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Abstract

The problem considered here is motivated by a work by B. Nachtergaele and
H.T. Yau where the Euler equations of fluid dynamics are derived from many-
body quantum mechanics, see [10]. A crucial concept in their work is that of local
quantum Gibbs states, which are quantum statistical equilibria with prescribed
particle, current, and energy densities at each point of space (here R, d > 1).
They assume that such local Gibbs states exist, and show that if the quantum
system is initially in a local Gibbs state, then the system stays, in an appropriate
asymptotic limit, in a Gibbs state with particle, current, and energy densities now
solutions to the Euler equations. Our main contribution in this work is to prove
that such local quantum Gibbs states can be constructed from prescribed densities
under mild hypotheses, in both the fermionic and bosonic cases. The problem
consists in minimizing the von Neumann entropy in the quantum grand canonical
picture under constraints of local particle, current, and energy densities. The main
mathematical difficulty is the lack of compactness of the minimizing sequences to
pass to the limit in the constraints. The issue is solved by defining auxiliary
constrained optimization problems, and by using some monotonicity properties of
equilibrium entropies.
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1 Introduction

This work is concerned with the minimization of the von Neumann entropy

S(e) = Tr(glog o),

where p is a nonnegative, trace class operator with trace one, on some infinite-dimensional
Hilbert space (we will refer to such operator in the sequel as a state, which are self-adjoint
since nonnegative). Note the sign change in the entropy compared to the standard def-
inition in the physics literature. The problem is motivated by the work of Nachtergaele
and Yau addressed in [10], where they derive the Euler equations of fluid mechanics from
quantum dynamics. More precisely, they consider the entropy minimization problem in
the context of many-body quantum mechanics where the underlying Hilbert space is
the Fermionic Fock space. The latter is defined as follows: let h = L?(R?) for d > 1;
the Fermionic Fock space §; is the direct sum

+oo
Sy = @ S;H),
n=0

where Sgc") := h”" is the n-fold antisymmetric tensor product of b, with the convention
h"sY = C. We have

3 = LR,

where Lz((Rd)”) is the space of antisymmetric square integrable complex functions on
(RY)™, that is, for z, € R £ =1,--+,n, 1 <4, <mn,

f(x17... ’xi’... 7xj7... 7xn):_f<$1;"' 7xj7... ’xh... ’xn>

when f € L2((R?)"). This setting is usually referred to as the grand canonical picture
since the system is not fixed to a particular subspace with n particles.

Nachtergaele and Yau consider the minimization of S(p) over states o with prescribed
particle density, current and energy densities at any given point x € R%. This results
in an infinite dimensional constrained optimization problem, whose main mathematical
difficulty is to handle the local nature of the constraints. The solution can be seen as
the quantum many-body equivalent of the classical Maxwellian obtained by minimizing
the Boltzmann entropy under local constraints of density, current and energy.

Using the formalism of the second quantization, the local constraints can be defined
as follows: let {e;};en be an orthonormal basis of b, let z € RY, and consider (formally)
the following family of operators parametrized by =z,

a, = Z e;(x)ale;),

1€EN

where a(-) is the annihilation operator and e is the complex conjugate of e;. The adjoint
of a, in § is denoted by a’. We do not give the explicit definition of a(-) since it will
not be needed in the sequel, and we point the reader to [1] for instance for more details.
For a state ¢ and Tr(-) the trace in §, we introduce the following functions of z,



nlo](z) := Tr(ala, o), local density
ulo](z) == S Tr(a;Va, o), local current (1)
klo|(z) :== Tr(Va} - Vay 0) local kinetic energy,

where the gradient V is taken with respect to the variable x, and & denotes imaginary
part. We defined above the local kinetic energy instead of the total energy which includes
(two-body) interactions between the particles. The latter will be defined further on.
The formulas in (1) are similar in structure to the usual definitions of the density,
current and kinetic energy for the one-particle setting. We will introduce in the sequel
equivalent definitions based on one-particle density matrices that are more amenable to
mathematical rigor.

Introducing the potential energy ep[g] = Vn|g| for some potential V', and the total
energy e[o] = k[o| 4+ ep[o] + ero] for some two-body interaction term e;[g], Nachtergaele
and Yau assume that the minimization problem with constraints on n[g|, u[g] and e[g]
admits a unique solution, referred to as a local Gibbs state (or more accurately they
give an informal expression of the statistical equilibrium that is the solution to the
constrained minimization problem). Then they prove that a state g, solution to the
quantum Liouville equation

iat@t:[HaQt]v [Hth]:HQt_QtH7 HI—A+V+W,

with a local Gibbs state with constraints {ng, ug, ep} as initial condition, converges, in
an appropriate limit that we do not detail here, to a local Gibbs state with constraints
{no(t),uo(t),eo(t)}. These latter constraints are solutions to the Euler equations with
initial condition {ng,ug,eo}. Above, W is a two-body interaction potential used to
define e;[g].

In the one-body case, a similar constrained entropy minimization problem is central
to the work of Degond and Ringhofer in their derivation of quantum fluid models from
quantum dynamics, see [3].

Under appropriate conditions on {ng, ug, €p}, our main result in this work is justify
rigorously the introduction of these local Gibbs states, and therefore to prove that
indeed the constrained minimization problem admits a unique solution, for both the
fermionic and bosonic cases. We addressed in [5] the one-body problem for various
quantum entropies, and the key difficulty is the lack of compactness required to handle
the local energy constraint. The many-body case treated here introduce new difficulties,
in particular the fact that there is now also a lack of compactness to treat the local
density constraint, and as a consequence the current constraint. In the one-body setting,
there is no such issue with the density since sequences of states with bounded energy
have automatically sufficient compactness to pass to the limit in the density constraint,
while this is not true in the many-body case. This latter fact is related to the convergence
of one-body density matrices that will be defined further.

The main idea to go around the issue is to define two auxiliary optimization prob-
lems with global constraints, and to prove the monotonicity of the entropy of the cor-
responding minimizers with respect to these global constraints. Along with classical
compactness theorems for trace class operators, this allows us to prove that, while arbi-
trary sequences of states with bounded energy do not have sufficient compactness, the



minimizing sequences of the entropy converge in a sufficiently strong sense that allows
us to pass to the limit in the local constraints. The fermionic and bosonic cases are
treated in the same fashion with essentially identical proofs.

The article is structured as follows: in Section 2, we introduce some background on
second quantization; we next state our main result in Section 3, and prove the main
theorem in Section 4. Finally, some standard technical results are given in an appendix

Acknowledgment. OP’s work is supported by NSF CAREER, Grant DMS-1452349
and NSF grant DMS-2006416.

2 Preliminaries

We introduce in this section some background that will be used throughout the paper.

Second quantization formalism. We have already defined the fermionic Fock space
in the introduction, and define now the bosonic version, denoted by §,. It is given by

the direct sum .
5 =P
n=0

where S,()”) := h®=" is the n-fold symmetric tensor product of h and h® := C. We have

& = LA(RY)"),

where L? ((Rd)”) is the space of symmetric square integrable complex functions on (R%)",
that is, forz, € R 0 =1,--- ,n,1<,4,5 < n,

f(xla"' R PR O PR 73:71) :f('xla"' y Lyt 3Ly 7xn)
when f € L2((RY)™).
We denote by §/s either the bosonic or fermionic Fock space, and represent an

element ¢ of §y/; by the sequence ¥ = {tp™}, oy, where ¢ € 31(77} The spaces §y,¢
are Hilbert spaces when equipped with the norm

1/2
HwH:(Zqui) e = 1 o

neN

We use the same notation for the norms in §s and §, since there will be no possible
confusion in the sequel. The inner products associated with || - || and || - ||, are denoted
by ('7 ) and ('7 )n

We denote by J; :== Ji (3b/f) the space of trace class operators on §;/r. The trace
with respect to J; is denoted simply by Tr(-), while the trace with respect to J;(FE)
for £ a Hilbert space is denoted by Trg(-). The space of bounded operators on E is
denoted L(E).

We will refer to a “state”, as a nonnegative, trace class operator on §,¢ with trace
equal to one. The set of states is denoted by S, i.e.

S={oeJi: 0>0, Tr(p) =1}.
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Definition 2.1 (Second quantization) Let A be an operator acting on Sé’;;, k>1. Its
second quantization, denoted A, is defined by

+o00
A=0a-a0a@ > (A

k times n=k 1<i1<<ip<n
where (A);, ... i, is the operator A acting on the variables labeled iy, - i) in 3’1()];} and

leaving the other variables invariant.

It is customary to denote dI'(A) = A. The second quantization of the identity on b is
the number operator

The identity on /s is simply denoted by Id. The operator N is self-adjoint on §y/y
when equipped with the domain

DWN) = {w = {™}nen € Buys ZRQHw(”)Hi < oo} :

neN

We consider states that are not necessarily diagonal on §/f, and therefore that do not
commute in general with N. In particular, Mg is not necessarily positive when ¢ > 0,
and this leads us to introduce N''/2, which is self-adjoint on §,/; with domain

DN'?) = {@D = {0 }nen € Fopr - ) _nlv|i < OO} :

neN

We then denote by Sy the set of states o with finite average particle number, that is
such that
Tr (N0 NT7) < oc,

where A denotes the extension of an operator A to Sv/¢- We will drop the extension
sign in the sequel for simplicity.

Definition 2.2 (I-particle density matriz) Let A be a bounded operator on b and con-
sider its second quantization A. For a state o € Sy, the 1-particle density matriz o) is
the unique nonnegative operator in Ji(h) such that

Try, (Ag(l)) =Tr (Ap). (2)

The fact that oV is well-defined is classical and is established in Appendix for the
sake of completeness. Note that since A is not bounded in /¢, relation (2) has actually
to be understood as

Try, (Ag(l)) =Tr (BNl/QQNl/Q) ,
where

+o00
B:=06 @n_lA(n), (3)

n=1



and then belongs to L£(Fy/s) when A € L£(h). In (3), A, is the component of A on the
sector 8’27} Note that by setting A = Idy, we have the relation

Try, (g(l)) ="Tr (Nl/zg ./\/1/2) .

We will need as well the 2-particle density matrix for the definition the interaction
potential. It is justified in the same manner as Definition 2.2.

Definition 2.3 (2-particle density matriz) Let A be a bounded operator on @I(j)f and
consider its second quantization A. For a state 9 € S such that Tr (N oN) is finite, the
2-particle density matriz 0 is the unique nonnegative operator in J <31(3)f> such that

Tr@z(j)f (AQ(2)) =Tr(Ap).

We define now the local constraints, first the density, current, and kinetic energy.

Local density, current, and kinetic energy constraints. Consider a state p € Sy
and its associated 1-particle density matrix o) € J1(h). The local (1-particle) density
n[o] of o is defined by duality by, for any ¢ € C§°(R?):

/]Rd nlo](x)e(x)dr = Try (g(l)@) ,

where we identify ¢ and its associated multiplication operator.
Let hy = —A, equipped with domain H?(R?), and for Hy = dI'(hg), let & be the
following set:

E = {g €Sy: Tr (Hé/ZQHé/Z) < oo}

&y is the set of states with finite particle number and finite kinetic energy. We will
need the following lemma in order to define the current and energy contraints. The
straightforward proof is given in the Appendix for convenience of the reader.

Lemma 2.4 Let 9 € &. Then oY) verifies Try (h(l]/Zg(l) h(l]/2) < oo and
Ty (h})”g(l)h}/?) = Tr (Hé/ng}/Q) . (4)

The current u[g] can be now defined by, for any ® € (C5°(R%))?,

/Rdu[e](x) - ®(z)dx = —iTr, (@ Vo + %v , q)) 7

and the kinetic energy k[o] by

[ Hel@eta)ds = =Ty (7 (oV)a)

Note that u[o] and k[g] are well-defined since Lemma 2.4 implies that Vo) and
VoWV are trace class. Formal calculations also show that n[o], u[g] and k[o] agree
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with the definitions given in (1) in the introduction based on the annihilation operator.
Moreover, if {1,},en and {¢,}pen denote the eigenvalues and eigenfunctions of oV, we
have the familiar relations

= Z 1ol epl? local density
peN
Z S gopVgpp local current
peEN
= Z 1| Voo, |2, local kinetic energy.
\ peEN

The functions n[g|, u[g], and k[g] are all in L*(RY) when ¢ € &, and the series above
converge in L'(R?). We have moreover the relations

Hn[Q]HLl — Tr (N1/2QN1/2) 7 Hk[Q]HLl — Ty (H1/2QH1/2>

Definition of local total energy. We define now the local potential and local inter-
action energy constraints. For this, let v =v, —v_, v > 0, and w even, all real-valued,
such that

vy € Llloc(Rd)7 v, w e Lp(Rd) + LOO(Rd)v

with p =1 when d = 1, p > 1 when d = 2, and p = d/2 when d > 3. We suppose that
w is classically stable of the second kind, that is, there exists a constant Cy > 0 such
that

Vn > 2, Z w(x; —z;) > —Con, a.e. on (RH)™. (5)

1<i<j<n

An example of such w is the standard Coulomb potential w(x) = |z|~! when d = 3.
For a state o with Tr (Mo N') < oo, the local interaction energy is formally defined
by

ailde) = [ | nle®)(wp)ue = vy

where n[o®](z,y) is the local density associated with the 2-particle density matrix o(?)
of 0. Tt is defined by duality by

/ n[Q@)](x,y) (x,y)dzdy = TrS(Q) ( (2)90)’
R4 xRd b/f

for any symmetric test function ¢ € C$°(R? x R?). The condition Tr (Mo N') < oo is not
natural in the minimization problem since the total energy constraint only involves €;|o]
and not Mg N, and it is therefore not clear how to define n[p®] rigorously if Tr (Ao N)
is not finite. We then introduce a modified interaction energy e;[o] as follows. Let
ro > Cy (for the Cy defined in (5)) and let

—0@0@@( > ow -—xj)>.

1<i<j<n



The operator W + ro/V is strictly positive according to (5). Consider a state ¢ such
that
Tr ((W + ToN)l/QQ (W + ToN)l/Q) < 00,

and let

1/2
IB%_O@TWGB@(Z ,._xj>+mo> -

1<i<j<n

The operator o, = BpB verifies as a consequence Tr (Mo, N') < 0o, and therefore has
a 2-particle density matrix 022). We then define

erlo|(z) = /Rd n[ag)](x,y)dy >0 a.e.

Note that e;[g] is integrable since n[c®®] € L*(R? x R?), and that
Tr (W + roN) Y20 (W + roN)Y2) = |ler[o] || -

When Tr (N oN) is finite, the two definitions of the interaction energy given above are
equivalent for the minimization problem since

erlo] = erlo] + ron[a],

and prescribing both e;[o] and ng] is then equivalent to prescribing both €;[p] and nlg].

Regarding the potential energy, the density n|p] must have sufficient decay at the in-
finity for the entropy of a state ¢ to be bounded below. We then introduce a nonnegative
confining potential v. € Li (RY) with v, — +00 as |z| — +oo such that

vt > 0, / e @ dy < oo, (6)
Rd

and suppose that v.n|o] € LY(R%). With h. = hg + v, defined in the sense of quadratic
forms and self-adjoint on an appropriate domain, the condition (6) ensures by the
Golden-Thompson inequality that the operator e is trace class for all ¢ > 0.

Let finally V' = v + v.. The local potential energy is defined by

eplo] = Vnlgl.

Again, for the minimization problem, prescribing both Vn|[g] and n[g] is equivalent to
prescribing both vn|p] and n[g], and therefore the introduction of v. in the constraint
does not change the minimizer. The local total energy of a state o is then

elo] = klo] + eplo] + erlo]-

The energy space. For n > 2, let the symmetric n-body operator

H, Z Ax] + V Z'j> +7'0) + Z ’LU(LEz — x]-),

1<i<j<n



with for n =1,
H1 = —A+V+T0

The regularity assumptions on v_ and w imply that the n-body potential in H,,

Zv,(xj)—i— Z w(x; — x;)

1<i<j<n

is infinitesimally (—A)-form bounded as an adaptation of Kato’s theorem, see e.g. [11]
in the case d = 3. A first consequence of this is that there exists a constant v € (0,1)
independent of n, and that ry can be chosen sufficiently large, such that

n

YH, +yn < H,,  Ho=> (A +velz;)), (7)

Jj=1

in the sense of operators. Second, H,, is associated with a quadratic form closed on the
space of functions v € 35}7; such that ¢ € H'((RY)") and

/( | (vy (1) + ve(@))[W(21, - -+ 202 dy - - - day, < 00,
Rd)n

With an abuse of notation, we will also denote by H,, the self-adjoint realization with
domain D(H,,) of the quadratic form. In the same way, H; is the self-adjoint realization
of —A 4+ V + ry defined in the sense of quadratic forms.

Let H be the second quantization of H,,, that is

H=dl'(ho+V +19) + W.

It is self-adjoint with domain

DH)=C®D(hy+V)® @ D(H,),

n=2

see [1, Theorem 4.2]. The energy space that we will use in the minimization is finally
the following:
&= {Q eS: Tr (Hl/QQHl/Q) < oo}.

Note that
Tr (H'?oH'Y?) = |le[g]] 11, (8)

and that condition (7) yields
v Tr (d(he) 20 dD (he)'/?) +~ Tr (NV2o N?) < Tr (H'V2oH'?) . (9)
This implies in particular that £ C &,.

We are now in position to state our main result.



3 Main result

The entropy of a state o € S is defined by

S(0) = Tr(elog o) = Y _ pilog pi,

1€N

for {p; }ien the eigenvalues of ¢ (counted with multiplicity and forming a nonincreasing
sequence; if ¢ has a finite rank, then p; = 0 when i > N for some N). Note that S is
always well-defined in [—o0, 0] since 0 < p; < 1 as Tr(p) = 1.

The set of admissible local constraints (we will sometimes refer to these as “moments”
in the sequel) is defined by

M ={(n,u,e) € LL(RY) x (L'(RY)" x L} (RY)

such that  (n,u,e) = (nlo],ulo], elo]) for at least one g € 5}.

Above, Lt (RY) = {¢ € L*(R?) : ¢ > 0 a.e.}. In other terms, M consists of the set of
functions (n, u, e) that are the local density, current and total energy of at least one state
with finite energy. It is not difficult to construct admissible constraints, for instance by
taking moments of the Gibbs state

G_H

Tr(e 2)’

To the best of our knowledge, the characterization of M remains to be done.
For (ng, ug, ep) € M, the feasible set is then given by

A(ng, ug, €9) = {g € &: nlo] = no, ulo] = up and elp] = eo}.
The set A(ng, ug, €g) is not empty by construction since (ng, ug, €9) is admissible.

Our main result is the next theorem.

Theorem 3.1 Let (ng,up,e0) € M, with ngv, € L*(RY). Then, the minimization
problem
inf S

A(no,uo,e0)

admits a unique solution.

We expect the minimizer o* to be a local Gibbs state with Hamiltonian H*, for H* the
second quantization of some two-body interaction Hamiltonian involving the Lagrange
multipliers (which are functions here) associated with the constraints. While a formal
derivation using standard calculus of variations techniques is quite straightforward (this
is actually the formal expression given in the work of Nachtergaele and Yau), a rigorous
derivation appears to be quite difficult. It was achieved in the one-particle situation in
9, 6, 4] in various settings.

10



Outline of the proof. It will be shown in Section 4.1 that the entropy of states with
fixed total energy is bounded below, and that the entropy is lower semi-continuous on the
energy space £. The proof of the theorem therefore hinges upon showing that minimizing
sequences satisfy the constraints in the limit. Standard weak-* compactness theorems
in the space of trace class operators show that minimizing sequences converge in some
weak sense to an operator ¢* with finite energy, and the convergence is sufficiently strong
to obtain that o* is a state, i.e. that Tr(g*) = 1. Lower semi-continuity of the entropy
yields moreover

S(0*) < inf S, (10)
A(no,uo,e0)
It is not possible to identify at that stage the local moments of o*, and as a consequence
to show that ¢* belongs to the feasible set A(ng, ug, eg). The core of the proof consists
then in showing that the moments of the minimizing sequences converge in a strong
sense, allowing us to obtain that

nlo*] =no,  ulo]=wuo,  e[o’] = e, (11)

which, together with (10) and the strict convexity of .S, proves Theorem 3.1.

Our strategy to recover strong convergence follows the general method we intro-
duced in [5], with some important differences needed to handle the many-body nature
of the problem. It is based on defining minimization problems with global constraints.
Consider the following sets: for a > 0, let

Ayfa) = {oe&: Inldllp = a}, (12)
and
Agela) ={o€ & |elollp = a}. (13)
Starting from (10), we will prove the following crucial two inequalities: if
lefo Nl =0 <b=elelllr,  lnle’]llzr = a® < a = [Info]| Lt
then
inf Fz < inf Fp, inf §< inf S| (14)
Ag(a*) Ag(a) Ag,e(b*) Ag.e(b)

where Fj is the free energy at temperature 371,
Fs(o0) = B7'S(0) + Tr(H'?oH'?), o€ €.

We will prove that the minima of Fj in A,(a) and of S in A, .(b) are achieved by using
(global) Gibbs states of the form

e_Ha,/J’

ol Ta(e s’
where for (o, f) € Ry x R, H, 5 = fH+ aN.
Intuitively, (14) is only possible if b* = b, a* = a, and if the inequalities are equali-

ties. Call indeed —S the physical entropy. If we accept the heuristics that the equilib-
rium physical entropy maximizes disorder, the equilibrium state with the largest energy

11



should have the largest physical entropy, which contradicts the second inequality in (14)
if b* < b. In the same way, we expect the equilibrium state with the largest average
number of particles to lose the largest amount of energy to thermal fluctuations, and
therefore to have a lower equilibrium free energy than the equilibrium state with less
particles. This contradicts the first inequality in (14) if ¢* < a. An important part of
the proof is to make these arguments rigorous.

Once we know that |le[o*]||z: = |leollz:, and ||n[o*||z: = ||nol|r:, arguments for
nonnegative operators of the type “weak convergence plus convergence of the norms
imply strong convergence” lead to (11).

Note that it is important to treat the density and energy constraints separately. If
one were to set an optimization problem with global constraints both on the density
and the energy, one would have to study the minimal possible energy of Gibbs states of
the form g, s for a fixed average number of particles. This is not direct as this requires
to investigate the ground state of the Hamiltonian H for the interaction potential w for
both the fermionic and bosonic cases. By separating the two constraints, we circumvent
this issue and can then achieve arbitrary low energy states by simply decreasing the
temperature and the chemical potential (which is —« here).

In addition, it is necessary to treat the energy constraint first and to obtain that
lle[o*]|lzr = |leol|z1 before handling the density. This allows us to introduce the free
energy in (14), which is bounded below and admits a minimizer on A, (a). For otherwise
we would work with the problem

inf S,
Ag(a)

which does not have a solution since S is not bounded below on A4,(a).

The rest of the article is dedicated to the proof of Theorem 3.1.

4 Proof of the theorem

In Section 4.1, we show that the entropy is bounded below and lower semi-continuous
for states in the feasible set A(ng, ug, €9). Section 4.2 consists in the core of the proof
where we show that minimizing sequences converge in a strong sense. In Sections 4.3,
4.4, and 4.5, we give the proofs of some important results that we were needed in Section
4.2. Finally, an appendix collects the proofs of some technical results.

4.1 Properties of the entropy

We will use the relative entropy between two states ¢ and o, which is defined by
F(o,0) = Tr (o(log ¢ —log o)) € [0, 00].

It is set to the infinity when the kernel of ¢ is not included in the kernel of o. See
e.g. [14] for more details about the relative entropy. We recall that e %" is trace class
for any 8 > 0 by assumption (6). According to [2, Prop. 5.2.27] for the bosonic case,
and [2, Prop. 5.2.22] for the fermionic case, this implies that e #%'(h) is trace class as

12



well. These trace results are essentially the only parts in the proof where a distinction
between fermions and bosons is made. Let then
o—BdT(he)

QC - —Tr<€—ﬁdr(h5)) )

which is a state. We have the following result, which is a straightforward consequence
of the nonnegativity of the relative entropy.

Lemma 4.1 Let p € S with Tr (dT'(h.)"/?0dT'(h.)"/?) finite. Then
S(o) > —pTr (dF(hc)l/QQ dF(hc)l/z) — log Tr(e~Adl(he)y,
Proof. Let p satisfy the assumptions in the lemma. Then,
Flo: 00) = S(0) + BTr (T (he))"20(dl (h.))"?) + log Tr(e~ ")) > 0,

which proves the result. Note that there is a formal calculation that has to be justified,
ie. Tr(odl'(h.)) = Tr ((dT(he))"?0(dl(h.))"/?). When odI'(h.) is not trace class, this
is done by a regularization that we do not detail. 0O

The next result follows also directly from the properties of the relative entropy.
Lemma 4.2 Let o € S, and consider a sequence of states such that o,, converges to o

weak-x in Jy as m — 0o. Suppose moreover that there exists C' > 0 independent of m
such that

Tr (d(he)?0dD(he)'?) + Tr (dT'(h.)"? 0, dT'(h)'/?) < C.
Then
S(0) < liminf S(om)-

m—o0

Proof. Write
S(0m) = Flom 0c) — BTr ((dT(he))?0m(dT (he))?) = log Tr(e P e,

so that
S(om) = F(0m, 0c) — CB — log Tr(e Py,

According to [8, Theorem 2], the relative entropy is weakly lower semicontinuous, and
therefore

hm 1nf S(gm) 2 .F(Q, QC) — C/B J— log Tr(e_ﬂdr(hc)>

m—r0o0
> S(0) + A Tr ((dl'(he))20(dl (h))'?) — CB.
Sending [ to zero then yields the result. 0O
Remark 4.3 Under the conditions of Lemma 4.1, we have in fact that

S(o) = lim 5(0,).

Indeed, a direct adaptation of Lemma 4.4 further shows that {om tmen actually converges

strongly to o in J1, and as a consequence that the eigenvalues {pgm) }ien of om converge
to those of o, denoted {p;};en, as m — oco. Fatou’s lemma for sequences then yields

>~ —pjlogp; < limint Y~ —p(" log ",
jEN jEN
which corresponds to
S(o) > limsup S(om)-

m—r0o0
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4.2 Minimizing sequences

The starting point is that S is bounded below on A(ng, ug, €y). Indeed, estimate (9)
shows that states in A(ng, ug, €g) satisfy the assumptions of Lemma 4.1, and as a con-
sequence, using again (9) together with (8),

S(0) > =y~ Tr (H'/?gH'?) — log Tr(e ")) = —y7|eg | 11 — log Tr(e~ ")),

for all o € A(ng, ug, €9). There exists then a minimizing sequence {0, }men in A(no, uo, €o)
such that
lim S(om)= inf S

mM—00 A(no,uo,e0)

We have the following compactness result.

Lemma 4.4 Let {0y} men be a sequence in £ with
Tr (H'?0,, H'?) < C, (15)

for some C independent of m. Then, there exists o* € £ and a subsequence {0m, }jen
that converges to o* strongly in J1, and such that

Nl/QQijl/Q — NYV2NY2 weak-x in T,

j—+oo
Hl/ggijl/Q — HY?*HY?,  weak-* in Ji,

j—+oo

with

Tr (N1/2Q*N1/2) < liminf Tr (Nl/QQmj ./\/1/2) ,
Tr (H'?¢* H?) < liminf Tr (H'/?p,,, H"/?) .
Jj—00
The proof of Lemma 4.4 is classical and is given below for the reader’s convenience.
Proof. First of all, since g,, is a state, we have Tr(g,,) = 1, which, together with (15),
and the fact that the space of trace class operators is the dual of the space of compact
operators, implies that there exist o* € J; and o € J;, and a subsequence such that
om,; and H'?,, H"? converge to ¢* and o in J; weak-* as j — oo, respectively. It is
direct to identify o: let K compact in §/s, and let B = (Id + H) ', which is bounded.
Then:

lim Tr(H"?p,,, H'/*BKB) = Tr(cBKB)

J—00

= lim Tr(om, H/*BKBH'?)

Jj—o0

= Tr(o*HY?BKBHY?).

In the last line, we used that H'/?BEKBH'/? is compact. This shows that o = HY2p* H/2.
We proceed in the same way for the limit of N™/2g,, N/2.

The limits in (16) follow from the weak-* convergence and the fact that Tr(o) = || 0|| 7
when o > 0.

14



Regarding the strong convergence to ¢* in J;, we claim first that (Id + H)™!
compact. Indeed, we have

-1 _
(Id + H) @ (Idy + ho + V) ' & EB 1dy0) + Hy)

The operator ho+ v, has a compact resolvent according to [12, Theorem XIII1.47], and
so does Hf. Then, for n > 2, each of the H,, have a compact resolvent as perturbations
of H: as an application of [7, Theorem 3.4, Chapter 6 §3]. To obtain that (Id + H)™*

compact, it just remains to show that [|(Id ) + Hn)’lHﬂ(?(n)) — 0 as n — oo, see [1,
b/ So/f
Theorem 4.1]. This is a consequence of (7), that yields
1(Id g + H)™ i, @y < (L +9m)7 g

Second of all, it is not difficult to establish that the weak-* convergence of g, and
H'?0,,,, H'/? imply the weak-* convergence of (Id + H)2g,,, (Id + H)"? to (Id +
H)'/20* (Id + H)*/2. Then,

lim Tr(g,,) = Tr ((Id+H)1/2Qmj (Id+H)1/2(Id+H)*1>

j—o0
- T ((Id +H) Y205 (I1d + H)Y2(1d + H)‘1>
= Tr(o").
Finally, according to [13, Theorem 2.21, Addendum H], weak convergence in sense of
operators together with the convergence of the norm in 7; implies strong convergence in
J1. Since weak-* convergence in J; implies weak convergence in the sense of operators,

we obtain that g,,; converges strongly to ¢* in J;. In particular, ¢* is a state. This ends
the proof. 0O

We now continue the study of minimizing sequences. Since g,, is in A(ng, ug, €g) and
therefore satisfies the constraints, we have, for all m € N,

Tr (N0, N'Y2) = [In[on]llzr = lInoll s (17)
Tr (H"20,, H'?) = [le[om]ll1 = lleoll 1. (18)
According to Lemma 4.4, there exists then a subsequence (that we still denote abusively

by {0m }men) that converges in the weak-* topology of J; to a state ¢* € £. Since the
continuity result given in Lemma 4.2 shows that

S(0*) < lim S(oy) = inf S, (19)

m—00 A(no,uo,€0)

we are left to prove that o* € A(ng,ug,€p), i.e. o* verifies the local constraints. For
this, we have from Lemma 4.4,

In[o*]||lpr = Tr (M20*N'/?) < liminf Tr (/\/'1/2 /\/1/2) = ||no|| L (20)

m——+00
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and

* 1/2 /2 o 1/2 1/2

lelglz = Tr (H'/2g"HY?) < lim inf Tr (H'20,,H'?) = leo]l 2. (21)

As already mentioned in the introduction, a one-body version of Lemma 4.4 yields
directly that n[p*] = ng. It is not true in the many-body case. The issue is the following,
and is related to the identification of the 1-particle density matrices. From (17) and (18),
it is possible to show that the sequence of 1-particle density matrices 97(711) converges to
some oM strongly in Ji(h). In particular, the local density of oW is ng. The difficulty
is to identify o) with the 1-particle density matrix of o*, which is not possible at that

stage. Indeed, we have, for all ¢ € L°°(R?),

[ plenl@ptad = Ty (69)
= Tr (N1/2QmN1/2N_1dF(g0)) :

The operator N/ 71dI'(y) is bounded in g, /f, but not compact, which does not allow us
to pass to the limit above since N''/2p,, N''/2 converges only weak-* in J;. One could
replace N by H above, but while the projections of H'dI'(¢) on each &()7} are com-

pact, H™'dI'() is not compact since these projections do not tend to zero in E(%’é’;})
as n — 00.

We have then the following proposition, proved in Section 4.3:

Proposition 4.5 Assume that ||n[o*]||1 = ||nollr and that ||e[o*]||Lr = |leollzr. Then
0" € A(no, uo, €9).

Based on this last result, the main difficulty is therefore to prove that ||n[o*]||: <
Inollzr and |le[o*]]|z: < ||eo||zr is not possible. We will use for this the next lemma,
where Ay(a) and A, (a) are defined in (12) and (13).

Lemma 4.6 (i) Suppose that the problem

inf F
Agla) 7
admits a solution. Then,
inf Fg = inf inf Fjs. 22
Ag(a) g (n,u,e) € M A(n,u,e) g ( )

n € L with ||[n|l 1 =a
ue (LYY ec L},_

(i1) Suppose that the problem

inf S
Ag.e(a)
admits a solution. Then,
inf S = inf inf S.
Ag.e(a) (n,u,e) € M A(n,u,e)

eEL}’_with llellpr =a
1\d 1
u€ (LH*ne Ll
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Proof. We start with (i). Let (n,u,e) € M and ¢ € A(n,u, e) with ||n|/z: = a. Then
0 € Ay(a), and as a consequence

inf Flg < inf Fjs.
Ag(a) 6_.,4(n,u,e) g

Taking the infimum as in (22) then yields a first inequality in (22). For the reverse
inequality, denote by o a minimizer of Fj in A,(a) and let

G(n,u,e) = inf Fpg.
( ) A(n,u,e) p
By construction |n[o]||;1 = a, u[o] € (L'(R?))? and e[o] € LL(RY), and clearly
(nlo],ulo], e[o]) is admissible. Hence,
inf G(n,u,e) < G(nlol,ulo], elo]).
(n,u,e) € M

n e L}‘_With Inllzr =a
ue (LYY ec Li_

It remains to prove that

Gi(nlo], ulo], elol) = min F,

which is straightforward since

min Fg < G(nlo|,ulo],elo]) = inf Fs < F3(0) = min Fp.
min Fy < Gnlol,ulo] elo]) = | inf  Fs < Fslo) = min Fs

This proves (i). Item (ii) follows in the same manner by replacing n by e and Fj by S.
This ends the proof. D

Let now |le[o*]||r = b* and ||eg||r = b. Since o* € &, we have

inf S < S(o").
Agl,?(b*) < 5le)

Together with (19), this gives

inf S< inf S.
Ag,e(b*) A(no,uo,e0)

Assuming for the moment that S admits a minimizer on A, .(b), item (ii) of Lemma 4.6
yields

inf S< inf inf S = inf S,
Ag,e(b*) (n,u, 6) e M .A(n,u,e) que(b)
e€ L1+With llell L = lleollp1

uwe (LY, ne L}

which results in

inf S< inf S. (23)
Age(b¥) Ag,e(b)

The next result shows that there is a contradiction above if b* < b.

17



Proposition 4.7 Let a > 0. Then, the minimization problem

inf §
Ag,e(a)
admits a unique solution. Let moreover f(a) = infy, o) S. Then, f is a strictly de-
creasing continuous function on R, .

The proof of Proposition 4.7 is given in Section 4.4. Suppose that |e[o*]||z: = b* <
b = |leo||z1. Based on the previous proposition, we have f(b) < f(b*), which contradicts
(23), and we obtain therefore the equality

lele"]llzr = lleoll - (24)

It remains to prove that
Inle]ller = lnollzr- (25)
For this, let § > 0. From (19) and (24), we find

Fﬁ(g*> — B_IS(Q*) + ||6[Q*]||L1 S ﬁ_l Al 1nf )S+ ”60||L1 = 1 inf Fg. (26)

10,%0,€0 (no,uo,e0)

The next proposition is similar to Propositon 4.7 and is proved in Section 4.5.

Proposition 4.8 Let ag > 0. Then, there exists fy(ag) > 0, such that the minimization
problem

inf F

Agla)
admits a unique solution for any [ < Po(a) and any a < ag. Let moreover g(a) =
inf 4, q) F3. Then, g is a strictly decreasing continuous function on (0, a].

We apply Proposition 4.8 as follows: let ||n[o*]||,r = a* and |[ng||,r = a. We have
then from (26),
inf Fg < Fs(0*) < inf  Fjs.
.Ag(a*) B - ﬁ(g ) - A(no,uo,eo) B
In Proposition 4.8, choose ay = ||nol|z1. Since ||n[o*]||z1 < [|nol|z1, then both mini-
mization problems on A, (a) and A,(a*) admit a unique solution for 8 < By(agp). Then,
according to item (i) of Lemma 4.6,

inf [ < inf inf Fjs = inf Fjs,
Ag(a*) (n,u,e) € M A(n,u,e) Ag(a)

n e Liwith In]|z1 = |Inollp1

uwe (L) ee LY

which results in
inf Fﬁ S inf FB‘
Ag(a*) Ag(a)
But based on the previous proposition, we have g(a) < g(a*), which is a contradiction if
a* < a. We therefore obtain (25), which ends the proof of Theorem 3.1 as an application
of Proposition 4.5.
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4.3 Proof of Proposition 4.5

When ||n[o*]||zr = ||nol|zr and ||e[o*]]|z1 = ||eo||z:, we obtain from (20) and (21) that

Tr (NI/QQ*NI/Q) = lim Tr (NI/QQmN1/2)

m——+00

and

Tr (H1/2Q*H1/2) = lim Tr (H1/2gmH1/2) )
m—+00
According to [13, Theorem 2.21, Addendum H], this implies, together with the corre-
sponding weak-* convergences, that N''/2p,, N''/2 and H'/?p,,H'/? converge strongly in
Ji to NV2g*N'V/2 and HY?*H'/2.
Let now QSL) and g’(‘l) be the one-particle density matrices of o, and ¢*. We will

)

show that Q% converges to ¢f;) strongly in Ji1(h). Indeed, with the definition (3),

o) — otyllne = sup Try (o) — ofy))A)
[[A]l £(p) <1
= sup Tr ((gm — g*)A)
1Al £ <1
= sup Tr (NI/Q(Qm — Q*)NI/QIB%)
IAll £py <1

IN

INY2 0, N2 — N2 NV | 71,

which yields the result.
We prove similarly that hé/ 2@&)}1(1)/ * converges to hé/ 2gf1)h(1)/ ? strongly in J;(h). An

easy consequence of this and of the strong convergence of gﬁ,? in J1(h), is that (hg +
1d,)) /205 (ho + 1dy)Y/2 converges to (ho + Idy )"0y (ho + Idy)'/? strongly in 7y (h).
We are now in position to identify k[o*] and u[g*]. For ¢ € L>(R?), let

A= (ho+1dy) "2V - (oV)(ho + 1dy) 72,
which is bounded in £(f). We have from the definition of k[¢*],

1[om] =kl 1
= sup T (V- (©V)(2}) — 0?1)))

llellpoe <1
= H ﬁup Try, (A(ho + Idh)l/Q(Qg) — 0(1)) (ho + Idh)l/Q)
@llpee<1

< C|l(ho +1d) 208D (hg + 1dy)/* — (g + 1) g7y (ho + 1dy) 2| 73.s)-

This implies that k[g,,] converges to k[o*] strongly in L'(R?), and since k[p,,] = ko by
construction, we have k[p*] = ko. The proof that u[g*| = ug is similar.

We have therefore obtained that o* satisfies the local constraints, and therefore that
it belongs to the feasible set. This ends the proof.
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4.4 Proof of Proposition 4.7

In preparation of the proof, let, for (o, 3) € Ry x R%, H, g = fH+ aN. The operator
H, s is self-adjoint on D(H). According to (7), we have

vBdL (he) < vB(dT(he) +N) < Hap (27)

in the sense of operators. Hence, e ™4 is trace class for all (a, ) € Ry x R* since
e~7Bdl(he) §s trace class as explained in Section 4.1, and the partition function

Zog = Tr(e M)

is well-defined for all & > 0. Let then the Gibbs state
e Ha.p
Qa,ﬂ - Za,ﬁ .

Note that 9,5 commutes with A/. The associated average particle number and average
energy are defined by, respectively,

N(aa 6) = Tr(NQaﬂ)v E(a, 5) = Tr(Hgaﬁ)'

They are both well-defined for all (o, ) € Ry x R since in particular, according to (7),

— —BHy— an) —yBHS—n
Zap Tr(Noap) = 1+ Z n Trgb/f <1+ Z nTrgéy/L}(e )

n=1

w (e7PHR) = C Tr(e 7P (he)y (28)

< 1+ CZTTSW

We will use the following lemma, helpful as well in the proof of Proposition 4.8.
Lemma 4.9 (i) Z,5 € C*(RY x RY) and
N(a, 8) = —0q10g Z, g, E(a,8) = —0slog Zy . (29)

1) For all a > 0, the function RY > B +— E(a, ) is continuously strictly decreasing
_l’_
with
lim E(o,B) =0, lim E(a, f) = 400, Va > 0.

B—+o00 B—0
(i) For all B > 0, the function RY 3> o +— N(a, 8) is continuously strictly decreasing
with

al_lg_looN(Oé, p) =0, V5 >0, ,%’12% N(0, ) = 4o0.

Proof. The proof is simplest by using the spectral decomposition of H, g instead of
each of the H,, n > 2. We have already observed in the proof of Lemma 4.4 that H
has a compact resolvent, and therefore so does H, g. Let {t)}sen be a basis of §/f of
eigenvectors of H. Then (27) for o = 0 shows that ¢y € D(N). Then, since N' and H
commute, we can pick the basis {t,}sen such that

Nby = ngiby, ¢ eN,

20



for some ny > 0. The eigenvalues of H, g are as a consequence of the form g\, + any,

for {\¢}sen the eigenvalues of H. The A,’s are arranged into a nondecreasing sequence

that tends to the infinity. The zero eigenvalue is simple and associated with the vacuum

eigenvector 1 ®7°, 0, and we set A\g = ng = 0. We have as well n, > 1 and A\, > v for

¢ > 1 according to (7). Of course, the A\, and ny are different for fermions and bosons.
The partition function Z, g then reads

Zup = S e Pememe s 1
leN

It is then direct to show, using dominated convergence for series, that Z, s is continu-
ously infinitely differentiable for (o, 8) € R% x R*. The expressions in (29) follow then
easily, and as a consequence N and FE are also continuously infinitely differentiable for
(a, B) € RL x R%. In particular,

(Y e mipememe) (30 e €M) — (Yo mee”emome)”

aoaN(aa 6) = =
Z? 5

The Cauchy-Schwarz inequality then shows that 0,N(«, 5) < 0 since the equality case
is not possible as there exist some indices ¢ and ¢ for which n, # ny (this is easily seen
by remarking for instance that if n, = i < oo for all £ > 1, then |Nv| = a||¢] for all
Y € D(N), which is absurd since N is unbounded). A similar calculation shows that
0sE(a, f) < 0 for (o, B) € R% x R

The limits as o« — 400 for N and as f — +oo for E follow easily by dominated
convergence. For the limit as 8 — 0 of E, set ), such that Ay, > M for some M > 0
fixed. Since ) .., e~ Pre—ane converges to +oo as B — 0 (for otherwise the operator
e would be trace class), and since Doper,, €PN <30, = L, there exists
Bo(M) such that

S e < N7 emfhmane -y < Bo(M).

L<lpr £>Llr

Hence,

—BA\)—
M _ MZ@sze BAg—ang

1
- <F
2 T2 Ygpy, e T (o, 5);

which proves the second limit in (ii).

It remains to treat the second limit in (iii). Since the operator N is not bounded
on §p/f, We can rearrange the sequence {ny}sen into a nondecreasing sequence {ny, }jen
such that ny, — 0o as j — oo. Proceeding as in the proof of the second limit in (ii), we
then find that for all M > 0, there exist jp; and [By(M) such that

M AMY .. e g e
7 <= ZQJM < Z]EN £, _ N(O,ﬁ), VB < 50(M)-

“Bhp. “Bhp
2 EJ'ZjM € ! ZjGN € !

This proves the second limit in (iii) and ends the proof of the lemma. O

21



We proceed now to the proof of Proposition 4.7. First of all, according to Lemma
4.9 (ii), there exists, for all a > 0, a fy(a) € (0, 00) such that

E(0, fo(a)) = a. (30)

Since F(0, ) is continuously differentiable and strictly monotone, the global version of
the implicit function theorem implies that a — fy(a) is continuously differentiable. Let
now o € £ and consider the free energy

Fay)(0) = By (a)S (o) + Tr(H'?oH'/?).
For F the relative entropy introduced in Section 4.1, we find

Bo(a) Fay(a)(0) = F (0, 00.80(a)) — 108 Zo,55(a)»

and as a consequence, for any o € A, .(a),

S(0) = F(0, 00,8(a)) — 108 Zo,gy(a) — aBo(a).

Since F (0, 00,8,(a)) = 0 if and only if 0 = 00 g,(a), We obtain that g g, is the unique
minimizer of S in A, .(a). This proves the existence part of Proposition 4.7.
Regarding the monotonicity of the entropy, we have

f(a) = 5(90,50(0)> = —log Zﬂvﬁo(a) - aﬁO(“)?

which is continuously differentiable w.r.t. a since Z s and fy(a) are both C* w.r.t 3
and a, respectively. Then, thanks to Lemma 4.9 (i) and (30),

f(a) = By(a)E(0, Bo(a)) — By(a)a — Bo(a) = —Po(a) < 0.

This ends the proof.

4.5 Proof of Proposition 4.8

The proof is very similar to that of Proposition 4.7. First of all, according to Lemma
4.9 (iii), we have

N(Oé,@) S N(Qﬂ)’ V((y,ﬁ) € ]R-i- X Rj—

Note that N(0, ) is well-defined for 5 > 0 as proved in (28), and that N(«, ) is
continuous at a = 0 for all § > 0 as a direct application of monotone convergence. Pick
ag > 0. We will set 8 sufficiently small so that all a > 0 less than ag are in the range of
N(a, p) for all « sufficiently large.

Since N(0,5) — +oo as B — 0 according to Lemma 4.9 (iii), there exists By(ao)
such that

N(0,B) > ay, V3 < Bolao).

We fix from now on a > 0 such that § < fBy(ag). Then, since a — N(q, ) is strictly
decreasing, there exists oy > 0 such that

N(a, 8) < ay, Va > ay,
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and for all a € (0, agl, there exists ag(a) € [y, 00) such that

N(ao(a), B) = a. (31)

Since N (a, () is continuously differentiable and strictly monotone in «, the global version
of the implicit function theorem implies that o — «g(a) is continuously differentiable.
As in the proof of Proposition 4.7, we find that, for any o € A,(a),

BF5<Q) = ‘F(Q7 an(a)ﬁ) - lOg Zao(a),ﬁ - Oéo(a) Tr(Nl/QQN1/2>
- -F(Qa an(a),/a’) - 1Og Zozg(a),,B - Oéo(@)d,

which shows that 0,(a),s is the unique minimizer of Fjz in Ay(a).
Regarding the monotonicity of the entropy, we have

Bg(a) = BE3(0ag(a),8) = — 108 Zag(a),s — acp(a),

which is continuously differentiable w.r.t. a since Z, s and ag(a) are both C* w.r.t «
and a, respectively. Then, thanks to Lemma 4.9 (i) and (31),

B4 (a) = aj(a)N(ap(a), 8) — aay(a) — agla) = —ap(a) < 0.

This ends the proof.

5 Appendix

5.1 Justification of Definition 2.2
The fact that oV is well-defined is established as follows. Set

+oo +oo
B=0& @B(n) =06 @n_lA(H),
n=1 n=1

where A is the second quantization of A and A, its component on the n-th sector.
Then, we have the estimate

1Bl ) < I1All2w)- (32)
Indeed, for ¢ = {1 },cn € Sv/5 and n > 1, we have

1
B, "™ = (B, = — A);p™
" = (BY)m) n(;mw :
for (A); the operator A acting on the variable x;. This yields directly
1By 8™ [l < 1Al 2y 1™ |-

Since Bl z@,,,) = suPpen [ B [l this gives (32).
For p € 8y, consider now the linear map

F:AeL(h)— F(A) =Tr(Ap).
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It is well-defined since, using the above notation for B,
Tr(Ao)| = |Tr (BN 2o NY2) | < CJlAllce
where we used the fact that
Tr (WV2pN?) = C < oo,

since p € Sg. When A is compact, F' is therefore a linear continuous map on the space
of compact operators on h. By duality, we can then conclude that there exists a unique
U e J1(h) such that
F(A) = Tr, (Ag(l)) :

for all compact operators A on L£(f). The case A bounded follows finally by approxi-
mation.

The fact that o) is nonnegative is established as follows. Let ¢ € b with ¢y = 1,
and consider the rank one projector P = |¢)(p|. Then

(0, o)y = Try (PoM) = Tr (dI'(P)o).

Denoting by {p,}pen and {1, },en the (nonnegative) eigenvalues and eigenfunctions of
0 € &, the last term is equal to

D22 e W Pyul?), = >0 D D e (Pa” Pydy), =
peN neN* j=1 Lo el =1

Above P; is the operator P acting on z;, and we used the fact that P(Qj) = P(j. This
yields the positivity and ends the justification of Definition 2.2.

5.2 Proof of Lemma 2.4

Denote by {p,}pen and {1, },en the eigenvalues and eigenfunctions of p € &. A direct
calculation shows first that

Tr ( 1/2 1/2) Z Z o)

peEN neN

L (ho) i

where wé,") is the component of 1, on the n-th sector and

1/2
174)2 o (Z Az]) )

Since hg is not bounded, we proceed by regularization in order to use (2) for the
definition of the one-body density matrix. For ¢ > 0, set then h, = ho(Idy + gho) ™t
L(h). According to (2), we have

Try, (hY20WhY?) = Try (heo™) = Tr (dT'(he.)o) . (33)
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The last term is equal to

SN oo llAGe| (34)

peN neN*

with
n 1/2
AL, = (Z ~A,,(Idy —5ij)_1) .
j=1

For ) € Sl(f;}, we find by a Fourier transform

n g2 \1/2 ~
||Afn)¢||%n) = (2m)™ f(Rd)n <2j:1 J?ULj‘z) (k- ka)|Pdky - - - dkg (35)
< [T (o) oy 17

Hence,
Tr (h;/z oM h;/Q) <Tr <H(1)/2 QH(l)ﬂ) ’

and there exists therefore o € J;(h) and a subsequence such that h;e/ 29(1)h;l/ 2 L ain

Ji(h) weak-x as £ — oo with
Try (o) < Tr (Hé/QQHém) :

We now identify a with hé/ 2g(1)h(1)/ ’. Let K be a compact operator on h. Then,

Try, ((Idy + ho) " K (Idy + ho) "' h2?oMWhL/?) = Ty (K.0Y),

with
K. = hY2(1dy + ho) " K (Idy, + ho) 'R/,

As € — 0, the operator K. converges strongly to h(l)/Q(IdgJ + ho) 'K (Idy + ho)*lh(l)/2 in
L(h). As a consequence

Try ((Idg + ho) 'K (Idy + ho) ')
= Tr, <Kh(1)/2(1dh + ho) " o (Idy + ho) "y 2) ,

which allows us to identify a with h(l]/ 2g(1)hé/ ?. The relation (4) is obtained by passing
to the limit in (33): in the Lh.s, we use the fact that hé/QQ(l)h(l)/2 € Ji(h), and in the

r.h.s., we use (34), (35), and monotone convergence. This ends the proof.
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