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Abstract—We propose a novel uplink communication method,
coined random orthogonalization, for federated learning (FL) in
a massive multiple-input and multiple-output (MIMO) wireless
system. The key novelty of random orthogonalization comes from
the tight coupling of FL model aggregation and two unique
characteristics of massive MIMO – channel hardening and
favorable propagation. As a result, random orthogonalization can
achieve natural over-the-air model aggregation without requiring
transmitter side channel state information, while significantly
reducing the channel estimation overhead at the receiver. Theo-
retical analyses with respect to both communication and machine
learning performances are carried out. In particular, an explicit
relationship among the convergence rate, the number of clients
and the number of antennas is established. Experimental results
validate the effectiveness and efficiency of random orthogonal-
ization for FL in massive MIMO.

Index Terms—Federated Learning; Convergence Analysis;
Massive MIMO.

I. INTRODUCTION

Communication overhead is widely considered one of the

primary bottlenecks for federated learning (FL) [1], [2], as a

FL task consists of multiple learning rounds, each of which

requires uplink and downlink model exchange between clients

and the server. Compared with downlink broadcasting, uplink

communication is more challenging in FL. Due to the strigent

power constraint at edge devices, channel noise and fading

have more conspicuous impacts on uplink communications.

More importantly, the limited uplink communication resources

may severely limit the scalability of FL, negatively affecting

one of its primary features [3].

To tackle the scalability problem in FL uplink commu-

nications, several over-the-air computation (also known as

AirComp) mechanisms have been exploited in wireless FL

(see [4] and the references therein). Instead of decoding the

individual local models of each client and then aggregating,

AirComp allows multiple clients to transmit uplink signals

in a superpositioned fashion, and decodes the average model

(global model) directly at the FL server. Zhu et al. [5] propose

an analog aggregation framework which “inverts” the fading

channel at each transmitter, so that the sum model can be

directly obtained at the server. However, the fundamental

limitation of analog aggregation is that it requires channel state
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information at transmitter (CSIT). The process of enabling

CSIT is complicated and the precision of CSIT is often

worse than the channel state information at receiver (CSIR).

Besides, analog aggregation essentially requires a channel

inversion power control, which is well known to “blow up”

when channel is in deep fade. Moreover, analog aggregation

does not naturally extend to multiple-input and multiple-output

(MIMO) systems where the uplink channels become vectors,

which makes channel inversions at the transmitters nontrivial.

This paper aims at designing a simple-yet-effective uplink

FL communication and model aggregation method. To address

the scalability challenge in FL, we explore another design

degree of freedom (d.o.f.) in modern wireless systems: massive

MIMO. The proposed framework only requires the BS to

estimate a summation channel, which significantly alleviates

the burden on uplink channel estimation in FL. Moreover,

this approach is agnostic to the number of clients, making

it attractive for the scalability of FL. By tightly integrating

the channel hardening and favorable propagation properties

of massive MIMO, the proposed scheme, coined random or-

thogonalization, allows the BS to directly compute the global

model via a simple linear projection operation, thus achieving

extremely low complexity and low latency. To analyze the per-

formances of random orthogonalization, we derive the Cramer-

Rao lower bounds (CRLBs) of the average model estimation

as a theoretical benchmark. Moreover, taking both interference

and noise into consideration, a novel convergence bound of

FL is derived for the proposed method over massive MIMO

channels. Notably, we establish an explicit relationship among

the convergence rate, the number of clients K, and the number

of antennas M , which provides practical design guidance for

wireless FL. Numerical results validate the effectiveness and

efficiency of the proposed method.

The potential of MIMO for wireless FL has attracted interest

recently. MIMO beamforming design to optimize FL has been

studied in [6], [7]. Coding, quantization, and compressive

sensing over a (massive) MIMO channel for FL has been

studied in [8]–[10]. Nevertheless, none of these works tightly

incorporates the unique properties of massive MIMO in the

FL uplink communication design. On the other hand, massive

MIMO can also be utilized in a straightforward manner, e.g.,

one can use traditional MIMO decoders such as zero-forcing

(ZF) or minimum mean-square-error (MMSE) to estimate each

local model, and then compute the global model. However,
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this heuristic approach requires large channel estimation over-

head, especially in massive MIMO. Decoding individual local

models also makes it easier for the server to sketch the data

distribution of a client. Moreover, matrix inversion operations

in ZF or MMSE detectors are computationally demanding,

which increases the complexity and latency.

II. SYSTEM MODEL

A. FL Model

Consider a FL task with a central server and K clients. Each

client k ∈ [K] stores a (disjoint) local dataset Dk, with its size

denoted by Dk. The size of the total data is D ,
∑

k∈[K] Dk.

We use fk(w) to denote the local loss function at client k,

which measures how well a machine learning (ML) model

with parameter w ∈ R
d fits its local dataset. The global objec-

tive function over all K clients is f(w) =
∑

k∈[K] pkfk(w),

where pk = Dk

D is the weight of each local loss function,

and the purpose of FL is to distributively find the optimal

model parameter w∗ that minimizes the global loss function:

w∗ , argminw∈Rd f(w). A typical wireless FL pipeline

is illustrated in Fig. 1. Specifically, this pipeline iteratively

executes the following steps at the t-th learning round.

1) Downlink communication. The BS broadcasts the cur-

rent global model wt to all devices over the downlink

wireless channel.

2) Local computation. Each client uses its local data to

train a local model improved upon the received global

model wt. We assume that mini-batch stochastic gradient

descent (SGD) is used to minimize the local loss function.

The parameter is updated iteratively (for E steps) at client

k as: wk
t,0 = wt;w

k
t,τ = wk

t,τ−1− ηt∇f̃k(w
k
t,τ−1); ∀τ =

1, · · · , E;wk
t+1 = wk

t,E , where ∇f̃k(w) denotes the

mini-batch SGD operation at client k on model w.

3) Uplink communication. Each client uploads its latest

local model to the server synchronously over the uplink

wireless channel.

4) Server Aggregation. The BS aggregates the received

noisy local models w̃k
t+1 to generate a new global model:

wt+1 = Σk∈[K]pkw̃
k
t+1. For simplicity, we assume that

each local dataset has equal size, hence pk = 1
K .

This work focuses on steps 3 and 4 in the FL pipeline.

In particular, we take advantage of the unique properties of

massive MIMO to design efficient FL uplink communication

and server aggregation.

B. Communication Model

Consider a massive MIMO system equipped with M anten-

nas at the BS (server) where K single-antenna devices (clients)

are involved in the aforementioned FL task. At the uplink

step of the t-th round, each client transmits the differential

between the received global model and the computed new local

model xkt = wt − wk
t+1 ∈ R

d, ∀k ∈ [K] to the BS1, where

xkt , [xk
1,t, · · · , xk

i,t, · · · , xk
d,t]

T . To simplify the notation,

1The parameter normalization and de-normalization procedure in wireless
FL follows the same as that in the Appendix of [5].

Fig. 1. The wireless FL pipeline.

we omit index t by using xk,i instead of xk
i,t barring any

confusion. We assume that each client transmits every element

of the differential model {xk,i}di=1 via d shared time slots2.

For a given element xk,i, the received signal at the BS is

yi =
√
P

∑

k∈[K]

hkxk,i + ni, ∀i = 1, · · · , d, (1)

where P is the maximum transmit power of each client,

hk ∈ C
M×1 is the wireless channel between k-th client

and BS, and ni ∈ C
M×1 is the uplink noise. We assume

normalized symbol power E ‖xk,i‖2 = 1, normalized Rayleigh

block fading channel3 hk ∼ CN (0, 1
M I) in d slots, and

independent and identically distributed (i.i.d.) Gaussian noise

ni ∼ CN (0, σ2I). We define the signal-to-noise ratio (SNR)

as SNR , P/σ2, and w.l.o.g. we set P = 1. Denoting

H , [h1, · · · ,hK ] ∈ C
M×K and xi , [x1,i, · · · , xK,i]

T ∈
R

K×1, ∀i = 1, · · · , d, the received signal4 can be written as

yi = Hxi + ni. (2)

Eqn. (2) is a standard MIMO model and traditional MIMO

decoders can be adopted to estimate x̂i = [x̂1,i, · · · , x̂K,i]
T

.

However, as discussed before, decoding {xk,i}di=1 individually

and obtaining the aggregated parameter x̃i ,
∑

k∈[K] x̂k,i

by a summation is inefficient. We propose a novel method

that allows the BS to compute x̃i directly. Note that after BS

decoding all aggregated parameter x̃t , [x̃1, · · · , x̃d]
T

in d
slots, it can compute the new global model as

wt+1 = wt +
1

K
x̃t. (3)

III. RANDOM ORTHOGONALIZATION

We study a wireless FL framework where the global model

can be directly obtained at the BS via a simple operation.

By exploring favorable propagation and channel hardening

in massive MIMO, our proposed FL framework obtains the

global model by the following three main steps.

2In general, differential model parameters can be transmitted over any d

shared time-frequency resources. For simplicity, we use d time slots here.
3Large-scale pathloss and shadowing effect is assumed to be taken care of

by, e.g., open loop power control [11].
4For simplicity, we assume real signals {xk,i}

d
i=1 are transmitted in this

paper. It can be easily extended to complex signals by stacking two real model
parameters into a complex signal, so that the full d.o.f. is utilized.
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Fig. 2. An illustration of the proposed uplink FL design with massive MIMO.

(1) Uplink channel summation. The BS first schedules

all participating clients to transmit a common pilot signal s
synchronously. The received signal at the BS is

ys =
∑

k∈[K]

hks+ ns,

so that the BS can estimate the summation of channel vectors

hs ,
∑

k∈[K] hk from the received signal ys (e.g., via a

maximum likelihood estimator). For simplicity, we assume

perfect sum channel estimation at the BS.

(2) Uplink model transmission. All clients transmit model

differential parameters {xk,i}di=1 to the BS in d time slots.

The received signal for each differential model element is

yi =
∑

k∈[K]

hkxk,i + ni, ∀i = 1, · · · , d.

(3) Receiver computation. The BS estimates each aggre-

gated parameter via a simple linear projection operation:

x̃i = hH
s yi =

∑

k∈[K]

hH
k

∑

k∈[K]

hkxk,i +
∑

k∈[K]

hH
k ni

(a)
=

∑

k∈[K]

hH
k hkxk,i

︸ ︷︷ ︸

Signal

+
∑

k∈[K]

∑

j∈[K],j 6=k

hH
k hjxj,i

︸ ︷︷ ︸

Interference

+
∑

k∈[K]

hH
k ni

︸ ︷︷ ︸

noise

(b)≈
∑

k∈[K]

xk,i, ∀i = 1, · · · , d. (4)

The above three-step procedure is illustrated in Fig. 2. Based

on Eqn. (4), BS then computes the global model via Eqn. (3)

and begins the next communication round. As shown in part

(a) of Eqn. (4), inner product hH
s yi can be regarded as the

combination of three parts: signal, interference, and noise.

We next show that, taking advantage of two fundamental

properties of massive MIMO, the approximation (b) in Eqn. (4)

is asymptotically error-free, as the number of antennas at the

BS M goes to infinity.

Channel hardening. Since each element of hk is i.i.d.

complex Gaussian, by the law of large numbers, massive

MIMO enjoys channel hardening [12]:

hH
k hk → 1, as M → ∞.

In practical systems, when M is large but finite, we have

Eh




∑

k∈[K]

hH
k hkxk,i



 =
∑

k∈[K]

xk,i, (5)

and

Varh




∑

k∈[K]

h
H
k hkxk,i



 =

∑

k∈[K] x
2
k,i

M
(6)

for the signal part of (4).

Favorable propagation. Since channels between different

users are independent random vectors, massive MIMO also

offers favorable propagation [12]:

hH
k hj → 0, as M → ∞, ∀k 6= j.

Similarly, when M is finite, we have

Eh




∑

k∈[K]

∑

j∈[K],j 6=k

h
H
k hjxj,i



 = 0, (7)

and

Varh




∑

k∈[K]

∑

j∈[K],j 6=k

h
H
k hjxj,i



 =
(K − 1)

∑

k∈[K] x
2
k,i

M
. (8)

Furthermore, the expectation of the noise part in (4) is

zero. Therefore, x̃i in Eqn. (4) is an unbiased estimate of the

average model. For a given K, the variances of both signal

and interference decrease in the order of O(1/M), which

shows that massive MIMO offers random orthogonality

for analog aggregation over wireless channels. In particular,

the asymptotic element-wise orthogonality of channel vector

ensures channel hardening, and the asymptotic vector-wise

orthogonality among different wireless channel vectors pro-

vides favorable propagation, which make the linear projection

operation hH
s yi an ideal fit for FL.

To gain some insight of random orthogonality, we ap-

proximate the average signal-to-interference-plus-noise-ratio

(SINR) after the operation in Eqn. (4) as

E[SINRi] ≈

Eh,x

∥
∥
∥
∑

k∈[K] h
H
k hkxk,i

∥
∥
∥

2

Eh,n,x

∥
∥
∥
∑

k∈[K]

∑

j∈[K],j 6=k h
H
k hjxj,i +

∑

k∈[K] h
H
k ni

∥
∥
∥

2

=
M

K − 1 + 1/SNR
,

(9)
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which grows linearly with M for a fixed K. We note that

Eqn. (9) is an approximate expression for SINR but it sheds

light into the relationship between K and M . This approxi-

mation, however, is not used in the convergence analysis of

FL with random orthogonalization in Section IV-B.

Remark 1. Unlike the analog aggregation method in [5],

random orthogonalization does not require any CSIT, and only

requires the receiver to estimate a summation channel hs,

which is 1/K of the channel estimation overhead compared

with the AirComp method in [6] and traditional MIMO

decoders. Moreover, the global model is obtained after a single

linear projection, which improves the privacy and reduces the

system latency.

Remark 2. The proposed framework assumes a perfect esti-

mation of hs and requires channel hardening and favorable

propagation. In practical systems, to improve the accuracy

of the estimate ĥs, BS can adopt multiple pilots for channel

estimation. We will provide more details on the robustness

of the proposed scheme over imperfect ĥs and evaluate the

circumstances where channel hardening and favorable prop-

agation are not fully offered, e.g. correlated channels, in the

journal version.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performances of random or-

thogonalization in FL. We first derive CRLBs of the estimates

of global model parameters as the theoretical benchmark of

the proposed method. Then, by an ML model convergence

analysis, we investigate the relationship between the number

of involved clients K and the number of BS antennas M .

We show that random orthogonalization has the potential to

achieve nearly the same convergence rate as the interference-

free case in massive MIMO systems.

A. Cramer-Rao Lower Bounds

Recall that the received signal is yi = Hxi +ni. Denoting

µ = Hxi, we have that yi ∼ CN (µ, 1
SNR

I). The Fisher

information matrix (FIM) of the estimation of xi is

F = 2 · SNR · Re

[
∂H

µ(xi)

∂xi

∂µ(xi)

∂xi

]

.

After inserting
∂µ(xi)
∂xi

= H into FIM, we have F = 2 ·
SNR · Re(HHH). The CRLBs are given by the inverse of

the FIM Cx̂i
= F−1. CRLB expresses a lower bound on the

variance of unbiased estimators, stating that the variance of

any such estimator is at least as high as the inverse of the

FIM. Eqn. (4) has shown that the proposed method leads to

an unbiased estimation of the global model; hence we can use

the sum of all diagonal elements of Cx̂ as the lower bound of

the mean squared error (MSE) E ‖xi − x̂i‖2 to evaluate the

performance of global model estimation.

B. Convergence analysis

To simplify the analysis, we assume5 E = 1, which is

also referred to as parallel SGD [13], and make the following

standard assumptions that are commonly adopted in the con-

vergence analysis of FEDAVG and its variants; see [13]–[16].

Assumption 1. L-smooth: ∀ v and w, ‖fk(v)− fk(w)‖ ≤
L ‖v −w‖;

Assumption 2. µ-strongly convex: ∀ v and w,

〈fk(v)− fk(w),v −w〉 ≥ µ ‖v −w‖2;

Assumption 3. Unbiased SGD: ∀k ∈ [K], E[∇f̃k(w)] =
∇fk(w);

Assumption 4. Uniformly bounded gradient: ∀k ∈ [K],

E

∥
∥
∥∇f̃k(w)

∥
∥
∥

2

≤ H2 for all mini-batch data.

Lemma 1 (One-step convergence). Based on Assumptions 1-

4 and selecting learning rate ηt ≤ 1/(2µ), ∀t ∈ [T ], the

following inequality holds for parallel SGD:

E ‖wt+1 −w
∗‖

2
≤ (1− 2µηt)E ‖wt −w

∗‖
2

+ η2
t

[

1 +
K

M
+

1

SNR

]
H2

K
.

(10)

Proof. We introduce an auxiliary error-free global model

w̄t+1 = 1
Kwk

t+1. We first have

E ‖wt+1 −w
∗‖

2
= E ‖wt+1 − w̄t+1 + w̄t+1 −w

∗‖
2

= E ‖wt+1 − w̄t+1‖
2

︸ ︷︷ ︸

A1

+E ‖w̄t+1 −w
∗‖

2

︸ ︷︷ ︸

A2

+ 2E 〈wt+1 − w̄t+1, w̄t+1 −w
∗〉

︸ ︷︷ ︸

A3

.

(11)

Note that E[A3] = 0. Then, E[A2] can be obtained from a

well-known result [14]:

E ‖wt+1 −w
∗‖

2
≤ (1− 2µηt)E ‖wt −w

∗‖
2
+ η2

t

H2

K
. (12)

We finally focus on E[A1]. Based on (6) and (8), we have

E ‖wt+1 − w̄t+1‖
2 = E

∥
∥
∥
∥
∥
∥

1

K

∑

k∈[K]

xk −
1

K

∑

k∈[K]

x̂k

∥
∥
∥
∥
∥
∥

2

=
1

K2
E

∥
∥
∥
∥
∥
∥

∑

k∈[K]

h
H
k hkxk +

∑

k∈[K]

∑

j∈[K],j 6=k

h
H
k hjxj

+Nt+1

∑

k∈[K]

hk −
∑

k∈[K]

xk

∥
∥
∥
∥
∥
∥

2

= η2
t

∑

k∈[K] E

∥
∥
∥∇f̃k(w)

∥
∥
∥

2

K2

(
K

M
+

1

SNR

)

≤ η2
t

H2

K

(
K

M
+

1

SNR

)

,

(13)

where Nt+1 ∈ C
d×M is the stack of noise nH

i ∀i = 1, · · · , d.

Plugging (12) and (13) back to (11) completes the proof.

5We will address the general case of E > 1 in the journal version.
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Building on Lemma 1, we next present a complete con-

vergence upper bound for random orthogonalization. Due to

space limitation, the proof of Theorem 1 is omitted and will

be reported in the journal version.

Theorem 1 (Convergence for random orthogonalization).

With Assumptions 1-4, for some γ ≥ 0, if we select the

learning rate as ηt =
2

µ(t+γ) , we have

E[f(wt)]− f∗ ≤ L

2(t+ γ)

[
4B

µ2
+ (1 + γ) ‖w0 −w∗‖2

]

,

(14)

for any t ≥ 1, where

B ,

[

1 +
K

M
+

1

SNR

]
H2

K
. (15)

Lemma 1 and Theorem 1 illustrate that there are two main

factors that influence the convergence rate of FL in the high

SNR regime: variance reduction and channel interference.

In particular, the definition of B in (15), which appears in

both Lemma 1 and Theorem 1, captures the joint impact of

both factors. The nature of distributed SGD suggests that, for

a fixed mini-batch size at each client, involving K devices

enjoys a 1
K variance reduction of stochastic gradient at each

SGD iteration [17], which is captured by the H2

K term in (10)

and (14). However, due to the existence of interference, the

convergence rate is determined by both variance reduction

and channel interference, shown as H2

K and
(K/M+1/SNR)H2

K
terms in (15). This suggests that the desired variance reduction

may be adversely impacted if channel interference dominates

the convergence bound. In particular, when M >> K,

we have 1
K >> K/M+1/SNR

K when SNR is high, and the

system enjoys almost the same variance reduction as the

interference-free case. However, in the case of K >> M ,

we have
(K/M+1/SNR)

K ≈ 1
M >> 1

K , and H2

M dominates the

convergence bound. In this case, blindly increasing the number

of clients is unwise, as it does not bring the advantage of

variance reduction.

Remark 3. In massive MIMO, a BS is usually equipped with

hundreds of antennas. Although there may exist large number

of users participating in FL, only a small number of them

are simultaneously active [6], especially in millimeter wave

cells whose coverage are usually small. Both factors indicate

that K << M often holds in typical massive MIMO systems.

The analysis reveals that our proposed framework enjoys

nearly the same interference-free convergence rate with low

communication and computation overhead in massive MIMO

systems.

V. EXPERIMENTS

We evaluate the performances of random orthogonalization

for uplink FL communications through numerical experiments.

From a communication performance perspective, we compare

the proposed method with the traditional MIMO detector to

compute the global model. Then, we use a real-world FL task

to evaluate the learning performance of the proposed method.
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A. Communication performance

We consider a massive MIMO BS with M = 256, 512,

and 1024 antennas, with K = 8 active users participating in

a FL task. We assume a Rayleigh fading channel model, i.e.,

hk ∼ CN (0, 1
M I), for each user, and use the normalized mean

square error (NMSE) of the computed global model to evaluate

the system performance. All NMSE results in the simulation

are obtained from 2, 000 Monte Carlo experiments. Fig. 3

compares the NMSE performance of the proposed scheme

with a MMSE decoder as well as CRLB under different

system SNRs. As illustrated in Fig. 3, the proposed method

performs nearly identically to the MMSE decoder in low

and moderate SNRs under different antenna configurations

(see SNR ≤ 12 dB). As the SNR increases, the dominant

factor affecting system performances becomes the interference

among different users. Unlike the MMSE decoder that can

cancel all interferences when K ≤ M at high SNR, Eqn. (9)

shows that, for a given K and M , the proposed framework

has a fixed (approximate) SIR = K−1
M as SNR → ∞,

which explains why the performance of the proposed scheme
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TABLE I
COMPUTATION TIME COMPARISON BETWEEN RANDOM

ORTHOGONALIZATION AND MMSE DECODER

# antennas Total CPU time (second)

(M) Proposed MMSE Proposed/MMSE

256 0.0186 2.7141 0.68%

512 0.0303 12.4155 0.24%

1024 0.0448 82.3530 0.05%

deteriorates compared with MMSE at high SNR. However,

this issue disappears naturally as the number of BS antennas

increases. It can be seen in Fig. 3 that the performance gap

between the proposed method and MMSE reduces, from about

5 dB when M = 256 to about 2 dB when M = 1024 at

SNR = 20 dB. Note that our method only requires 1/K of

channel estimation overheard compared with MMSE, and this

advantage is more significant when the BS is equipped with

larger number of antennas.

We next focus on the low-latency benefit of random or-

thogonalization. Table I compares the computation time of the

proposed scheme and MMSE decoder with SNR = 10 dB.

The total CPU time is the cumulative time of each algorithm

over 2, 000 Monte Carlo experiments. We see that the time

consumption of random orthogonalization is less than 1% of

the MMSE baseline. Especially, when M = 1024, despite the

0.3 dB NMSE performance loss compared with the MMSE

decoder (as shown in Fig. 3), the computation time of the

proposed method is only 0.05% of the MMSE baseline. The

results suggest that the random orthogonalization framework

is attractive in massive MIMO systems, because it has nearly

identical NMSE performance to CRLB but requires much less

channel estimation overhead and achieves extremely lower

system latency than the MMSE decoder.

B. Learning performance

We use a classification task to evaluate the ML model

accuracy and convergence rate of the proposed random orthog-

onalization approach. In particular, we implement a support

vector machine (SVM) to classify even and odd numbers in

the MNIST handwritten-digit dataset [18], with d = 784. We

consider a BS with M = 256 antennas and K = 8 active

clients involved in this task. The size of the local training

set at each client is 500, the size of the test set is 2, 000,

and we set E = 1. Fig. 4 reports the training loss and test

accuracy of the proposed method and MMSE decoder with

SNR = 10 dB. Although the MSE of the global model at the

BS during the learning process is about 2 dB worse for random

orthogonalization as shown in Fig. 3, the actual learning

performances of the two methods are nearly identical, further

validating the effectiveness of random orthogonalization.

VI. CONCLUSION

Leveraging the unique characteristics of channel hardening

and favorable propagation in massive MIMO, we have pro-

posed a novel uplink communication and processing method,

coined random orthogonalization, that significantly reduces

the channel estimation overhead while achieving natural over-

the-air model aggregation without requiring transmitter side

channel state information. Theoretical performance analyses,

from both communication (CRLB) and machine learning

(model convergence rate) perspectives, have been carried out.

The theoretical results suggested that random orthogonaliza-

tion asymptotically achieves the same convergence rate as

vanilla FL with perfect communications, and were further

validated with numerical experiments. More importantly, ran-

dom orthogonalization improves the scalability of FL, which

is a critical feature that is often bottlenecked by the limited

wireless resources.
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