ19] made a similar observation and gave impossibility results on logic locking when F consists of
entirely simple functions. Our security experiments are more generic as they allow J to contain functions of varying degree
of “simplicity”.

18 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

is necessary to avoid simply guessing F'), as one can specify large sets of functions with sparse
Fourier spectra.

We conjecture that if F is sufficiently “unstructured”, then €; 4.1 will be small enough to not
dominate the FR-security bounds we will prove, for practically reasonable ¢,q. For example,
a random Boolean function lacks the highly concentrated spectral structure — the number of
non-zero Fourier coefficients is (1 — o(1))2™ [DWO08]— that leads to efficient learnability from
input-output pairs.

Under the above conjecture, we will focus on F = Fp, n,] € Fu nc(n, 1) that consists of all
Boolean functions with hamming weight at least /o and at most ~;. Recall that the set F in our FR
experiment is meant to reflect the adversary’s a priori “knowledge” about the function hidden in
the opaque circuit, and that our FR-notion samples F' uniformly from F. At the extremes, setting
ho = 0, hy = 2" considers the case that the adversary has no a priori knowledge; setting ho = hy
considers an adversary that knows exactly the hamming weight of the hidden function F'. In our
analysis of OneChaff, 4, we will conservatively assume the latter. Note that a random Boolean
function will have h = 2"~! on average. Hence, if the IP-author’s circuit has hamming weight
close to 2”1, then it knows that €; 41 will be small and it will be very unlikely for the foundry to
learn F' by just using queries to TRUE.

A practical warm-up: FR security with g = 0. Chips that are used in critical infrastructure
(e.g., military devices) will most likely require considerable effort to obtain. In this case, we can
assume that the foundry cannot get access to honestly restored chips, and thereby learn the true
input-output behavior of F' on inputs of its choice. Thus, we begin our analysis of OneChaff, 4 for
Fin,n) in the ¢ = 0 case.

Given Lemma 1, recall that we were left to find an upper bound on Pr [FA‘ﬁ(B)=1] , where B

has some time-complexity ¢ and asks ¢ queries to its TRUE oracle. Let us fix ¢ = 0, and consider
an arbitrary adversary By with these resource bounds.

Recalling the notation that R, is the set of functions realizable by the opaque circuit L =
(H, TAE, we have Ry, = Na(H); F' € Rr. The adversary By knows a priori that F' € Fyj,).
Hence, for all F' € R, hw(F) € [hw(H) — A,hw(H) + A]. To get an intuition of the claim

A N

on hw(F), consider two cases: hw(H) = 0 and hw(H) = 2". When hw(H) = 0, hw(F) =
hw(H) + A = A; when hw(H) = 2", hw(F) = hw(H) — A = 2" — A.

While attacking OneChaff; 4, the optimal strategy for By is to return the circuit implementation
of the most-likely function in Fj;, "R . (We will use F; [Jh’ hp R, to denote the subset of functions

in F p) and R 1, respectively, that have correct values on some 0 < j < ¢ inputs.) But as sampling

is done in a uniform and independent fashion in FR, all functions in My = (.7-" o N R%) are

equally likely. Then, Pr {FA‘P/{(BO) = 1} = |[Mo|~t. We will proceed to give a lowerbound
on | M| in the ¢ = O case.

Claim 1. Let A < hand hw(H) = h + 6, where § < (2"~! — h). Then,
h+4 2" —h -4
— 0 0| —
Mol = (Fon R (a5 2) (o)
¢

Proof. Recall that X;(H) denotes the set of all inputs for which H’s value is i; hw(H) = X1 (H).
In Figure 6, we show the representation of F' and H using their respective X;. Any Boolean
function H can be described using sets Xy(H) and X; (H).

Fori € {0,1} and forany F' € Ry, let S;(H, F) = S; = 7 (H,)N X;(H). By construction:
Sy, Sy are disjoint, and S; C X;_;(F) as F(X) = =H(X) forall X € 77 (H, F).

A A

We can build X (F') using the sets X3 (H) and S; in three steps. First, initialize X (F') =

X1 (H). Then, remove all elements in set Sy from X’ (£'), and in the final step, add all elements of
set S, i.e., Xl(F) = (Xl (H) \ Sl) U Sy. (X()(F) = (Xl(H) \ So) U St

Animesh Chhotaray and Thomas Shrimpton 19

0 0
X0l / 1Xo(H)]
\S / 2n
126,(F) g x) I ()
F H

Figure 6: Representation of F' and H using X;(-). The orange (resp. blue) box denotes the
distinguishing inputs that fall in set X7 (H) (resp. Xp(H)). By construction of OneChaff; 4, the
orange (resp. blue) box belongs to Xy(F') (resp. X1 (F)).

By construction, the hamming weight of all functions in R, will fall in the window [hw(H) —
A hw(H) + Al ie., hw(F) € [hw(H) — A hw(H) + A] forall F' € R . Since]—'[(;L’h] comprises

of functions with hamming weight h only, we can construct (]-"[(;L BN R%) by only keeping
functions £ € R 1, whose hw(ﬁ’) = h. That is, for each Fe (.7-"[% h] N R%), the hamming weight

of F will satisfy: | Xy (H)| — |S1(H, F)| + |So(H, F)| = h. Also, by construction of OneChaf,q,
the total number of distinguishing inputs will be A. Hence, |S1(H, F')|+|So(H, F)| = A. Solving
these two equations, and using hw(H) = h + ¢ gives us:

|S1(H, F)| = (A +3)/2;|So(H, F)| = (A = 8)/2.

These equations tell us that given H, each function F in the set Finp) N Ry has (A +9)/2
distinguishing inputs in X; (H) and (A — §)/2 distinguishing inputs in set Xy (H). Total number
of such functions will be ((‘fir(g}g) X ((‘f‘)_(g}g), where § = hw(H) — h. Substituting |X; (H)| =
hw(H) and |Xp(H)| = 2™ — hw(H) in the previous equation gives us the final bound in the claim.
|

When A < h and hw(H) < 2"~!, we found (in the proof of Claim 1) that more than half
(A/2 4 0/2) of the distinguishing inputs will belong to X; (H). Hence, we can assume, without
any loss in the FR advantage of the adversary, that the adversary will make all of its queries from
X1 (H) until it finds all (A 4 6)/2 distinguishing inputs in X (H). (Later, we will show that when
q < min(hw(H)/4,A?/641Inn), the adversary can find at most half of the distinguishing inputs
in Xy (H), without loss.)

The lower bound on |My]| in Claim 1, a function of hw(H) as § = (h — hw(H)), gives us
an upper bound on the FR advantage of adversary that attacks OneChaff;,4 without making any
queries to any of the three oracles. But, hw(H) is not a parameter of the FR-security experiment.
In the next claim, we give a lower bound on the hamming weight of H using the Hoeffding lemma;
the bound is a function of ~, A and n and all three are parameters of the FR experiment.

Claim 2. Let A < hand 0 < (A + h) < 2"~L. Then, with probability at least (1 — 1/A?),
hw(H) > h+ A(1 — h/2"71). ¢

Proof. We will use the sets X;(F) and S;(F, H) = S; = 7 (F, H) N X;(F), where i € {0, 1},
to define X;(H) similar to how we used sets X;(H) and Z7 (F, H) N X;(H) to define X;(F) in
the proof of Claim 1. Note that the set X;(F') is used as the base function in this proof; in Claim 1,
we used X;(H) as the base function. Following the same three steps as in the proof of Claim 1, we
Next, we need bounds on S;’s. Before that, observe that the set Z7 (F, H) = { X1, Xa,..., Xa}
is a random variable that follows a uniform distribution, i.e., Z7 (F, H) <s (U,)?. Since hw(F) =
h,Pr[X € X (F)] = h/2", and Pr[X € Xo(F)] = 1 — h/2", where X +s I7(F, H).

20 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

Now, the size of S;, i.e., |S;| is a random variable that is binomially distributed, with
E[|S1]] = p1 = A(R/2™) and E[|So|] = 1o = A(1 — h/2™). By a standard Hoeffding bound,
we have, for all € > 0, Pr[[S;| > p; + Ae] < exp(—2A€?). Setting € = /(InA)/A, we

get with probability at most 1/A2, Pr { |Si| > i + VAInA } . We can write this otherwise as:

Pr|[Si] < p; + M} with probability at least 1 — 1/A2. We will assume that the bounds

on S; are tight; we will reflect the uncertainty in the claim/theorem statements. Using the bounds
on S; in | X1 (H)| = |X1(F)| — |S1| + |Sol, we get

X (H)| = |X(F)] = (p1+VAIA) + (uo + VAR A)
= h—A(h/2")+ A1 —h/2") =h+ A~ (AR)/2"7,

with probability at least (1 — 1/A2). B

We will assume that the bound on hw(H) is tight and we will reflect the uncertainty in the
claim/theorem statements.

Now, we are ready to give the upper bound on the FR advantage of adversary A in the zero-
query setting. We use the standard relation (f) > (p/r)" in the bound in Claim 1 to make the final
bound in Theorem 2 easier to interpret. We also use the weaker bound hw(H) > h (instead of
the tighter bound in Claim 2) to make the final bound even more interpretable. Note that practical
OneChaff, 4 schemes will have A < 2"~! as the run time of Hide as well as Restore will be linear
in A. Thus, the loss in using hw(H) > h instead of hw(H) > h + A(1 — h/2(»~1) will not be
significantly large.

Theorem 2. Fix m = 1 and integers n, h, A > 0 such that A < h, and A + h < 2"~V When
an honest-but-curious adversary A attacks the FR security of I1 = OneChaff; 4 without making
any queries to any oracle, then it achieves

AJ2
AdVFr?e),Fab(]:[h,h]? A) < <2"h) + €:,0,1,

with probability at least (1 — 1/A?). ¢

Proof. From Lemma 1, Claims 1 and 2, we get

h46 \ (2" —h-a\\"
FR
Aastio G < (((a5)) (fay2)) +eor

Since 6 = A(1 —h/2" 1), wehave: A — 6 < A, A+§<2A,andh+J < h+A <21
Using these observations, and (¥) > (p/r)", we get,

(a2 (s 52))

_ h+6 —((A+9)/2) om_ph_§ —((A=9)/2)
“\at0)2 A—0)2
_((a+9) /2 (A45)/2 @2 (A—5)/2
- h+ 2" —h — ¢

A A/2 AJ2 22 A2 N\ A2
<[— <
<) (7)<

Animesh Chhotaray and Thomas Shrimpton 21

In the next section, we will see that when we account for the adversary’s access to the oracles,

R A/4
2”-(Ah*q)) +
€¢,q,1- Observe that the queries to TRUE increase the FR advantage of an adversary significantly
(compared to the zero-query setting) as the exponent A /2 decreases to A /4; the denominator also
is smaller compared to the zero-query setting. Since the first term is very similar to the bound in
Theorem 3, we defer the unpacking of Theorem 2 to the next section.

more specifically, the TRUE oracle, the upper bound on the FR advantage will be (

FR analysis of OneChaff},4 with g > 0. The ability to learn true input-output pairs, via queries
to TRUE, provide a way for the adversary to verify guesses at portions of the key K. Recall
that the key encodes (X1, F(X1)),...,(Xa, F(Xa)) for X; € Z7 (F, H), and the opaque circuit
C', allows for local computation of H(X). Thus, as a first step in analyzing the FR security of
OneChaff, 4 in the ¢ > 0 case, we derive a bound on the number of points in Z7 (F, H) that an
adversary uncovers in its ¢ queries to the TRUE oracle.

Let Q; = {z1,2,...,x;} be the the first j queries to TRUE, and let random variable Qljey =
Q; N T7(F, H) denotes the queries in Q; that uncover a portion of the distinguishing inputs.
Observe that |QF| = 0, and for j > 0 the value of |ley| depends only upon |ley | and the
query x;; in particular that |ley| = |ley |+ 1ifz; € I7(F, H), and |ley| = |ley | if not.

Let I; be the indicator random variable indicating that the event x; € Q jcy occurs. We claim
that Pr[I; =1] = (A |ley)/ (hw(H) — (j — 1)). To see this, observe that the number
of uncovered points in Z7 (F, H) is precisely (A |ley |) and, given how those points were
sampled, any of the remaining, unqueried points in X (H) are equally likely to be in Z7 (F, H).
Given this, we can prove the following lemma.

Lemma 2. Let A < hand (A + h) < 2", Then, we have E [| Q5[] = hf(A)

E [|Q1;ey|] + \/4qIn A with probability at least 1 — (2/A?). ¢

Proof. Letj < qand Z; = Q?ey. We prove this claim by induction. We have already identified
the base case of E[Zy] = Zy = 0 and E[Z;] = A/hw(H). In the general case, we will compute
E[Z;] = E[E[Z; | Z;-1]]. First,

A—Z_ A—Z_
E[Z;|Zj] == (Zj—1 +1) I G- >

(i) — (1) G (1 T hw(E) (1)
()
7 \bw(H) = (= 1)

Now taking the expected value of both sides, we get the expression

1

Elz)= () =D

7,] + (A—E[2,_1])

A
- <J = 1)) S 7 gy

(- DA A
b (J = 1>> hw(H) | hw(H) — (j - 1)

hw(H J—l) (hV:l(f() h.W(H)f(j—l)
91)< ; +1)
hw(H J—1><]_1)(H))+hW(H)>

E
(i
(-5
<hwl<lw y 1) (flw<2>A " hw(H) : G-1)
(i
(i
(

22 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

B (hw(H) é G- 1)) (j(hW(Hr)l)wzfg - w))
- (hw<H>]—A G- 1)) (hw?way) : 1))

Thus, for j = ¢, Z,; = ﬁ%.

We now show that Z, is tightly concentrated around its expectation. Observe that Z; —Z;_; < 1 for
2
all1 < j < g, so by the Azuma-Hoeffding inequality Pr[Z, > (1 + €)E[Z,]] < 2exp (—%).

In(2
If we set the upperbound to equal a parameter « and solve for €, we obtain € = ?Tg"). Pushing

a bit further, we set & = 2/A? and arrive at the following result: Z, < E [Z,] + v/4qIn A with
probability at least 1 — (2/A2). B

Notice that when ¢ < A?/(2561n A), \/4gIn A < A/8; when q < hw(H)/8, gA/hw(H) <
A/8. Thus, with probability 1 — (2/A?), the adversary will uncover no more than quarter of the
distinguishing inputs in Z7 (F, H) when ¢ < min(hw(H)/8, A%?/(256InA)).

The adversary can increase its FR advantage by removing functions from (]—' oy N R%) that

are not correct on any input in Qgey. In fact, it can remove all functions that do not agree with F'
on any point in the query set Q.

Extending Claim 1 to account for Qgey, we give a lower bound on |M;| = ‘ (]:[31, e RqL) ‘
in Claim 3. Since one wins against OneChaffy 4 if and only if the hidden function F' is completely
recovered, a lowerbound on | M| will give us an upperbound on Pr {ﬁ(B) =1 }, and in turn
(by Lemma 1) an upper bound on the FR advantage of an adversary A that attacks OneChaffy, 4.

Claim 3. Let A < hand hw(H) = h + 6, where § = A(1 — h/2"~1). Then,

(h+d—q) > <2nh6>
=|(FhmaNRL)| =
= m)|= (5 s jo) ((a)
with probability at least (1 — 2/A?). ¢

Proof. After q queries, the adversary learns | QY| distinguishing inputs. Let § = hw(H) — h.

From the proof of Claim 1, we know that given H, each function F in the set Fin,n MRy has
(A +0)/2 distinguishing inputs in Xy (H) and (A — §) /2 distinguishing inputs in set Xo(H). Since
Q, C Xy (H) with high probability (from Lemma 2) and the adversary knows | Qgey| distinguishing
inputs in set X (H), the total number of functions in Fj;, ;) N Ry, that have values F'(X;) on all

: : | X (H)|— Xo(H
inputs X; € Q, will be ((A+51)/2—\Q%°y|) ((IA(i(&);L)_ |

Comparing the bounds in Claims 1 and 3, we can see that the adversary B can remove a large

2"—h—6>

number — at least ((A_s)/2) — of functions from (.7-"[% . R%) using its queries to TRUE.

Upperbound on the FR security of OneChaff},q. Recall that the lowerbound on | M| gives us
an upperbound on the FR advantage of an adversary that attacks OneChaff, 4, where R denotes
the set of functions in the A neighborhood of H that are correct on all the queries that the adversary
makes to TRUE. The bound in Claim 3 is a little complex and hard to interpret. In the following
Corollary to Claim 3, we derive a weaker, but easier to interpret bound on | M |. In the derivation,
we use the standard relation () > (p/r)", and the assumptions: ¢ < min(h/8, A?/256n) and
(h < h+ A < 2") to get the bound.

Animesh Chhotaray and Thomas Shrimpton 23

Corollary 1. Let 0 < g < min(h/8,A%/256n). Let A < hand 0 < (A + h) < 2"~ With
probability at least (1 — 2/A?),

n A/4
2"(h—q)
= || = (Ht)
Proof. LetZ, = Qf;ey. From Claim 2 and Lemma 2, we have, Z, < y/4¢In A+ WA/QM,”),

with probability at least (1 — 2/A?). Since we are finding an upperbound on Z,, we can substitute
h+ A(1 — h/2("=1D) with h to get a weaker-but-easier-to-interpret bound. As discussed earlier,
for practical OneChaff, 4 schemes, the loss in accuracy will not be much since A < 2". In the
first term, In A < In2"~1 < (n—1)In2 < n since we assume that A < A + h < 27=1 Thus,

VAagIn A < \/4gn.
In order to prove the bound, which is the inverse of the product of the two binomial terms in Claim
3, we will show that the left binomial term satisfies

((h+6—q) >><h q)A/‘*
((A+6)/2—(gA/h++/4qn))) — A ’
and the right binomial term satisfies

2n—h—d) _ (2m**

(A-4)/2) —\ A '
Under our assumption ¢ < h/8, gA/h < A/8. When ¢ < A?/256n, \/4gn < A/8. Thus,
(¢A/h + /4gn) < A/4, and

(h+d—19q) (h+0—1q) (h+3d—q)
(((A +06)/2 = (qA/h + v4qn))) - ((A/4 + 5/2)> - ((A/4 + 5/4))
Using the standard lower bound on binomial coefficient () = (£) > (p/r)", we get:

()= ()" (59

Since § = A(1—h/2" 1), and h+A < 2771, we have: A—§ < A,and h+0 < h+A < 2"~ L
Using these observations and the standard lower bound on binomial coefficient, we get

) (50 (7)™) ()

We are now prepared to state the upper bound on the FR-advantage of an adversary attacking
OneChaff,,y. Since Adv{L gy rup(Fin,nj» A) < 1/|Mi| + €44,1. the final bound follows directly
from Corollary 1. Recalling that €; , 1 captures the probability that the sampled hidden function F°
is a “simple” function (see Definition 3), we have the following theorem.

Theorem 3. Fix m = 1 and integers n,h, A, q > 0 such that A < h,0 < A+ h < 2"1, and
0 < q < min(h/8, A%/256n). Let an honest-but-curious adversary A attack the FR security of
OneChaffy,q using resources (t,qr = 1,qs = 1,¢» = q). Let €, 41 be as defined in Definition 3.
Then,
R A2 A/4
Adv(0"€Chuﬁld79),Fab(‘F[h7h]’ 4) < (2n(h _ q)) + €tq.1
with probability at least (1 — 2/A?). ¢

24 Hardening Circuit-Design IP Against Reverse-Engineering Attacks

Let us unpack the Theorem a bit. In OneChaff, 4, an IP author can configure A while running
Hide. We will carve out three criteria from Theorem 3 in terms of: |Dom(F')|, hw(F') and A, that
are needed for FR security of OneChaffy 4.

The FR security of OneChaff, 4 increases polynomially in the size of the domain of the hidden
function, as well as the hamming weight of the function (as the hamming weight approaches
27~1), The rate of increase depends on the value of A — large values of A result in faster rate
of increase. All three criteria are quite intuitive. Functions with small domains will be simple
because they can be learnt by brute force; functions with very small hamming weights will be
“close” to being constant functions. On the contrary, when F' is a uniformly sampled balanced
Boolean function with large domain, the min-entropy of the (uniform) distribution on F will be
very large (compared to functions with very small hamming weights) as | F| = (,2°,) > (%) for
any £ € [0,27] \ {2 '}.

While efficient OneChaff; 4 schemes will require A to be small (as the size of Ko is nA), the
IP author should choose as large A as possible to maximize FR-security guarantee. This criteria
is also quite intuitive as large A implies large number of secret distinguishing inputs (that are
encoded in K) on which the adversary does not know the value of F'.

None of the previous works consider these factors while discussing the security of DH schemes.
For example, in the evaluation of the SAT attack [SRM15], four base-benchmark circuits (c17,
ex5, apex4, ex1010) have very small domains: in c17, n = 5; in ex5, n = 8; in apex4 and ex1010,
n = 10. Note that the authors used each base-benchmark circuit to create 21 opaque circuits.
That means roughly 19% of the benchmark circuits® in the test corpora of SAT attack cannot be
protected by any DH scheme. It is noteworthy to also point that the open-source test corpora of
SAT attack is used by other attack algorithms as well [SLM™17a, SLR™ 19].

8 Next Steps

This work initiates a provable-security exploration of design-hiding schemes. We stress initiates:
the foundations that we have developed allow us to design the first DH scheme that is supported by
a concrete security analysis, with respect to formal security notions that capture the attack model
and adversarial goals intended by prior work. While we believe this work is an important step
forward, we recognize that there is still much to be done.

Some obvious directions are to generalize the main security result for OneChaff, 4 to non-
Boolean functions. One idea would be to consider the transitive fan-in cone of each output bit of a
multi-bit function, which defines a Boolean subfunction.

Also, it may be fruitful to consider more sophisticated modeling of the foundry’s a priori
knowledge.

Our FR-security notion demands that the foundry recover the entire hidden function. This is
the demand of prior works, too, but it is likely too strong. It rules out attacks that, for all intents and
purposes, effectively reverse-engineers the hidden function to any efficient test. One might modify
the FR-security experiment to demand input-output correctness on a set 7 C Dom(F’). Sharper
still would be to make a Test algorithm be a syntactic component of a DH scheme, and modify
the FR-security experiment to declare an attack successful only if it fools the 7est algorithm into
saying that the foundry’s dishonestly produced chip (not circuit) is functionally correct.

Going a different direction, while OneChaff, 4 is the first provably secure DH scheme, we expect
there are many others. We encourage efforts to discover them, with an eye towards practically
desirable features, e.g. small area/power/delay overheads.

Finally, we consider DH schemes for stateless circuits. Modern, real-world circuits are often
stateful, and comprised of multiple stateless subcircuits. Extending our formalisms to such circuits
is an important next step. Note that one may treat each stateless sub-circuit as an independent
circuit, and try to use OneChaff, 4 to prevent full-function recovery attacks on each of these.

50ut of 441 benchmark circuit, 84 circuits have very small domains in the test corpora.

Animesh Chhotaray and Thomas Shrimpton 25

However, such a construction may add a lot of overhead, in terms of the size of the final chip.
Finding a good trade-off between efficiency and security for practical circuits is also an interesting

direction.

References

[BGI101]

[BGI15]

[BHKR13]

[BHR12]

[BR14]

[BTZ10]

[CB11]

[CBWCI12]

[CCB18]

[CCB19]

[CDG14]

[Chel8]

[CT16]

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In
Annual International Cryptology Conference, pages 1-18. Springer, 2001.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Annual in-
ternational conference on the theory and applications of cryptographic techniques,
pages 337-367. Springer, 2015.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478—492. IEEE, 2013.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Proceedings of the 2012 ACM conference on Computer and communi-
cations security, pages 784-796. ACM, 2012.

Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all
circuits via generic graded encoding. In Theory of Cryptography Conference,
pages 1-25. Springer, 2014.

Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing ic piracy
using reconfigurable logic barriers. IEEE Design & Test of Computers, 27(1),
2010.

Rajat Subhra Chakraborty and Swarup Bhunia. Security against hardware tro-
jan attacks using key-based design obfuscation. Journal of Electronic Testing,
27(6):767-785, 2011.

Lap Wai Chow, James P Baukus, Bryan J Wang, and Ronald P Cocchi. Camou-
flaging a standard cell based integrated circuit, April 3 2012. US Patent 8,151,235.

Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. Sail: Machine
learning guided structural analysis attack on hardware obfuscation. In 2018 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 56-61.
IEEE, 2018.

Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. Surf: Joint structural
functional attack on logic locking. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 181-190. IEEE, 2019.

Jean-Michel Cioranesco, Jean-Luc Danger, Tarik Graba, Sylvain Guilley, Yves
Mathieu, David Naccache, and Xuan Thuy Ngo. Cryptographically secure shields.
In 2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 25-31. IEEE, 2014.

Yung-Chih Chen. Enhancements to sat attack: Speedup and breaking cyclic logic
encryption. ACM Trans. Des. Autom. Electron. Syst., 23(4):52:1-52:25, May 2018.

Henry Carter and Patrick Traynor. Opfe: Outsourcing computation for private
function evaluation. JACR Cryptology ePrint Archive, 2016:67, 2016.

26

Hardening Circuit-Design IP Against Reverse-Engineering Attacks

[DBDN* 14]

[DFS16]

[DWO0S]

[EHP19]

[EKRT18]

[GOST11]

[JNO14]

[KAHS19]

[KM93]

[KMR12]

[KMR14]

[KSMB13]

[Lin05]

Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and Bruno
Rouzeyre. A novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans. In On-Line Testing Symposium (IOLTS),
2014 IEEE 20th International, pages 49-54. IEEE, 2014.

Stefan Dziembowski, Sebastian Faust, and Francois-Xavier Standaert. Private
circuits iii: Hardware trojan-resilience via testing amplification. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 142—-153, New York, NY, USA, 2016. ACM.

Ronald De Wolf. A brief introduction to fourier analysis on the boolean cube.
Theory of Computing, pages 1-20, 2008.

Susanne Engels, Max Hoffmann, and Christof Paar. The end of logic locking? a
critical view on the security of logic locking. Cryptology ePrint Archive, Report
2019/796, 2019. https://eprint.iacr.org/2019/796.

David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A pragmatic introduction
to secure multi-party computation. Foundations and Trends® in Privacy and
Security, 2(2-3):70-246, 2018.

Parikshit Gopalan, Ryan O’Donnell, Rocco A Servedio, Amir Shpilka, and Karl
Wimmer. Testing fourier dimensionality and sparsity. STAM Journal on Computing,
40(4):1075-1100, 2011.

Thomas P Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for
outsourcing of secure computation. In Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security, pages 81-92, 2014.

Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
Full-lock: Hard distributions of sat instances for obfuscating circuits using fully
configurable logic and routing blocks. In Proceedings of the 56th Annual Design
Automation Conference 2019, DAC 19, pages 89:1-89:6, New York, NY, USA,
2019. ACM.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier
spectrum. SIAM Journal on Computing, 22(6):1331-1348, 1993.

Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-
aided secure function evaluation. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 797-808, 2012.

Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible
garbling for xor gates that beats free-xor. In Annual Cryptology Conference, pages
440-457. Springer, 2014.

Ben Kreuter, Abhi Shelat, Benjamin Mood, and Kevin Butler. {PCF}: A portable
circuit format for scalable two-party secure computation. In Presented as part of
the 22nd {USENIX} Security Symposium ({USENIX} Security 13), pages 321-336,
2013.

Yehuda Lindell. Secure multiparty computation for privacy preserving data mining.
In Encyclopedia of Data Warehousing and Mining, pages 1005-1009. IGI Global,
2005.

https://eprint.iacr.org/2019/796

Animesh Chhotaray and Thomas Shrimpton 27

[LSMT16]

[Malll]

[MNP*04]

[MZGT17]

[NASRO4]

[NNOB11]

[PM14]

[RKMOS]

[RMKS18]

[RPSK12a]

[RPSK12b]

[RSK13]

[RSSK13]

Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z.
Pan. Provably secure camouflaging strategy for ic protection. In Proceedings of
the 35th International Conference on Computer-Aided Design, ICCAD ’16, pages
28:1-28:8, New York, NY, USA, 2016. ACM.

Lior Malka. Vmerypt: modular software architecture for scalable secure computa-
tion. In Proceedings of the 18th ACM conference on Computer and communications
security, pages 715-724, 2011.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplay-secure
two-party computation system. In USENIX Security Symposium, volume 4, page 9.
San Diego, CA, USA, 2004.

Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V. Tripunitara.
Logic locking for secure outsourced chip fabrication: A new attack and provably
secure defense mechanism. CoRR, abs/1703.10187, 2017.

G-J Nam, Fadi Aloul, Karem A Sakallah, and Rob A Rutenbar. A comparative
study of two boolean formulations of fpga detailed routing constraints. [EEE
Transactions on Computers, 53(6):688—696, 2004.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. Cryptol-
ogy ePrint Archive, Report 2011/091, 2011. https://eprint.iacr.org/
2011/091.

S. M. Plaza and I. L. Markov. Protecting integrated circuits from piracy with test-
aware logic locking. In 2014 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 262-269, Nov 2014.

Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Epic: Ending piracy of
integrated circuits. In Proceedings of the conference on Design, automation and
test in Europe, pages 1069—1074. ACM, 2008.

Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. Srclock: Sat-
resistant cyclic logic locking for protecting the hardware. In Proceedings of the
2018 on Great Lakes Symposium on VLSI, pages 153—-158. ACM, 2018.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of logic
obfuscation. In DAC Design Automation Conference 2012, pages 83—89, June
2012.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. Logic
encryption: A fault analysis perspective. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’12, pages 953-958, San Jose, CA,
USA, 2012. EDA Consortium.

J. Rajendran, O. Sinanoglu, and R. Karri. Is split manufacturing secure? In
2013 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1259-1264, March 2013.

Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh Karri. Se-
curity analysis of integrated circuit camouflaging. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, CCS
13, pages 709-720, New York, NY, USA, 2013. ACM.

https://eprint.iacr.org/2011/091
https://eprint.iacr.org/2011/091

28

Hardening Circuit-Design IP Against Reverse-Engineering Attacks

[SAFT16]

[SHST15]

[SLO1]

[SLM+17a]

[SLMT17b]

[SLP+19]

[SLR*19]

[SNCO09]

[SPJ19]

[SRM15]

[SRZ18]

[SS19]

[SZ17]

Bicky Shakya, Navid Asadizanjani, Domenic Forte, and Mark Tehranipoor. Chip
editor: leveraging circuit edit for logic obfuscation and trusted fabrication. In
Proceedings of the 35th International Conference on Computer-Aided Design,
pages 1-8, 2016.

Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. Tinygarble: Highly compressed and scalable sequential
garbled circuits. In 2015 IEEE Symposium on Security and Privacy, pages 411-428.
IEEE, 2015.

D-J Shyy and C-T Lea. Log/sub 2/(n, m, p) strictly nonblocking networks. IEEE
Transactions on Communications, 39(10):1502-1510, 1991.

K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin. Appsat: Approximately
deobfuscating integrated circuits. In 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 95-100, May 2017.

Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier Jin.
Cyclic obfuscation for creating sat-unresolvable circuits. In Proceedings of the on
Great Lakes Symposium on VLSI 2017, GLSVLSI °17, pages 173-178, New York,
NY, USA, 2017. ACM.

Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z Pan, and
Yier Jin. Ip protection and supply chain security through logic obfuscation: A
systematic overview. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 24(6):1-36, 2019.

Yuangi Shen, You Li, Amin Rezaei, Shuyu Kong, David Dlott, and Hai Zhou.
Besat: behavioral sat-based attack on cyclic logic encryption. In Proceedings of
the 24th Asia and South Pacific Design Automation Conference, pages 657-662.
ACM, 2019.

Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3,
2009. Proceedings, pages 244-257, 2009.

Kaveh Shamsi, David Z Pan, and Yier Jin. On the impossibility of approximation-
resilient circuit locking. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 161-170. IEEE, 2019.

P. Subramanyan, S. Ray, and S. Malik. Evaluating the security of logic encryption
algorithms. In 2015 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 137-143, May 2015.

Yuangi Shen, Amin Rezaei, and Hai Zhou. Sat-based bit-flipping attack on logic en-
cryptions. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 629-632. IEEE, 2018.

Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic
locking. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 936-939. IEEE, 2019.

Yuangi Shen and Hai Zhou. Double dip: Re-evaluating security of logic encryption
algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017,
GLSVLSI ’17, pages 179—-184, New York, NY, USA, 2017. ACM.

Animesh Chhotaray and Thomas Shrimpton 29

[TI19]

[Tre18]

[VPHT16]

[XS16]

[XSTF17]

[Yao82]

[YMRS16]

[YMSR17a]

[YMSR17b]

[YSNT17]

[YSST17]

[YTS19]

[ZAMKHS19]

The-Intercept. Everybody does it: the messy truth of computer suppy chains.
Technical report, 2019.

TrendForce. Trendforce reports top 10 ranking of global semiconductor foundries
of 2018. Technical report, 2018.

Arunkumar Vijayakumar, Vinay C Patil, Daniel E Holcomb, Christof Paar, and
Sandip Kundu. Physical design obfuscation of hardware: A comprehensive investi-
gation of device and logic-level techniques. IEEE Transactions on Information
Forensics and Security, 12(1):64-77, 2016.

Yang Xie and Ankur Srivastava. Mitigating sat attack on logic locking. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 127-146. Springer, 2016.

Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel
bypass attack and bdd-based tradeoff analysis against all known logic locking
attacks. In International Conference on Cryptographic Hardware and Embedded
Systems, pages 189-210. Springer, 2017.

Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS, volume 82,
pages 160-164, 1982.

Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur
Sinanoglu. Sarlock: Sat attack resistant logic locking. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 236-241.
IEEE, 2016.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Removal attacks on logic locking and camouflaging techniques. /EEE
Transactions on Emerging Topics in Computing, 2017.

Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. In 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 342-347. IEEE, 2017.

Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan (JV) Rajendran, and Ozgur Sinanoglu. Provably-secure logic
locking: From theory to practice. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS *17, pages 1601—
1618, New York, NY, USA, 2017. ACM.

Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan (JV) Rajendran. What to lock?: Functional and
parametric locking. In Proceedings of the on Great Lakes Symposium on VLSI
2017, GLSVLSI "17, pages 351-356, New York, NY, USA, 2017. ACM.

Fangfei Yang, Ming Tang, and Ozgur Sinanoglu. Stripped functionality logic
locking with hamming distance based restore unit (sfll-hd)-unlocked. IEEE Trans-
actions on Information Forensics and Security, 2019.

Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.
Threats on logic locking: A decade later. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI, GLSVLSI " 19, pages 471-476, New York, NY, USA,
2019. ACM.

30

Hardening Circuit-Design IP Against Reverse-Engineering Attacks

[ZJK17]

[ZRE15]

Hai Zhou, Ruifeng Jiang, and Shuyu Kong. Cycsat: Sat-based attack on cyclic logic
encryptions. In Proceedings of the 36th International Conference on Computer-
Aided Design, pages 49-56. IEEE Press, 2017.

Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 220-250. Springer, 2015.

Animesh Chhotaray and Thomas Shrimpton 31

cryptography, provable security, design hiding, hardware obfuscation, logic locking, logic
encryption, IC camouflaging,,

	Introduction
	Overview of Contributions
	Related work
	Relation to existing cryptographic primitives.

	Preliminaries
	DH Schemes
	Security notions
	A Framework for Designing Secure DH schemes
	OneChaff: a family of DH schemes
	Efficiency of OneChaffhd
	FR security of OneChaffhd

	Next Steps

