Fitness Shaping For Multiple Teams

Joshua Cook
Oregon State University
Corvallis, Oregon
cookjos@oregonstate.edu

ABSTRACT

Coevolutionary algorithms have effectively trained multiagent
teams to collectively solve complex problems. However, in many
real-world applications, changes to the environment or agent func-
tionality require agents to function well with multiple different
teams. In this paper, we provide a counterfactual-state-based shaped
fitness evaluation that provides an agent-specific signal that pro-
motes effective cooperation across a variety of teams. The key
insight leading to this result is that the shaped fitnesses across
multiple teams can be aggregated because those performances are
independent of each other. As a result, this approach leads to a
single signal that captures an agent’s performance across multiple
teams. We show that this method provides significant improvement
over standard multiagent fitness-shaped methods in learning robust
cooperative behavior.

CCS CONCEPTS

« Computing methodologies — Multi-agent systems.

KEYWORDS

Multiagent Learning, Fitness Shaping, General Teaming

ACM Reference Format:

Joshua Cook and Kagan Tumer. 2022. Fitness Shaping For Multiple Teams.
In Genetic and Evolutionary Computation Conference (GECCO °22), July
9-13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3512290.3528829

1 INTRODUCTION

Evolutionary algorithms have proven successful in training decen-
tralized multiagent systems such as robot soccer [1, 10, 24], UAV
traffic control 2, 35, 37, 40], and multi-robot exploration [15, 21, 33].
In each of these examples, each agent in the system is trained to
cooperate with only one team. However, the ability to cooperate
with multiple teams is a desirable and even necessary trait in many
real-world domains.

Consider autonomous exploration, where a group of robots ex-
ploring a site may eventually disband and aid other groups explor-
ing other sites which may require different skills. The robots must
learn to not only cooperate with their initial group but learn more
general cooperation strategies to successfully aid multiple teams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO 22, July 9-13, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9237-2/22/07...$15.00
https://doi.org/10.1145/3512290.3528829

Kagan Tumer
Oregon State University
Corvallis, Oregon
kagan.tumer@oregonstate.edu

A Y —
[sat]

0.

=

[Salt] Team1 Team2 (Watep)
Jr—

Team 4

Figure 1: Agents A, B, C, D must collect iron, salt, and water
on another planet in different teams. Each agent must learn
its role in any of the four teams. For example, Agents A and
C learn to go to the same resource in all teams, while agents
B and D learn supportive roles, moving to the remaining
ignored resources.

Team 3

to explore multiple sites, as exemplified by Figure 1. Multiagent
learning is effective in training multiple agents to cooperate as a
single team [38]. Ad hoc teaming solves an orthogonal problem of
training a single agent to interact with multiple teams of preexisting
agents [34]. We address the problem of training multiple agents to
cooperate with multiple teams to achieve a given task.

In this work, we provide an agent-specific, shaped fitness to
evolve agents to perform in multiple teams. We first generate mul-
tiple teams to enable the agent to assess its potential contributions.
Then, we evaluate that agent’s performance through a new fit-
ness evaluation that captures its aggregated performance across all
teams. To ensure that fitness measures the agent’s true potential,
we derive a new shaped fitness that uses counterfactuals to evaluate
an agent’s contribution to multiple teams. This approach ensures
that each agent receives a learning signal that promotes robust
teamwork skills, but is significantly easier to optimize than the full
system evaluation function.

The key insight of this work is that the counterfactual states an
agent uses across multiple teams are independent of each other.
Therefore, an agent optimizing the collective performance also
optimizes its performance across arbitrary teams. Providing each
agent with this agent-specific feedback trains multiple agents to
cooperate with multiple teams.

The contributions of this work include:

https://doi.org/10.1145/3512290.3528829
https://doi.org/10.1145/3512290.3528829
https://doi.org/10.1145/3512290.3528829

GECCO ’22, July 9-13, 2022, Boston, MA, USA

(1) generating the right variety of teams to train an agent; and
(2) deriving an informative counterfactual-based shaped fitness
that promotes cooperation across arbitrary teams.

Experimental results in a simulated multi-robot exploration domain
show that the shaped fitness can effectively train agents to cooper-
ate with all training teams. Further results show that optimizing
this shaped fitness remains effective, regardless of the number of
training teams.

2 BACKGROUND

2.1 Cooperative Co-evolutionary Algorithms
for Multiagent Learning

Learning in multiagent domains introduces a unique set of chal-
lenges over single-agent domains. For example, multiple local agents
must individually learn from global feedback [39]. Cooperative Co-
Evolutionary Algorithms (CCEA) offer one approach to learning
in these distributed domains. CCEA solves complex problems by
dividing them into subproblems, then evolves solutions to each sub-
problem independently and in parallel [19, 25]. First, each subprob-
lem is given a population of solutions. During evaluation, solutions
from each population are used to generate a complete solution to
the overarching problem. The evaluation of this complete solution
is assigned to each of the partial solutions as their fitness [26]. In
the application of CCEA to multiagent systems, the control policies
of each agent are commonly used to represent the subproblems in
training a team to complete an objective [27, 36].

Each control policy is frequently represented as a parameterized
function approximator that maps its local state to an action. For
every time step in an episode, each agent receives a local state view
of the world, determines an action to take using its policy, then
executes this action in the environment. At the end of the episode,
the global performance describes how effective these collective joint
actions are in this joint state. The agent parameters are coevolved
to optimize the global objective function [18].

2.2 Fitness Shaping

The design of a fitness function can have a drastic impact on the
converged solution; two fitness evaluations can promote the same
behavior, with one being significantly easier to optimize than the
other. The purpose of fitness shaping is to provide an alternative
fitness function that is easier to learn from, but also optimizes the
original function [22].

The global evaluation function used in cooperative multiagent
learning is one example of a challenging evaluation to learn from.
This introduces the credit assignment problem, where each agent in
a multiagent system must learn from the global reward, which pro-
vides no information about each agent’s contribution to the shared
score [7]. With larger numbers of agents, this signal is difficult to
learn from as the contribution of a single agent is trivialized by the
impact of the other agents in the system.

Local evaluations partially ameliorate the credit assignment prob-
lem by providing agent-specific feedback, thus reducing the effect
of other agents’ actions on an individual’s evaluation. However,
without proper design of the local evaluations, an agent can learn

Joshua Cook and Kagan Tumer

competitive and selfish strategies, maximizing their objective in-
stead of the team objective [3, 23]. The question arises, how does
one design a local objective such that maximizing it also maximizes
the global objective?

Fitness shaping introduces the concept of alignment to help an-
swer the previous question. Two evaluations are considered aligned
with each other if a change in the solution leads to an equal change
in both evaluations. Optimizing a local fitness aligned with the
global fitness is guaranteed to also optimize the global fitness [13].

Sensitivity is another relevant concept in fitness shaping for mul-
tiagent systems. This idea describes how sensitive an evaluation
is with respect to a single agent’s change in actions taken. More
sensitive evaluations are easier to optimize as they more accurately
describe an agent’s individual performance [12]. The global evalu-
ation represents a less sensitive function because it describes the
performance of an entire team, in which a single agent may play
a small part. Conversely, local evaluations are highly sensitive as
they largely depend on the actions of the evaluated agent. These
local rewards may be easier to learn, but lack alignment with the
global objective. Ideally, the local rewards should be more sensitive
than and aligned with the global reward.

Difference evaluations are shaped evaluations that are agent-
specific and sensitive while maintaining alignment with the global
objective [4, 29]. Equation 1 defines the difference evaluation for
agent i as the difference of the global evaluation G, of the joint state-
action of the team z, with and without agent i. The second term
substitutes a counterfactual action c; in place of agent i’s action.
Conceptually this provides an evaluation of agent i’s contribution
to the team:

Di(z) = G(2) = G(z-j U ¢) (1

One can easily show that this difference evaluation is aligned
with the global evaluation by taking the partial derivative of the dif-
ference evaluation with respect to z;, the state-action pair of agent
i, and taking the same partial derivative of the global evaluation
[4]. Both partial derivatives are equal to the partial derivative of
the global evaluation, leading to the conclusion that both functions
are aligned.

The high sensitivity of the difference evaluation is attributed to
the inclusion of the counterfactual term. This term subtracts the
team performance without agent i, largely removing the contri-
butions of the other agents in the system from the original global
evaluation. The overall evaluation describes agent i’s contribution
to the team, which is highly sensitive to the actions of agent i.

2.3 Ad Hoc Teaming

Learning to adapt to an arbitrary team is a useful skill for many
multiagent domains. The goal of ad hoc teaming is to create an
agent which can cooperate with a group of other agents with little
or no prior coordination [34]. This is a challenging task as the other
agents in an arbitrary team inject a high degree of uncertainty into
the system, similar to the credit assignment problem. To reduce this
uncertainty, multiple methods include agent modeling to determine
what types of agents are present in the team [6, 8, 16]. With these
agent models, an ad hoc teaming agent can better assess the impact
of the other agents on the system. This provides an ad hoc teammate
with the necessary information to identify its role within the team

Fitness Shaping For Multiple Teams

and act on it. The actions are then determined by either a planning
algorithm [9] or more commonly a learning agent.

Early learning-based approaches involved learning a model of
the team, then selecting the corresponding policy for that team [5].
Other approaches focus on more specific ad hoc teaming scenarios
such as dynamic team sizes [28] or dynamic teammates [30]. Each
of these learning-based approaches involves training a single agent
to interact with a team of other predefined agents. Conceptually,
the single agent is trained to be able to join and contribute to pre-
existing teams. This problem is fundamentally different from the
multi-team, multiagent learning problem. Ad hoc teaming trains a
single agent to operate with other already effective team members.
In many applications, other high-quality agents may not be avail-
able. As a result, these other agents may also need to learn robust
cooperative skills. This presents a multiagent learning problem
where each agent must learn to cooperate with multiple teams.

3 FITNESS SHAPING FOR MULTI-TEAM
LEARNING

We provide a fitness shaping approach to training multiple agents to
cooperate with multiple teams. This can be viewed as an extension
of multiagent learning, which trains multiple agents to cooperate
with a single team. In standard multiagent learning, training a
single team of agents does not leave much room to learn robust
behaviors across multiple teams. To evolve cooperative policies
across arbitrary teams, our fitness shaping method needs team
variety.

We introduce a method of converting a multiagent task into a
multi-team multiagent task. The first step is to create a pool of
learning agents that is larger than the team size. Then, teams are
formed by choosing different combinations of the agents. To maxi-
mize the number of learning teams, we generate all combinations
of agents from the pool into the given team size. This provides the
general team variation for our fitness evaluations.

The objective is to maximize performance in each of the gener-
ated teams. Optimizing multiple teams’ evaluations would appear
to be a multi-objective optimization problem, yet this is not the
case. Each team evaluation uses the joint state of the respective
team. The joint states are influenced by the composition of the team
and are independent of one another. This leads to independence
in team evaluations, meaning each team can increase their respec-
tive performance without a trade-off in other teams’ performances.
Thus, optimizing the aggregate team score optimizes scores of the
individual teams [14, 20].

We define a new fitness function that promotes performance
across these varied teams. The global multi-team fitness function is
introduced in Equation 2. Here, z; represents the joint state-action
of the j — th team out of n teams. Equation 2 is a sum of the global
performances of all teams, promoting quality team performance
across all teams.

n
G (21,22, s Zn) = Z G(zj) (2)

Jj=1

This multiple team evaluation is an extension of the original
single-team evaluation. In the new task, a larger number of agents
must still complete the task defined by G, but in teams consisting of

GECCO ’22, July 9-13, 2022, Boston, MA, USA

a variety of combinations of the agents. As a result, G> provides a
global performance of all agents, identical to any other multiagent
global evaluation. This enables any multiagent learning algorithm,
such as CCEA, to optimize multi-team performance without the
need for modification. As an example CCEA, each agent would be
represented as a population of solutions. To evaluate the agents,
one solution from each population would be drawn. These solutions
would be paired in the various teams and evaluated using G. Then
each solution would be assigned a fitness as a sum of these G eval-
uations. This would be repeated for each solution in a population
until all solutions have fitnesses assigned. Selection and mutation
would occur and the process would repeat until some convergence
criterion is met.

Similar to the global performance function in single-team sys-
tems, Equation 2 suffers from the credit assignment problem. Each
agent struggles to discern their level of contribution to this global
objective which can stifle learning. We seek an alternative shaped
fitness that is aligned with this global objective but is more sensitive.

We present Equation 3 as our shaped fitness solution. This func-
tion can be seen as the difference evaluation equivalent of Equation
2. For each team’s joint state-action global evaluation, we subtract
the global evaluation of that team, j without agent i’s contribution,
zj,—i with the replacement counterfactual action, c;. In this work,
we use a null counterfactual, which represents an agent that never
takes an action. Other counterfactuals, such as random actions or
actions taken by other agents, could be used but are not studied in
this work.

n
D} (21,220 2n) =), G(z)) = G(zj-i U i) 3)
=

To justify using D, it needs to be aligned with G> so that max-
imizing D* will also maximize G”. This can be shown by taking
the partial derivative of both functions with respect to the joint
state-action of a single agent. This shows how changes in an agent’s
decision, affect the performance evaluation. If both functions are
aligned, a useful behavior defined by one function will be similarly
labeled as a useful behavior by the other function.

We prove D and G” are aligned by taking the partial derivative
of D* with respect to 2k ;» where zj; represents the joint state-
action pair of agent i from team k for all k € [1,2, ..., n]. The only
joint state-action that depends on team k and contains the state-
action from agent i is zg. As a result, the partial derivative of the
rest of the global evaluations is equal to zero.

PR
_ G) -G _Uci
21 j§:1 (Z]) (Z], iuci)

9 »
—D; (21,22, ..., Zn)
aZk’i

n

P)
256z -0
= k,i
P
-2
P (z)

Next, we take the partial derivative of G* with respect to 2k ;- Again,
only one term depends on team k and contains the state-action pair

GECCO ’22, July 9-13, 2022, Boston, MA, USA

of agent i.

‘q)
Q
Py
N
joul
N
N
N
S
N
Il
‘m
|M
Q
~
X
N

1l

Q
—~

N
N
~

Thus, the partial derivatives of DiZ and G* with respect to 2) ; are
equal for each team, indicating full alignment.

—G™ (21,22, .o Zn) = —Dl-z(zl,zz, s Zn)
aZk i aZk’ i
Agents learn robust teaming behavior using either evaluation

method due to their alignment. As an agent-specific evaluation,
D” provides a much more sensitive signal to optimize. Similar to
D, D* largely removes the impact of the other agents through the
evaluation of counterfactual states, allowing an agent to learn its
contribution to multiple teams. Each agent learning this behavior
results in a group of agents that can successfully cooperate in a
variety of teams.

4 ROVER DOMAIN

We evaluate our method on the Rover Domain, a multiagent explo-
ration task [4]. In the basic formulation of this problem, a group of
rovers must explore a two-dimensional location and successfully
observe various Points Of Interest (POI). These POIs represent com-
plex objects requiring multiple simultaneous observations from the
rovers. The number of rovers required to successfully view a POl is
referred to as the coupling requirement. Each POl is also assigned
a value proportional to its relative importance. The rovers have a
limited range in which they can provide high-quality observation
of the POIs. To complete this task, the rovers must form groups
of size equal to the coupling requirement near the highest valued
POIs at the end of the episode.

Each rover is equipped with two types of sensors to view its
surroundings: rover sensors and POI sensors. Each sensor can view
a 90-degree cone area from the robot. The rovers are equipped with
four of each type of sensor to fully view their surroundings. The
rover sensor is modeled by equation 4. Here S represents the sensor
value for rover i. §(i, i") represents the Euclidean distance between
the rover and any other rover, i’, within the viewing angle. This
sensor is designed to give a stronger signal as a rover moves closer

to other rovers.
1
Srobot = Z G 4
i ’

The sensors to detect POIs are similarly modelled using equation
5. Here the distance is calculated between the rover and a POL j.
The value, V; of the POl is also included in the sensor to allow the
rover to better differentiate higher-valued POlIs.

Spor = Z 5(1 3 5)

At each time step, each rover uses this local sensor information
to determine an action to take. Each action consists of a continuous
linear and angular displacement. In a given action a robot can move
linearly between -1 and +1 units in the direction of the rover’s
heading and change their heading by between -90 and +90 degrees.

Joshua Cook and Kagan Tumer

The rovers do not need to take a separate action to observe a POL
Instead, they need to be within the observation radius of the POL

Evaluation of the rovers occurs at the end of the episode, after
a fixed number of time steps. This global evaluation function is
defined by:

_VilG)
6= Z max(1,6(i"”, j)) ©)

In this equation the indicator function I returns a value of 1.0 if
enough rovers are within the observation radius to meet or exceed
the coupling requirement of the POI j, otherwise a 0.0 is returned.
The value of this observed POI is scaled by the distance of the
closest rover i’ to promote close observation of the POL Overall,
this function provides an evaluation that represents the combined
values of the successfully observed POIs. To maximize this value,
the rovers should group around the highest-valued POIS.

5 EXPERIMENTS

To show the effectiveness of D* and G” in training agents with
robust teamwork skills, we conduct three sets of experiments in
the Rover Domain:

(1) Training Few Teams: The first experiment trains agents to
cooperate in a small number of teams. We train five agents
across teams of four and seven agents across teams of six
to demonstrate the effectiveness of training agents across a
low number of teams. This experiment shows the prelimi-
nary quality of D* and G* as learning signals to promote
cooperation in multiple teams. (Results in Section 6.1.)

(2) Training Many Teams: The second experiment increases
the number of training teams. We train seven agents across
teams of four and nine agents across teams of six. Main-
taining a constant team size, but increasing the number of
agents results in a higher number of teams to train with. The
purpose of this second experiment is to show how well these
shaped rewards scale to many teams, a more difficult task to
learn. (Results in Section 6.2.)

(3) Training On a Subset of Teams: The third set of experi-
ments investigates the impact of the number of teams the
agents use to learn their policies by varying the subset of
teams selected. We again train nine agents with teams of six,
but we vary the number of total training teams. Each set of
agents is evaluated using all possible teams. This experiment
shows how well the agents perform in teams they are not
trained with and whether they need to train with every team.
(Results in Section 6.3.)

For each experiment, we compare our results to single-team
learning signals applied to a multi-team task. We train these baseline
agents by randomly selecting a team each episode and provide the
agents with either G or D to learn from. This provides a direct
comparison between single-team and our proposed multi-team
learning signals. The agents are trained using the same evolutionary
algorithms as D” and G*. The only difference between learning
agents is the fitness shaping function.

Note that we do not compare to any ad hoc teaming methods as
they solve a fundamentally different problem. In this work, agents
must simultaneously learn to work together to achieve a task. In ad

Fitness Shaping For Multiple Teams

hoc teaming, a single agent must learn to cooperate with various
pre-existing teams. The ad hoc teaming agent must learn its role
within a team, whereas in this work, each agent must learn to
cooperatively complete a task in multiple teams.

5.1 Experimental Parameters

The agent policies were represented as neural networks which
mapped local state information to an action. Each network con-
tained one hidden layer of size 20 with tanh used for each activa-
tion function. The weights of these networks were initialized using
Xavier initialization [17].

All agents were cooperatively evolved using CCEA. Each agent
was given a population size of 32 and selected using binary tourna-
ment selection. New agents were created by copying one of each
of the selected agents and then mutating the copies. The mutation
operator consisted of uniformly selecting weights from the network
with a probability of 10%. These selected weights were then mul-
tiplied by a value sampled from N (1.0, 0.01). Evolution occurred
over the course of 4000 generations.

In the Rover Domain simulation, the rovers began each episode
in the middle of a 30-by-30 unit area surrounded by six POIs. Each
POI had a coupling requirement of two, with values and locations
described in table 1. These POIs also had an observation radius of
5.0 units.

Table 1: POI Settings

POI 1 2 3 4 5 6
Value | 0.6 0.2 08 01 03 1.0

X 0 0 0 30 30 30
Y 30 15 0 0 15 30
6 RESULTS

All results reported in this section are averaged over n = 16 statisti-
cal trials. Instead of giving a specific confidence interval, we provide
the standard error (o/+/n) with shaded regions. Performance in each
test is evaluated using G” because it describes the cumulative per-
formances of the agents across all teams. While this metric is one
of the training signals, it also provides the best measurement of
global performance across multiple teams.

6.1 Training Few Teams

In this first set of experiments, we train agents to work with a low
number of teams using G and D>. These tests assess the viability
of these shaped fitnesses in training multiple agents to complete a
task in multiple teams. In the first experiment, we train a pool of
five agents in teams of size four, giving (2) =5 teams to learn with.
The results of this test can be viewed in Figure 2. In this figure,
it is clear that G is not an informative signal to learn from. Poor
learning is expected due to the low sensitivity and general lack of
information provided by the signal. To view any of the POIs, two
agents need to be within the observation radius of the same POI at
the end of the episode, a fairly rare event. The global nature of this
feedback further impedes learning as each agent is given the same
fitness, regardless of contribution. Unsurprisingly, D can train a

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Performance of 5 Agents in Teams of 4

------------------ — D% R el eeE TR SR
GZ
81 — D
— G
—-- Max Score
[u} 61
£
©
@
i
n
S 4+
fri
®
I
2
04
0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 2: The performance of D, G¥, D, and G for 5 agents
across teams of 4, resulting in 5 teams.

better set of agents. This improvement can largely be attributed to
the higher sensitivity in the feedback provided.

Moderate performance is shown by the agents trained from G~.
Evaluating across multiple teams provides agents with a much more
dense signal in comparison to G and D, which is easier to learn from.
However, the lack of agent-specific feedback inhibits the learning
of higher quality teaming policies.

Lastly, the highest-scoring fitness was D*. This follows expecta-
tion as it provides a more informative signal, similar to GZ, but is
agent-specific allowing for increased sensitivity. Using D> agents
were able to learn optimal teamwork behaviors in some trials, reach-
ing the maximum score in all teams. Figure 3 shows the learned
behaviors from D for all five teams. Here, there are enough agents
to form two teams of size two to observe two of the POIs. The
optimal behavior is to send two agents to each of the two highest
valued POIs in each team, which was learned by D¥. Agents were
able to learn their roles within arbitrary teams to effectively co-
operate with all teams. Conversely, agents learning from G*> were
never able to learn this optimal behavior. These agents learned to
observe two of the lower-valued POIs, which is an artifact of the
credit assignment problem. We train agents with other team sizes to
verify that these performance trends hold for team sizes other than
four agents. These tests include a pool of seven agents and a team
size of six with results presented in Figure 4. The figure shows that
for few teams ((Z) = 7 teams) but different team sizes, the overall
trends hold. Again, D” trained agents with optimal team behaviors
during some of the trials, while G does not. For small team sizes,
D” seems to provide the best signal to optimize, with G> being a
close second. Single-team learning methods do not provide nearly
the same level of performance.

6.2 Training Many Teams

The second set of experiments keeps the sizes of the teams the
same but increases the number of agents, which leads to a larger
number of teams to cooperate with. The goal of this set of tests is
to determine how well G and D” trains agents to cooperate with

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Team 1's Score: 1.8 Team 2's Score: 1.8

Team 3's Score: 1.8

Joshua Cook and Kagan Tumer

Team 4's Score: 1.8 Team 5's Score: 1.8

35
0l v 30 4 30 301V v 301 V¥ W
0.6 0.6 .0 0.6)A‘fu
25 25 25 1 254 ¥ 25 1 »
] . b
204 20 20 20 id 20 ¥
~15{ ¥ v | 154 154 b v | 151 s ¥
03 k k
0l 02 03| 104 104 0] 22 e~y 03| | B2 o 03
—e— Agent 0 —e— Agent 0 —— Agent0 —— Agent 1
54 —— Agent 1 51 — Agent 1 5 1 5 1 —+— Agent2 54 —#— Agent 2
o Uy —+— Agent 2 o - :Z::E i ol ol Agent 3 ol Agent 3
s o Agent 3 0.1) v o : J"l —A— Agent 4 01 —A— Agent 4 0.1
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
X X X X

Figure 3: The paths of the agents are shown moving toward and observing the POIs, denoted by blue triangles. Each agent
learns its role within multiple teams to achieve the maximum score across all teams. For example, Agent 3 generally learns to
observe the top right POL If two agents are already on the way to this POI, it learns to go to the next best POI in the bottom left.

Performance of 7 Agents in Teams of 6

17.5

— DI e
GI
15.0 | s D
— G
1254~ Max Score
0
£ 100
U
i
~
S 7.5
e
®
5.0 1
2.51
0.0 1
0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 4: The performance of D*, G¥, D, and G for 7 agents
across teams of 6, resulting in 7 teams. D> and G> show better
performance when training on a small number of teams.

many teams. One would expect that learning in a larger number of
teams would increase the difficulty of the task as there are more
interactions to learn. In the first part of the test, we train with seven
agents in teams of four for a total of (Z) = 35 teams. Results of
this test are shown in Figure 5. Again, we compare G> and D>
to standard single team evaluation methods G and D. The differ-
ence between our shaped fitnesses and the multiagent fitnesses
appears to grow with larger numbers of teams. Again, G fails to
learn anything, due to the sparsity of the fitness received. D shows
reduced relative performance in comparison to the smaller team
methods. This can be best explained by the noise introduced by the
higher number of teams. Each team provides a potentially different
difference reward which can be difficult to optimize when the team
structure is constantly changing.

Both G* and D” perform better relative to the fewer team case.
Increasing the number of teams increases the density of the evalua-
tion for both cases, thus providing a higher quality learning signal.

Performance of 7 Agents in Teams of 4

60 1

50

0
£ 40 — DI

o

i G?

1 — D

™ 30 -

5 — G

w ——- Max Score
©

N
o

10 A

0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 5: The performance of D*, G>, D, and G for 7 agents
across teams of 4, resulting in 35 teams.

Another contributing factor could be the overlap in an agent’s
contribution from one team to another. If a single agent provides
the same contribution to multiple teams, increasing the number of
teams will not change this contribution. Overall, it seems that D” is
still a sufficient signal to learn from in the presence of an increased
number of teams.

Similar to previous experiments, D> produces multiple examples
of optimal agent policies where each team reaches the maximum
performance. Again, G fails to produce similar quality agents.

We also test with a larger team size to verify these trends for
team sizes other than four agents. This involves training nine agents
across teams of six to produce (2) = 84 total teams. The results of
this experiment are shown in Figure 6. The widening gap between
the shaped fitnesses and the multiagent fitnesses is still apparent in
Figure 6. Again, G and D fail to learn meaningful agent policies. D>
can learn high-quality policies in the presence of an even higher
team count, while G2 falls behind. This would indicate that G= and
D” do scale well with the number of teams.

Fitness Shaping For Multiple Teams

Performance of 9 Agents in Teams of 6

O

1751

150 4

% 125 4 — D
8 6
& 100 — D
. — G
:Z 754 —--- Max Score

wu
o

N
v

M

0 500 1000 1500 2000 2500 3000 3500 4000
Generation

=}

Figure 6: Performance of D%, G*, D, and G for 9 agents across
teams of 6, resulting in 84 teams. D> and G show signifi-
cantly better performance when training on a large number
of teams.

From the two sets of tests, a few trends are clear. D> consistently
provides the best signal to learn from, with G* falling a bit behind.
D and G are unable to evolve these agents to effectively cooperate
with multiple teams, especially in settings with many teams.

6.3 Training On a Subset of Teams

In the presence of training agents across multiple teams, overlap
between an agent’s contribution in one team and another likely
exists. As a result, evaluating these agents in all combinations of
teams may be excessive. The purpose of the last experiment is to
determine how many teams need to be evaluated to achieve most
or full performance in comparison to training with all teams.

In the final experiment, we vary the number of teams the agents
trained with. Each part of the experiment uses the same number of
agents in the same team sizes, but we vary the number of training
teams to determine their effect on learned performance. We train
nine agents across a team size of six for a maximum number of 84
teams. For each part of the experiment, we randomly sample a set
of these teams without replacement. Agents evolve based on their
evaluation of D* across this subset of teams each generation. The
policies are periodically evaluated using the G of all 84 teams to
measure general teaming performance across all teams. We record
results for the cases with 2, 10, 21, 42, 63, and 84 teams. The training
curves are included in Figure 7. When compared to training with
the full set of 84 teams, training on 63 and 42 teams shows nearly
identical performance. This result is surprising as one would expect
these agents to perform poorly in teams they were not trained with,
yet this is not the case. Training on half of the teams produces
agents that perform as well as the agents that were trained on all
teams. This is most likely due to the overlap in an agent’s contri-
bution across multiple teams. A single agent is unlikely to have
a different role in each team, so it does not need to interact with
every team. Each agent only needs to learn with teams requiring
unique behaviors.

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Performance From Training
on Subsets of All Teams

w84 Teams
63 Teams
w42 Teams
w21 Teams W
w10 Teams
w2 Teams
Max Score

G For 84 Teams
=
o
o

754

50

25

0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 7: We train using a subset of the full set of teams and
show the performance on the full set of teams. We vary the
size of the subset from 2 to the full set of 84. This test used 9
agents and a team size of 6. Note that training on 21 teams
achieves 90% the performance of training with the full set
but requiring 25% the number of team evaluations.

A surprising result is the high performance of the agents trained
on the sub-sample of 21 teams. These teams represent 25% of all
teams, yet the agents learn 90% of the performance of the agents
learning on the full set. In this test, an agent needs to move to
one of the three highest valued POIs along with another agent for
successful observation of the POL As a result, each agent may need
roughly three unique behaviors to fulfill the needs of a team. Each
agent does not need to interact with 84 teams to learn such a low
number of behaviors. In the 21 teams randomly chosen, there is
nearly enough variation to train most of these unique behaviors
for each agent, leading to high performance.

A large decrease in performance is first seen with 10 teams and
continues with 2 teams. The agents do not receive experiences with
enough teams to learn quality teamwork behavior. These agents
ultimately struggle to cooperate with varying teams.

The main conclusion of this test is that training agents in all
teams may be excessive. Training on a sub-sample of these teams
can be sufficient due to the overlap in an agent’s contribution across
multiple teams. The optimal number of teams to sample is likely
to be domain-dependent. Domains requiring agents to learn many
unique skills from one team to another are likely to require many
training teams, while teams of agents that complete similar tasks
in parallel are likely to need fewer teams.

6.4 The Computational Cost of G* and D>

It is important to acknowledge increased computational cost in
calculating D> over G*. Calculating G requires evaluating a single
team, or O(1) team evaluations while evaluating G= requires O(N)
team evaluations, where N is the number of teams. D* imposes an
even higher cost, with O(NM) evaluations, where M is the size of a
single team. However, it should be noted that in some applications,

GECCO ’22, July 9-13, 2022, Boston, MA, USA

a closed-form difference evaluation for each agent exists, reducing
the complexity of D” to be equal to G>.

Previous experiments directly compared D> to G* across gener-
ations, which may not be entirely fair due to each D* evaluation
receiving more information and computation. It could be the case
that G* and D perform equivalently if given the same amount of
computation. To test this hypothesis, we recycle the results from a
previous experiment and show performance as a function of the
number of team evaluations, G. This allows us to directly compare
the two evaluations considering that D* requires significantly more
team evaluations. The scaled results are shown in Figure 8. In Fig-

Performance of 5 Agents in Teams of 4

71 — D2
GI

w IS v

G?* For 5 Teams

N

0 10000 20000 30000 40000 50000
Number of G Evaluations

Figure 8: We show the performance of G* and D” scaled for
equal number of team evaluations, G. D> shows better long-
term performance due to its agent-specific nature. This was
taken from the 5 agent, team size of 4 experiment.

ure 8, G= shows a higher initial increase, but converges to a lower
value than D”. The initial increase of G” is due to the density of
the signal itself while being less computationally expensive than
D*. However, D” converges to a higher value due to the increased
sensitivity of the local fitness providing a more informative signal
to optimize.

This trend of D* providing better long-term performance con-
tinues in the experiments with a larger number of training teams.
Figure 9 shows the performance of G> and D> as a function of the
number of team evaluations, G, for the test with seven agents in
teams of four. Again, G* shows initial promise, but plateaus due
to the low sensitivity of the signal. D” shows a slower increase
in performance but still shows the highest solution quality. These
results generally show that despite the increased computational
requirement of D, it most likely provides the best performance for
the same computation in the long term. Even though evaluating D>
requires more calculations than G, the efficiency of D> is likely
much better. Overall, D” produces the highest quality learning sig-
nal unless the computational cost of G is very high. If this is the
case, then G* provides a more computationally efficient signal in
the short term.

Joshua Cook and Kagan Tumer

Performance of 7 Agents in Teams of 4

60 | m— D

O st s

50 oo

G* For 35 Teams
w £
o o

N
o

10 A

0 100000 200000 300000 400000 500000
Number of G Evaluations

Figure 9: We show the performance of G> and D> scaled for
equal number of team evaluations, G. This was taken from
the 7 agent, team size of 6 experiment.

7 CONCLUSION

In this work, we provide a shaped fitness function that leverages
counterfactual states to successfully coevolve multiple agents to
cooperate in multiple teams. We showed the effectiveness of this
method in the rover domain across varying numbers of agents,
teams, and team sizes. These agents were even able to learn optimal
control strategies, showing maximum team performance across all
teams.

This shaped fitness performed well for a variety of reasons, with
the first reason being the sensitivity of the function. As a local
fitness evaluation, agents were able to learn individual contributions
to a variety of teams. Another contributing factor to the success of
D? is the density of the evaluation. Evaluating multiple teams at
once allows agents to learn from their collective experiences across
the teams, improving overall learning. Lastly, we show that this
function is aligned with the global multi-team score, guaranteeing
agents to learn quality teamwork across multiple teams.

Future work in this area could focus on improving the sample
efficiency of D”. Fitness modeling could train a computationally
efficient model of this function through interaction with the envi-
ronment [32]. Specific fitness modeling techniques such as fitness
critics and difference evaluation approximation have similarly mod-
eled complex evaluation functions in multiagent domains to provide
agent-specific feedback [11, 31]. These methods could be extended
to learn D” from individual team performances, reducing the over-
all number of team evaluations needed to learn quality teamwork
across multiple teams.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion under grant No. IIS-1815886 and by the Office of Naval Research
under grant No. UWSC12017-BP049408

Fitness Shaping For Multiple Teams

REFERENCES

(1]

(2]

[10]

[11

[12

[13]

[14

[15]

[16

[17]

(18]

[19]

Arvin Agah and Kazuo Tanie. 1997. Robots Playing to Win: Evolutionary Soccer
Strategies. In Proceedings of International Conference on Robotics and Automation,
Vol. 1. IEEE, 632-637.

A. Agogino, C. Holmes Parker, and K. Tumer. 2012. Evolving Large Scale UAV
Communication Systems. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference. Philadelphia, PA.

Adrian Agogino and Kagan Tumer. 2005. Reinforcement Learning in Large Multi-
Agent Systems. In Proc. of AAMAS-05 Workshop on Coordination of Large Scale
Multiagent Systems. Citeseer.

Adrian K Agogino and Kagan Tumer. 2008. Analyzing and Visualizing Multiagent
Rewards in Dynamic and Stochastic Domains. Autonomous Agents and Multi-
Agent Systems 17, 2 (2008), 320-338.

Samuel Barrett and Peter Stone. 2015. Cooperating with Unknown Teammates in
Complex Domains: A Robot Soccer Case Study of Ad Hoc Teamwork.. In AAAL
Vol. 15. Citeseer, 2010-2016.

Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. 2012. Learning
Teammate Models For Ad Hoc Teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop. 57-63.

Yu-Han Chang, Tracey Ho, and Leslie P Kaelbling. 2004. All Learning is Local:
Multi-agent Learning in Global Reward Games. In Advances in neural information
processing systems. 807-814.

Shuo Chen, Ewa Andrejczuk, Zhiguang Cao, and Jie Zhang. 2020. AATEAM:
Achieving the Ad Hoc Teamwork by Employing the Attention Mechanism. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7095-7102.
Shuo Chen, Ewa Andrejczuk, Athirai Aravazhi Irissappane, and Jie Zhang. 2019.
ATSIS: Achieving the Ad Hoc Teamwork by Sub-task Inference and Selection.
(2019).

André LV Coelho and Daniel Weingaertner. 2001. Evolving Coordination Strate-
gies in Simulated Robot Soccer. In Proceedings of the fifth international conference
on Autonomous agents. 147-148.

Mitchell Colby, Theodore Duchow-Pressley, Jen Jen Chung, and Kagan Tumer.
2016. Local approximation of difference evaluation functions. In Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems.
521-529.

Mitchell K Colby, Sepideh Kharaghani, Chris HolmesParker, and Kagan Tumer.
2015. Counterfactual Exploration for Improving Multiagent Learning.. In AAMAS.
171-179.

Mitchell K Colby and Kagan Tumer. 2012. Shaping Fitness Functions for Coe-
volving Cooperative Multiagent Systems.. In AAMAS, Vol. 1. 425-432.

Carlos M Fonseca and Peter] Fleming. 1995. An Overview of Evolutionary
Algorithms in Multiobjective optimization. Evolutionary computation 3, 1 (1995),
1-16.

Ping-an Gao, Zi-xing Cai, and Ling-li Yu. 2009. Evolutionary Computation Ap-
proach to Decentralized Multi-Robot Task Allocation. In 2009 Fifth International
Conference on Natural Computation, Vol. 5. IEEE, 415-419.

Katie Long Genter, Noa Agmon, and Peter Stone. 2011. Role-Based Ad Hoc
Teamwork.. In Plan, Activity, and Intent Recognition. Citeseer, 1782-1783.
Xavier Glorot and Yoshua Bengio. 2010. Understanding The Difficulty of Training
Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna
Resort, Sardinia, Italy, 249-256. https://proceedings.mlr.press/v9/glorot10a.html
Jorge Gomes, Miguel Duarte, Pedro Mariano, and Anders Lyhne Christensen.
2016. Cooperative Coevolution of Control for a Real Multirobot System. In
International Conference on Parallel Problem Solving from Nature. Springer, 591—
601.

Atil Iscen, Ken Caluwaerts, Jonathan Bruce, Adrian Agogino, Vytas SunSpiral,
and Kagan Tumer. 2015. Learning Tensegrity Locomotion Using Open-loop
Control Signals and Coevolutionary Algorithms. Artificial Life (2015). https:
//doi.org/10.1162/artl_a_00163

[20

[21]

[22

[23

™
=)

[25

[26

[27

(28]

[30

[31

[32

[33

[34

[35

(36]

(37]

[38

@
0,

[40

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Edwin D de Jong. 2003. Representation Development from Pareto-Coevolution.
In Genetic and Evolutionary Computation Conference. Springer, 262-273.

Xin Ma, Qin Zhang, and Yibin Li. 2007. Genetic Algorithm-Based Multi-Robot
Cooperative Exploration. In 2007 IEEE International Conference on Control and
Automation. IEEE, 1018-1023.

Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy Invariance Under
Reward Transformations: Theory and Application to Reward Shaping. In Icml,
Vol. 99. 278-287.

MohammadJavad NoroozOliaee, Bechir Hamdaoui, and Kagan Tumer. 2013.
Efficient Objective Functions for Coordinated Learning in Large-Scale Dis-
tributed OSA Systems. IEEE Transactions on Mobile Computing (2013). https:
//doi.org/10.1109/tmc.2012.67

Esben H @stergaard, Henrik H Lund, and Reality Gap. 2002. Co-Evolving Ro-
bot Soccer Behavior. In From Animals to Animats 7: Proceedings of the Seventh
International Conference on Simulation of Adaptive Behavior, Vol. 7. MIT Press,
351.

Liviu Panait, R Paul Wiegand, and Sean Luke. 2004. A Sensitivity Analysis of a
Cooperative Coevolutionary Algorithm Biased for Optimization. In Genetic and
Evolutionary Computation Conference. Springer, 573-584.

Mitchell A Potter and Kenneth A De Jong. 1994. A Cooperative Coevolution-
ary Approach to Function Optimization. In International Conference on Parallel
Problem Solving from Nature. Springer, 249-257.

Mitchell A Potter and Kenneth A De Jong. 2000. Cooperative Coevolution: An
Architecture For Evolving Coadapted Subcomponents. Evolutionary computation
8, 1(2000), 1-29.

Muhammad A Rahman, Niklas Hopner, Filippos Christianos, and Stefano V
Albrecht. 2021. Towards Open Ad Hoc Teamwork Using Graph-based Policy
Learning. In International Conference on Machine Learning. PMLR, 8776-8786.
Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. 2016. D++:
Structural Credit Assignment in Tightly Coupled Multiagent Domains. In 2016
IEEE/RSY International Conference on Intelligent Robots and Systems (IROS). IEEE,
4424-4429.

Manish Chandra Reddy Ravula. 2019. Ad-hoc Teamwork with Behavior-switching
Agents. Ph.D. Dissertation.

Golden Rockefeller, Patrick Mannion, and Kagan Tumer. 2019. Fitness Critics
for Multiagent Learning. In 2019 International Symposium on Multi-Robot and
Multi-Agent Systems (MRS). IEEE, 222-224.

Michael Schmidt and Hod Lipson. 2005. Coevolution of Fitness Maximizers and
Fitness Predictors. GECCO Late Breaking Paper (2005).

Reid Simmons, David Apfelbaum, Wolfram Burgard, Dieter Fox, Mark Moors,
Sebastian Thrun, and Hakan Younes. 2000. Coordination for Multi-Robot Explo-
ration and Mapping. In Aaai/laai. 852-858.

Peter Stone, Gal A Kaminka, Sarit Kraus, Jeffrey S Rosenschein, et al. 2010. Ad
Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination.
Qingyu Tan, Zhenkun Wang, Yew-Soon Ong, and Kin Huat Low. 2019. Evolution-
ary Optimization-Based Mission Planning for UAS Traffic Management (UTM).
In 2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
952-958.

K. Tumer and A. K. Agogino. 2007. Coordinating Multi-Rover Systems: Evaluation
Functions for Dynamic and Noisy Environments. In Evolutionary Computation
in Dynamic and Uncertain Environments, S. Yang (Ed.). Springer, 371-388.
Kagan Tumer, Zachary T. Welch, and Adrian Agogino. 2008. Aligning Social
Welfare and Agent Preferences to Alleviate Traffic Congestion. AAMAS (2008).
https://doi.org/10.1145/1402298.1402315

Karl Tuyls and Gerhard Weiss. 2012. Multiagent Learning: Basics, Challenges,
and Prospects. Ai Magazine 33, 3 (2012), 41-41.

Eiji Uchibe, Masateru Nakamura, and Minoru Asada. 1999. Cooperative and
Competitive Behavior Acquisition for Mobile Robots Through Co-evolution. In
Proc. of the Genetic and Evolutionary Computation Conference. Citeseer, 1406—
1413.

Csaba Viragh, Maté Nagy, Carlos Gershenson, and Gabor Vasarhelyi. 2016. Self-
Organized UAV Traffic in Realistic Environments. In 2016 IEEE/RSY international
conference on intelligent robots and systems (IROS). IEEE, 1645-1652.

https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1162/artl_a_00163
https://doi.org/10.1162/artl_a_00163
https://doi.org/10.1109/tmc.2012.67
https://doi.org/10.1109/tmc.2012.67
https://doi.org/10.1145/1402298.1402315

	Abstract
	1 Introduction
	2 Background
	2.1 Cooperative Co-evolutionary Algorithms for Multiagent Learning
	2.2 Fitness Shaping
	2.3 Ad Hoc Teaming

	3 Fitness Shaping for Multi-Team Learning
	4 Rover Domain
	5 Experiments
	5.1 Experimental Parameters

	6 Results
	6.1 Training Few Teams
	6.2 Training Many Teams
	6.3 Training On a Subset of Teams
	6.4 The Computational Cost of G and D

	7 Conclusion
	Acknowledgments
	References

