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Precoding and Scheduling for AoI Minimization
in MIMO Broadcast Channels
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Abstract— In this paper, we consider a status updating system
where updates are generated at a constant rate at K sources
and sent to the corresponding recipients through a noise-free
broadcast channel. We assume that perfect channel state informa-
tion (CSI) is available at the transmitter before each transmission,
and the transmitter is able to utilize the CSI to precode the
updates. Our object is to design optimal precoding schemes to
minimize the summed average age of information (AoI) at the
recipients. Under various assumptions on the size of each update
B, the number of transmit antennas M , and the number of
receive antennas N at each user, this paper identifies the cor-
responding age-optimal precoding and transmission scheduling
strategies. Specifically, for the case when N = 1, a round-robin
based updating scheme is shown to be optimal. For the two-user
systems with N > B or M /∈ [N : 2N ], framed updating
schemes are proven to be optimal. For other cases in the two-
user systems, a framed alternating updating scheme is proven to
be 2-optimal.

Index Terms— Age of information (AoI), MIMO broadcast
channel, precoding, scheduling.

I. INTRODUCTION

MOTIVATED by a variety of network applications requir-
ing timely information, the notion of Age of Informa-

tion (AoI) is introduced recently [2]. AoI characterizes the
freshness of information from the destination’s perspective.
Specifically, at time t, the AoI is defined as the time that has
elasped since the latest received update was generated.

A great amount of work focuses on AoI analysis for
different queueing models, in which updates are generated
randomly at the source and transmitted to the destination
with a random “service time” through a noiseless channel
based on the queueing management model. For single-server
systems, the correspondign AoI has been analyzed in the
single-source single-server queues [2], the M/M/1 Last-
Come First-Served (LCFS) queue with preemption in ser-
vice [3], the M/M/1 queues with multiple sources [4]–[6],
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the M/G/1 queues [7]–[9], the G/G/1 queues [10], [11], the
LCFS queue with gamma-distributed service time and Poisson
update symbol arrivals [12], etc. As for the multiple-server
queue, the AoI analysis has been studied in [13]–[16]. For
multi-hop networks, the optimality properties of a preemptive
Last Generated First Served (LGFS) service discipline are
established in [17], and explicit age distributions based on a
stochastic hybrid system approach are derived in [18]. For
LCFS queue with preemptive service and G/G/∞ queue,
a heavy tailed service time distribution resulting in the worst
case symbol delay or variance of symbol delay has been shown
to minimize the AoI in [19]. With the knowledge of the server
state, the AoI optimization has been studied in single-user
systems [20]–[22]. It is shown in [20] that the zero-wait policy
does not always minimize the AoI, while reference [21] shows
that the age-optimal policy has a threshold structure.

In systems where specific communication channels instead
of abstract “servers” are considered, AoI optimization has
also been extensively studied in [23]–[27]. The minimum AoI
scheduling problem with interfering links is studied in [23].
The AoI over multiple-access channels has been analyzed for
both scheduled access with feedback and slotted ALOHA-like
random access mechanisms [24]. Reference [25] investigates
the minimization of the average AoI in status update systems
with packet based transmissions over fading channels. The
optimal achievable average AoI over an erasure channel has
been studied in [26] for the cases when the source and channel-
input alphabets have equal or different sizes. The optimal error
toleration policy for AoI minimization during transmission
of an update in an erasure channel with feedback has been
investigated in [27].

This work investigates broadcast channels similar to those
studied in [28]–[32]. Reference [28] studies the expected
weighted sum AoI minimization problem of the single-hop
broadcast network with minimum throughput constraints.
It considers a system where the updates for users are generated
periodically, and the transmission between the transmitter
and each user can be erased with a constant probability.
It shows that in a symmetric network, greedily updating the
user with the highest instantaneous AoI is optimal. For general
setups, it develops low-complexity scheduling policies with
performance guarantees. In [29], it considers stochastic update
arrivals while assuming no-buffer transmitter and reliable links
between the transmitter and the users. It derives the Whittle’s
index in a closed-form and proposes a scheduling algorithm
based on it. Reference [30] extends results in [28], [29]
by jointly considering both unreliable links and stochastic
update arrivals, and examines Whittle’s index based scheduling
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policies. A common assumption in [28]–[30] is that only one
user can be updated each time. Thus, the “broadcast” nature
of wireless medium is not really exploited in those works.

Recently, a few works have taken some initial steps to
explore the benefit of broadcasting on information freshness by
relaxing the assumption that only one user can be updated each
time [31], [32]. In [31], it considers a two-user broadcast sym-
bol erasure channel with feedback, where a transmitted update
can be successfully received by each of the users with certain
probability. Based the instantaneous symbol delivery feedback,
the transmitter is able to adaptively code the updates and
improve the AoI performance of the corresponding uncoded
policies. In [32], we consider a two-user broadcast symbol era-
sure channel, and propose an adaptive coding policy. We show
that compared with a greedy transmission policy without
coding, the AoI at the weak user can be improved by orders
of magnitude without affecting that at the strong user. Both
works in [31], [32] show the benefit of coding on AoI in those
broadcast channels.

In this work, we consider a status monitoring system with
K sources, each generating updates intended for one of the
K recipients. The updates are transmitted to the monitors
through a broadcast channel. Different from the models studied
in existing works, we consider block fading over the links
between the transmitter and receivers, each receiver equipped
with N antennas. Therefore, all receivers are able to receive an
attenuated version of the transmitted signal. Then, under the
assumption that the noise level is negligible in the channel, and
the instantaneous channel state information (CSI) is available
to the transmitter at the beginning of each time slot, our
objective is to investigate the optimal coding and transmission
scheduling schemes for the minimization of the summed time-
average AoI over the receivers.

Our main contributions are summarized as follows.
First, we investigate a novel MIMO broadcast setting

where optimizing AoI through precoding and transmission
scheduling is the focal point. While precoding strategies for
throughput optimization for such channel has been investigated
extensively in the literature [33]–[35], maximizing information
freshness is a very different aspect and requires unconventional
treatment. On the other hand, existing study on AoI in broad-
cast channels rarely considers the impact of multiplexing gain
on information freshness. The problem studied in this work
bridges the gap between existing studies on MIMO broadcast
channel and AoI, rendering novel precoding and transmission
scheduling solutions. Second, we explicitly identify the opti-
mal updating strategies for the MIMO broadcast channel under
different setups. Our result indicates that the size of updates
plays a critical role in the design of the optimal updating
schemes: When updates are of size one, the optimal schemes
exhibit a round-robin structure. When updates are of size B,
B ≥ 2, round-robin updating may not be optimal. Rather,
the transmitter may waste some transmission opportunities
in order to deliver fresher updates. This is in contrast to
conventional throughput-optimal transmission schemes in the
literature. For the two-user case, we show that framed updating
schemes are optimal.

Fig. 1. System model.

Finally, the techniques we develop to show the optimality of
the proposed updating schemes are novel. Due to combinator-
ial nature of the scheduling problem, establishing the optimal-
ity of an updating scheme is not straightforward. Toward that,
we strive to obtain lower bounds that match with the summed
long-term average AoI achieved under the proposed schemes.
For the case when each user is equipped with one receiving
antenna, we focus on consecutive time frames consisting of
B time slots and identify a lower bound on the summed AoI
over each frame based on a newly defined notion of Degree
of Freedom (DoF). Such DoF characterizes the transmission
and decoding capabilities of the system and determines the
minimum possible AoI of the users. For the two-user case,
we first investigate an updating scheme that always update
users in an alternating fashion for the timely delivery of each
update to the intended user. Such alternating updating schemes
naturally partition the time axis into concatenating segments
with different updating patterns. We then examine the updating
patterns on those segments individually and obtain a lower
bound on the corresponding AoI. Finally, we show that the
lower bound on the summed long-term average AoI for the
class of alternating policies remains valid for any policy.
We believe those techniques are new in the study of AoI, and
may be applicable for other problems in the area as well.

Notation: Throughout the paper, we use boldface lower case
to indicate vectors and boldface upper case to denote matrices.
N denotes natural numbers, Z≥n represents integers starting
from n, and Z+ represents integers starting from zero. Besides,
we use [m : n] to denote the subset of integers ranging from
m to n.

II. PROBLEM FORMULATION

Consider a status updating system where there are K
independent sources intended for K users. At the beginning of
each time slot, an update of B symbols are generated at each
source. The symbols are transmitted to the users through a
MIMO broadcast channel, as illustrated in Fig. 1. We assume
the transmitter is equipped with M transmitting antennas, and
each receiver is equipped with N receiving antennas. Each
user tracks the status of the source of interest based on the
symbols it receives. We use (K, M, N, B) to denote the status
monitoring system with K source-user pairs, M transmitting
antennas, N antennas at each user, and update size B.
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We refer the K updates generated at time slot t as Wt :=
(w(1)

t , . . . ,w(K)
t )T where w(k)

t := (w(k)
t [1], . . . , w(k)

t [B])T is
the update intended for user k. We assume w

(k)
t [b] is drawn

from a finite field Fq, and use Wt[:, b] to denote the b-th
column of Wt. We assume at each time slot, the transmitter
is able to transmit a symbol on each of its antennas and
it takes one time slot to deliver the symbol. Let xt :=
(xt[1], . . . , xt[M ])T be the symbols transmitted at time slot n.
Throughout this paper, we restrict to linear precoding schemes
and assume xt is a linear function of the previously generated
symbols of updates {Wτ}t

τ=1.
Let H(k)

t ∈ (Fq)N×M , k ∈ [1 : K], be the channel
state between the transmitter and user k, and denote Ht :=
((H(1)

t )T, . . . , (H(K)
t )T)T ∈ (Fq)KN×M . The channel output

at user k, denoted as y(k)
t := (y(k)

t [1], . . . , y(k)
t [N ])T, is mod-

eled as

y(k)
t = H(k)

t xt, (1)

where we assume the additive noise in the channel is negligible
compared with the transmit signal and leave it out for ease of
exposition.

We assume any submatrix of Ht is full rank almost surely,
and Ht is available to the transmitter and the users at the
beginning of each time slot. Then, the transmitter is able to
design xt based on the instantaneous channel state information
(CSI) Ht, the symbols in {Wτ}t

τ=1 and all previously trans-
mitted symbols {xτ}t−1

τ=1. Once yt is received, each individual
user k will try to recover updates from the corresponding
source k based on received symbols {y(k)

τ }t
τ=1 and historical

CSI {H(k)
τ }t

τ=1.
We adopt the metric age of information (AoI) to measure

the freshness of the information at the users. Formally, the AoI
at user k is the duration since the decoded freshest update was
generated at the associated source k. Once an intended update
is decoded at user k, its AoI is reset to the age of the update
if it is fresher. If multiple updates from source k are decoded
at the same time, the AoI is reset to the age of the freshest
one. Let δ

(k)
t be the AoI of the k-th user at the end of time

slot n. Then, the average AoI of user k is defined as

Δ(k) = lim sup
T→∞

1
T

E

[
T∑

t=1

δ
(k)
t

]
, (2)

and the summed average AoI of K users is defined as Δ =∑K
k=1 Δ(k). Our objective is to obtain an optimal precoding

policy to determine {xt}t, such that the summed average AoI
Δ is minimized.

III. MAIN RESULTS

Due to the combinatorial nature of the precoding and
scheduling schemes in the MIMO broadcast channel, searching
for the age-optimal updating policy is extremely complicated
in general. In order to gain some insights to this general
problem, in this paper, we focus on two special scenarios.
In the first scenario, we restrict to the case when each user
is equipped with one receiving antenna, while for the second
scenario, we focus on systems with two users only. Our main
results are summarized as follows.

Theorem 1: For (K, M, 1, B) systems, the following results
hold:
(i) If K ≤ M , the minimum summed average AoI equals

1
2K(3B − 1);

(ii) If K = pM + q, where p ∈ N and q ∈ [0 : M − 1],
the minimum summed average AoI equals 1

2pM(pB +
2B − 1) + 1

2q(2pB + 3B − 1).
Theorem 2: For (2, M, N, B) systems, the following results

hold:
(i) If N ≥ B and M

B ≥ 2, the minimum summed average
AoI equals 2;

(ii) If N ≥ B and 1 ≤ M
B < 2, the minimum summed

average AoI equals 3;
(iii) If N ≥ M , 0 < M

B < 1, let i = � B
M � − 1 and

j = � 1
B/M−i 	. Then, j

ij+1 ≤ M
B < j+1

(j+1)i+1 , and the
minimum summed average AoI equals 4i + 1 + 2i+1

ij+1 if
j ≥ 2, and equals 4i + 3 if j = 1.

(iv) If N ≤ M
2 , 0 < N

B < 1, let i = �B
N � − 1 and

j = � 1
B/N−i	. Then, j

ij+1 ≤ N
B < j+1

(j+1)i+1 , and the
minimum summed average AoI equals 3i + 1 + i+1

ij+1 .
We note that Theorem 2 explicitly characterizes the optimal

AoI in all (2, M, N, B) systems except for the case when
N < B and N < M < 2N . Although explicit identification
of the optimal AoI for this case is extremely challenging
and intractable, we are able to provide a lower bound on the
summed average AoI, and obtain performance guarantee for a
transmission policy as follows.

Theorem 3: For (2, M, N, B) systems, if B = iN + j,
i ∈ N, j = B (mod N), and N < M < 2N , the minimum
summed average AoI is lower bounded by ΔLB = 2i + � 2j

N �.
Moreover, there exists a 2-optimal policy under which the
summed average AoI is upper bounded by 2ΔLB.

In the following, we first present updating schemes in
Section IV and Section V that achieve the summed time-
average AoI in Theorem 1 and Theorem 2, and then provide
the matching lower bounds in Section VI and Section VII.
In Section VIII, for (2, M, N, B) systems with N < B and
N < M < 2N , we investigate the lower bound and propose
a 2-optimal policy. We conclude the paper in Section IX and
defer some of the proofs to the Appendix.

IV. ACHIEVABLE SCHEMES FOR THEOREM 1

In this section, we explicitly describe the optimal updating
schemes that render the minimum summed average AoI stated
in Theorem 1.

A. Achievable Scheme for the (K, M, 1, B) System with
M ≥ K

First, we consider the case when N = 1, M ≥ K . This
corresponds to the case when each user is equipped with a
single antenna, and the number of antennas at the transmitter
is greater than the number of users. Since N = 1, each user
can receive at most one linear combination of the transmitted
symbols, implying that a B-symbol update takes at least B
time slots to deliver. On the other hand, since M ≥ K , the
transmitter is able to send K independent symbols in each
time slot. This motivates us to propose a simple synchronized
updating scheme as follows:
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Fig. 2. Synchronized updating scheme for the (3, 4, 1, 2) system, where
updates W1,W3, . . . are delivered at the end of time slots 2, 4, . . ..

Definition 1 (Synchronized Updating): Partition the time
axis into frames of length B starting at the beginning of time
slot 1. Then, at the beginning of time slot t = mB + b,
m ∈ Z+, b ∈ [1 : B], the transmitter sends

xt =
(
H̃−1

t WmB+1[:, b]
0(M−K)×1

)
, (3)

where H̃t ∈ (Fq)K×K is Ht knocked off the last M − K
columns.

We note that under the synchronized updating scheme, the
b-th symbol of updates generated at the beginning of a time
frame, i.e., {W(k)

mB+1}k, is transmitted in the b-th time slot
in the corresponding time frame simultaneously. By precoding
the symbols according to (3), each user is able to cancel off
the interference from other unintended updates and decode the
designated update at the end of the time frame, i.e., at the end
of time slot (m+1)B. The synchronized updating scheme for
the (3, 4, 1, 2) system is shown in Fig. 2.

Tracking the AoI of each user δ
(k)
t in time frame consisting

of time slots [mB + 1 : (m + 1)B], m ∈ N, we note that
for general B > 1, it increases monotonically from B + 1 to
2B − 1 until being reset to B at the end of the time frame.
When B = 1, the AoI resets to 1 at the end of each time slot.
Denote δ

(k)
m:n =

∑n
t=m δ

(k)
t . Assume the initial AoI at time

0 is bounded for every user. Then,

Δ = lim
T→∞

K

TB

TB∑
t=1

δ
(k)
t

= lim
T→∞

K

TB

(
δ
(k)
1:B +

T−1∑
m=1

δ
(k)
mB+1:(m+1)B

)

=
1
2
K(3B − 1). (4)

We note that the synchronized updating scheme is not the only
updating scheme that achieves the AoI depicted in Theorem 1
for the M ≥ K case. Actually, instead of starting the transmis-
sion of new updates to all users synchronously, the transmitter
can continuously update the users in an asynchronous way by
introducing an offset nk ∈ [0 : B − 1] to the time when
the transmitter starts transmitting a new update to user k.
Such an offset will only affect the updating time points of
a user without changing the AoI evolution pattern between
two updates. Thus, the long-term average AoI stays the same.

Fig. 3. Round-robin synchronized updating for the (3, 2, 1, 2) system.

B. Achievable Scheme for the (K, M, 1, B) System with
M < K

Next, we consider the case when N = 1, M < K .
Compared with the scenario discussed in Sec. IV-A, we note
that the number of transmitting antennas is now less than
the number of users, which implies that not all users can be
updated in a synchronized fashion. How to schedule the updat-
ing of each user to minimize the total AoI thus becomes non-
trivial. We propose the following intuitive updating scheme
and prove it is optimal afterwards.

Definition 2 (Round-Robin Synchronized Updating): Parti-
tion the time axis into frames of length B starting at the
beginning of time slot 1. Then, the transmitter selects M users
to update in each frame in a round-robin fashion. Specifically,
in the frame consisting of time slots [mB + 1 : (m + 1)B],
m ∈ Z+, the selected users to update are the M users
(mM + i − 1) (mod K) + 1, i = [1 : M ]. At the beginning
of time slot t = mB + b, b ∈ [1 : B], the transmitter
sends xt = H̃−1

t W̃mB+1[:, b], where H̃t ∈ (Fq)M×M and
W̃mB+1 ∈ (Fq)M×1 are Ht and WmB+1 knocked off the
rows associated with the unselected K−M users, respectively.

Under the precoding and transmission scheme, the selected
M users are able to decode the intended updates at the end of
each time frame. The transmission strategy for the (3, 2, 1, 2)
system is given in Fig. 3 as an example.

In the following, we explicitly identify the summed time-
average AoI under the round-robin updating scheme.

Lemma 1: Let K = pM + q, where q = K (mod M). Let
k be the index of the i-th ranked user in the frame consisting
of time slots [mB + 1 : (m + 1)B], m ∈ Z+, i.e., k :=
(mM + i − 1) (mod K) + 1. Denote Li as the frame index
difference between the current frame and the next frame during
which user k will be updated. Then, Li = p if i + q ≤ M ,
and Li = p + 1 if i + q > M . Besides, user k will be the
(i + q)-th ranked user in the frame starting at (m+Li)B +1,
where x := (x − 1) (mod M) + 1.

Proof: Under the round-robin updating policy, all the
rest K − 1 users should be updated exactly once between
two consecutive updates of user k. Therefore, we must have
LiM < i + K ≤ (Li + 1)M . Since K = pM + q, the
inequality becomes LiM < i + pM + q ≤ (Li + 1)M .
Therefore, if i + q ≤ M , we must have Li = p; Otherwise,
Li = p + 1. Meanwhile, we note that the ranking of user
k will be (i + K − 1) (mod M) + 1 in frame m + Li,
i.e., i + q.
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We point out that under the round-robin synchronized
updating scheme, each update takes exactly B time slots to
transmit. Thus, the AoI at user k after each update is B, and
it monotonically increases until the next updating time point.

Lemma 2: Let d := gcd(q, M), k := (mM + i − 1)
(mod K) + 1. Then, after the frame starting at mB + 1,
the ranking of user k in the next M/d time frames during
which user k is updated must be a permutation of Ri :={
i + d, i + 2d, . . . , i + M

d d
}

.

Proof: First, we note that i + M
d d = i. Thus, for any

� ∈ N, i + �d must belong to Ri.
Next, for any � ∈ N, since d = gcd(q, M), �q

d ∈ N, we must

have i + �q = i + �q
d d. Thus, i + �q belong to Ri, too.

Besides, for any 1 ≤ �1 < �2 ≤ M/d, �1, �2 ∈ N, we can

show that i + �1q 
= i + �2q through contradiction as follows:
if i + �1q = i + �2q, we must have (�2 − �1)q be an integer
multiple of M , i.e., (�2 − �1)q/d must be an integer multiple
of M/d. Since d = gcd(q, M), it implies �2 − �1 must
be an integer multiple of M/d, which contradicts with the
assumption that 1 ≤ �1 < �2 ≤ M/d.

Therefore, for i + �q, � = 1, . . . , M/d, they must equal
M/d different values, which implies that the ranking of user
k in M/d consecutive updating frames must be a permutation
of Ri.

Remark 1: We note that for two users k1, k2, k1 
= k2,
if k̄1 = k̄2, they share the same set of rankings when updated.
In total, there exist M different sets of rankings {Ri}M

i=1.
Consider K/d consecutive frames. Since M users are

updated in each frame, and the updating is performed in a
round-robin fashion, each user is updated exactly M/d times.
Therefore, the AoI evolution is periodic every K/d frames
after the first update for each user. The long-term average AoI
of any user is thus equal to the average AoI during any K/d
consecutive frames after its first update.

Consider the AoI evolution of user k after its first update.
We note that under the round-robin synchronized updating
scheme, the ranking of user k when it is updated for the
first time is (k − 1) (mod M) + 1, i.e., k. Consider the K/d
consecutive frames starting at time t = K

d B + 1. According
to Lemma 2, we have

Δ(k) =
d

KB

2K
d B∑

t= K
d B+1

δ
(k)
t =

d

KB

∑
j∈Rk

f(Lj), (5)

where f(Lj) := 1
2 [B + B(1 + Lj) − 1]BLj is the total AoI

experienced by user i between two consecutive updates.
Thus,

Δ =
K∑

k=1

Δ(k) =
d

KB

K∑
k=1

∑
j∈Rk

f(Lj). (6)

We note that {Rk̄}K
k=1 actually corresponds to the rankings

of the K users during any consecutive K
d frames when they

are updated. Since there are always M users selected in each
frame, {Rk̄}K

k=1 must contain M different elements from 1 to
M , and each element appears exactly K

d times. Applying this

observation to Eqn. (6), we have

Δ =
d

KB

K∑
k=1

∑
j∈Rk

f(Lj) =
d

KB

M∑
i=1

K

d
f(Li) (7)

=
1
B

[(M − q)f(p) + qf(p + 1)] (8)

=
Mp

2
(Bp + 2B − 1) +

q

2
(2Bp + 3B − 1). (9)

V. ACHIEVABLE SCHEMES FOR THEOREM 2

In this section, we investigate achievable schemes matching
the minimum summed average AoI in Theorem 2. For those
cases, we first focus on the (2, M, B, B), (2, M, M, B) and
(2, 2N, N, B) systems, respectively, and then show that the
corresponding schemes can be applied to systems with general
parameter setups.

A. Achievable Scheme for (2, M, B, B) Systems with
M/B ≥ 2

Since M/B ≥ 2, the transmitter is able to send at least
2B linear combinations of update symbols in each time slot.
Therefore, at each time slot t, the transmitter chooses to
transmit all 2B symbols of the newly generated updates w(1)

t

and w(2)
t . The precoding procedure is as follows: We knock

off the last M − 2B columns of H(1)
t ,H(2)

t ∈ (Fq)B×M and
let the remaining matrices be H̃(1)

t , H̃(2)
t ∈ (Fq)B×2B . Denote

H̃t := ((H̃(1)
t )T, (H̃(2)

t )T)T ∈ (Fq)2B×2B . At the beginning
of time slot t, the transmitter selects

xt =

⎛
⎜⎝H̃−1

t

(
w(1)

t

w(2)
t

)

0(M−2B)×1

⎞
⎟⎠ . (10)

Both users are able decode the intended update at the end
of each time slot t, resetting the AoI to 1. Thus, the summed
average AoI at the end of each time slot is 2.

B. Achievable Scheme for (2, M, B, B) Systems with
1 ≤ M/B < 2

Next, we consider the scenario when 1 ≤ M/B < 2. Since
M < 2B, the two newly generated updates cannot be delivered
in the same time slot simultaneously. On the other hand, since
M ≥ B, it indicates that at least one update can be delivered
in each time slot. Thus, the question becomes whether the
transmitter should utilize the remaining transmission capability
to transmit another update partially. It turns out that a scheme
that updates the two users alternately, one in each time slot,
is optimal.

Specifically, at time slot t, the transmitter sends

xt =
(

(H̃(k)
t )−1w(k)

t

0(M−B)×1

)
, (11)

where k = 1 if t is odd, and k = 2 if t is even, and H̃t ∈
(Fq)B×B is H(k)

t knocked off the last M − B columns.
Then, at the end of time slot t, the transmitted update is

decoded at the corresponding user. Since the AoI of each user
resets to 1 every two time slots, the summed time-average
AoI is 3.
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Fig. 4. Framed alternating updating scheme for the (2, 7, 12, 12) system.
Since M

B
= 7

12
∈ [ 1

2
, 2
3
), we have i = 1, j = 1, and the frame length is 2.

Although the transmitter is able to deliver 7 linearly independent symbols in
each time slot, it chooses to deliver 5 instead of 7 symbols in the last time
slot of each frame.

C. Achievable Scheme for (2, M, M, B) Systems with
j

ij+1 ≤ M
B < j+1

(j+1)i+1 , i, j ∈ N

Consider the case when M
B < 1. We partition the range

(0, 1) into intervals in the form of [ j
ij+1 , j+1

(j+1)i+1 ) for i =
� B

M � − 1 and j = � 1
B/M−i 	, and construct an achievable

scheme for each possible interval that M
B may lie in.

Definition 3 (Framed Alternating Updating): Partition the
time axis into frames of length ij + 1 starting at time slot
1. Then, the transmitter exhausts its transmission capability
to update the two users alternatively until the end of the
frame. Specifically, in the frame starting at m(ij + 1) + 1,
let tn := m(ij + 1) + ni + 1, n ∈ [0 : j − 1], i.e., the
time slot during which a new update will be transmitted, and
kn := (mj+n) (mod 2)+1, i.e., the user that the new update
is intended to. Then, when t = tn, n ∈ [1 : j − 1],

xt = H̃−1
t

(
w(kn−1)

tn−1
[niM − (n − 1)B + 1 : B]

w(kn)
tn

[1 : (ni + 1)M − nB]

)
, (12)

where H̃t ∈ (Fq)M×M is the channel matrix between the M
transmitting antennas and subsets of antennas at users kn−1

and kn, respectively. When t = tn + l, n ∈ [0 : j − 1],
l ∈ [1 : i−1], and t = t0, xt = H̃−1

t w(kn)
tn

[(ni+l)M−nB+1 :
(ni + l + 1)M − nB].

An example of the framed alternating updating policy for
the (2, 7, 12, 12) system is shown in Fig. 4.

Next, we track the AoI evolution under the framed alternat-
ing updating scheme. First, we note that under the proposed
scheme, in each frame, the transmitter sends M symbols in
each time slot until j updates are delivered to the two users
alternately. Besides, since nB

M ∈ [(i + 1
j+1 )n, (i + 1

j )n), when
n ∈ [1 : j], the n-th updating time in the frame starting at
time slot (ij + 1)m + 1 must be tn = (ij + 1)m + ni + 1.
Moreover, since nB < M(i + 1)n, there must be some
transmission capability left after delivering the update in time
slot tn for n < j, which will be used to transmit a new
one. Therefore, once the update is delivered at time tn+1 =
(ij + 1)m + i(n + 1) + 1, the corresponding AoI is reset to
i + 1.

We track the AoI of both users under the updating scheme,
and have the following observations.

1) j is even. For this case, the AoI evolution is periodic with
period ij +1. Within each period, δ

(1)
t begins with 2i+2 and

resets to i + 1 when t = t1, . . . , t(j−2)/2 and monotonically

increases in between; while δ
(2)
t begins with i + 2 and resets

to i + 1 when t = t2, . . . , tj/2 and monotonically increases
in between. The summed long-term average AoI equals the
summed AoI over any frame after the first one. Therefore,

Δ(1) =
1

ij + 1

(
t1−t0∑
�=0

(2i + 1 + �)

+
(

j

2
− 1
) 2i∑

�=1

(i + �) +
i∑

�=1

(i + �)

)
(13)

=
1
2

(
4i + 1 +

2i + 1
ij + 1

)
. (14)

Similarly, we can obtain Δ(2), which equals Δ(1). Combining
them together, we have Δ = 4i + 1 + 2i+1

ij+1 .
2) j is odd. For this case, under the framed alternating

updating policy, one user will be updated j−1
2 times, while

the other one will be updated j+1
2 times within each frame.

Thus, the first user to update in next frame will be switched
correspondingly. The AoI evolution is periodic with period
2(ij +1). Following similar analysis as for the previous case,
we can show that Δ = 4i + 1 + 2i+1

ij+1 if j ≥ 3.
If j = 1,

Δ(1) = Δ(2) =
1

2(i + 1)

2i+1∑
�=0

(i + 1 + �) =
4i + 3

2
. (15)

Thus, Δ = 4i + 3 if j = 1.

D. Achievable Scheme for (2, 2N, N, B) Systems with
j

ij+1 ≤ N
B < j+1

(j+1)i+1 , i, j ∈ N

Finally, we consider the case when N
B < 1 for (2, 2N, N, B)

Systems. For N
B ∈ [ j

ij+1 , j+1
(j+1)i+1 ), an achievable scheme can

be constructed similar to that in Section V-C as follows.
Definition 4 (Framed Synchronous Updating): Partition the

time axis into frames of length ij + 1 starting at time slot 1.
Then, the transmitter exhausts its transmission capability to
update the two users simultaneously until the end of the frame.
Specifically, in the frame starting at m(ij + 1) + 1, let tn :=
m(ij + 1) + ni + 1, n ∈ [0 : j − 1], i.e., the time slot during
which a new update will be transmitted. Then, when t = tn,
n ∈ [1 : j − 1],

xt = H̃−1
t

⎛
⎜⎜⎜⎝

w(1)
tn−1

[niN − (n − 1)B + 1 : B]
w(1)

tn−1
[1 : (ni + 1)N − nB]

w(2)
tn

[niN − (n − 1)B + 1 : B]
w(2)

tn
[1 : (ni + 1)N − nB]

⎞
⎟⎟⎟⎠ , (16)

where H̃t ∈ (Fq)2N×2N is the channel matrix between the M
transmitting antennas and subsets of antennas at users kn−1

and kn, respectively. When t = tn + l, n ∈ [0 : j − 1],
l ∈ [1 : i − 1], and t = t0,

xt =H̃−1
t

(
w(1)

tn
[(ni + l)N−nB + 1 : (ni + l + 1)N−nB]

w(2)
tn

[(ni + l)N−nB + 1 : (ni + l + 1)N−nB]

)
.

(17)
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Fig. 5. Framed synchronous updating scheme for the (2, 14, 7, 12) system.
Since N

B
= 7

12
∈ [ 1

2
, 2

3
), we have i = 1, j = 1, and the frame length is 2.

Although the transmitter is able to deliver 7 linearly independent symbols in
each time slot, it chooses to deliver 5 instead of 7 symbols in the last time
slot of each frame.

An example of the framed synchronous updating policy for
the (2, 14, 7, 12) system is shown in Fig. 5.

Different from the framed alternating updating scheme in
Section V-C, the AoI evolutions of two users are always
the same under the framed synchronous updating scheme.
Following a similar argument as in Section V-C, we can show
that the n-th updating time of each user in the frame starting
at time slot (ij+1)m+1 must be tn = (ij+1)m+ni+1 and
the AoI of the delivered update at time tn+1 = (ij + 1)m +
(n + 1)i + 1 must be i + 1.

Tracking the AoI of both users, the AoI evolution of each
user is periodic with period ij + 1. Within each period, both
δ1
t and δ

(2)
t begin with 2i + 2 and reset to i + 1 when t =

t1, t2, . . . , tj−1 and monotonically increase in between. The
summed long-term average AoI equals the summed AoI over
any frame after the first one. Therefore,

Δ(1) = Δ(2)

=
1

ij + 1

(
t1−t0∑
�=0

(i + 1 + �) + (j − 1)
i∑

�=1

(i + �)

)
(18)

=
3i + 1

2
+

i + 1
2(ij + 1)

. (19)

Thus, Δ = 3i + 1 + i+1
ij+1 .

E. Generalization to (2, M, N, B) Systems

For (2, M, N, B) systems with N ≥ B, we note that all
updating schemes described for the (2, M, B, B) systems in
Sections V-A and V-B are still applicable. This is equivalent
to virtually removing N − B antennas at each receiver, and
the corresponding AoI evolution remains the same. Therefore,
those updating schemes achieve the corresponding optimal
summed average AoI specified in Theorem 2 (i)-(ii).

Likewise, updating schemes for (2, M, M, B) systems
described in Section V-C can be applied to (2, M, N, B)
systems with either N ≥ B > M or B > N ≥ M , while
the updating schemes for (2, 2N, N, B) systems proposed
in Section V-D can be applied to (2, M, N, B) system with
M ≥ 2N . Therefore, the proposed updating schemes achieve
the optimal summed average AoI specified in Theorem 2 (iii)
and (iv), respectively.

VI. CONVERSE OF THEOREM 1

In this section, we prove the converse of Theorem 1, i.e.,
we will show that the summed long-term average AoI under
any updating scheme cannot be lower than that specified in
Theorem 1. Towards that, we first introduce the concept of
degree of freedom (DoF) in this context, and then define a
subset of schemes where the optimal scheme must lie in.

Definition 5 (Degree of Freedom (DoF)): In a time slot,
the degree of freedom (DoF) for a (K, M, N, B) system is the
number of linearly independent equations that are delivered to
users in the time slot, while the DoF allocated to a user is the
number of linearly independent equations that the user receives
in the time slot.

The definition of DoF characterizes the transmission capa-
bility of the system: The total number of symbols decoded
by a user cannot exceed the maximum number of linearly
independent equations it can receive, as it needs n linearly
independent equations to solve for the n unknown variables
(symbols). For a (K, M, N, B) system, the maximum DoF for
each user in any time slot is min{M, N}, while the maximum
DoF for the whole system is min{M, NK}.

Lemma 3: For any updating scheme, there always exists
an equivalent updating scheme under which the precoding
matrix is designed in such a way that the receivers’ antennas
receive raw symbols of the intended updates only and the DoF
allocation remains the same.

Proof: Without loss of generality, we assume the trans-
mitter starts to update the users at time slot 1. Let nk be the
DoF allocated to user k under the original scheme at time slot
1. Then, we must have nk ≤ N , Ñ :=

∑K
k=1 nk ≤ M . Let

y(k)
1 = (w(k)

1 [1], . . . , w(k)
1 [nk])T be the symbols received by

user k at time 1 under the equivalent updating scheme. We can
always design a precoding matrix in the form of

H̃−1
1 :=

⎛
⎜⎜⎜⎜⎝

H̃
(1)
1

H̃
(2)
1
...

H̃
(K)
1

⎞
⎟⎟⎟⎟⎠

−1

, (20)

where H̃
(k)
1 ∈ (Fq)nk×Ñ is a submatrix of H

(k)
1 corresponding

to the CSI between the first Ñ transmitting antennas and the
first nk receiving antennas at user k. Under the assumption
that any submatrix of Ht is full-rank almost surely, y(k)

1 will
be delivered to user k in time slot 1. We note that the new
updating scheme maintains the same DoF allocating under the
original scheme. We then continue this process in time slot 2,
during which raw symbols not included in {y(k)

1 }K
k=1 will be

delivered. Since we always keep the DoF allocation the same
under both schemes, under the newly constructed updating
scheme, the intended updates will be decoded no later than
that under the original scheme, rendering an equivalent or even
better AoI performance.

Definition 6 (Set of Efficient Updating Schemes Π0): For
the (K, M, N, B) system with any given initial state, denote
Π0 as a set of deterministic updating schemes that deliver
raw packets to users only while satisfying the following
properties:
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i) All transmitted updates will be decoded at the intended
user and reset the corresponding AoI.

ii) Any delivered update w(k)
t is transmitted starting from

its generation time t.
iii) The transmitter will utilize the maximum DoF during the

transmission of any update unless in the time slot when
the update is delivered.

iv) Among the symbols delivered to the same user, symbols
generated earlier are delivered no later than symbols
generated later.

Theorem 4: The updating scheme that achieves the mini-
mum summed long-term average AoI lies in Π0.

Proof: First, we note that due to the deterministic system
model, the optimal policy should be deterministic, as we can
always execute the sample path that renders the minimum
summed long-term average AoI under any randomized policy
to outperform the original randomized policy.

Next, due to the deterministic setting, the system can foresee
the AoI evolution under any deterministic updating scheme;
Thus, it is unnecessary to transmit symbols that will not help
to improve the AoI.

Property ii) can be shown by noticing that starting to
transmit an older update instead of the newly generated one
at time t leads to higher AoI when the update is delivered.

Property iii) is based on the following observation: Assume
the DoF is not fully utilized during the transmission of an
update w(k)

t before it is delivered in time d, i.e., in a time
slot t′, t ≤ t′ < d, the DoF allocated to user k is less than
N , and the total DoF allocated to all users is less than M .
Then we can allocate at least one more DoF to the user k in
time slot t′ without affecting the DoF allocation to other users.
Thus, one more symbol from w(k)

t can be delivered in time t′,
potentially reducing the time used to deliver w(k)

t . Since an
earlier delivery will strictly improve the AoI, the new policy
performs better or at least the same as the original policy.

Property iv) can be proved through contradiction: assume
under the optimal policy two updates w(k)

t1 and w(k)
t2 , t1 < t2,

are delivered to user k at time d1 and d2, d1 < d2, respectively.
Assume d1 > t2. Since w(k)

t2 must be transmitted at time t2,
at least one of its symbols is delivered to user k at time t2.
Meanwhile, since w(k)

t1 is not delivered until d1, we can always

switch the transmission of one symbol from w(k)
t2 with another

symbol from w(k)
t1 that is delivered at d1 under the original

scheme. This potentially shortens the delivery time for w(k)
t1

without affecting the delivery time of w(k)
t2 , which improves

the AoI.
In the following, we will restrict to updating schemes in

Π0 only. Instead of considering the long-term average AoI,
in the remaining of this section, we partition the time-axis
into frames of length B, and investigate the minimum summed
AoI in any frame. Since the summed long-term average AoI
must be greater than the minimum time-average summed AoI
in any frame, the latter serves as a lower bound for the
former.

Lemma 4: For the (K, M, 1, B) system, under any policy
π ∈ Π0, during any consecutive B time slots, at most
min{K, M} updates are delivered, each to a different user.

Proof: First, we note that the maximum DoF for the
(K, M, 1, B) system in any time slot is min{K, M}. Thus, the
maximum number of linearly independent equations delivered
in each frame is B min{K, M}, which implies that at most
min{K, M} updates can be decoded in any frame. Next,
we note that the maximum DoF for each user is 1 since it
only has one receiving antenna. Thus, at most one update can
be decoded for each user in any frame. Therefore, in any time
frame, at most min{K, M} updates are delivered, each for a
different user.

Theorem 5: For the (K, M, 1, B) system with K ≤ M ,
the summed AoI in frame consisting of time slots [mB + 1 :
(m + 1)B], m ∈ Z≥2, is lower bounded by 1

2K(3B − 1).
Proof: We consider the updating scheme that minimizes

the summed AoI in the given time frame and ignore the AoI
evolution outside the time window. The summed AoI in the
frame is determined by the last update before time mB+1 and
the update within the frame for each user. Denote the last
updating time for the K users prior to time mB + 1 as t1 ≤
t2 ≤ . . . tK ≤ mB. Then, we have the following observations.

First, if t1 < (m − 1)B + 1, we can always construct an
alternative updating scheme under which another update is
delivered to the same user at time t1 + B without violating
Lemma 4 and reduce its summed AoI in the frame considered.
Thus, to obtain a lower bound on the summed AoI in the
frame, we restrict to the scenario t1 ≥ (m − 1)B + 1.

Next, we note that the summed AoI in the frame is minimum
when the reset AoI at t1, t2, . . . , tK are equal to B, as each
update takes at least B time slots to deliver.

Finally, we point out that the summed AoI in the frame can
be minimized if the next updating happens exactly B time
slots after the previous updating for each user, i.e., at time
t1 + B, t2 + B, . . ., tK + B.

Calculating the cumulative AoI of each user during frame
m, we have

δ
(k)
mB+1:(m+1)B ≥

tk+B−1∑
�=(m−1)B+1

(� − tk + B) +
(m+1)B∑
�=tk+B

(� − tk)

=
2B−1∑
�=B

� =
1
2
B(3B − 1), (21)

and the summed AoI in the frame is lower bounded by
1
2KB(3B − 1).

Theorem 6: For the (K, M, 1, B) system with K = pM+q,
where p ∈ N, q ∈ [0 : M − 1], the summed AoI in the frame
consisting of time slots [mB + 1 : (m + 1)B], m ∈ Z≥p+1,
is lower bounded by 1

2pM(pM +2B−1)+ 1
2q(2pB+3B−1).

Proof: Similar to the K ≤ M case, the summed AoI in the
frame is determined by the last update before time mB+1 and
the update in the frame for each user. Denote the last updating
time for the K users prior to time mB + 1 as t1 ≤ t2 ≤ . . .
tK ≤ mB. Then, we have the following observations.

Since K > M , according to Lemma 4, at most M
users can be updated in each frame. Then, to obtain a
lower bound on the summed AoI in the frame, we assume
tK−�M+1, . . . , tK−(�−1)M lie in the frame starting at
(m − �)B + 1, 1 ≤ � ≤ p, and t1, . . . tq lie in the frame
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starting at (m − p − 1)B + 1. This is because if the update
times are not in the corresponding frames, we can always
reschedule the transmission of updates without violating
Lemma 4 and reduce the corresponding AoI contribution from
those updates in the frame starting at mB + 1.

Then, following the same argument as for the K ≤ M case,
the summed AoI in the frame starting at mB +1 is minimum
when the reset AoI at t1, t2, . . . , tK are equal to B.

Besides, to minimize the summed AoI in the frame, the
transmitter should update the M users with the highest
AoIs during the frame. Due to the constraints imposed by
Lemma 4, the updates should happen at time tK−M+1 + B,
tK−M+2 + B, . . ., tK + B.

Calculating the summed AoI of all users during the frame,
we have the lower bound hold.

VII. CONVERSE OF THEOREM 2

In the following, we let δ̄t be the vector consisting of
{δ(k)

t }k arranged in the increasing order, and name it the AoI
pattern at time t. We note that the summed AoI in any time
slot can be determined by the AoI pattern without considering
the specific AoI at each user. We name the AoI pattern that
renders the minimum summed AoI in any time slot as the
minimum AoI pattern. We note that the summed long-term
AoI is lower bounded by the sum of the AoIs in the minimum
AoI pattern.

For the first two cases in Theorem 2, we can obtain lower
bounds as follows.

For the case when N ≥ B and M
B ≥ 2, the AoI at each user

is lower bounded by one due to the transmission delay, i.e.,
the minimum AoI pattern at any time slot is (1, 1). Therefore,
the summed average AoI is lower bounded by 2.

For the case when N ≥ B and 1 ≤ M
B < 2, at most

one update generated at the beginning of time slot t can be
delivered. Thus, at the end of time slot t, at most one user
can be updated with AoI reset as 1, while the other user
is either not updated, or updated with AoI reset as 2. The
minimum AoI pattern is thus (1, 2) and the summed AoI is
lower bounded by 3. Those two lower bounds match with
the AoI obtained under the updating schemes described in
Section V-A and Section V-B, indicating the optimality of the
updating schemes.

In the following, we provide a matching lower bound for
case (iii) in Theorem 2, i.e., when N ≥ M and j

ij+1 ≤ M
B <

j+1
(j+1)i+1 , for some i, j ∈ N. The lower bound for Theorem 2

(iv) can be derived similarly and is deferred to Appendix B.

For a (2, M, N, B) system with N ≥ M , we note that the
maximum DoF of the whole system is M , while the maximum
DoF allocated to individual users is also M . The transmitter
needs to decide how to split its DoF between the two users in
each time slot.

In the following, we first obtain a lower bound for a subset
of policies named as alternating updating schemes, and then
show that the lower bound applies to any policy lying in Π0.

Definition 7 (Set of Alternating Updating Schemes Π1):
Under an alternating updating scheme π ∈ Π1 ⊂ Π0, in each
time slot, the transmitter utilizes all of its DoF on a single

Fig. 6. An alternating updating scheme for the (2, 2, 3, 3) system, which
can be equivalently represented as (B3, B2,1, B1, · · · ).

user unless an update is decoded. Besides, the two users are
updated alternately.

Remark 2: We note that under the alternating policy, the
user to be updated next is always the user with higher AoI.

For any policy π ∈ Π1, it can be represented as a sequence
of blocks, where each block Bu,v consists of v idling time
slots followed by lu := �uB/M� time slots, during which
the transmitter exhausts its DoF to send u updates to the two
users alternately. When v = 0, we simply express Bu,0 as
Bu. An updating scheme for the (2, 2, 3, 3) system is shown
in Fig. 6, which can be represented by (B3, B2,1, B1, · · · ) as
illustrated.

Lemma 5: For the (2, M, N, B) system with N ≥ M and
j

ij+1 ≤ M
B < j+1

(j+1)i+1 , i, j ∈ N, the minimum AoI pattern in
any time slot is (i + 1, 2i + � 2

j �).
Proof: In order to decode an update, the transmitter needs

to deliver at least B linearly independent equations to the user.
Due to the DoF constraint, it requires at least �B/M� time
slots. Since i + 1

j ≥ B
M > i + 1

j+1 , � B
M � = i + 1 for any

i, j ∈ N. Thus, the minimum AoI for any user in any time
slot is i + 1.

In order to update both users, it requires to deliver at least
2B linearly independent equations, which needs 2i+� 2

j � time

slots. Thus, the minimum AoI pattern is (i + 1, 2i + � 2
j �).

Remark 3: According to Lemma 5, we can see that if j = 1,
the minimum AoI pattern is (i + 1, 2i + 2); if j ≥ 2, the
minimum AoI pattern becomes (i + 1, 2i + 1).

In the following, we will first study a work-conserving
updating scheme π1 ∈ Π1, under which the transmitter
exhausts its DoF at each time slot and updates the two users
continuously. By establishing the relationship between policy
π1 and block Bu, we will identify a lower bound on the
summed average AoI over a block Bu, based on which we
are able to obtain a lower bound on the summed average AoI
for any policy in Π1.

Without loss of generality, under policy π1, we assume the
initial AoI pattern at time 0 is the minimum AoI pattern (i +
1, 2i + � 2

j �).
Lemma 6: For the (2, M, N, B) system with N ≥ M and
j

ij+1 ≤ M
B < j+1

(j+1)i+1 , i, j ∈ N, under policy π1, the duration
between two consecutive delivered updates is either i or i +
1 time slots.

Proof: Assume under policy π1, the m-th update is
delivered at time slot tm. We will show that the (m + 1)-th
update is delivered either at time tm + i or at time tm + i+1.

1) If the m-th update takes up all DoFs in time slot tm,
then, the (m + 1)-th update is generated at time slot tm + 1,
which must be delivered at time tm + i + 1 as it takes exactly
i + 1 time slots to deliver.
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2) If the m-th update takes Dm DoFs of time slot tm where
Dm ∈ [1 : M − 1], then, the (m + 1)-th update will be
generated at time tm under policy π1 and take up the remaining
M −Dm DoFs. It will be delivered at time tm +�B−M+Dm

M �.
Since � B

M � = i + 1, we have⌈
B − M + Dm

M

⌉
≥
⌈

B + 1
M

⌉
− 1 ≥

⌈
B

M

⌉
− 1 = i, (22)⌈

B − M + Dm

M

⌉
≤
⌈

B − 1
M

⌉
≤
⌈

B

M

⌉
= i + 1. (23)

Hence, it will be delivered either at time tm + i or at time
tm + i + 1.

Label the delivered updates starting at time 1 in the order
of their delivery time. Let Um be the index of the m-th update
whose delivery time is i + 1 time slots after the previous
delivered update. Since the first update generated at time
slot 1 is delivered at the end of time slot i + 1, we have
U1 = 1. We can see that the delivery times of the following
j − 1 delivered updates are exactly i time slots after the
previous delivery time while the (j + 1)-th updating time is
i + 1 time slots after the previous update, hence U2 = j + 1.
In general, for m ∈ N, the duration between the delivery
times of updates Um and Um − 1 equals i + 1 and the
durations between any other two consecutive updates are i.
Thus, the delivery time for Um − 1 is at the end of time slot
(Um − 1)i + m − 1.

By the DoF constraint, we have

[i(Um − 1) + m − 1]M ≥ (Um − 1)B, (24)

i.e., the maximum DoF over [1 : (Um − 1)i + m− 1] must be
greater than the DoF required to deliver Um − 1 updates.

Similarly, update Um is delivered at time Umi + m. Thus,

[iUm + m − 1]M < UmB, (25)

i.e., the maximum DoF over [1 : Umi + m − 1] must be less
than the DoF required to deliver Um updates.

Eqn. (24) and Eqn. (25) imply that

(m − 1)M/B

1 − iM/B
< Um ≤ (m − 1)M/B

1 − iM/B
+ 1. (26)

Since j
ij+1 ≤ M

B < j+1
(j+1)i+1 , we have

j−1<
M/B

1−iM/B
−1<Um+1−Um<

M/B

1−iM/B
+1<j+2.

(27)

Under the constraint that Um and Um+1 are integers, we must
have

Um+1 − Um = j or j + 1. (28)

We now partition the time axis into segments by the
delivery time of updates {Um − 1}∞m=2, i.e., [1 : ij + 1], . . .,
[(Um−1)i+m : (Um+1−1)i+m], . . .. According to Eqn. (28),
the segment length is either ij+1 or (j +1)i+1. An example
of the definition of Um and the segments for the (2, 7, 12, 12)
system is illustrated in Fig. 7.

Lemma 7: For the (2, M, N, B) system with N ≥ B and
j

ij+1 ≤ M
B < j+1

(j+1)i+1 , i, j ∈ N, under policy π1, the summed

Fig. 7. Updating pattern in the (2, 7, 12, 12) system under π1. We have
i = 1, j = 1. Circles represent delivery times of updates. Since i = 1,
the segments can be obtained by tracking the updates whose delivery time is
2 time slots after the previous delivery time. We note that the length of each
segment is either 2 (i.e., ij + 1) or 3 (i.e., (j + 1)i + 1).

average AoI over segment [(Um−1)i+m : (Um+1−1)i+m]
is lower bounded by Δmin = 4i + 1 + 2i+1

ij+1 if j ∈ Z≥2, and
by Δmin = 4i + 3 if j = 1.

Proof: 1) j ≥ 2. We start with the case when the segment
length is ij+1, i.e., Um+1−Um = j. According to Remark 3,
the minimum AoI pattern at the end of time slot (Um − 1)i +
m − 1 is (i + 1, 2i + 1). Hence, the minimum AoI pattern
at the first time slot of the segment starting at (Um − 1)i +
m is (i + 2, 2i + 2). We note that under π1, update Um is
delivered at time Umi + m, with minimum age i + 1. This
would happen if Um is generated at time (Um − 1)i + m.
After that, updates Um + 1, . . . , Um + j − 1 are delivered
sequentially after i time slots since the previous delivery. Thus,
the minimum age of those updates when delivered is i. Due
to the alternating updating structure, the user with higher AoI
will always be updated next under π1. Thus, the minimum
AoI pattern over the segment can be specified (cf. Table I),
and the corresponding minimum summed average AoI over
the duration is 4i + 1 + 2i+1

ij+1 .
Next, we consider the case when Um+1 − Um = j + 1 and

the corresponding segment length is (j + 1)i + 1. We will
show that the minimum AoI pattern when Um is delivered,
i.e., at the end of time slot Umi+m, is (i+2, 2i+2) instead
of (i + 1, 2i + 2), i.e., update Um must be generated at time
slot (Um − 1)i + m− 1 instead of (Um − 1)i + m. We prove
it by contradiction.

Assume update Um is generated at time slot (Um−1)i+m.
Since update Um − 1 is delivered at time (Um − 1)i + m− 1,
update Um would consume all DoF at time slot (Um−1)i+m
under policy π1. Thus, under policy π1, the DoF allocation
for updates Um, . . . , Um+1 − 1 would be the same as that
for updates U1, . . . , U2 − 1. Therefore, the length of segment
[(Um − 1)i + m : (Um+1 − 1)i + m] would be identical to
that of segment [1, ij + 1], i.e., ij + 1. This contradicts with
the assumption that the segment is of length (j + 1)i + 1,
which indicates that update Um must be generated at time slot
(Um − 1)i + m − 1, and reset the AoI of the corresponding
user to i + 2 instead of i + 1 when delivered.

With the minimum AoI pattern at the end of time slot Umi+
m by (i+2, 2i+2), the minimum AoI pattern can be identified
(cf. Table II). The minimum summed average AoI over the
segment can thus be calculated, which is equal to 4i + 1 +

4i+1
(j+1)i+1 .
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TABLE I

MINIMUM AOI PATTERN FOR SEGMENTS OF LENGTH ij + 1, j ≥ 2, � ∈ [2 : j − 1]. AN UPDATE
IS DELIVERED AT THE END OF THE TIME SLOTS IN THE LAST COLUMN

TABLE II

MINIMUM AOI PATTERN FOR SEGMENTS OF LENGTH (j + 1)i + 1, j ≥ 2, � ∈ [3 : j]. AN UPDATE

IS DELIVERED AT THE END OF THE TIME SLOTS IN THE LAST COLUMN

Combining those two cases, we can see that the summed
average AoI over any segment is lower bounded by
4i + 1 + 2i+1

ij+1 .

2) j = 1. For this case, the segment length is either i+1 or
2i + 1. According to Remark 3, the minimum AoI pattern is
(i+1, 2i+2). If the segment length is i+1, there is only one
update at the end of the segment, which resets the AoI to i+1.
The corresponding summed average AoI over the segment can
be calculated, which is equal to 4i + 3.

When the segment length is equal to 2i + 1, two updates
are delivered over the segment, one is at time i and the other
is at time 2i + 1. With the minimum AoI pattern (i + 1, 2i +
2), we can show that the summed average AoI is still lower
bounded by 4i + 3.

Remark 4: We note that for all i, j ∈ N, the minimum
summed average AoI over the first �i + 1 time slots in each
segment [(Um −1)i+m : (Um+1−1)i+m] is monotonically
decreasing in � for � ∈ [1 : Um+1 − Um].

Next, we relate the AoI pattern under π1 with block
Bu under any alternative updating policy in Π1. Recall
that lu is the number of time slots required to deliver
u updates in a block Bu. Then, the updating scheme
π1 over [1, lu] is identical to a block Bu except that
some DoF at time slot lu under Bu may not be
exhausted.

We note that Bu can be partitioned into segments
[1 : ij+1], . . ., [(Umu−1−1)i+mu−1 : (Umu −1)i+mu−1]
and a residue [(Umu − 1)i + mu : lu], where mu = max{m :
Um < lu}. According to Remark 4, the summed average AoI
of the residue is lower bound by Δmin.

Lemma 8: If x, y, z, w, t ∈ R>0 satisfy inequalities x
y ≥ t

and z
w ≥ t, then x+z

y+w ≥ t.
Since the summed average AoI over each segment is lower

bounded by the quantity in Lemma 7, then, based on Lemma 8,

the summed average AoI over any block Bu is lower bounded
by the quantity as well.

Next, we will show that the lower bound for block Bu is
also a valid lower bound for blocks Bu,v, ∀v > 0.

Lemma 9: For the (2, M, N, B) system with N ≥ M and
j

ij+1 ≤ M
B < j+1

(j+1)i+1 , i, j ∈ N, the summed average AoI
over Bu,v is lower bounded by Δmin = 4i + 1 + 2i+1

ij+1 if
j ∈ Z≥2, and by Δmin = 4i + 3 if j = 1.

Proof: Recall that in a block Bu,v, there are v idle time
slots before Bu. Let δ

(1)
0 , δ

(2)
0 be the AoI at time zero. Without

loss of generality, we assume Bu,v starts at time slot 1. Since
there is no updating over the first v time slots, the AoI of
user k, k = 1, 2, will monotonically increase until the first
successful update at time v + tk. Thus, the existence of idling
time slots affects the AoI evolution until the first update for
each user occurs. Let v + lu be the end of block Bu,v.

Let A
(k)
1 be the AoI increment induced by the idling time

slots at user k, as illustrated by the shaded area in Fig. 8.
Meanwhile, denote A

(k)
2 as the summed AoI over Bu when

no idling time slot is present, corresponding to the unshaded
area in Fig. 8.

Then, we have

A
(k)
1 =

v∑
�=1

(δ(k)
0 + �) + v · tk, k = 1, 2. (29)

Let ΔBu,v be the summed average AoI over Bu,v . Then,

ΔBu,v =
�2

k=1(A
(k)
1 +A

(k)
2 )

v+lu
. We note that∑2

k=1 A
(k)
1

v
= δ

(1)
0 + δ

(2)
0 + (1 + v) + t1 + t2

≥ 2
(

3i + 1 +
⌈

2
j

⌉)
+ (1 + v), (30)

where the last inequality follows from Lemma 5.
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Fig. 8. AoI evolution of user 1 over an extended block. The dashed line is
the AoI evolution if idling period does not exist.

Note that 6i + 2� 2
j � + v + 1 > 4i + 1 + 2i+1

ij+1 if j > 2 and
6i + 2� 2

j � + v + 1 > 4i + 3 if j = 1. By applying Lemma 8,
we have the lower bounds Δmin hold for Bu,v as well.

Since every policy in Π1 can be decomposed as a sequence
of blocks in the form of Bu,v , the lower bound on each block
applies to the long-term average. Thus, Δmin is a lower bound
on the summed average AoI for all policies in Π1. To prove
that the lower bound applies to all policies, it suffices to show
that no other policy in Π0 can achieve AoI lower than Δmin.

Theorem 7: For the (2, M, N, B) system with N ≥ M and
M/B ∈ [ j

ij+1 , j+1
(j+1)i+1 ), i, j ∈ N, the summed average AoI

under any policy π ∈ Π0 is lower bounded by Δmin = 4i +
1 + 2i+1

ij+1 if j ∈ Z≥2, and by Δmin = 4i + 3 if j = 1.
The proof of Theorem 7 is provided in Appendix A.

VIII. PROOF OF THEOREM 3

For the two-user system with N < B and N < M < 2N ,
it is extremely challenging to identify the exact minimum
average AoI due to the combinatorial nature of the problem.
In this section, we strive to obtain a lower bound on the
summed average AoI and propose a 2-optimal policy.

A. Lower Bound

We provide a lower bound on the summed average AoI,
as summarized in the following lemma.

Lemma 10: For the (2, M, N, B) system with N < M <
2N , B = iN + j, i ∈ N, j ∈ [0 : N −1], the summed average
AoI is lower bounded by ΔLB := 2i + � 2j

N �.
Proof: Denote d1 and d2 are the AoI at user 1 and user 2 at

an time slot k, respectively. Without loss of generality, assume
d1 ≤ d2. Let k − d1 and k − d2 be the generation times of
the freshest update received at user 1 and user 2, respectively,
and u1 and u2 be the corresponding updates. Define x� and y�

as the DoFs allocated for the transmission of updates u1 and
u2 at time slot k − �, respectively. Then, we must have the
following conditions satisfied:

d1∑
�=1

x� = B,

d2∑
�=1

y� = B, (31)

0 ≤ x� + y� ≤ M, � = 1, . . . , d2, (32)

0 ≤ x�, y� ≤ N, � = 1, . . . , d2. (33)

Thus,

2B =
d1∑

�=1

(x� + y�) +
d2∑

�=d1+1

y� ≤ d1M + (d2 − d1)N.

(34)

Since B = iN+j and M < 2N , the above inequality becomes

d1 + d2 ≥ 2i +
2j

N
+

d1(2N − M)
N

> 2i +
2j

N
. (35)

Besides, since d1 + d2 is an integer, we must have d1 + d2 ≥
2i+� 2j

N �, which provides a valid lower bound on the summed
average AoI at any time slot k.

B. Framed Alternating Updating

We propose a framed alternating updating scheme and
provide its performance guarantee subsequently.

Definition 8 (Framed Alternating Updating): Partition the
time axis into frames of length 2i if j = 0, 2i + 1 if
0 < 2j < M , or 2i + 2 otherwise.

1) If j = 0, or 2j > M , within each frame, the transmitter
first utilizes its transmission capability to update the
user with higher AoI until its AoI resets. Then, at the
beginning of the next time slot, the transmitter starts to
transmit a new update to the other user until the end of
the frame.

2) If 0 < 2j < M , in each frame, the transmitter first
utilizes its transmission capability to update the user with
higher AoI until its AoI resets at the i-th time slot.
Within the same time slot, the transmitter exhausts the
remaining transmission capability to start transmitting an
new update for the other user until the end of the frame.

Remark 5: For the (2, M, N, B) system with N < B and
N < M < 2N , in each time slot, it is important to decide
whether or not to exploit the remaining M − N DoFs when
N DoFs have been used to update one user. Exploiting the
remaining DoFs may lead to earlier updating of the other
user, while wasting them may shorten the transmission time of
an update and reduce its age when delivered. When M gets
close to N , the benefit of utilizing the M − N remaining
DoFs is offset by the elongated age of the update. As a
result, we expect that the framed alternating updating scheme
performs close to optimal when M approaches N .

In order to characterize the AoI performance, we track the
AoI evolution under the framed alternating updating scheme.
Note that when j = 0, each user is updated every 2i time
slots, and when it is updated, its AoI is reset as i and starts
increasing until next update. The summed average AoI thus
equals Δ = 4i−1. When 2j > M , similar analysis shows that
the summed average AoI is Δ = 4i + 3. When 0 < 2j < M ,
each user is updated every 2i + 1 time slots, and when it
is updated, its AoI is reset as i + 1. Therefore, the summed
average AoI is Δ = 4i + 1.

Note that the lower bound in Theorem 3 becomes ΔLB = 2i
if j = 0, ΔLB = 2i + 1 if 0 < 2j < M , and ΔLB = 2i + 2.
Combining the summed average AoI of the framed alternating
updating scheme and the lower bound, we have

Δ
ΔLB

≤ max
{

4i − 1
2i

,
4i + 1
2i + 1

,
4i + 3
2i + 2

}
< 2, (36)
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TABLE III

MINIMUM AOI PATTERN OF THE FIRST TWO UPDATES FOR SEGMENTS OF LENGTH (j +1)i+1, j ≥ 2. THE FIRST DELIVERED UPDATES IS GENERATED
AT THE END OF TIME SLOT (Um − 1)i + m + γ , AND THE TWO UPDATES ARE DELIVERED AT Umi + m + γ , (Um + 1)i + m, RESPECTIVELY

TABLE IV

MINIMUM AOI PATTERN OF FOR SEGMENTS OF LENGTH 2i + 1. THE FIRST DELIVERED UPDATE IS GENERATED AT THE END OF TIME SLOT

(Um − 1)i + m + γ , AND THE TWO UPDATES ARE DELIVERED AT Umi + m + γ , (Um + 1)i + m, RESPECTIVELY

i.e., in (2, M, N, B) system with N < B and N < M < 2N ,
the summed average AoI under the framed alternating updating
scheme is at most twice the minimum summed average AoI
and the proposed policy is 2-optimal.

IX. CONCLUSION AND DISCUSSIONS

In this paper, we investigated the AoI optimization problem
in MIMO broadcast channels with various numbers of users,
transmitting and receiving antennas and update sizes. Due
to the combinatorial nature of the problem and the complex
AoI evolution in a dynamic system, identifying the optimal
updating scheme becomes challenging. We considered two
specific scenarios, where in the first scenario, each receiver
has one antenna, and in the second scenario, it only has
two users. We developed different updating schemes for those
cases and showed their optimality through rigorous analysis.
Although the optimal schemes seem intuitive, establishing
their optimality is non-trivial. Toward that, we developed some
novel approaches. We think those approaches will be useful
for the AoI-optimal updating schemes in noise-free MIMO
broadcast channels with other parameters. Besides, we expect
that those techniques can be extended to handle more practical
noisy channels by leveraging the deterministic channel models
proposed in [36]. Due to the coupled dynamics of AoI evo-
lution, the AoI-tradeoff among multiple users is intractable in
general. However, it is expected that the techniques developed
in this paper can be adopted to identify certain Pareto optimal
points on the AoI of multiple users. We leave this as one of
our future steps.

APPENDIX

A. Proof of Theorem 7

First, we point it out that for the (2, M, N, B) systems,
under any policy in Π0, at any time t, there exist at most two
updates that are partially transmitted in any time slot. This is

due to property iv) in Definition 6, i.e., the transmitter will not
start transmitting a new update to a user until the previous one
has been delivered to the same user. Therefore, at any time t,
there exists at most one partially transmitted update for each
user.

Next, for (2, M, N, B) systems with B > M , we have the
following observation.

Lemma 11: For the (2, M, N, B) system with B > M ,
consider two consecutive successful deliveries of updates from
the transmitter under the optimal policy in Π0. Denote their
delivery times as d1, d2, respectively, d1 ≤ d2, and the
corresponding generation times as t1, t2. With a little abuse of
notation, we name those two updates w1 and w2, respectively.
Then, either of the following two scenarios must be true:
1) t1 < d1 ≤ t2 < d2. 2) t2 < t1 < d1 ≤ d2, and over
time t1 ≤ t < d1, the transmitter utilizes all of its DoF to
transmit w1.

Proof: Recall that for all policies in Π0, the transmitter
only uses its DoF to deliver updates that eventually reset the
AoI. In the following, we show that any policy π ∈ Π0 that
violates the structures can be strictly improved to reduce the
AoI. We consider the following cases:

i) t1 ≤ t2 < d1 ≤ d2. Recall that for any policy in
Π0, all delivered symbols are transmitted starting from their
generation times. Thus, the transmitter must begin to transmit
w2 at time t2. We then consider an alternative policy under
which the transmitter will utilize the DoF that was allocated
to transmit w2 under the original policy at time slot t2 and
afterwards for w1 until w1 is delivered. Apparently, w1 will
be delivered no later than d1, which potentially improves
the AoI of the corresponding user. After that, the transmitter
will reallocate the DoF that was allocated for w1 and w2 to
transmit a new update w′

2, where w′
2 and w2 are intended

for the same user. Since the total allocated DoF remains the
same under both policies, it ensures that w′

2 will be delivered
at t2, which will reset the corresponding AoI with a smaller
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age. Thus, the overall AoI will be strictly improved under the
alternative policy, indicating that this case cannot exist under
the optimal policy.

ii) t2 < t1 < d1 ≤ d2, and there exists at least one
time slot t, t1 ≤ t < d1, during which the transmitter does
not exhaust its DoF to transmit w1. Following the similar
argument as in case i), we can construct an alternative policy
under which the transmitter exhausts its DoF to transmit
w1 until its delivered, and utilizes the remaining DoF to deliver
w2. This will improve the AoI of the user that decodes w1,
without impacting the AoI of the other user. Thus, we can
safely exclude this case for the optimal policies in Π0 without
compromising the optimality.

Then, in order to show that the lower bound in Theorem 7
applies to all policies in Π0 for the (2, M, N, B) system with
B > M , the optimal policy in Π0 must exhibit the following
structural properties.

Lemma 12: For the (2, M, N, B) system with B > M ,
under any optimal policy in Π0, a successful updating always
updates the user with higher AoI.

Proof: We consider an updating policy starting at a time
slot t0. Assume at the beginning of t0, the AoI at users 1 and
2 are δ

(1)
0 , δ

(2)
0 , respectively, where δ

(1)
0 > δ

(2)
0 .

Denote the first two delivered updates after time t0 as
w1 and w2. We assume their transmission pattern complies
with Lemma 11. We aim to show that these two updates always
update user 1 and then user 2. We consider the two possible
transmission structures separately.

i) t2 < t1 < d1 ≤ d2. First, we note that those two updates
are intended for different users. This is because if both w1 and
w2 are intended for the same user, then the delivery of w2 will
not reset the AoI at the corresponding user, as w2 is more stale
than w1. This violates the assumption that under the optimal
policy in Π0, all delivered updates reset the corresponding
AoI.

Next, we assume w1 and w2 are intended for user 2 and
user 1, respectively. We note that under this scheme, user 2 will
be updated at d1 while user 1 is updated at d1. We aim to
show that this is strictly sub-optimal. For that, we consider an
alternative policy where the transmitter replaces each update
delivered after t0 with an update generated at the same time but
intended for the other user. We note that the AoI evolution at
both users remains the same under both policies up to d1, and
are switched after d2, as illustrated in Fig. 9. Between d1 and
d2, since δ

(1)
0 > δ

(2)
0 , resetting user 1 at d1 instead of d2 leads

to reduced summed AoI. Therefore, w1 and w2 should be
intended for user 1 and user 2, respectively, under the optimal
policy.

ii) t1 < d1 ≤ t2 < d2. We now consider the following
cases:

ii-a) w1 and w2 are both intended for user 2. For this case,
we construct a new policy by replacing w1 with another update
w′

1 generated at the same time but intended for user 1. Then,
under the new policy, the AoI of user 1 will be reset at time d1,
while the AoI of user 2 will be reset at d2 only. Therefore, after
d2, the AoI of user 2 remains the same under both policies,
while the AoI of user 1 will be strictly improved. Besides,

Fig. 9. Comparison between the new policy and the original policy.

between d1 and d2, the summed AoI of both users is strictly
improved under the new policy, as resetting user with higher
age (user 1) leads to lower summed AoI. Therefore, w1 and
w2 cannot be intended for user 2 under the optimal policy.

ii-b) w1 and w2 are intended for user 2 and user 1, respec-
tively. For this case, we construct a new policy by replacing
each update transmitted after t0 by the update generated at the
same time but intended for the other user. Then, under the new
policy, after d2, the AoI evolution of user 1 and user 2 will
be switched. Between d1 and d2, the summed AoI of both
users is strictly improved under the new policy, as resetting
user with higher age (user 1) leads to lower summed AoI.

Combining cases ii-a) and ii-b), we can see that w1 must
be intended for user 1 under the optimal policy.

Therefore, for the two possible updating structures, the next
update must be intended for the user with higher AoI. Since
w1 and w2 must intend for user 1 and user 2, respectively, for
the first structure, we repeat this argument for updates after d2.
For the second structure, we only showed that w1 must intend
for user 1, while w2 may intend for either user, depending on
the updating structure after d1. We then repeat the argument
after d1 for the second structure. Then, we can conclude
that each delivered update should update the user with higher
AoI.

Remark 6: Note that the delivery structure described in
Lemma 12 does not necessarily imply the alternating trans-
mission structure described in Definition 7, due to the second
possible transmission pattern depicted in Lemma 11.

For ease of exposition, let Π̃0 ⊂ Π0 be the set of policies
satisfying Lemmas 11-12. According to Theorem 3, no free
DoF is available during the transmission of an update, which
naturally leads to the definition of generalized blocks as
follows.

Definition 9 (Generalized Block B̃u,v): Block B̃u,v con-
sists of v idling time slots followed by �uB/M� time slots
during which the transmitter exhausts its DoF to send u useful
updates to the two users. When v = 0, we simply express B̃u,0

as B̃u.
Compared with the block Bu,v defined in Section VII,

in generalized blocks B̃u,v, we do not impose the alternating
updating structure. Any policy π ∈ Π̃0 can be represented as
a sequence of generalized blocks.

Next, we consider the DoF allocation within each general-
ized block. We introduce the definition of resource chunk as
follows.

Definition 10 (Resource Chunk): A resource chunk in
block B̃u,v is the smallest subset of the utilized uB DoFs in
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TABLE V

MINIMUM AOI PATTERN FOR SEGMENTS OF LENGTH ij + 1, j ∈ N, � ∈ [1 : j − 1]. AN UPDATE
IS DELIVERED AT THE END OF THE TIME SLOTS IN THE LAST COLUMN

TABLE VI

MINIMUM AOI PATTERN FOR SEGMENTS OF LENGTH (j + 1)i + 1, j ∈ N, � ∈ [2 : j]. AN UPDATE
IS DELIVERED AT THE END OF THE TIME SLOTS IN THE LAST COLUMN

the block satisfying the following conditions: 1) At least one
update is delivered using the DoF in each chuck; 2) During
the transmission of the update(s) satisfying 1), there does not
exist any other partially transmitted update in the system.

Lemma 13: There are two types of resource chunks in each
block B̃u,v: Type-1: A chunk consisting of B DoFs allocated
to the transmission of a single update. Type-2: A chunk
consisting of 2B DoFs allocated to the transmission of two
updates (denoted as w1 and w2) with t2 < t1 < d1 ≤ d2.
Besides, the transmission time of w1 is always equal to i+1.

Lemma 13 can be shown based on the structure depicted in
Lemma 11.

Definition 11 (Type-2 Resource Chunk Re-Allocation): A
re-allocated Type-2 resource chunk will allocate the DoFs in
the original resource chunk to users in the order of their origi-
nal updating times. Moreover, all future updates delivered after
this chunk are replaced by updates with the same generation
time but intended for the other user.

Remark 7: Based on Lemma 12, the first delivered update
using a Type-2 resource chunk, i.e., the update delivered at
time slot d1, is always intended for the user with higher AoI.
After re-allocation, such user should receive the first update
as well.

We note that when all Type-2 resource chunks are
re-allocated, the corresponding updating schemes becomes
an alternating updating policy in Π1. Thus, to show that
the summed average AoI under any policy in Π̃0 is lower
bounded by the same quantity Δmin suggested in Theorem 7,
it suffices to show that the re-allocation of Type-2 resource
chunks always improve the summed average AoI.

As we have shown in the proof of Lemma 5, we first note
that the minimum possible transmission time for one update
is i + 1 time slots under any updating policy in Π0.

Lemma 14: If after the re-allocation of a Type-2 resource
chunk, the transmission time of the first delivered update is
i + 1, then the re-allocation always improves the AoI under
the original resource chunk allocation.

Proof: Let δ
(1)
0 and δ

(2)
0 be the initial AoI of user 1 and

user 2 at the beginning of this Type-2 chunk. Without loss

Fig. 10. Re-allocation of Type-2 resource chunk.

of generality, we assume δ
(2)
0 > δ

(1)
0 . Then, user 2 will be

updated first. Assume the generation times and delivery times
of the two updates under the original resource chunk allocation
are t1 < t2 < d2 ≤ d1. Then, users 1 and 2 will be updated at
times d1 and d2, respectively. Besides, based on Lemma 13,
we have d2 − t2 = i +1. After the re-allocation, the DoF will
be utilized to update user 2 first, starting at time t1. Denote the
corresponding delivery time as d′1. Then, by the assumption
that the transmission time of the first delivered update after
reallocation is i + 1, we have d′1 − t1 = i + 1. Let t′2 be
the generation time of the second delivered update after re-
allocation. Then, t1 < t2 ≤ d′1 ≤ t′2 ≤ d2 < d1.

For clarity, we define α := t2 − t1 ≤ i + 1 and β :=
d1 − d1 ≤ d′2 − t′2 ≤ i + 2. As illustrated in Fig. 10, the
AoI evolution before d′1 stays the same after re-allocation.
Besides, at time d1, under the original allocation, the AoIs
at users 1 and 2 are d1 − t1, d1 − t2 respectively. After re-
allocation, the AoIs become d1−t′2, d1−t1, respectively. Since
the DoF allocation after this resource chunk will be switched
between the two users, user 2 will be updated next after the
re-allocation. Since d1 − t′2 ≤ d1 − t2. the AoI evolution after
d2 will be improved after the re-allocation. It remains to show
that the AoI over time slots [d′1 : d1−1] after the re-allocation
is strictly improved.

Since the AoI evolution of user 1 stays the same before
d1 and the difference solely depends on the AoI of user 2, the
age difference between that under the Type-2 resource chunk
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allocation and the re-allocation is(
α∑

�=1

(δ(2)
0 + i + �) +

β−1∑
�=1

(i + �)

)
−

α+β−1∑
�=1

(i + �)

=
α∑

�=1

δ
(2)
0 −

β−1∑
�=1

α = α(δ(2)
0 − β + 1) ≥ 0,

where the last inequality is based on the fact that the minimum
possible AoI of the user with higher AoI is i + 1 + � 2

j � by
Lemma 5, and the fact that β ≤ i + 2.

For a generalized block B̃u,v, after all Type-2 resource
chunks are re-allocated, it becomes a block Bu,v, which can
be partitioned into segments as in Sec. VII. Recall that each
segment consists of either ij + 1 or (j + 1)i + 1 time slots.
Besides, for any policy in Π1, the transmission time of any
update is either i + 1 or i + 2.

Note that the transmission times of all updates in the
segments of length ij + 1 in Bu,v are i + 1. Then, according
to Lemma 14, under the original optimal updating scheme,
it must not contain any Type-2 resource chunk before the first
updating time slot in the next segment. The only possible seg-
ments that contain Type-2 resource chunks under the original
optimal policy are segments of length (j + 1)i + 1 where the
transmission time of the first update is i + 2 and that of any
other update is exactly i+1. Thus, under the original optimal
policy, the Type-2 resource chunk can only be used to transmit
the first two updates in the segment. In the following, we will
show that the lower bound Δmin suggested in Lemma 7 still
holds for such segments.

Lemma 15: For segments of length (j + 1)i + 1 where the
first two updates are transmitted using a Type-2 resource chunk
under the original optimal policy, the summed average AoI is
lower bounded by Δmin = 4i + 1 + 2i+1

ij+1 if j ∈ Z≥2, and by
Δmin = 4i + 3 if j = 1.

Proof: 1) j ≥ 2. Consider a segment of length (j +
1)i + 1 by Um that consists of time slots [(Um − 1)i + m :
(Um + j)i + m]. Following similar arguments as in the proof
of Lemma 7, we can show that update Um is generated at time
(Um−1)i+m−1 instead of (Um−1)i+m. Note that under the
original resource allocation, within the Type-2 resource chunk,
update Um is delivered after update Um+1. Assume Um+1 is
generated at time (Um−1)i+m+γ, γ ∈ [0 : i]. It will consume
all DoF until it is delivered at time (Um − 1)i + m + γ + i.
Then the minimum AoI pattern of the first two updates over the
segment can be specified (cf. Table III). At the end of time slot
(Um+1)i+m, the minimum AoI pattern is (2i−γ+1, 2i+2)
under the original resource allocation and (i+1, 2i+2) under
the re-allocation (cf. Table II). Since 2i − γ + 1 ≥ i + 1 and
the remaining updating follows the alternating updating rules,
it suffices to show that the summed AoI over [(Um−1)i+m :
(Um + 1)i + m] under the original allocation is greater than
that under the re-allocation. In fact, the summed AoI over
[(Um−1)i+m : (Um +1)i+m] under the original allocation
is 8i2 + 9i + 3 + γ2 + 3 (cf. Table III) and that under the
re-allocation (cf. Table II) is 8i2 + 9i + 3, which completes
the proof.

2) j = 1. The Type-2 resource chunk has length 2i +
1. According to Remark 3, the minimum AoI pattern is

(i+1, 2i+2) instead of (i+2, 2i+1). Therefore, the minimum
AoI pattern at the first time slot of the segment is (i+2, 2i+3)
instead of (i+2, 2i+2) (cf. IV). Similar to 1), we assume that
update Um + 1 is generated at time (Um − 1)i + m + γ, γ ∈
[0 : i], and the AoI pattern with the original Type-2 resource
allocation can be specified (cf. Table IV). The corresponding
summed average AoI is 4i + 3 + γ2+(i+1)γ

2i+1 , which is greater
than or equal to 4i + 3, the summed average AoI under the
re-allocation.

In summary, the summed average AoI of any segment of the
generalized block B̃u,v is lower bounded by Δmin. Together
with Lemma 9, we can show that the summed average AoI
of the generalized block B̃u,v is also bounded by Δmin.
Therefore, the summed average AoI under any policy in Π̃0

is lower bounded by Δmin.

B. Converse of Theorem 2 (iv)

In this subsection, we provide a proof of the converse of
Theorem 2 (iv). I.e., for the case when N ≤ M

2 , j
ij+1 ≤ N

B <
j+1

(j+1)i+1 where i = �B
N � − 1 and j = � 1

B/N−i	, we aim to

show that the minimum summed average AoI is lower bounded
by 3i+ 1+ i+1

ij+1 if j ≥ 1, and by 3i− 1 if j = 0. We adopt a
similar approach as in the proof of the converse of Theorem 2
(iii). For the sake of completeness and brevity, we provide
key steps and omit proofs of lemmas if they are essentially
the same as their counterparts in Section VII.

Since the number of transmit antennas M is more than
the total number of antennas at the two users, each user is
able to decode N symbols simultaneously and the minimum
summed average AoI is twice the minimum average AoI of
the single-user system (1, N, N, B). Thus, in the following,
we will focus on the minimum average AoI of the single user
system (1, N, N, B).

Since the optimal scheme is guaranteed to lie within Π0 by
Theorem 4, any policy π ∈ Π0 in (1, N, N, B) systems can be
represented as a sequence of blocks, where each block Bu,v

consists of v idling time slots followed by lu := �uB/N� time
slots, during which the transmitter exhausts all DoF to send u
updates. When v = 0, we express Bu,0 as Bu.

We first study a work-conserving updating scheme π ∈ Π0,
under which the transmitter exhausts its DoF at each time slot.

Lemma 16: For the (1, N, N, B) system with j
ij+1 ≤ N

B <
j+1

(j+1)i+1 , i, j ∈ N, we have

(i) the minimum AoI pattern in any time slot is i + 1;
(ii) under policy π, the duration between two consecutive

delivered updates is either i or i + 1 time slots.
The proof of Lemma 16 is similar to that in Lemma 5 and

Lemma 6 and omitted.
Label the delivered updates starting at time 1 in the order

of their delivery time. Let Um be the index of the m-th update
whose delivery time is i + 1 time slots after the previous
delivered update. By the DoF constraint, we have

[i(Um − 1) + m − 1]N ≥ (Um − 1)B, (37)

[iUm + m − 1]N ≥ UmB. (38)
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Fig. 11. Updating pattern in the (1, 7, 7, 12) system under π1. We have
i = 1, j = 1. Circles represent delivery times of updates. Since i = 1,
the segments can be obtained by tracking the updates whose delivery time is
2 time slots after the previous delivery time. We note that the length of each
segment is either 2 (i.e., ij + 1) or 3 (i.e., (j + 1)i + 1).

Since j
ij+1 ≤ N

B < j+1
(j+1)i+1 , i, j ∈ N, solving the above

inequalities gives

j−1<
N/B

1−iN/B
−1<Um+1−Um<

N/B

1−iN/B
+1<j+2.

(39)

Since Um and Um+1 are integers, we have

Um+1 − Um = j or j + 1. (40)

Partition the time axis into segments by the delivery time of
updates {Um − 1}∞m=2, i.e., [1 : ij +1], . . ., [(Um − 1)i +m :
(Um+1 − 1)i + m], . . .. By Eqn. (40), the segment length is
either ij + 1 or (j + 1)i + 1. An example of the definition of
Um and the segments for the (1, 7, 7, 12) system is shown in
Fig. 11. We point it out that all updates in Fig. 11 are intended
for one user only while in Fig. 7, updates in the first row are
intended for the first user and updates in the second row are
intended for the second user.

Lemma 17: For the (1, N, N, B) system with j
ij+1 ≤ N

B <
j+1

(j+1)i+1 , i, j ∈ N, under policy π, the summed average AoI
over segment [(Um − 1)i + m : (Um+1 − 1)i + m] is lower
bounded by Δmin = 3i+1

2 + i+1
2(ij+1) .

Proof: 1) The segment length is ij+1, i.e., Um+1−Um =
j. The minimum AoI pattern over the segment can be specified
in Table V and the corresponding minimum average AoI is
3i+1

2 + i+1
2(ij+1) .

2) The segment length is (j + 1)i + 1, i.e., Um+1 − Um =
j+1. By a similar argument as in Lemma 7, we can show that
the minimum AoI pattern when Um is delivered, i.e., at the
end of time slot Umi+m, is i+2 instead of i+1. As a result,
the minimum AoI pattern over segment of length (j + 1)i +
1 can be specified in Table VI and the minimum average AoI
over the segment is 3i+1

2 + 3i+1
2[(j+1)i+1] , which is greater than

3i+1
2 + i+1

2(ij+1) .

Combining the two cases, the average AoI over any segment
is lower bounded by Δmin.

Remark 8: Note that for all i, j ∈ N, the minimum average
AoI over the first �i + 1 time slots in each segment [(Um −
1)i + m : (Um+1 − 1)i + m] is monotonically decreasing in �
for � ∈ [1 : Um+1 − Um].

Fig. 12. AoI evolution over an extended block. The dashed line is the AoI
evolution if idling period does not exist.

Next, we relate the AoI pattern under π with block Bu. The
updating policy π over [1, lu] is identical to a block Bu except
that the DoF at time slot lu may not be exhausted. Partition
Bu into segments [1 : ij + 1], . . ., [(Umu−1 − 1)i + mu − 1 :
(Umu −1)i+mu−1] and a residue [(Umu−1−1)i+mu : lu],
where mu = max{m : Um < lu}. According to Remark 8,
the average AoI of the residue is lower bounded by Δmin.

For block Bu,v, the lower bound Δmin still holds as
summarized in the following lemma.

Lemma 18: For the (1, N, N, B) system with j
ij+1 ≤ N

B <
j+1

(j+1)i+1 , i, j ∈ N, the summed average AoI over Bu,v is
lower bounded by Δmin = 3i+1

2 + i+1
2(ij+1) .

Proof: Assume Bu,v starts at time slot 1. Let δ0 be the
AoI at time zero, v + t be the first update delivery time and
v + lu be the end of block Bu,v . Then, the existence of idling
time slots affects the AoI evolution until v+ t. By Lemma 16,
δ0 ≥ i + 1 and t ≥ i + 1.

Let A1 be the AoI increment induced by the idling time
slots, as shown by the shaded area in Fig. 12. Denote A2 be
the summed AoI over Bu when no idling time slot is present,
corresponding to unshaded aread in Fig. 12. We have

A1

v
=

1
v

(
v∑

�=1

(δ0 + �) + v · t
)

= 2i + 2 +
v + 1

2

≥ 3i + 1
2

+
i + 1

2(ij + 1)
. (41)

Let ΔBu,v be the summed average AoI over Bu,v. Then

ΔBu,v =
A1 + A2

v + lu
≥ Δmin, (42)

where the last inequality follows from Lemma 8.
We summarize the converse result in the following theorem.
Theorem 8: For the (2, M, N, B) system with N ≥ M

2 and
M/B ∈ [ j

ij+1 , j+1
(j+1)i+1 ), i, j ∈ N, the summed average AoI

under any policy π ∈ Π0 is lower bounded by Δmin = 3i +
1 + i+1

ij+1 .
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