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ABSTRACT
To achieve coordination in multiagent systems such as air tra�c
control or search and rescue, agents must not only evolve their
policies, but also adapt to the behaviors of other agents. However,
extending coevolutionary algorithms to complex domains is di�-
cult because agents evolve in the dynamic environment created by
the changing policies of other agents. This problem is exacerbated
when the teams consist of diverse asymmetric agents (agents with
di�erent capabilities and objectives), making it di�cult for agents
to evolve complementary policies. Quality-Diversity methods solve
part of the problem by allowing agents to discover not just opti-
mal, but diverse behaviors, but are computationally intractable in
multiagent settings. This paper introduces a multiagent learning
framework to allow asymmetric agents to specialize and explore
diverse behaviors needed for coordination in a shared environment.
The key insight of this work is that a hierarchical decomposition of
diversity search, �tness optimization, and team composition mod-
eling allows the �tness on the team-wide objective to direct the
diversity search in a dynamic environment. Experimental results
in multiagent environments with temporal and spatial coupling
requirements demonstrate the diversity of acquired agent synergies
in response to a changing environment and team compositions.
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Figure 1: Drone-rover teams collect iron from the Martian
surface. Drones can see iron while rovers can collect it with
drone supervision. Drones in Team A all exhibit the same
behavior: go to the nearest iron. Drones in Team B exhibit
diverse behaviors: go to the nearest iron, follow a rover as
support, and scout the vicinity. The diversity in B enables
faster collection.

1 INTRODUCTION
Many complex real-world problems can be formulated as coevolu-
tionary systems that require agents to evolve diverse policies and
work in teams. We’ve recently witnessed remarkable advances in
adaptive agents applied to several multiagent problems such as air
tra�c control [9, 24], real-time strategy games [17, 25] and robotic
automation [11, 13].

In spite of the many successful applications of multiagent learn-
ing, the overall generalizability and adoption remains limited. The
primary di�culty of most multiagent problems is their asymmetric
nature. The asymmetry lies in the distinct capabilities and objec-
tives of di�erent agent types within a team (this is in contrast to
heterogeneous agents which may have di�erent capabilities but
traditionally share the same objectives). Because no one agent has
all the capabilities required to achieve the team-wide objective, the
agents must learn to not only complete their objectives but also
work together as a cohesive team. This requires agents to learn a
diverse set of policies that can be adapted in response to the prob-
lem and the capabilities of the other agents. A simple example of
this asymmetry is shown in �gure 1.

In evolutionary learning, Quality-Diversity methods shift the fo-
cus from �nding the optimal behaviors to �nding diverse behaviors.
This shift towards learning diversity is crucial to adaptation in asym-
metric multiagent settings. Fundamentally, most Quality-Diversity
methods can be described as iterative processes that ping-pong
between: 1) Mutating existing behavior(s) to �nd new diverse be-
haviors; and 2) Organizing behaviors in an archive. In multiagent
settings, exploring the entire behavior space is computationally
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intractable since the behavior space is a function of the number of
agents and their action spaces.

Recent work has shown success in scaling Quality-Diversity
methods to multiagent settings by using an evolutionary method as
a �lter to discard parts of the behavior space that have low �tness
values on the multiagent task. However, in asymmetric settings,
agents can have divergent action spaces implying the need to search
through several distinct behavior spaces. Given a �xed budget for
team size, this presents the challenge to not only search for diversity
but optimize the relative number of di�erent agents in the team.

This work introduces Multiagent Coevolution for Asymmetric
Agents (MCAA), a multiagent framework that enables asymmetric
agents to coevolve, learn diverse policies, and form robust synergies
for cooperation. MCAA combines gradient based Quality-Diversity
and explicit team composition optimization with gradient-free
evolutionary optimization. The Quality-Diversity method enables
agents to discover diverse policies that are trained via a gradient-
based optimizer to maximize dense agent-speci�c rewards. Teams
of agents are created by sampling from a distribution over di�erent
asymmetric agents, which is updated using a policy-gradient rule
to maximize the team-wide �tness. The evolutionary optimizer
maximizes the team-wide �tness and acts as a �lter for the Quality-
Diversity method to discard regions of the behavior space with
low �tness. The diversity search and �tness optimization processes
operate concurrently and enable the team-wide �tness to guide
diversity search.

A key insight is that optimizing for agent diversity rather than
performance on a local task �nds behaviors well suited for team-
work – that would otherwise be ignored – resulting in higher team
performance. This is particularly true for teams of asymmetric
agents, which not only have di�erent capabilities like heteroge-
neous agents, but di�erent objectives as well.

The key bene�t of MCAA is its ability to adapt and optimize
the team-wide objective by both guiding the diversity search and
updating the team composition to re�ect the contribution of the
discovered diversity to the team-wide objective. We demonstrate
the strength of MCAA on an asymmetric multiagent exploration
task that requires diverse temporally and spatially coupled agents
to work together.

2 BACKGROUND
This section provides a brief overview of recent work in multiagent
learning, diversity search methods and open-ended learning.

2.1 Multiagent Learning
One of the key challenges in multiagent learning is solving the
credit assignment problem, where the agents need to determine
how their policies contributed to the team objective. This problem
is more pronounced in tightly coupled domains where the team
objective depends on speci�c joint-actions or in problems with
sparse feedback, where a vast majority of policies result in little to
no feedback from the environment.

Hierarchical approaches to multiagent learning such as MERL
[10] and hierarchical MARL [23] split up learning between agents
learning speci�c behaviors, and learning how to form high per-
forming teams of agents. Tight coupling has been tackled through

�tness critics [21], reward shaping [14, 20], and other methods
based on an actor-critic architecture and di�erence rewards [4, 7].
However, none of these methods consider the necessity of diverse
agent behaviors in tackling tightly coupled objectives.

2.2 Quality Diversity
Quality Diversity methods guarantee the generation of a diverse
set of phenotypes by projecting them into a behavior space to
measure the spread of behaviors [2, 5, 6, 16]. If two phenotypes are
close in the behavior space, it indicates that they behave similarly,
regardless of how di�erent their genotypes may be. This behavior
space reduces phenotypes to low dimensional representations that
best capture their behaviors, and the features for this behavior
space can be engineered or learned.

QDmethods such as Novelty Search [8] and MAP-Elites [15] suc-
cessfully leverage behavior characterizations to generate a diverse
repertoire of phenotypes. The MAP-Elites algorithm iteratively mu-
tates genotypes to generate new phenotypes. If a new phenotype
demonstrates a higher �tness than another phenotype nearby in
the behavior space, the new phenotype is saved and the old phe-
notype is forgotten. This guarantees that MAP-Elites constantly
expands its repertoire of phenotypes to illuminate the behavior
space and only holds on to the best phenotype in a given region of
that behavior space.

2.3 Open Ended Learning and Coevolution
Open-ended learning continuously modi�es a problem such that
new solutions must be generated to solve the modi�ed problem.
Recent work in open-ended learning has demonstrated the bene�ts
of employing coevolution as a method to simultaneously evolve
problems alongside solutions. The Paired Open-Ended Trailblazer
(POET) [26] is an approach that combines ideas from behavior
novelty and coevolution to build an evolutionary framework for
open ended learning [19]. The open ended nature of learning comes
not just from the agents, but the problems that evolve with them.

Minimal criterion coevolution (MCC) is another method that
is motivated by open-ended coevolution. Instead of de�ning and
comparing �tness of themembers of a population, MCC subjects the
population to a minimal criterion for reproduction [1]. Requiring a
minimum criterion not only eliminates behaviors with lower �tness
but the limitation for satisfying an MC also encourages diversity
among individual agents. MCC has also been extended to an open-
ended search for diversity through speciation that comes naturally
as a result of resource limitation [3].

3 METHOD
Multiagent Coevolution for Asymmetric Agents (MCAA) is a co-
evolution framework for training asymmetric agents to coordinate
on a tightly coupled task. Additionally, MCAA functions as an
open-ended learning algorithm that adapts agents to changes in the
environment. An overview of the framework is shown in �gure 2.
MCAA produces a set of islands, each with a symmetric agent pop-
ulation for a particular species, and a mainland where agents from
each island participate in asymmetric teams. By leveraging both
agent-speci�c feedback on islands and team-wide �tness on the



Figure 2: MCAA Overview. On each Island, Quality Diversity iterations produce a population of agents with diverse behaviors.
Agents from each island are selected for asymmetric teams on the Mainland according to a species-speci�c distribution.
Generations of team evolution produce agents that contribute to team �tness. The distribution is updated according to the
contribution of each species, and agents are sent back to their respective islands for further Quality Diversity. By diversifying
species across their underlying behaviors, this approach uncovers otherwise ignored policies that synergistically contribute to
high team performance.

mainland, MCAA produces asymmetric agents that specialize their
behavior to achieve high team-wide �tness in multiagent teams.

On each island, an agent population of a particular species is
trained using a gradient-based optimizer that maximizes an agent-
speci�c reward. A Quality-Diversity routine uses the optimizer to
generate a population of high performing agents with a diverse set
of behaviors.

On the mainland, a gradient-based softmax distribution deter-
mines how many agents from each species are deployed in each
asymmetric team. The agents from each species are then chosen ran-
domly from their respective islands. A gradient-free evolutionary
algorithm maximizes the team �tness through neuroevolution. This
makes it possible to learn robust teams of diverse agents with asym-
metric capabilities without having to resort to reward-shaping or
explicitly designed team dynamics. The separation of agent-speci�c
diversity and performance optimization on the islands and team
dynamics optimization on the mainland also makes it possible for
agents with low agent-speci�c performance but potentially high
performance on a team to evolve and learn.

The framework operates on two timescales: a slow ecological
time for the evolutionary optimizer on the mainland and a fast be-
havioral time for the Quality-Diversity optimizer on the individual
islands. This gives agents more time to develop basic skills before
being evaluated in a team.

Diversity Search On the Islands: An agent species �8 is a
population of symmetric agents capable of taking the same actions.
An island �8 is inhabited by the corresponding species �8 . Each
island starts with a population of % randomly initialized neutral
networks as agent policies.

Algorithm 1: Diversity Search
1 Function policy_qd(?>?c):

Input: population of policies, ?>?c
Result: population of diverse policies and

corresponding trajectories, ?>?c and ?>?CA
2 for @3_8C4A0C8>=  0 to � do
3 c = selection(?>?c ) // random policy from population

4 c0 = mutate(c )
5 c0, CA0  train(A064=C ) // train with gradient method

on agent-specific reward, save trajectory

6 120 = get_behavior_characterization(CA0)
7 12  closest_policy_in_archive()

/* 033_?>;82~, A4<>E4_?>;82~ modify ?>?c , ?>?CA */

8 if distance (120, 12) > _ then
/* new policy is in a previously unoccupied region

of behavior space */

9 add_policy (c0, 120, CA0)
10 else

/* new policy competes locally with the closest

policy in the behavior space */

11 c2 = policy(120)
12 if reward(c2 ) < reward(c0) then
13 add_policy (c0, 120, CA0)
14 remove_policy (c2 )

15 return ?>?c ,?>?CA



Island
� Set of islands
� Set of agent species
C1 Behavior time scale index
8 Index of island and corresponding agent species
% Population size of an island
: (8, 9) Individual j of agent species i

Mainland
) Set of teams on the mainland
C4 Ecological time scale index
= Team index
: (=,<) Individual< of team =
q: Fitness of individual :
q (8,=) Cumulative �tness of individuals of species 8 in

team =

Distribution Parameters
` Distribution of species on the mainland
F Parameters of distribution `
U Population distribution ` adaptation rate
a Entropy regularization factor

The policies are trained using a gradient-based optimizer, Proxi-
mal Policy Optimization (PPO), on an agent-speci�c reward [22].
The trajectories of the trained policies (any data associated with
the policy can be used) are used as the dataset to train a Dimen-
sionality Reduction (DR) algorithm. This reduced representation
of the trajectories acts as a latent characterization of the behaviors
and provides the behavior space for the trained policies.

This is followed by many Quality-Diversity iterations:

(1) Select a random policy from the population
(2) Mutate it by probabilistically perturbing weights of the pol-

icy network
(3) Retrain the policy on the agent-speci�c reward
(4) Feed the policy trajectory to the Dimensionality Reduction

algorithm to project it in the behavior space
(5) If there are no other policies nearby in the behavior space,

then add the policy to the population
(6) If there are policies nearby, then compare the �tness of the

new policy to the nearest policy in the behavior space; keep
the policy with the higher �tness in the population and
exclude the other

The training of policies using the gradient-based optimizer hap-
pens on a fast behavioral time scale on each island independently.
The ecological time scale determines when agents are pulled from
the islands to the mainland, and the process on the mainland sends
back a new population of policies with a new behavior space that
are fed into more iterations of Quality-Diversity.

Team-Fitness Optimization on the Mainland: On the main-
land, at every ecological timestep C4 , |) | teams are created by sam-
pling policies from the islands using the distribution `. A team
is a set of individual policies that are grouped together for evalu-
ation on the team objective. Thus, an individual : (8, 9) of species
�8 can be a part of several di�erent teams, and its policy network

Algorithm 2:Multiagent Coordination
1 Function train_teams( :Integer, # :Integer):
2 Initialize � islands, each with a population ?>?c,8 of #

policy networks
3 for 8C4A0C8>=  0 to1 do

/* Fill behavior spaces on all islands using QD */

4 for 8  0 to � do
5 ?>?c,8 , data policy_qd (?>?c,8 )

/* train on local island reward at behavior time

scale C1 */

6 CA08=_3A (data)
7 ?A> 942C_?>;8284B ()
8 Sample from ⇠ `8C4A0C8>= )G# times to create )

teams of # agents each
/* Evolve teams on Mainland at ecological time scale C4

*/

9 for 64=4A0C8>=  0 to ⌧ do
10 foreach team = 2 ) do
11 q= , q (� ,=)= evaluate (=)
12 Rank team population ) based on �tness q=..)
13 Select the �rst 4 teams 2 ) as elites
14 Select the remaining (" � 4) teams from ) , to

form set ( using tournament selection
15 while |( | < (" � 4) do
16 crossover between randomly sampled policy

cG 2 4 and c~ 2 ( and append to S ()
{cG 2 8, c~ 2 8}

17 )  ( [ 4
/* update distribution parameters F */

18 F8C4A0C8>=+1 = F8C4A0C8>= +
U
⇥Õ

82{1,..., |� | } rF` (8) (q (8,==⌧) � a;>6` (8))
⇤

19 for 8  0 to � do
20 ?A> 942C_?>;8284B ()

and experience bu�er will be the same across the teams. All sam-
pled teams are evaluated on the team-wide �tness on the mainland
and each team is assigned a �tness value. A portion of the highest
�tness teams is kept aside as elites and the weights of the poli-
cies from the remaining teams undergo genetic crossover with the
elites through a mutation operator. After a set number of ecological
timesteps, the policies from the highest �tness teams along with
some crossover policies from lower �tness teams are collected into
species populations and sent back to the islands.

Behavior Re�nement On the Islands: Over the course of
several ecological time steps, only a portion of the policies from the
islands survive. This information is crucial in guiding the diversity
search process on the islands. By discarding policies with low �tness
values, the evolutionary method on the mainland essentially acts as
a �lter to discard policies in regions of the behavior space that do not
contribute towards the team �tness. This ensures that the diversity
search on the islands is strongly corelated to the team-wide �tness
of the island population, even if the agent-speci�c reward used in



the Quality-Diversity process is mis-aligned. For each island, the
latent representation of the behavior space is updated by retraining
the dimensionality reduction method on the mutated policies. This
update ensures that the updated latent representation captures the
maximum variance – and thus diversity – of the policies. During
the next iteration of Quality-Diversity on the islands, the updated
behavior spaces will progressively enable searching for new policies
in unexplored but promising regions of the behavior spaces that
have been deemed as the most promising on the mainland.

Team Balancing Update: The distribution of species on the
mainland, `, is de�ned as a softmax over a weight vector l . At
every ecological timestep, C4 , the teams on the mainland are created
by sampling individuals from the distribution `. In an asymmetric
multiagent setting, the optimal distribution of species is a function
of the current problem and should adapt if the problem changes.

Equations 1 and 2 describe �tness of a species 8 = B in team = and
the average �tness of species 8 = B across all teams on the mainland
at the current ecological timestep C4 , respectively.

q (8=B,=) =
’
<

(q: (=,<) if B?4284B (:) is B) (1)

5(8=B,C4 ) =

Õ
=2{1,..., |) | } q (8=B,=)

|) | (2)

The distribution is updated based on the sum of �tness of individ-
uals in a species participating as a team on the mainland, averaged
over all sampled teams in the current ecological timestep C4 . The
distribution of a species 8 over the mainland, ` (8) = 4F8Õ

; 4
F; , is up-

dated according to policy gradient rule given by equation 3. The
entropy regularization term ensures that each species participates
in the mainland problem. This is especially important in the early
ecological process as some species might have an overall lower
�tness than others.

FC4+1 = FC4 + U
266664

’
82{1,..., |� | }

rF` (8) (58,C4 � a;>6` (8))
377775

(3)

The distribution update takes place at the slower ecological
time scale on the mainland. It adapts the distribution of species in
sampled teams so that it is best-suited for the current team-wide
objective.

4 EXPERIMENTAL SETUP
We evaluate the performance of MCAA on an asymmetric varia-
tion of the multiagent rover exploration problem [10]. We conduct
the following three experiments to assess the e�ectiveness of our
method on the three problems that it addresses: Diverse behav-
iors, tightly coupled coordination between asymmetric agents, and
adaptability:

(1) Loose Asymmetric Coupling for tasks that are not tightly
coupled but require agents to operate with diverse behaviors,
independently.

(2) Tight Asymmetric Coupling for tasks that require asym-
metric agents with diverse policies to coordinate.

(3) Adaptation in Team Composition to evaluate the compo-
sition of teams in response to changes in the environment.

4.1 Asymmetric rover exploration
The classic rover exploration problem consists of symmetric rovers
that must explore a continuous two-dimensional space to �nd and
visit points of interest (POIs) that are uniformly distributed in the
environment. Every POI has an associated "coupling" constraint
which dictates the number of rovers that must visit the POI simulta-
neously for a successful visit. The optimal strategy in this problem
is for the rovers to spread around as teams to visit as many POIs as
possible. Real-world multiagent problems are often more diverse in
terms of the goals and capabilities required to achieve those goals.
We simulate diversity in goals by adding the following POI variants
that call for agent specialization and synergies:

(1) Vanilla POIs: Standard POIs from the rover exploration task
that reward agents with a �xed value (equation 8) when
visited with the coupling constraint.

(2) Timed POIs: Mission critical POIs that must be prioritized.
The reward generated by a Timed POI is reduced by one at
every time step.

(3) Low-Power POIs: Harder to detect Vanilla or Timed POIs.
The probability of a Low-Power POI being encoded in an
agent’s state space (equation 5) is proportional to the agent’s
observation radius. Agents with higher observation radius
have a higher likelihood of �nding these.

Asymmetry in agent capabilities is added by introducing the
following agent variants:

Rovers are ground agents that can take three actions: 3G , 3~
(navigational) and >1BA (observation radius to use). The rovers are
equipped with two sensors that detect the density of rovers and
POIs, given by equations 4 and 5.

(A>E4A ,@ =
’
9 2�@

1
3 (8, 9) (4)

In equation (4), @ is the quadrant (the sensor divides the space into 4
quadrants), 3 measures the Euclidean distance between the sensing
rover 8 and rover 9 ; �@ is the set of all rovers in quadrant @, that are
within the observation radius of the rover 8 .

(%$� ,@ =
’
:2 @

E:
3 (8,:) (5)

In equation (5), 3 measures the Euclidean distance between the
sensing rover 8 and a POI : ;  @ is the set of POIs in the quadrant @,
within the observation radius of the sensing rover 8 . The concate-
nated vectors of densities (all four quadrants) is the rover’s input
state.

For each episode, the rover starts with a �xed number of energy
units 4 . The amount of energy required at time C , is described by
equation 6.

4C = 0.5>C + 0.3EC (6)

In equation (6), >C and EC are observation radius and velocity of the
rover at time C , given by the rover’s actions.

A rover that uses higher velocity and radius will require more
energy and reduce its time of operation in the environment, thus
a�ecting the number of POIs it can visit. A lower velocity ensures
more time in the environment but the rover will be less likely to
visit Timed POIs. Similarly, a lower observation radius reduces the



likelihood of detecting a Low-Power POI at the cost of being able
to operate longer and visit other POIs.

Drones are aerial agents that can take three navigational ac-
tions: (3G,3~,3I). As aerial units, they have a signi�cantly higher
observation radius and can act as scouts on the team to spot POIs.
When a Low-Power POI enters a drone’s observation radius, it
becomes available for rovers to visit regardless of a rover’s obser-
vation radius. Rovers using a smaller observation radius have a
decreased likelihood of �nding Low-Power POIs, so they can form
good synergies with drones.

The input state vector for a drone is a low resolution image: a
stack of 2d vectors, where each vector is a channel. A total of four
channels capture the positions of rovers, POIs, comms stations, and
other drones, where each agent type has a dedicated channel. The
size of the image is directly proportional to the height of the drone
3I.

Like rovers, drones also start with a �xed number of energy units
4 . The amount of energy required at time C , is described by equation
7.

4C = 0.43IC + 0.3EC (7)

As described by equation (7), drones can display a variety of be-
haviors in terms of agility and coverage (size of input image) to
manage their energy constraints.

Comms stations are mobile ground agents like rovers, and they
can take three actions: 3G , 3~ (navigational) and ’settle’. While in
motion, the comms stations have a small, �xed observation radius
of 5 units. When a station uses the settle action, the 3G and 3~
actions become unavailable and its observation radius changes to
15 units.

To successfully visit a POI, rovers must ful�l the coupling con-
straints of the POI and a comms station must have the POI in its
observation radius. Thus, the optimal strategy for the comms sta-
tions is to spread around the environment and use the ’settle’ action.
Unlike rovers and drones, the comms stations do not have explicit
energy constraints.

The agent capabilities are complementary, which ensures that
forming synergies is necessary to visit all POI variants.

Cumulative Team Fitness in this problem is computed using
Equation 8.

q (I) =
’
:

Œ
8 # (8,:)+:⇠:
1
=
Õ
8 3 (8,:)

(8)

q (I) is de�ned for I, the joint state-action of the rovers, drones
and comms. +: is the value of the POI : . #8,: and ⇠: are indicator
functions that are true if rover 8 is within the observation radius
of POI : and a Comms rover has POI : in its observation radius.
= is the number of rovers that satisfy the indicator function #8,: .
Finally, 3 (8,:) is the Euclidean distance between rover 8 and POI : .

As dictated by equation 8, for each POI : , the set of = rovers
(A 2 8) that visit it successfully along with the comms station that
satis�ed the indicator function ⇠: , will get the �tness value:

+:
(ÕA 28 3 (A ,:))/= (9)

If POI : was spotted by drone 3 , then that drone would also receive
the �tness given by equation 9.

4.2 Compared Baselines
The quantitative metric of performance for the conducted experi-
ments is the team �tness (equation 8) becauseMCAA is amultiagent
training framework. We are also interested in looking at the diver-
sity of the agent policies and the team composition in response to
changes in the environment.

We compare our method with three baselines, each of which
serves as a state-of-the-art for a particular facet of the problem:
1) Multiagent Evolutionary Reinforcement Learning (MERL), a hi-
erarchical learning framework that combines gradient-free and
gradient-based evolutionary optimization for learning in tightly-
coupled (sparse reward) settings [10]; 2) Malthusian Reinforcement
Learning, which allows agents to discover cooperative synergies
via optimizing their population dynamics [12]; and 3) The intrinsic
curiosity module, which uses the prediction error in estimating an
agent’s next state as a reward for exploration [18].

Our method aims to combine the strengths of all three baselines:
It combines gradient-based and gradient-free optimization to maxi-
mize team �tness in tightly coupled tasks (like MERL), promotes
behavioral diversity via Quality-Diversity, and enables coordina-
tion between asymmetric agents by optimizing the distribution of
agents in the team (like Malthusian-RL).

4.3 Experiment Parameters
All the results presented below use an environment world size of
50x50 units and every episode lasts for 60 time steps. All agent
policies are represented as neural networks. The state space is

Figure 3: Performance of teams in a loosely-coupled asym-
metric task.

Figure 4: Performance of teams in a tightly-coupled asymmet-
ric task for POI coupling requirement of 3 and 5 respectively.



Figure 5: The likelihood of sampling rovers, drones and comms to create teams is shown for three consecutive stages (2000
generations each). Initially, in the �rst stage, teams have an equal distribution of all three agent types. In the second stage,
Vanilla POIs are added which can be visited by the rovers independently. Optimal teams consist of 15 rovers on an average.
In the third stage, Low-Power POIs are are added. This shifts the team composition signi�cantly since drones, with a larger
observation radius, have a higher probability of �nding Low-Power POIs. Finally, Timed POIs are added in stage 4 which causes
an increase in both rovers and comms since all three agents must �nd diverse synergies in order to visit the three POI variants.
The change in the team composition and behavioral diversity in response to the changes in the environment highlights the
adaptive nature of MCAA.

divided into four quadrants and the rovers use an observation
space consisting of density estimates of rovers, drones, comms and
all POI variants (equations 4 and 5) for each quadrant. The energy 4
available at each time step is also encoded in the observation vector.
The size of the observation vector is (4 ⇤ 3 + 4 ⇤ 3 + 1) = 17. The
rover policies map the input state to (3G,3~) actions in [�2.0, 2.0]2
and an observation radius >C in [3, 10].

The observation vector for the drones consists of a stack of
channels, one for each agent type and the amount of energy units
available. Each channel is a 2D matrix that one-hot encodes the
position of a speci�c agent type. The size of each channel is propor-
tional to the height of the drone 3I. With four channels (one each
for rovers, drones, comms and POIs), the size of the observation
vector is (5 ⇤ 3I)2 ⇤ 4 + 1. The drone policy networks map the
observation vector to (3G,3~) in [�2.0, 2.0]2 and 3I in [1, 3].

The observation vector of comms, like the rovers, encode the
density of the agents and POI variants. Their policy networks map
the observation vector to (3G,3~) in [�2.0, 2.0]2 and B4CC;4 in [0, 1].

Rovers, drones and comms policies on the island use the dense
reward in equation 10 for the Quality-Diversity phase.

A8,C =
E:

3 (8,:) (10)

3 (8,:) is the Euclidean distance between the agent 8 and POI : of
value E: .

In our experiments, Principal Component Analysis (PCA) is
used as the dimensionality reduction method. PCA has been used
previously to successfully learn the behavior space in single-agent
Quality-Diversity methods [6].

For rovers,The trajectory of the policy that is used as the input
for the dimensionality reductionmethod is a vector of (>C , EC ,3A ,C ,3?,C )
tuples for every time step C . The observation radius (>C ), current

speed (EC ), distance to closest rover (3A ,C ) and the distance to the
closest POI (3?,C ) characterizes the rover’s strategy. For drones, the
vector at time C consists of current speed (EC ), distance to the closest
drone (33,C ), distance to the closest POI (3?,C ) and the height (3IC ).
Unlike the rover and drone islands, the island on which comms
agents are trained does not use Quality-Diversity, but instead only
trains a single policy using the dense reward (equation 10).

5 RESULTS
Several experiments are conducted to evaluate the performance of
MCAA in terms of the team �tness and discovered agent behaviors.

5.1 Loose Asymmetric Coupling
In the �rst experiment, we want to explore the performance of
asymmetric agents in teams that do not require tight coordination.
This is achieved by setting the coupling constraints of all the POIs
to one: a rover can independently visit a POI given a comms agent
has the POI in its observation radius.

Figure 3 shows the performance of teams using MCAA and the
baselines. Agents are trained with PPO using the distance based
dense reward (equation 10) on the islands. On the mainland, the
team �tness is given by equation 8. Teams created using MCAA are
able to visit about 80% of the POIs. Learning using MCAA is almost
completely driven by the learning on the islands that allows rovers
and drones to learn diverse policies to go towards POIs. The �tness
evaluation on the mainland largely contributes toward optimizing
the team composition.

For Malthusian-RL, we use four islands (each hosts the exact
same rover environment) with three specie networks (rovers, drones
and commms). The dense reward given to agents using Malthusian-
RL is generated using the team �tness in equation 9. Teams formed



using Malthusian-RL are able to learn as well and visit about 65%
of the POIs on the best performing Island. Malthusian-RL struggles
to manage the population dynamics since it does not allow the
systematic exploration of behaviors like the islands on MCAA.
Islands with dominant drones and comms populations were not
e�ective in visiting POIs and signi�cantly reduced the average
island performance for this method.

MERL’s gradient optimizer uses the dense local reward (equation
10) and its evolutionary optimizer uses the team �tness (equation
8). Rovers that use MERL struggle to learn in this experiment since
the method neither encourages agents to �nd diverse policies nor
accounts for agent population dynamics. MERL is also evaluated
on teams that are created by sampling teams using the distribution
` learnt by MCAA (�gure 3, labeled ’MERL (MCAA team composi-
tion)’). This speeds up learning but does not a�ect its performance
signi�cantly.

5.2 Tight Asymmetric Coupling
The next set of experiments evaluate the performance of asymmet-
ric agents in teams on tight-coupled coordination tasks. A higher
coupling constraint would require the evolutionary process on the
mainland to not only optimize the population distribution but also
in�uence the direction of the Quality-Diversity processes on the is-
lands via biasing the selection of teams towards higher coordinating
behaviors.

Figure 4 shows the performance of teams on coupling require-
ments of �ve and seven. MCAA uses the same rewards as the
previous experiments (equations 8, 10). Teams created using MCAA
are able to learn on both tasks although the performance decreases
slightly for the higher coupling. Intuitively, this can be explained
due to the sparsity of the �tness feedback in the higher coupling
task.

Teams using Malthusian-RL struggle to perform well on both
these tasks since the ecological time is used exclusively for updating
the distribution of species on the mainland. Agents trained with
MERL also fail to learn due to the lack of diversity in the agent
population.

5.3 Adaptation in Team Composition
Finally, we set up a dynamic environment to test the capacity for
MCAA to adapt to the changes in the environment. Adaptation
must occur at both the island and mainlands. At the island level, the
change in the �tness at a task must initiate diversity search while
at the mainland, the population distribution must adapt so as to
maximize team-wide �tness on the new task. In our experimental
domain, we achieve this by changing the number, location and the
coupling requirements of the POI variants in the environment over
the course of 4 epochs. The length of each epoch is 4000 ecological
time steps (mainland updates), which allowed the population dis-
tribution to converge su�ciently in this setup. Figure 5 shows the
converged population distributions for rovers, drones and comms
for the four epochs.

Before learning starts (epoch = 0), the team composition dis-
tribution ` is distributed uniformly. For a �xed team size of 20
agents, initially teams will consist of roughly equal number of
rovers, drones and comms agents. This is crucial since it allows

the �tness on the team task to make its way to the islands via the
behavior re�nement step of the method.

In the �rst epoch (epoch = 1), the environment only consists
of Vanilla POIs. The optimal team composition thus only requires
rovers (with no particular requirement of diversity in behaviors) to
visit the POIs and comms agents to con�rm the visits (equation 8).
This is re�ected in the converged distribution which shows that an
average of 16 rovers are present in most teams.

In the second epoch (epoch = 2), the environment consists of
Low-Power POIs exclusively, with the coupling constraint set to
three. Drones are ideal for observing Low-Power POIs and must be
a part of the team. Rovers must learn policies that can operate either
with a high observation radius or high velocity in order to be able
to directly observe Low-Power POIs or follow drones respectively.
The team distribution re�ects this with an average of nine rovers,
seven drones and three comms sampled per team.

In the �nal epoch (epoch = 3), the environment has all three
POI variants uniformly distributed. The behavior spaces on each
island must be su�ciently explored here in order to have diverse
policies such as high velocity rovers and high observation radius
drones. The converged team sampling distribution indicates that
on an average, over half the team consists of rovers (likely for
visiting Timed and Vanilla POIs) with a few drones for observing
Low-Power POIs.

6 CONCLUSION
We introduced MCAA, a multi-level training framework that en-
ables asymmetric agents in a tightly coupled environment to op-
erate with diverse behaviors and form strong synergies. MCAA
combines Quality-Diversity methods with a gradient-free evolution-
ary optimization. The Quality-Diversity method yields a diverse
repertoire of policies that are trained via a gradient-based optimizer
to maximize dense agent-speci�c rewards. An optimal distribution
of asymmetric agents required to form high �tness teams is learnt
via an evolutionary optimizer that maximizes the team-wide �tness.

The separation of the diversity search and optimization process
allows the transformation of team-wide �tness to guide the direc-
tion of agent diversity and the optimization of the team sampling
distribution.

In this work, MCAA used a �xed allocation and scheduling
scheme for computation across the Quality-Diversity, gradient-
based and gradient-free optimization phases. In an environment
with a stationary team-objective, dynamic resource allocation could
potentially speed up the learning process signi�cantly and is a
promising step for future work. Finally, we will explore howMCAA
can be extended to more complex mixed cooperative-competitive
settings by extending the learning scheme to operate on multi-
ple mainlands, each with a di�erent variant of the environment,
concurrently.
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