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ABSTRACT
Recent developments in accessible virtual reality (VR) technologies
have inspired research into increasing the user’s sense of immersion
via monitoring and feedback of physiological and cognitive states.
This work presents a pilot study that models the user’s affective
state from electroencephalographic (EEG) measurements during
observation of immersive VR videos. Participants passively viewed
a series of short VR video clips and subjectively rated the level of
valence, arousal, liking, and dominance. Separate regression and
classification models were developed to estimate the subjective
ratings for each category using EEG spectral features. The results
indicate that both models are capable of capturing relevant EEG
features for estimating the user’s affective state ratings.
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1 INTRODUCTION
Through the incorporation of physiological measurements and
feedback into virtual reality (VR) systems, it is possible to greatly
enrich the user experience and functionality of VR applications
[2, 4]. Recent brain-computer interface (BCI) studies have used elec-
troencephalogram (EEG) sensors in conjunction with VR headsets
to estimate human factors such as cognitive and affective states
[7, 11, 13]. Such studies commonly detect and track power fluctu-
ations in traditional EEG spectral bands (i.e., δ ,θ ,α , β ,γ ) that cor-
relate with modulation of particular cognitive and affective states,
such as estimating cognitive workload during an n-back task [16].

The present pilot study extends the characterization of EEG fea-
tures using the data set from [9] to develop and evaluate models
that estimate subjective ratings of affective state from EEG recorded
during passive observation of immersive VR videos. EEG data were
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collected from 10 participants during observation of 13 publicly
available 360◦ VR videos [12]. Following each video, participants
were asked to provide subjective ratings of their affective state
based on the Russel Complex [14, 15]. The Russel Complex can
be mapped into a two-dimensional space consisting of axes repre-
senting valence and arousal, respectively. For this experiment, the
Russel Complex was extended to include dimensions representing
liking and dominance [8]. Each axis is assigned a rating that ranges
from one to nine. This extended Russel Complex was presented as
a Self-Assessment Manikin (SAM) in the virtual environment for
the participant to report his/her affective state for each video. The
SAM utilizes a nonverbal pictorial assessment technique based on
the dimensions of the Russel complex [3, 15].

EEG features were used to create a stepwise regression model to
estimate the SAM ratings, as well as a support vectormachine (SVM)
model to classify the SAM ratings as above or below a threshold.
The results indicate that both models are capable of estimating the
user’s affective state ratings based on EEG features, which will be
informative for the development of future closed-loop affective-
state BCIs.

2 METHODOLOGY
2.1 Participants and Experimental Setup
Ten healthy individuals (ages 19-34, mean 23.8) were recruited to
participate in the experiment, which was approved by the Institu-
tional Review Board of Virginia Commonwealth University. Each
participant completed a screening process consisting of an informed
consent form, demographic information form, and Motion Sickness
Susceptibility Questionnaire (MSSQ) short form [5]. All participants
satisfied the criteria by scoring a minimum of 19 on the MSSQ. Par-
ticipants were provided guidelines to complete the SAM in terms
of valence, arousal, dominance and liking prior to beginning the
experimental task [3].

The HTC VIVE hardware system consists of a motion-tracked
headset display and two “lighthouse” base stations that can provide
6 Degree of Freedom (6DoF) tracking. The VIVE wireless adapter
was used in conjunction with the wireless EEG headset such that
the participant was untethered and free to rotate while seated to
view the 360◦ videos.

Following the participant screening, a visual calibration was
performed using the HTC VIVE to correct for lens distance. The
wireless 32-channel EEG cap was then placed on the participant’s
head and the EEG electrodes were filled with electrolyte gel. The
electrode cap was covered with a protective plastic hair cap to
protect the VR headset from the gel. The VR headset was placed
over the EEG cap and the headset was tightened to comfortably
fit the participant, as shown in Figure 1. Participants were then
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Figure 1: Placement of wireless EEG cap and VR headset on
participant [9].

positioned approximately 1 meter from the recording computer in
a seated position, in a swivel office chair.

2.2 Experimental Task
The stimuli are a series of twelve 360◦ videos viewed through the VR
headset to induce various affective reactions. The videos were ob-
tained from a public database which were used in a previous human
emotion study [12]. The videos from the database were grouped
into three categories based on the prior study’s participant ratings:
High-Valence-Low-Arousal (HVLA), High-Valence-High-Arousal
(HVHA), and Low-Valence-Low-Arousal (LVLA). Each category
consisted of 4 one-minute videos for a total of 12 video segments,
and one neutral video to collect baseline EEG data at the beginning
of the experiment.

At the start of the experiment, the participant viewed the neutral
video and completed the SAM. The remaining 12 videos were then
shown in a randomized order for each participant such that no
two videos from the same affective category were not shown in
sequence. For an individual video trial, the participant’s task was to
passively view a video, with the ability to rotate the chair and the
headset to view the 360◦ environment from different perspectives.
Immediately following the video, participants were prompted to
complete the SAM using a scale of one to nine for each respective
dimension of valence, arousal, dominance, and liking. The icons
displayed for the SAM are shown in Figure 2 [3]. Each row rep-
resents a different dimension of affective state, and each column
represents a different rating. The participant selects the ratings by
directing their head toward the desired manikin and maintaining
the cursor over the manikin for a 5-second dwell time, as indicated
by a progress bar. A twenty-second interval between trials was
used to collect inter-trial baseline EEG data. During this interval,
participants were asked to keep their eyes open and remain still.
The total duration of the experiment was kept to 25 min to reduce
the likelihood of simulator sickness [6], which was not reported by
any of the participants.

Figure 2: Self-assessment manikin (SAM) for affective states
[8].

2.3 Data Collection
EEG data were collected using a 32-channel wireless bio-signal
amplifier (g.Nautilus, Guger Technologies), with electrode posi-
tions based on the International 10-20 system as shown in Figure 3.
The recordings were grounded to location AF3 and referenced to
the right earlobe. The sampling rate was 250 Hz with a bandpass
filter from 0.1-100 Hz and a notch filter between 58-62 Hz. Addi-
tionally, the position and acceleration data from the VR headset
were recorded for analysis of movement artifacts. Communication
between the VR environment (developed in Unity [17]) and the
EEG recording was performed via Lab Streaming Layer [10] and
recorded using the Lab Recorder application.

3 DATA ANALYSIS
3.1 Artifact Suppression
Because the participants were allowed to move their heads and
swivel in the chair to explore the VR environments, EEG artifact
suppression methods were implemented to reduce the influence
of movement and other potential artifacts. The EEG data were
bandpass filtered between 4-47 Hz, according to the frequency
bands used for the subsequent feature extraction. The EEG and
corresponding headset movement data were segmented into 12
one-minute trials for each participant. In order to correct for un-
related stimulus variation in power, the baseline EEG signal from
the 20 second inter-trial intervals was used. Second Order Blind
Identification (SOBI) Independent Component Analysis (ICA) [1]
was applied to parse the EEG data into statistically independent
components. The Spearman correlation coefficient was computed
between each individual component and each axis of the headset
acceleration data. Independent components with a Spearman cor-
relation coefficient outside two standard deviations from the mean
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Figure 3: The EEG electrode locations based on the Interna-

tional 10-20 system.

correlation coefficient were selected for removal, and the EEG sig-
nal was then reconstructed using retained components. Example
accelerometer data and corresponding artifact suppression for a
representative EEG channel are provided in Figure 4. It can be ob-
served that larger fluctuations in the accelerometer data temporally
correspond with larger fluctuations in the EEG recording, which
are effectively suppressed using the proposed approach.

3.2 Feature Extraction

The power spectral density of the EEG signal for each trial and
baseline period were computed using Welch’s Method on 5-second
non-overlapping windows. The baseline power was subtracted from
trial power, yielding the change of power relative to pre-stimulus
period. The net changes of power spectral density (PSD) were av-
eraged over 4 frequency bands θ -band (4-7 Hz), α-band (8-13 Hz),
β-band (14-29 Hz), and γ -band (30-47 Hz) and used as the feature
vector for each observation window.

3.3 Affective State Estimation Models

3.3.1 Stepwise Linear Regression Models. A stepwise linear regres-
sion model was constructed to estimate the affective state rating
as a function of the EEG features from each trial. Because of the
high-dimensional feature space, a stepwise regression routine was
utilized to identify statistically significant model terms. The pool
of candidate explanatory variables consisted of the power bands
for each electrode, resulting in 128 potential terms (32 channels x 4
power bands). Using the stepwisefit function in MATLAB R2022a,
the process begins with a forward selection procedure where no
terms are initially in the model structure. At each step, the p-value
and coefficient of determination (R2) are evaluated to determine
whether a term should remain in the model. The criteria requires

Figure 4: Example of accelerometer data and correspond-

ing artifact suppression. Top panel: 3-axis accelerometer

traces during a representative video trial. Bottom panel: cor-

responding EEG traces from a representative channel (CP5)

before and after artifact suppression.

that each term retained in the model has a p-value less than 0.05
and increases the R2 by a minimum of 0.5%.
Four-fold cross validation was applied for evaluation. For a given

fold, 216 segments (12 trials x 18 segments) were utilized for model
training and 72 segments (12 trials x 6 segments) for model testing.
To assess the impact of artifact suppression on model performance,
models were developed using EEG spectral data before and after ar-
tifact suppression was applied. Additionally, a model was developed
using exclusively headset acceleration data without EEG.

3.3.2 Binary Support Vector Machine Models. Practical perfor-
mance metrics such as the minimum level of fidelity or accuracy
needed for reliably estimating affective state from EEG have yet
to be defined. For example, while the capability to precisely pre-
dict rating levels over a continuum may be desirable, this level
of resolution might not be necessary for a particular application.
Alternatively, it may be more useful to simply distinguish between
low and high levels of an affective state.
To explore this scenario, the SAM ratings were thresholded to

binary low and high scores, which were modeled using a nonlinear
Support Vector Machine (SVM) classifier with a Gaussian kernel
(using the default hyperparameters of the fitcsvm function in MAT-
LAB R2022a). The SAM ratings (1-9) were transformed into binary
ratings (0 or 1) using a threshold determined by the mean rating
for each individual participant and affective state category, respec-
tively. Using the relevant EEG features determined by the stepwise
regression process, an SVM model was trained for each participant
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Table 1: Themeans of the participant-wise intercorrelations
between the scales of valence, arousal, liking, dominance
across 10 participants. Significant correlations (p ≤0.05) us-
ing Fisher’s method are indicated by *.

Valence Arousal Dominance Liking
Valence 1 0.46* 0.12* 0.83*
Arousal - 1 0.58* 0.50*
Dominance - - 1 0.31*
Liking - - - 1

and affective dimension, respectively, using the four-fold cross vali-
dation approach described in the previous section. Similar to the
regression models, SVM models were created using EEG spectral
bands before and after artifact suppression, and using exclusively
headset acceleration data without EEG.

4 RESULTS
4.1 Affective State Ratings
Figure 5 shows the distribution of ratings for the three categories
of videos: HVLA, HVHA, LVLA. Videos in the HVHA category
had a median rating of 8 for valence, arousal, and liking, and 6 for
dominance. For the LVLA video ratings, valence, arousal, and liking
had significantly lower medians of 3, 4, and 4.5, respectively. For
the LVLA category, dominance had the highest median rating of 7.
Videos categorized as HVLA medians of 8, 6, 4, and 8 for valence,
arousal, dominance, and liking, respectively.

The results aligned with the affective state categorizations as
established in [12]. HVHA exhibited the highest median for valence
and arousal; supporting the videos viewed in the category were
pleasing and rated above a 5 for each state due to positive emotion.
Videos in the LVLA category had the lowest median for valence,
arousal, and liking, indicating videos intended to elicit negative
emotion, videos were rated as unpleasant and generally disliked.
However, dominance had a median rating above 5 suggesting the
videos from the LVLA category elicited a consistent impact on
the participants. HVLA consisted of videos which were meant to
present a calm and relaxing environment to the participant. The me-
dian value valence and liking is the same for the category suggesting
these videos were generally liked and considered insignificant due
to the low median value of 4 dominance.

The mean intercorrelations of the four affective states across
10 participants are presented in Table 1. All intercorrelations
were found to be significant, with largest inter correlation
observed between liking and valence (ρ= 0.83). Correlations
ranging from ρ=0.12 to ρ=0.58 were observed between domi-
nance/liking arousal/liking, arousal/dominance, valence/arousal,
and valence/dominance with valence/dominance having the low-
est intercorrelation (ρ=0.12). The large intercorrelation observed
between liking and valence is as expected due to positive/negative
emotions (valence) being associated with liking/dislike.

4.2 Stepwise Linear Regression Models
Figure 6 shows boxplots of R2 values for the the stepwise regression
models based on four-fold cross validation. The median R2 value

Figure 5: Boxplot of participant SAM ratings for video cate-
gories

Figure 6: Boxplot across participants of R2 between SAM rat-
ing and stepwise regression model output.

is between 0.5-0.6 for all affective states for the EEG data before
artifact suppression. Artifact suppression resulted in approximately
a 10% increase inmedianR2, indicating themovement artifacts were
likely masking relevant EEG features. This is further supported by
the lowR2 between the acceleration data alone and the SAM ratings,
providing evidence that any residual contamination frommovement
artifacts are not significantly contributing to the predictive power
of the EEG recordings.

4.3 Binary SVM Models
Figure 7 shows results of affective state estimation using the binary
SVMmodels. Similar to stepwise regression, the model performance
is generally consistent across the four affective states. However, the
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Figure 7: Boxplot across participants of classification accu-
racy generated by the binary support vector machine (SVM)
model for predicting high vs. low SAM ratings.

favorable effects of artifact suppression are less prominent. The me-
dian performance after artifact suppression increases between 2-8%
for arousal, dominance, liking, while valence remains unchanged.

The models using headset acceleration have median perfor-
mances between 58-65%. The performance discrepancies between
the linear stepwise models and the nonlinear SVMmodels using the
accelerometer data suggests there is likely a nonlinear mapping of
the accelerometer data that can provide predictive power. However,
the model performance using EEG features remains superior to
acceleration data alone, indicating that the EEG features provide
additional predictive power beyond any residual artifacts related
to the movement recordings.

5 DISCUSSION
The results of this pilot study indicate that subjective self-
assessment ratings of a participant’s affective state can reliably
be estimated via EEG using regression and classification models.
The regression models with artifact suppression yielded median
R2 values across each affective state ranging from 0.62-0.71. By
simplifying the problem to estimate thresholded high versus low
affective state ratings, a binary SVM classifier produced a classifi-
cation accuracy above 85% for all affective states.

Although the computational cost for the proposed signal process-
ing pipeline was not formally quantified in this study, the spectral
analysis, artifact suppression, and affective state estimation models
can be implemented with minimal latency for real-time neurofeed-
back in VR applications. However, depending on the application,
affective state fluctuations or transitions may not occur rapidly and
may not require immediate user feedback. Thus, acceptable process-
ing latencies will depend on the application scenario and expected
dynamics of the targeted affective states and user feedback.

While the relevant EEG features for this paradigm were exam-
ined in [9], further analysis and a larger participant pool is needed to
thoroughly explore the relative feature contributions to the present
models. Although the employed artifact suppression methods ap-
pear to effectively suppress head movement artifacts in EEG, no

method exists that can definitively separate EEG and electromyo-
gram (EMG) or movement artifacts occupying the same spectral
frequency bands [16]. Although not collected and analyzed as part
of the present study, it would be informative to capture video and/or
EMG of facial expressions that vary with affective state and likely
impact the EEG recordings. Ultimately, the combination of EEG,
EMG, and movement information would likely improve modeling
results, which may be more realistic and practical for end-user ap-
plications. Due to the subjective nature of the task and varying style
and content of the available 360◦ videos, further analysis needs
to be performed on the impact of the specific video stimuli (e.g.,
motion, audio, realism, optical flow, etc.) on the EEG recordings.

6 CONCLUSION
This pilot study demonstrates that it is possible to reliably estimate
a user’s affective state ratings using regression and classification
models of spectral measurements obtained via EEG recordings.
These models were designed to evaluate respective performance
for two extremes of feedback implementations, continuous and
binary, since different applications may require different degrees
of granularity for the estimates. As with any EEG study involving
movements and task engagement, it is challenging to definitively
isolate the contributions of brain and muscle activity on the perfor-
mance and the results must be interpreted accordingly.

The affective state estimation modeling techniques explored in
this study could be implemented to provide closed-loop biofeed-
back to allow users to alter the virtual reality interactions according
to their affective state. This has the potential to increase system
functionality and enhance the user’s experience. However, such a
closed-loop scenario introduces various challenges as appropriate
feedback and altered affective state dynamics must be investigated
in detail. This pilot study provides important insights toward clos-
ing the loop with affective state estimation and feedback for VR
applications.
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