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Abstract— Recent interest in virtual reality (VR) headsets
has motivated research efforts to increase the user’s sense of
immersion via feedback of physiological measures. This work
presents the use of electroencephalographic (EEG) measure-
ments during observation of immersive VR videos to estimate
the user’s affective state. A pilot was conducted on 10 par-
ticipants. Participants passively viewed a series of one-minute
immersive VR video clips and subjectively rated the level of
valence, arousal, liking, and dominance. Correlates between
EEG spectral bands and the subjective ratings were analyzed
to identify statistically significant frequencies and electrode
locations across participants.

I. INTRODUCTION

The integration of user affective state feedback is criti-
cal to develop immersive closed-loop virtual reality (VR)
experiences and improve human machine interaction (HMI)
[1]. In recent studies, electroencephalogram (EEG) sensors
have been integrated into VR headsets to measure human
factors such as cognitive and affective state [2]. Room-
scale wireless VR headsets are a practical tool to elicit
affective state as they allow users to experience a realistic
environment with naturalistic movements, while providing
an unobtrusive framework for mounting EEG sensors [2],
[3]. Additionally, the VR environmental parameters can be
systematically varied to modulate cognitive and affective
states [4].

Human emotion and affective states can be characterized
using discrete and continuous models [5], [6]. A commonly
used continuous model to evaluate a perceived affective state
is the Russel Complex. The Russel Complex can be mapped
into a two-dimensional space consisting of axes representing
affective states, which are assigned numerical ratings. The
ratings range from one to nine and the affective states are
categorized into the dimensions of valence and arousal, with
the extension of dimensions representing liking and domi-
nance [7]. In this study, this extended Russel Complex was
integrated into a Self-Assessment Manikin (SAM) to record
the participant’s affective state. SAM utilizes a nonverbal
pictorial assessment technique based on the dimensions of
the Russel complex [5], [8].

Traditional EEG analysis utilizes power spectral bands
including the θ-band (4-7 Hz), α-band (8-13 Hz), β-band
(14-29 Hz), and γ-band (30-47 Hz). These bands can be cor-
related with user subjective ratings across the frontal, central,
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parietal, and occipital locations. Koelstra et al. utilized music
videos to elicit human emotional states and observed that an
increase in valence was correlated to an increase in power
for low frequency bands [7]. It was observed that an increase
in the β-band power within right temporal regions was
associated with positive emotional self-induction. In a study
regarding music video excerpts, it was observed that higher
frequency bands, such as the γ-band, were more prominent
when subjects were listening to unfamiliar songs [9]. Sarno
et al. have observed that high-frequency bands such as alpha,
beta, and gamma are more effective for classifying emotions
in both valence and arousal dimensions [10].

The present study aims to further the physiological char-
acterization of human affective states in VR using EEG.
A pilot study was performed on 10 participants using 13
publicly available 360◦ VR videos [11]. The EEG signals
were measured while the participants viewed a series of VR
videos, each followed by a prompt to complete a SAM. Cor-
relates between the participant’s affective state ratings and
EEG frequency bands were computed. EEG electrodes found
to be statistically significant in correlating with affective state
were identified for future use to support the development of
closed-loop VR systems.

II. METHODOLOGY

A. Participants and Experimental Setup

Ten healthy individuals (ages 19-34, mean 23.8) were re-
cruited to participate in the experiment, which was approved
by the Institutional Review Board of Virginia Common-
wealth University. Each participant completed a screening
process consisting of an informed consent form, demo-
graphic information form, and Motion Sickness Susceptibil-
ity Questionnaire (MSSQ) short form [12]. All participants
satisfied the criteria by scoring a minimum of 19 on the
MSSQ. Participants were provided guidelines to complete
the SAM in terms of valence, arousal, dominance and liking
prior to beginning experimental task [8].

The HTC VIVE hardware system consists of a motion-
tracked headset display, and two “lighthouse” base stations
that can provide 6 Degree of Freedom (6DOF) tracking.
The VIVE wireless adapter was used in conjunction with
the wireless EEG headset such that the participant was
untethered and free to rotate to view the 360◦ videos.
Following the participant screening, a visual calibration was
performed using the HTC VIVE to correct for lens distance.
The wireless 32-channel EEG cap was then placed on
the participant’s head and the EEG electrodes were filled
with electrolyte gel. The electrode cap was covered with a
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Fig. 1: Placement of wireless EEG cap and VR headset on
participant.

protective plastic hair cap to protect the VR headset from
the gel. The VR headset was placed over the EEG cap and
the headset was tightened to comfortably fit the participant,
as shown in Figure 1. Participants were then positioned
approximately 1 meter from the recording computer in a
seated position, in a swivel office chair.

B. Experimental Task

Stimuli are a series of 360◦ videos viewed through the
VR headset to induce various affective reactions. The videos
were obtained from a public database which were used in
a previous human emotion study [11]. The videos from
the database were segmented into three categories: High-
Valence-Low-Arousal (HVLA), High-Valence-High-Arousal
(HVHA), and Low-Valence-Low-Arousal (LVLA). Each cat-
egory consisted of 4 one-minute videos for a total of 12 video
segments, and one neutral video to collect baseline EEG data
at the beginning of the experiment. At the start of the experi-
ment, the participant viewed the neutral video and completed
the SAM. The remaining 12 videos were then shown in a
randomized order for each participant. For a particular trial,
the participant’s task was to passively view a video, with
the ability to rotate the chair and the headset to view the
360◦ environment from different perspectives. Immediately
following the video, participants were prompted to complete
the SAM using a scale of one to nine for valence, arousal,
dominance, and liking. The icons displayed for the SAM
are shown in Figure 2 [8]. Each row represents a different
affective state, and each column represents a different rating.
The participant selects the ratings by directing his or her head
toward the desired manikin and maintaining the cursor over
the manikin for a 5-second dwell time, as indicated by a
progress bar.

A twenty-second interval between trials was used to
collect baseline EEG data. During this interval, participants
were asked to keep their eyes open and remain still. The total
duration of the experiment was kept to 25 min to reduce

Fig. 2: Self-assessment manikin (SAM) for affective states.
[15]

the risk of simulator sickness.

C. Data Collection

EEG data were collected using a 32-channel wireless bio-
signal amplifier (g.Nautilus, Guger Technologies) grounded
to location AF3, referenced to the right earlobe, and sampled
at 250 Hz with a bandpass filter from 0.1-100 Hz and a notch
filter between 58-62 Hz. The electrode positions are based
on the International 10-20 system as shown in Figure 3.

Communication between the VR environment (developed
in Unity [13]) and the EEG recording was performed via Lab
Streaming Layer [14] and recorded using the Lab Recorder
application.

D. Data Analysis

The EEG data were parsed into 12 one-minute trials per
participant. To correct for unrelated stimulus variation in
power, the baseline EEG signal from the 20 second inter-
trial interval was used. The EEG spectral power between 2
Hz and 47 Hz was computed of the first 30 seconds of each
trial and baseline was computed using Welch’s method on
non-overlapping 250-sample segments with a 250-point Fast
Fourier Transform (FFT), yielding 1-Hz spectral bins. The
baseline power was subtracted from the trial power, yielding
the change of power relative to pre-stimulus period. The net
changes of power spectral density were then averaged over
four frequency bands: θ (4-7 Hz), α (8-13 Hz), β (14-29
Hz), and γ (30-47 Hz).

For the correlation analysis, Spearman coefficients be-
tween the power changes and the subjective ratings were
computed for each channel, along with the p-values for
positive and negative correlation tests. This was done for
each participant separately and, assuming independence,
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Fig. 3: The EEG cap channel locations electrode locations

using the International 10-20 system.

Fig. 4: Boxplot of affective state ratings for HVLA videos.

the 32-resulting p-values per correlation direction (posi-

tive/negative), frequency band, and electrode were combined

to one p-value using Fisher’s method [7], [10].

III. RESULTS

A. Affective State Ratings

Figures 4-6 show the distribution of ratings for the three

categories of videos observed: HVLA, HVHA, LVLA, re-

spectively. For the HVLA video ratings (Figure 4) valence

and liking had a median of 8, larger than the median of

6 for arousal and 4 for dominance. Videos in the HVHA

video category (Figure 5) had a median of 8 for valence,

arousal, and liking, and 6 for dominance. Videos categorized

as LVLA (Figure 6) had comparatively low medians ranging

from 3-4.5 for valence, arousal, and liking. The median value

for dominance was 7 for LVLA, suggesting the videos are

more influential than the other categories. While the median

values correspond to the affective state categorizations as

determined by [11], for each categorization it is noted that the

range of ratings is consistently large for all affective states.

Fig. 5: Boxplot of affective state ratings for HVHA videos.

Fig. 6: Boxplot of affective state ratings for LVLA videos.

TABLE I: The means of the subject-wise intercorrelations

between the scales of valence, arousal, liking, dominance, for

all 10 participants. Significant correlations (p ≤0.05) using

Fisher’s method are indicated by *.

Valence Arousal Dominance Liking
Valence 1 0.46* 0.12* 0.83*
Arousal - 1 0.58* 0.50*
Dominance - - 1 0.31*
Liking - - - 1

The mean intercorrelation of the different scales over the

10 participants (see Table I) was explored to indicate possible

confounds or unwanted effects of fatigue from certain video

categories. All intercorrelations were found to be statistically

significant, with a large positive correlation between liking

and valence (ρ = 0.83). Correlations ranging from ρ =

0.46 to ρ = 0.58 were observed between valence/arousal,

dominance/arousal, and between arousal/liking. The lowest

intercorrelation was observed between valence and domi-

nance (ρ = 0.12).

B. Bandpower Correlation with Affective State

Figure 7 shows topographies of the average Spearman cor-

relations with significantly correlated electrodes highlighted

in grey (p ≤0.05). The comprehensive list of significant

electrodes is provided in Table II. A total of 3 electrodes

yielded p ≤0.01. Significant electrodes across all bands

largely consisted of electrodes located in the frontal region.
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Fig. 7: The mean Spearman correlations over 10 participants between valence, arousal, dominance, and liking with the power
in the frequency bands of θ (4-7 Hz), α (8-13 Hz), β (14-29 Hz), and γ (30-47 Hz), respectively. The grey highlighted
electrodes correlate significantly (p ≤0.05) with ratings.

TABLE II: Electrodes exhibiting significant correlation between bandpower and scale (p ≤0.05, *p≤0.01).

Valence Arousal Dominance Liking
Theta FC1, T7, FC6*, FP2 - CP6 FC6

Alpha F3, FC5, AF4, FP2, Fz CP5 T7*, AF3, F7, F3, FC1, FC5, CP1, CP5, Oz, PO4,
P4, CP2, FC6, Fz, Cz -

Beta F7 T7,C4 - -
Gamma - T7*, CP5, P7, PO3, O1, C4, T8, FC6 - -

T7 is a common electrode within all bands.
There is a significant increase in negative correlation

within the frontal region for the theta band. There is a
positive correlation for theta dominance towards the oc-
cipital region with a decrease towards the frontal region.
Alpha valence and liking follow similar trends with neg-
ative correlation in the right frontal region and have an
increase in positive correlation in left parietal region. For
beta valence, arousal, and liking there is central negative
correlation, with an increase in positive correlation in the
right temporal/parietal region. The gamma band exhibits a
positive correlation in the temporal/parietal regions for all
rating categories. Correlates were found towards the frontal
region in valence ratings, and near temporal region for
arousal ratings. There are 15 significant electrodes for the
alpha band dominance rating, with none for the beta and

gamma bands.

IV. DISCUSSION

The reported affect scores generally aligned with the
affective state categorizations HVHA, LVLA, and HVLA.
The HVHA category exhibited the highest median rating
across valence, arousal, and liking. This supports the notion
that more pleasing videos are rated above 5 for each state,
indicating the participant felt positive emotion while watch-
ing these videos. Videos in the LVLA category had a median
lower than 5 for valence, arousal, and liking indicating videos
intended to elicit negative emotion were rated as unpleasant
and were generally disliked. Dominance rating signifies the
feeling of insignificant versus influential. For the category
of LVLA, the higher dominance median can be correlated

2692

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 04,2022 at 16:54:21 UTC from IEEE Xplore.  Restrictions apply. 



to the impactful video excerpts shown to the participant.
Videos meant to elicit a calm/relaxed feeling were presented
in the HVLA category. The low dominance median rating
and lower arousal rating can be correlated to a calm state
within HVLA. The ratings for the valence and liking for
HVLA suggest these videos elicited a positive feeling.

The intercorrelations in Table I indicate that there are
significant relationships between most pairs of affect scores.
In terms of valence and arousal, this is likely a function of
the prescribed categorizations, with the HVHA and LVLA
creating inherent correlation. The comparatively large cor-
relation between valence and liking is unsurprising since
positive/negative emotions (valence) are generally associated
with liking/disliking, respectively [7]. As expected from the
intercorrelation analysis, the topographies for valence and
liking are very similar across frequency bands.

The two main areas of the brain that are generally cor-
related with emotion and affective state are the amygdala
and the frontal lobe. The statistically significant electrodes
indicated in Figure 7 and Table II show that frontal alpha is
prominent for valence and alpha is more distributed for dom-
inance. Studies have shown that the frontal region reflects
greater emotional activation compared to other regions of the
brain such as the temporal, parietal, and occipital regions
[9]. Electrode T7 in the temporal region was statistically
significant with p ≤0.01 for dominance in the alpha band
and arousal in the gamma band. The temporal region has
previously been associated with positive emotional self-
induction and external stimulation [7]. A positive correlation
of arousal, particularly in the gamma band, emanating from
the anterior temporal region have also been reported [11].
However, electromyographic (EMG) activity is also known
to be prominent in the higher frequencies over anterior and
temporal electrodes [7], particularly as a result of emotive
facial expressions [16]. While EMG was not obvious during
visual inspection of the signals, modulations due to more
subtle muscle tension cannot be ruled out. Similarly, it is
also possible that eye movement artifacts, which were not
explicitly measured or analyzed in this study, may contribute
to the correlations observed in the frontal locations.

This pilot study on 10 participants yielded promising,
statistically-significant results in term of identifying EEG
channels and frequency bands that correlate with affective
states. Due to the subjective nature of the task and varying
style and content of the available 360◦ videos, further anal-
ysis needs to be performed on the impact of the specific

video stimuli (e.g., motion, audio, realism, optical flow,
etc.) on EEG. Future work will include a larger number
of participants and an investigation of the potential for
online classification of affective state via EEG. Ultimately,
it is believed that such physiological feedback will greatly
enhance the VR user-experience.
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