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1. Introduction

Let X be a compact connected smooth 3-manifold. We let Diff(X) and Met(X)
denote the group of smooth diffeomorphisms of X, and the set of Riemannian
metrics on X, respectively, equipped with their C∞-topologies. Our focus in this
paper will be on Conjecture 1.1:

Conjecture 1.1 (Generalized Smale Conjecture [Sma61,Gab01,HKMR12]). If g
is a Riemannian metric of constant sectional curvature ±1 on X, then the inclusion
Isom(X, g) ↪→ Diff(X) is a homotopy equivalence.

Smale’s original conjecture was for the case X = S3 [Sma61]. Cerf proved
that the inclusion Isom(S3, g) → Diff(S3) induces a bijection on path components
[Cer64a, Cer64b, Cer64c, Cer64d], and the full conjecture was proven by Hatcher
[Hat83]. Hatcher used a blend of combinatorial and smooth techniques to show that
the space of smoothly embedded 2-spheres in R3 is contractible. This is equivalent
to the assertion that O(4) � Isom(S3, g) → Diff(S3) is a homotopy equivalence
when g has sectional curvature 1. Other spherical space forms were studied start-
ing in the late 1970s. Through the work of a number of authors it was shown that
the inclusion Isom(X) → Diff(X) induces a bijection on path components for any
spherical space form X [Asa78,Rub79,CS79,Bon83,RB84,BO91]. Conjecture 1.1
was previously known for certain spherical space forms – those containing geometri-
cally incompressible one-sided Klein bottles (prism and quaternionic manifolds), as
well as Lens spaces other than RP 3 [Iva82,Iva84,HKMR12]. In a subsequent paper
[BK19] we provide a different proof of Conjecture 1.1 which covers all spherical
space forms, including RP 3. The conjecture was proven for hyperbolic manifolds
by Hatcher and Ivanov in the Haken case [Iva76,Hat76] (extending the earlier work
of Waldhausen and Laudenbach [Wal68,Lau74]) and by Gabai in general [Gab01].
We recommend [HKMR12, Section 1] for a nice discussion of these results and other
background on diffeomorphism groups. See Figure 1 for an overview over the status
of Conjecture 1.1 prior to this work.

In this paper we will use Ricci flow through singularities to prove:

Theorem 1.2. Let (X, g) be a compact connected Riemannian 3-manifold of con-
stant sectional curvature k ∈ {±1}, other than S3 or RP 3, and let MetK≡k(X) ⊂
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S3 Hatcher 1983

RP 3 previously unknown

lens spaces �= RP 3
Ivanov 1984
Hong, Kalliongis, McCullough,
Rubinstein 2012

prism and quaternionic manifolds

tetrahedral manifolds previously unknown

octahedral manifolds previously unknown

icosahedral manifolds previously unknown

Haken hyperbolic manifolds Hatcher 1976, Ivanov 1976

general hyperbolic manifolds Gabai 2001

Figure 1. Overview over the status of the Generalized Smale Con-
jecture prior to this work

Met(X) be the space of Riemannian metrics on X of constant sectional curvature
k. Then MetK≡k(X) is contractible.

By a well-known argument (see Lemma 2.2), the contractibility of MetK≡k(X)
is equivalent to the validity of the Generalized Smale Conjecture for X. Hence
Theorem 1.2 confirms the Generalized Smale Conjecture for several new infinite
families of spherical space forms (tetrahedral, octahedral, and icosahedral mani-
folds), thereby completing the proof of the Generalized Smale Conjecture, apart
from the RP 3 case. It also provides a new proof for the other spherical space
forms, and for hyperbolic manifolds. The proof of Theorem 1.2 exploits Ricci flow
through singularities as developed in the papers [KL17,BK22], and gives a concep-
tually simple treatment that works uniformly for all manifolds X as in the theorem.
By contrast, the previously known cases of Theorem 1.2 were established using tra-
ditional tools from 3-manifold topology. They rely on the presence of certain types
of distinguished surfaces: geometrically incompressible Klein bottles or surfaces ob-
tained from sweepouts in the spherical space form cases [Iva82,Iva84,HKMR12], or
canonical solid tori arising from the Gabai’s insulator techniques in the hyperbolic
case [Gab01].

The method used in this paper breaks down for S3 and RP 3 due to the geometric
structure of the “thin” part of a Ricci flow through singularities. We will treat these
cases in a separate paper [BK19] using a more involved approach (still based on
Ricci flow). Ricci flow also gives a strategy for analyzing diffeomorphism groups of
some other families of 3-manifolds [BK21].

We remark that it has been a longstanding question whether it is possible to use
techniques from geometric analysis to analyze diffeomorphism groups in dimension
3 (see, for example, [Rub07]). There are a variety of natural variational approaches
to studying the space of 2-spheres in R3 (or S3) that break down due to the absence
of a Palais-Smale condition, because there are too many critical points, or because
the natural gradient flow does not respect embeddedness; analogous issues plague
other strategies based more directly on diffeomorphisms. Theorem 1.2 is the first
instance where techniques from geometric analysis have been successfully applied to
the study of diffeomorphism groups of 3-manifolds. This success depends crucially
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DIFFEOMORPHISM GROUPS OF 3-MANIFOLDS 3

on the recent results establishing existence and uniqueness of Ricci flow through
singularities for arbitrary initial conditions [KL17,BK22].

Informal sketch of proof. Let X be as in the statement of Theorem 1.2. To
simplify notation we will focus on the case in which X is a spherical space form;
at the end we comment on the modifications needed for the hyperbolic case. Thus
our aim is to show that MetK≡1(X) is contractible, which reduces to showing that
all of its homotopy groups are trivial.

Let gX ∈ MetK≡1(X) be a reference metric. It is a classical fact that any two
metrics in MetK≡1(X) are isometric.

Before proceeding, we first recall some the properties of Ricci flow through sin-
gularities, as established in [KL17, BK22]. We keep the discussion informal, and
refer the reader to [KL17, BK22] for more extensive presentations, and Section 2
for precise definitions and references.

For every g ∈ Met(X), there exists a singular Ricci flow with initial data (X, g).
This is a Ricci flow spacetime, i.e. a 4-manifold M equipped with a time function
t and time vector field ∂t, as well as a Riemannian metric g along time slices that
satisfies the Ricci flow equation. Locally, the spacetime looks like a piece of a Ricci
flow defined for a short time in some open subset of U ⊂ R3, and the trajectories
of the time vector field ∂t correspond to the spacetime tracks of points that are
motionless. The time-t slice Mt of M is the result of evolving the metric (X, g)
under Ricci flow for a duration t. For small t ≥ 0 this corresponds to the usual Ricci
flow, but singularities may develop subsequently. These result in noncompact and
possibly incomplete time slices; near its ends an asymptotic condition is imposed
on the metric. Note that the data M, t, ∂t, g describing a singular Ricci flow is
not singular itself, as it only describes the “regular part of the flow”. A flow that
includes singular points can be obtained by taking the metric completion of the
time-slice.

Although the structure of the spacetime M may be rather complicated, it still
has good topological and geometric properties:

(a) For every t, at most one connected component of the time slice Mt is diffeo-
morphic to X with possibly finitely many punctures, while the remaining
components are topologically trivial – copies of S3 with possibly finitely
many punctures.

(b) There is a T < ∞, depending only on bounds on the geometry of g, such
that Mt = ∅ for t ≥ T . We establish this fact using the extinction results
from [CM05,Per08], and the fact that X is prime and not aspherical.

(c) Let ω(g) ∈ (0, T ] be the supremum of the times t ∈ [0,∞) for which Mt has
a topologically nontrivial component. As t → ω(g), the time slice Mt has a
unique component Ct diffeomorphic to X, and Ct becomes asymptotically
round as t → ω(g), i.e. the family of Riemannian manifolds (Ct)t<ω(g)

converges, modulo rescaling, to (X, gX).

We remark that assertion (c) is based on rigidity properties of κ-solutions (the
geometric models for the large curvature part of M), and it makes use of the
assumption that X is not diffeomorphic to S3 or RP 3 in order to exclude more
complicated geometric behavior as t → ω(g).
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Now consider a time t < ω(g) close to ω(g). By [KL17], there is a finite subset
St ⊂ Ct such that the entire complement Ct \ St lies in the domain of the time-
(−t)-flow of the time vector field. In other words, every point in Ct \ St lies on a
trajectory of the time vector field starting from the time-0 slice M0 = (X, g). Hence
we may pushforward the metric on Ct \ St under the flow, to obtain a Riemannian
metric ǧt on open subset Wg(t) of the time-0 slice M0 = X. We prove that ǧt
converges, modulo rescaling, to a metric ǧ ∈ MetK≡1(Wg), where Wg ⊂ X is an
open subset, and the Riemannian manifold (Wg, ǧ) is isometric (X \ Sg, gX) for
some finite set Sg.

To summarize, using singular Ricci flow we have taken an arbitrary Riemann-
ian metric g ∈ Met(X), and produced a Riemannian metric of constant sectional
curvature 1, albeit one defined only on some open subset Wg ⊂ X. We point out
that although Wg might in principle be rather wild, it still contains the interesting
topology of X because it is diffeomorphic to X \ Sg for some finite set Sg ⊂ X.

Note that if g has constant sectional curvature 1, then M corresponds to an
ordinary Ricci flow and we have Ct = Mt, Wg(t) = X for all t < ω(g), and
(Wg, ǧ) = (X, g).

Since the singular Ricci flow M is unique up to isometry [BK22], the partially
defined constant curvature metric (Wg, ǧ) is canonically attached to g. Furthermore,
using the stability theorem [BK22] and [FGKO15], we show that (Wg, ǧ) depends
continuously on g, in an appropriate sense.

We now return to the task of showing that the homotopy groups of MetK≡1(X)
are trivial.

Pick m ≥ 0, and consider a (continuous) map h : Sm → MetK≡1(X). Our goal

is to extend h to a map ĥ : Dm+1 → MetK≡1(X). Since Met(X) is contractible,

there is an extension g : Dm+1 → Met(X) of the composition Sm h→ MetK≡1(X) ↪→
Met(X).

For every p ∈ Dm+1, let (Wg(p), ǧ(p)) be the partially defined metric described
in the preceding paragraphs. Note that (Wg(p), ǧ(p)) = (X, g(p)) when p ∈ Sm.
To complete the proof, we show that after shrinking Wg(p) slightly, one can extend

ǧ(p) to a metric ĥ(p) with sectional curvature 1 defined on all of X, where ĥ(p)
depends continuously on p.

We now give an indication of the extension process. Pick p ∈ Dm+1. Since Wg(p)

is diffeomorphic to X \ Sg(p) and X is irreducible, there is a compact domain with

boundary Zp ⊂ Wp, such that the closure X \ Zp is a finite disjoint collection of
closed 3-disks. We would like to extend the restriction ǧ(p)

∣∣Zp across each of the

3-disk components of X \ Zp to obtain ĥ(p) ∈ MetK≡1(X). Pick one such 3-disk
D. It is not hard to see that the extension problem is equivalent to an extension
problem for embeddings: for a suitable open neighborhood U of the boundary ∂D
in D, one is given a smooth embedding of U into the round 3-sphere, and one has
to extend this to an embedding D → S3. Hatcher’s theorem [Hat83] implies that
this problem has a contractible solution set. To handle the full extension problem,
we take a suitable fine triangulation of Dm+1, and carry out a parametrized analog
of this extension procedure, by induction over the skeleta. This is similar in spirit
to an argument using obstruction theory, where the obstruction group is trivial.
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We now discuss the hyperbolic case. Suppose X is a hyperbolic manifold, and
pick a hyperbolic metric gX ∈ MetK≡−1(X); for simplicity we assume here that X
is orientable.

Any g ∈ Met(X) can be evolved into a singular Ricci flow M as before. Its prop-
erties are similar to those in the spherical space form case, except that assertions
(b) and (c) have to be modified: for every t ∈ [0,∞) there is a unique compo-
nent Ct of Mt that is diffeomorphic to a punctured copy of X, and as t → ∞ the
family of Riemannian manifolds (Ct)t<∞ converges, modulo rescaling, to (X, gX).
Proceeding as before we use this to construct a canonical partially defined metric
(Wg, ǧ) with sectional curvature −1, where Wg ⊂ X, and (Wg, ǧ) is isometric to
(X \ Sg, gX) for some finite subset Sg ⊂ X. The rest of the proof is essentially the
same as for spherical space forms.

Remark 1.3. We point out that one may use singular Ricci flow to show that any
two metrics g(0), g(1) ∈ MetK≡1(X) are isometric, without appealing to Reidemeis-
ter or Whitehead torsion [Mil66]. (Of course the Ricci flow proof is vastly more
complicated than proofs using torsion, since it invokes Perelman’s work as well as
[BK22].) The idea is as follows. Let g : [0, 1] → Met(X) be a path from g(0) to
g(1). For every p ∈ [0, 1], we let Mp be the singular Ricci flow with Mp

0 = (X, gt).
As explained in the sketch above, the spacetime Mp contains a family {Cp

t } of time
slices that become asymptotically round as t → ω(g(p)). This may be used to con-

struct a family {(Cp
, g(p))}p∈[0,1] of compact Riemannian manifolds with constant

sectional curvature 1 which interpolates between (X, g(0)) and (X, g(1)) and which
varies continuously in the smooth topology on Riemannian manifolds. Therefore
the set of isometry classes of such metrics, equipped with the smooth topology
on Riemannian manifolds, is connected. On the other hand, one knows that the
space of isometry classes is finite: this follows from the isometric classification of
spherical space forms, or alternatively, from a simple general argument based on
the finiteness of the set of irreducible representations of a finite group. Hence it
contains a single point.

The same remark also applies to the hyperbolic case – using singular Ricci flow
one can give a new proof of Mostow rigidity assuming only local rigidity of hy-
perbolic metrics (in the appropriate form). However, to carry this out one would
have to modify the existing large-time analysis slightly so that it only invokes local
rigidity rather than Mostow-Prasad rigidity.

Organization of the paper. In Section 2, we discuss some of the preliminary
material. We recall some topological definitions and results and define the space
of partially defined metrics PartMet(X). Then we provide a precise definition of
singular Ricci flows and related terminology and state the existence, uniqueness and
convergence results for singular Ricci flows, on which our proof relies. Lastly, we list
the important topological and geometric properties of singular Ricci flows, which
will become important later. In Section 3, we describe a process that allows us to
extract a partially defined metric on the initial time slice from a singular Ricci flow;
this will lead to a canonical, continuous map of the form Met(X) → PartMet(X).
In Section 4, we extend these partially defined metrics to globally defined constant
curvature metrics via a topological construction. In Sections 5, 6, we combine our
results to prove Theorem 1.2 in the spherical and hyperbolic cases, respectively.
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6 RICHARD H. BAMLER AND BRUCE KLEINER

2. Preliminaries

2.1. Spaces of maps and metrics. IfM , N are smooth manifolds with boundary,
we let Embed(M,N) denote the set of smooth embeddings M → N equipped with
the C∞

loc-topology.
If M is a smooth manifold, we let Met(M) denote the set of smooth Riemannian

metrics on M equipped with the C∞
loc-topology. For k ∈ R, we let MetK≡k(M) be

the subspace of metrics with constant sectional curvature k.
We will need the following consequence of the Smale Conjecture [Hat83].

Lemma 2.1. Let Embed+(D
3, S3) ⊂ Embed(D3, S3) be the subset of orientation-

preserving embeddings, and let

π : Embed+(D
3, S3) −→ Embed(S2, S3)

be the map induced by restriction. Then:

(a) π : Embed+(D
3, S3) −→ Embed(S2, S3) is a fiber bundle with contractible

fiber.
(b) Let m ≥ 0. Suppose φm+1 : Dm+1 → Embed(S2, S3) is a continuous map

and φ̂m : Sm → Embed+(D
3, S3) is a lift of φm+1

∣∣Sm, i.e. π ◦ φ̂m =

φm+1

∣∣Sm. Then there is an extension φ̂m+1 : Dm+1 → Embed+(D
3, S3)

of φ̂m that is a lift of φm+1.

Proof. The fact that π is a fiber bundle is a standard consequence of isotopy ex-
tension, which we briefly recall (see [HKMR12]).

Given f0 ∈ Embed(S2, S3) there is an open neighborhood N(f0) of f0 and a
continuous map

Φ : N(f0) → Diff(S3)

such that for all f ∈ N(f0) we have f = Φ(f) ◦ f0. The map Φ may be obtained
by constructing a locally defined isotopy near f0(S

2) using normal exponential
maps, and then gluing this to the identity map with a partition of unity. Letting
F := π−1(f0), we obtain a bundle chart N(f0)×F → π−1(N(f0)) for π by sending
(f, φ) to Φ(f) ◦ φ.

By [Hat83, p.604], the subset

Diff(D3rel∂D3) :=
{
α ∈ Diff(D3) | α

∣∣
S2 = idS2

}
is contractible. If φ0 ∈ F , then we obtain a homeomorphism

Diff(D3rel∂D3) −→ F

by sending α to φ0 ◦ α. Hence F is also contractible. Thus assertion (a) holds.
Since π is a fiber bundle with contractible fiber, any map can be lifted relative

to its boundary. Hence assertion (b) holds. �
The following is well-known:

Lemma 2.2. Let X be a compact connected 3-manifold, and gX ∈ MetK≡k(X) for
k ∈ {±1}. Then:

• There is a fibration Diff(X) → MetK≡k(X) with fiber homeomorphic to
Isom(X, gX).

• Diff(X) and MetK≡k(X) are homotopy equivalent to CW complexes.
• MetK≡k(X) is contractible if and only if the inclusion Isom(X, gX) →
Diff(X) is a homotopy equivalence.
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Sketch of proof. The metric gX is unique up to isometry; this follows from Mostow
rigidity when k = −1, and by the isometric and smooth classification of spherical
space forms when k = 1. Therefore the action Diff(X) � MetK≡k(X) by push-
forward is transitive, with stabilizer Isom(X, gX). The space MetK≡k(X) is then
homeomorphic to the orbit space Diff(X)/ Isom(X, gX), and we have a fibration
Diff(X) → MetK≡k(X) with fiber homeomorphic to Isom(X, gX). The diffeomor-
phism group Diff(X) is a Frechet manifold that is locally diffeomorphic to the space
ΓC∞(TX) of C∞ vector fields on X. Using the orbit space representation, one gets
that MetK≡k(X) is a separable Frechet manifold modelled on a finite codimen-
sion closed subspace of ΓC∞(TX). Hence both spaces have the homotopy type
of CW complexes. Finally, using the exact homotopy sequence of the fibration
Diff(X) → MetK≡k(X), we get

MetK≡k(X) is contractible.

⇐⇒ MetK≡k(X) is weakly contractible.

⇐⇒ The inclusion Isom(X, gX) → Diff(X) is a weak homotopy equivalence.

⇐⇒ The inclusion Isom(X, gX) → Diff(X) is a homotopy equivalence.

�
We will also work with the collection of Riemannian metrics defined on different

subsets of a given manifold.

Definition 2.3 (Topology on partially defined metrics). Let M be a smooth mani-
fold, and let PartMet(M) be the set of partially defined Riemannian metrics on M ,
i.e. the set of pairs (U, h) where U ⊂ M is open and h is a smooth Riemannian met-
ric on U . We topologize PartMet(M) as follows. For every (U0, h0) ∈ PartMet(M),
K ⊂ U0 compact, k < ∞, and ε > 0, we let

U(U0, h0,K, k, ε) := {(U, h) ∈PartMet(X) | K ⊂ U, ‖(∇j
h0
(h− h0))(x)‖h0

< ε

for all x ∈ K, j ≤ k} .
The collection of all such subsets U(U0, h0,K, k, ε) is a basis for the topology on
PartMet(X).

Note that if Z is a metric space, then in order to verify that a map Z � z �→
(U(z), g(z)) ∈ PartMet(M) is continuous, it suffices to show that if zj → z∞ ∈ Z,
then for every compact subset K ⊂ U(z∞) we have K ⊂ U(zj) for large j, and
∇k

g(z∞)(g(zj)− g(z∞)) → 0 uniformly on K.

Remark 2.4. The topology on PartMet(M) has the somewhat alarming property of
being non-Hausdorff. This is due to the fact that it formalizes the lower semicon-
tinuous dependence of the open set U . It may be compared to the non-Hausdorff
topology on R generated by the set of open rays {(a,∞)}a∈R, which may be used
to characterize lower semicontinuous real-valued functions X → R.

2.2. Closeness and convergence of Riemannian manifolds. We now recall
notions of closeness for Riemannian manifolds.

Definition 2.5 (Geometric closeness). We say that a pointed Riemannian manifold
(M, g, x) is ε-close to another pointed Riemannian manifold (M, g, x) at scale
λ > 0 if there is a diffeomorphism onto its image

ψ : BM (x, ε−1) −→ M
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8 RICHARD H. BAMLER AND BRUCE KLEINER

such that ψ(x) = x and∥∥λ−2ψ∗g − g
∥∥
C[ε−1](BM (x,ε−1))

< ε.

Here the C [ε−1]-norm of a tensor h is defined to be the sum of the C0-norms of the
tensors h, ∇gh, ∇g,2h, . . . , ∇g,[ε−1]h with respect to the metric g. We say that
(M, g, x) is ε-close to (M, g, x) if it is ε-close at scale 1. We have analogous notions
for (unpointed) Riemannian manifolds: (M, g) is ε-close to (M, g) if there is a
diffeomorphism ψ : M → M such that∥∥ψ∗g − g

∥∥
C[ε−1](M)

< ε.

The notion of closeness provides a notion of convergence of sequences (or families)
of Riemannian manifolds, in the usual way.

2.3. Ricci flow spacetimes. We now recall the properties of singular Ricci flows
that will be essential in this paper. We refer the reader to [KL17,BK22] for more
details.

Definition 2.6 (Ricci flow spacetimes). A Ricci flow spacetime (starting at
time a ∈ R) is a tuple (M, t, ∂t, g) with the following properties:

(1) M is a smooth 4-manifold with (smooth) boundary ∂M.
(2) t : M → [a,∞) is a smooth function without critical points (called time

function). For any t ≥ a we denote byMt := t−1(t) ⊂ M the time-t-slice
of M.

(3) We have Ma = t−1(a) = ∂M, i.e. the initial time-slice is equal to the
boundary of M.

(4) ∂t is a smooth vector field (the time vector field), which satisfies ∂tt ≡ 1.
(5) g is a smooth inner product on the spatial subbundle ker(dt) ⊂ TM. For

any t ≥ a we denote by gt the restriction of g to the time-t-slice Mt (note
that gt is a Riemannian metric on Mt).

(6) g satisfies the Ricci flow equation: L∂t
g = −2Ric(g). Here Ric(g) denotes

the symmetric (0, 2)-tensor on ker(dt) that restricts to the Ricci tensor of
(Mt, gt) for all t ≥ a.

For any interval I ⊂ [a,∞) we also write MI = t−1(I) and call this subset the
time-slab of M over the time interval I. Curvature quantities on M, such as the
Riemannian curvature tensor Rm, the Ricci curvature Ric, or the scalar curvature R
will refer to the corresponding quantities with respect to the metric gt on each time-
slice. Tensorial quantities will be embedded using the splitting TM = ker(dt)⊕〈∂t〉.

Unless otherwise specified, we will implicitly take a = 0. When there is no chance
of confusion, we will usually abbreviate the tuple (M, t, ∂t, g) by M.

Definition 2.7 (Survival). Let (M, t, ∂t, g) be a Ricci flow spacetime and x ∈ M
be a point. Set t := t(x). Consider the maximal trajectory γx : I → M, I ⊂ [0,∞)
of the time-vector field ∂t such that γx(t) = x. Note that then t(γx(t

′)) = t′ for all
t′ ∈ I. For any t′ ∈ I we say that x survives until time t′, and we write

x(t′) := γx(t
′).

Similarly, if X ⊂ Mt is a subset in the time-t time-slice, then we say that X
survives until time t′ if this is true for every x ∈ X and we set X(t′) := {x(t′) :
x ∈ X}.
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DIFFEOMORPHISM GROUPS OF 3-MANIFOLDS 9

A product Ricci flow spacetime is a Ricci flow spacetime associated with
an ordinary Ricci flow (g(t))t∈[a,T ) on a manifold M , i.e. it is of the form (M ×
[a, T ), t, ∂t, g), where t = π[a,T ) is projection onto the interval factor [a, T ), ∂t
corresponds to the vector field coming from [a, T ), and gt = π∗

Mg(t) where πM :
M × [a, T ) → M is the canonical projection.

Definition 2.8 (Product domain). Let (M, t, ∂t, g) be a Ricci flow spacetime and
letX ⊂ M be a subset. We callX a product domain if there is an interval I ⊂ [0,∞)
such that for any t ∈ I any point x ∈ X survives until time t and x(t) ∈ X.

Definition 2.9 (Completeness of Ricci flow spacetimes). We say that a Ricci flow
spacetime (M, t, ∂t, g) is 0-complete if, whenever γ : [0, s0) → M is either an inte-
gral curve of ±∂t or a unit speed curve in some time slice, and sups∈[0,s0) |Rm |(γ(s))
< ∞, then lims→s0 γ(s) exists.

Lemma 2.10 states that maximal product domains in 0-complete Ricci flow space-
times correspond to ordinary Ricci flows, provided their time slices are compact
manifolds.

Lemma 2.10. Let (M, t, ∂t, g) be a 0-complete Ricci flow spacetime, t0 ≥ 0, and
C ⊂ Mt0 be a compact 3-dimensional submanifold without boundary (i.e. a finite
union of compact components). Let C ⊂ M be the maximal product domain in
M≥t0 with initial time slice C, and (h(t))t∈[t0,T ) be the maximal Ricci flow on C
whose initial metric h(t0) is equal to the restriction of the time slice metric gt0 to
C ⊂ Mt0 . Then C is isometric to the product Ricci flow spacetime associated with
(h(t))t∈[t0,T ).

Proof. Let I ⊂ [t0,∞) be the time interval on which C is defined. The compactness
of C implies that I = [t0, t+) for some t+ ∈ (t0,∞]. For t ∈ [t0, t+), let gt,t0 be the
Riemannian metric on C obtained by pushing forward g

∣∣Ct under the time-(t0 − t)
flow of the time vector field ∂t. It follows from the definition of Ricci flow spacetimes
that the family of metrics (gt,t0)t∈[t0,t+) defines a Ricci flow. By the uniqueness of
Ricci flow, we therefore have gt,t0 = h(t) for t < min(T, t+). It follows that t+ ≤ T .
Suppose t+ < T . Choose x ∈ C. Since t+ < T , the curvature |Rm|(x(t)) remains
uniformly bounded for t ∈ [t0, t+), and hence by 0-completeness, x survives until
time t+, and hence to some t′ > t+. By continuity of the flow of ∂t, an open
neighborhood of x in C survives until some time tx > t+. By compactness C
survives until some time t′ > t+, which is a contradiction. �
2.4. Singular Ricci flows. To define singular Ricci flows, we require the definition
of a κ-solution.

Definition 2.11 (κ-Solution). An ancient Ricci flow (M, (g(t))t∈(−∞,0]) on a 3-di-
mensional manifold M is called a (3-dimensional) κ-solution, for κ > 0, if the
following hold:

(1) (M, g(t)) is complete for all t ∈ (−∞, 0],
(2) |Rm| is bounded on M × I for all compact I ⊂ (−∞, 0],
(3) secg(t) ≥ 0 on M for all t ∈ (−∞, 0],
(4) R > 0 on M × (−∞, 0],
(5) (M, g(t)) is κ-noncollapsed at all scales for all t ∈ (−∞, 0]

(This means that for any (x, t) ∈ M × (−∞, 0] and any r > 0 if |Rm| ≤
r−2 on the time-t ball B(x, t, r), then we have |B(x, t, r)| ≥ κrn for its
volume.)
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10 RICHARD H. BAMLER AND BRUCE KLEINER

We can now define the canonical neighborhood assumption. This characterizes
the local geometry of a Ricci flow spacetime by the geometry of κ-solution using
the notion of pointed closeness from Definition 2.5. The main statement of this
assumption is that regions of small scale (i.e. high curvature) are geometrically
close to regions of κ-solutions.

Definition 2.12 (Canonical neighborhood assumption). Let (M, g) be a (possibly
incomplete) Riemannian manifold. We say that (M, g) satisfies the ε-canonical
neighborhood assumption at some point x if there is a κ > 0 (which may depend
on x), a κ-solution (M, (g(t))t∈(−∞,0]) and a point x ∈ M such that |Rm|(x, 0) = 1

and such that (M, g, x) is ε-close to (M, g(0), x) at some (unspecified) scale λ > 0.
For r > 0, we say that a subset X of a Ricci flow spacetime (M, t, ∂t, g) satisfies

the ε-canonical neighborhood assumption at scales below r if the ε-canonical
neighborhood assumption holds at all x ∈ X with |Rm|(x) > r−2.

Definition 2.13 (Singular Ricci flow). If ε > 0 and r : [0,∞) → (0,∞) is a
nonincreasing function, then an (ε, r)-singular Ricci flow is an orientable Ricci
flow spacetime (M, t, ∂t, g) such that:

• The initial time slice M0 is compact.
• M is 0-complete.
• M[0,t] satisfies the ε-canonical neighborhood assumption at scales < r(t).

A singular Ricci flow is a Ricci flow spacetime that is an (ε, r)-singular Ricci flow
for some ε, r.

We remark that our notion of singular Ricci flow here is equivalent to the one in
[BK22], which is weaker than the one in [KL17]. The existence theorem in [KL17]
yields singular Ricci flows satisfying the stronger condition.

Theorem 2.14 (Existence and uniqueness of singular Ricci flow).

• (Existence [KL17]) For every compact orientable Riemannian 3-manifold
(M, g) there is a singular Ricci flow M with M0 isometric to (M, g). More-
over, for every ε > 0 there is an r : [0,∞) → (0,∞) such that M is an
(ε, r)-singular Ricci flow, where r depends only on ε and an upper bound on
|Rm | and a lower bound on the injectivity radius of M .

• (Uniqueness [BK22]) There is a universal constant εcan > 0 such that if
M1, M2 are (εcan, r)-singular Ricci flows for some r : [0,∞) → (0,∞),

then any isometry φ : M1
0 → M2

0 extends to an isometry φ̂ : M1 → M2.

Theorem 2.15 is a direct consequence of [BK22, Theorem 1.5 & Addendum].

Theorem 2.15 (Convergence of singular Ricci flows). Suppose {hj} is a sequence of
smooth Riemannian metrics on a compact orientable 3-manifold M , and hj → h∞
smoothly as j → ∞. For j ∈ N ∪ ∞, let (Mj , tj , ∂tj , g

j) be a singular Ricci flow
with time-0 slice (M,hj), and for every T,C < ∞, let

Mj
T,C := {x ∈ Mj | t(x) ≤ T, |Rm| ≤ C} .

Then there is a sequence {M∞ ⊃ U j Φj

−→ V j ⊂ Mj} where:

(1) U j, V j are open, and Φj is a diffeomorphism which restricts to the identity
map on the time 0 slice.

(2) For every T , C, we have U j ⊃ M∞
T,C , V

j ⊃ Mj
T,C . for large j.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIFFEOMORPHISM GROUPS OF 3-MANIFOLDS 11

(3) Φj is time-preserving, and the sequences {(Φj)∗∂tj}, {(Φj)∗gj} converge
smoothly on compact subsets of M∞ to ∂t∞ and g∞, respectively.

If M is a manifold, then a punctured copy of M is a manifold diffeomorphic
to M \S, where S ⊂ M is a finite (possibly empty) subset. Note that if M1, M2 are
compact 3-manifolds, then punctured copies of M1 and M2 can be diffeomorphic
only if M1 is diffeomorphic to M2. This follows from the fact that if D, D′ are
3-disks where D′ ⊂ IntD, then D \D′ is diffeomorphic to S2 × [0, 1]. Hence the
notion of “filling in” punctures is well-defined.

The following result collects most of the topological and geometric properties of
singular Ricci flows that will be needed in this paper.

Theorem 2.16 (Structure of singular Ricci flows). Let (M, t, ∂t, g) be an (εcan, r)-
singular Ricci flow, where εcan is as in Theorem 2.14. Then:

(1) For every t ∈ [0,∞), each component C ⊂ Mt is a punctured copy of some
compact 3-manifold.

(2) Let Mfill
t be the (possibly empty) 3-manifold obtained from Mt by filling in

the punctures and throwing away the copies of S3. Then Mfill
t is a compact

3-manifold, i.e. all but finitely many components of Mt are punctured
copies of S3. Furthermore, for every t1 < t2 the prime decomposition of
Mfill

t2 is part of the prime decomposition of Mfill
t1 . Hence there are only

finitely many times at which the prime decomposition of Mfill
t changes.

(3) Mfill
t is irreducible and aspherical for large t, depending only on the fol-

lowing bounds on the geometry of M0: upper bounds on the curvature and
volume, and a lower bound on the injectivity radius.

(4) If the time-0 slice M0 is a spherical space form, then there is a time ω ∈
[0,∞) such that:
(a) For every t < ω, precisely one component Ct of the time-t-slice Mt

is a punctured copy of M0, and all other components are punctured
copies of S3.

(b) For every t ≥ ω, the components of Mt are punctured S3s (this in-
cludes the case Mt = ∅).

(c) If M0 is not diffeomorphic to S3 or RP 3, then Ct has no punctures for
t close to ω(g) and the family of Riemannian manifolds (Ct)t<ω con-
verges smoothly, modulo rescaling, to a manifold of constant sectional
curvature 1 as t → ω. More precisely, if t0 < ω(g) is close enough to
ω(g) that Ct0 is compact and has positive sectional curvature, then:

(i) The maximal product domain C with initial time slice Ct0 is
defined on [t0, ω(g)), and is isometric to the Ricci flow spacetime
of the (maximal) Ricci flow (gt,t0)t0∈[t0,ω(g)) on Ct0 with initial
condition gt0 .

(ii) Modulo rescaling, the family of Riemannian metrics
(gt,t0)t0∈[t0,ω(g)) converges in the C∞-topology as t → ω(g) to
a metric g of constant sectional curvature 1.

(iii) For every t ∈ [t0, ω(g)), the time slice Ct coincides with Ct.
(5) If M0 is diffeomorphic to a closed hyperbolic 3-manifold, then for every

t ≥ 0 there is a unique component Ct ⊂ Mt that satisfies the condition
of assertion (4)(a). Furthermore, the family of Riemannian manifolds
(Mt)t∈[0,∞) converges smoothly to M0 equipped with a hyperbolic metric
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12 RICHARD H. BAMLER AND BRUCE KLEINER

as t → ∞. More precisely, there is a t0 < ∞ such that Ct0 is compact, the
maximal product domain Ct0 with initial time slice Ct0 is defined on [t0,∞)
and:
(i) If (gt,t0)t0∈[t0,∞) is the maximal Ricci flow on Ct0 with initial condition

gt0 (which corresponds to C (cf. Lemma 2.10)), then, modulo rescaling,
the family of Riemannian metrics (gt,t0)t0∈[t0,∞) converges in the C∞-
topology as t → ∞ to a metric g of constant sectional curvature −1.

(ii) For every t ∈ [t0,∞), the time slice Ct coincides with Ct.

Proof. The proof is a combination of known results.
(1) is contained in [KL17, Prop. 5.31].
We now prove (2). Pick 0 ≤ t1 < t2 < ∞. Let Y ⊂ Mt2 be the union of

finitely many connected components none of which is a punctured copy of S3, and
let Y fill be the result of filling in the punctures of Y . By [KL17, Theorem 1.13],
there is a finite subset S ⊂ Y such that flow of the time vector field ∂t is defined on
Y \ S over the time interval [t1 − t2, 0], and hence it defines a smooth embedding
Y \ S ↪→ Mt1 . Taking t1 = 0, we see that the prime decomposition of Y fill is part
of the prime decomposition of M0, and hence the number of summands is bounded
independently of the choice of t2 and Y . It follows that Mfill

t2 (and similarly Mfill
t1 )

are compact 3-manifolds, and without loss of generality we may assume that Y
is the union of all components of Mt2 that are not punctured copies of S3. The
embedding Y ↪→ Mt1 implies that the prime decomposition of Mfill

t2 is part of the

prime decomposition of Mfill
t1 . This proves (2).

By [CM05, Per08], there is a t < ∞ such that for any Ricci flow with surgery
(in the sense of Perelman [Per03]) with sufficiently precise cutoff and starting from
the Riemannian manifold M0, then for any t ≥ t every component of the time-t
slice is irreducible and aspherical or a copy of S3. Pick t ≥ t. Choose a connected
component C ⊂ Mt (note that M denotes the singular Ricci flow and not a Ricci
flow with surgery) that is not a punctured copy of S3, and let Z ⊂ C be a compact
domain with spherical boundary components such that IntZ is diffeomorphic to C.
By the convergence theorem [KL17, Thm. 1.2] and [BK22, Cor. 1.4], the domain
Z smoothly embeds in the time-t slice of some Ricci flow with surgery starting
from M0. It follows that filling in the punctures of C, we get an irreducible and
aspherical 3-manifold. This proves (3).

Suppose M0 is diffeomorphic to a spherical space form.
If M0 is a copy of S3, then by (2), for every t ≥ 0 all components of Mt are

punctured copies of S3, and taking ω = 0, assertions (a) and (b) follow.
If M0 is not a copy of S3, then by (2) and (3) there is an ω ∈ (0,∞) such that

Mfill
t is a copy of M0 for t < ω and Mfill

t = ∅ for t > ω. If Mfill
ω is a copy of

M0, then there is a compact domain with smooth boundary Z ⊂ Mω such that
IntZ is a punctured copy of M0. Applying the flow of the time vector field ∂t for
short time, we see that Z embeds in Mt for some t > ω, contradicting Mfill

t = ∅.
Therefore Mfill

ω = ∅. Hence assertions (4)(a) and (4)(b) hold.
Now suppose M0 is not a copy of S3 or RP 3. Choose t < ω, and let Z ⊂ Mt be

the component that is a punctured copy of M0. Choose ε̂ > 0, and suppose Z is not
ε̂-close modulo rescaling to M0 equipped with a K ≡ 1 metric. By [KL17, Prop.
5.31], there is a finite disjoint collection {Ni}ki=1 where:
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(i) Each Ni is a domain with boundary in Z which is diffeomorphic to one of
the following: S3, RP 3, S2 × S1, RP 3#RP 3, S2 × [0,∞), D3, RP 3 \ B3,
or S2 × [0, 1].

(ii) |Rm| < Cr−2(t) on the complement Z \ ∪iNi, where C is a universal con-
stant.

Since M0 is not a copy of S3 or RP 3 and Z is a punctured copy of M0, which is
irreducible, each Ni must be a copy of S2 × [0,∞), D3, or S2 × [0, 1]. The com-
ponents of Z \ ∪iNi embed in M0, and are therefore punctured copies of S3 or
M0. It follows that some component W of Z \ ∪iNi is a punctured copy of M0.
Let r∗ > 0 be a lower bound on r(t) for t ∈ [0, ω). By the canonical neighborhood
assumption we can find a universal constant C∗ such that |∂t|Rm|| < C∗r

−4
∗ when-

ever |Rm| ∈ (r−4
∗ , 2r−2

∗ ) (see [BK22, Lemma 8.1]). Integrating this inequality, using
the curvature bound in (ii) and 0-completeness, it follows that there is a constant
τ = 1

2C
−1
∗ r2∗ > 0, which is independent of t, such that W survives until time t+ τ

and such that |Rm| < 2r−2
∗ on W (t′) for all t′ ∈ [t, t+ τ ] (compare [BK22, Lemma

8.4]). So if t is sufficiently close to t, then W survives until time ω, contradicting
the fact that Mfill

ω = ∅. Hence modulo rescaling Z is ε̂-close to M0 equipped with
a metric of constant sectional curvature 1. Thus the first part of assertion (4)(c)
holds.

Now suppose that Ct0 is compact and has positive sectional curvature for some
t0 < ω(g). Let C ⊂ M[t0,∞) be the maximal product domain with initial time slice
Ct0 , and let [t0, t+) be the time interval on which C is defined. By Lemma 2.10,
C is isometric to the spacetime for the ordinary Ricci flow (gt,t0)t∈[t0,t+) on Ct0

with initial condition given by gt0 . Because gt0 has positive sectional curvature, it
follows from [Ham82] that the metrics (gt,t0)t∈[t0,t+) converge modulo rescaling to
a K ≡ 1 metric g on Ct0 as t → t+. If t+ > ω(g), then Mt would contain a copy
of X for some t > ω(g), contradicting assertion (4)(b). If t+ < ω(g), then by the
compactness of Ct+ , we may flow Ct+ backward and forward under ∂t for a short
time. By (4)(a) this yields Ct for t close to t+, and in particular Ct for t < t+ close
to t+. Hence C may be extended past t+, which is a contradiction. Thus t+ = ω(g).
Hence (4)(c)(i) and (4)(c)(ii) hold. Assertion (4)(c)(iii) follows from (4)(a).

Now suppose M0 is diffeomorphic to a hyperbolic 3-manifold.
Let (Mj , tj , ∂tj , g

j) → M∞ be a convergent sequence of Ricci flow spacetimes
as in [KL17, Thm. 1.2], i.e. the Mjs are associated with a sequence of Ricci
flows with surgery with initial conditions isometric to M0, where the Perelman
surgery parameter δj tends to zero as j → ∞. By [BK22, Cor. 1.4] we may take
M∞ = M. We recall that Perelman’s work implies that for fixed j, a statement
similar to (5) holds: as t → ∞ i.e. the Riemannian manifolds (Mj

t , t
−2gjt ) converge

in the smooth topology to M0 with a hyperbolic metric [Per03,Bam17]. Although
Perelman’s argument by itself does not provide the uniform control needed to pass
the statement to the limit to obtain (5) directly, his argument can nonetheless be
implemented by using some results from [KL17], as we now explain.

Claim. For every j ∈ N ∪ {∞}, and every t ∈ [0,∞):

• The scalar curvature attains a nonpositive minimum Rj
min(t) on Mj

t .

• the function t �→ R̂j(t) := Rj
min(t)(V

j)
2
3 (t) is nondecreasing, where V j(t)

is the volume of Mj
t .

Moreover, R̂j → R̂∞ uniformly on compact sets as j → ∞.
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14 RICHARD H. BAMLER AND BRUCE KLEINER

Proof. For j ∈ N, the fact that Rj
min(t) is well-defined and negative, and t �→

R̂j(t) is nondecreasing, was shown by Perelman. From the properness asserted
in [KL17, Thm. 1.2(a)] it follows that t �→ R∞

min(t) is a well-defined continuous

function, and the main assertion of [KL17, Thm. 1.2] then implies that Rj
min →

R∞
min uniformly on compact sets.
Since V ∞ is continuous and V j → V ∞ uniformly on compact sets by [KL17,

Thm. 4.1, Cor. 7.11], it follows that R̂j → R̂∞ uniformly on compact sets. Because

R̂∞ is a uniform limit of nondecreasing functions, it is also nondecreasing. �

Using the fact that R̂j → R̂∞ uniformly on compact sets, the arguments from
[KL08, Secs. 89-91] may now be implemented uniformly for all the Ricci flows with
surgery, with the slight modification that the “slowly varying almost hyperbolic
structures” in [KL08, Prop. 90.1] are only defined on an interval [T0, Tj ] for some
sequence Tj → ∞. After passing to a subsequence, we may use [KL17, Thm. 1.2] to
obtain a version of [KL08, Prop. 90.1] forM = M∞. The proof of incompressibility
of the cuspidal tori as in [KL08, Sec. 91] carries over to the singular Ricci flow
M, since compressing disks avoid the thin parts of M. Alternatively, one may
deduce incompressibility in time slices of M∞ from incompressibility in Mj for
large j. The complement of the (truncated) hyperbolic regions consists of graph
manifolds [KL08, Sec. 91]. By (2) we conclude that there is precisely one hyperbolic
component, and it coincides with M∞

t for large t. Thus we have proven the first
part of assertion (5).

The proof of (5)(i)–(ii) is similar to the proof of (4)(c)(i)–(iii), except that instead
of appealing to [Ham82], we use the convergence of normalized Ricci flow shown in
[Ye93,Bam14]. �

3. The canonical limiting constant curvature metric

In this section, we let X be a 3-dimensional spherical space form other than S3

or RP 3. Recall that 3-dimensional spherical space forms are always orientable.
By Theorem 2.16, a singular Ricci flow M starting from an arbitrary metric

g ∈ Met(X) contains a family of time slice components whose metrics converge,
modulo rescaling, to a round metric. In this section, we will use a result from
[KL17] to flow these metrics back to the time 0 slice M0 � X, with the caveat that
the flow is not defined everywhere – it is only defined on the complement of a finite
subset. Using the uniqueness and continuity theorems of [BK22], we show that this
process yields a canonical partially defined metric constant of sectional curvature 1
on X, which depends continuously on g in the sense of Definition 2.3. See Figure 2
for a depiction of this.

Pick g ∈ Met(X) and let M be a singular Ricci flow with M0 = (X, g). Let
ω(g) = ω be as in Theorem 2.16, and for every t < ω(g) let Ct be the unique
component of Mt that is a punctured copy of X.

For every t1, t2 ∈ [0, ω(g)), let Ct1,t2 ⊂ Ct1 be the set of points in Ct1 that survive
until time t2, i.e. the points for which the time (t2 − t1)-flow of the time vector
field ∂t is defined. Then Ct1,t2 is an open subset of Ct1 , and the time (t2 − t1)-flow
of ∂t defines a smooth map Φt1,t2 : Ct1,t2 → Mt2 , which is a diffeomorphism onto
its image. We define a metric gt1,t2 on Φt1,t2(Ct1,t2) by gt1,t2 := (Φt1,t2)∗gt1 , where
gt1 is the spacetime metric on Ct1,t2 ⊂ Mt1 . We let Wg(t) := Φt,0(Ct,0), so gt,0 is
a metric on Wg(t).
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Figure 2. A Ricci flow spacetime M (aka singular Ricci flow)
with initial data (X, g). The time function t is expressed as height
function and the arrows indicate the time vector field ∂t. The
dashed level sets indicate time slices (the second and third time
slices are singular). For all t < ω(g) the time-t-slice contains ex-
actly one component Ct that is not diffeomorphic to a sphere. The
flow of ∂t restricted to W is defined on the time interval [0, ω(g)).
The union of these trajectories is shaded in dark gray. For each
t the trajectory of ∂t starting from each but a finite set of points
St ⊂ Ct intersects the time-0-slice. These points are drawn as dark
dots and their trajectories, which cease to exist at a singular time,
as dotted curves.

Lemma 3.1 (Limiting K ≡ 1 metric). Choose t0 < ω(g) such that Ct0 is compact
and has positive sectional curvature; such a time t0 exists by Theorem 2.16(4)(a).
Then:

(1) Wg(t) = Wg(t0) =: Wg for all t ∈ [t0, ω(g)).
(2) Modulo rescaling, gt,0 converges in the smooth topology to a K ≡ 1 metric

ǧ on Wg as t → ω(g).
(3) (Wg, ǧ) is isometric to (X \ S, gX) for some finite (possibly empty) subset

S ⊂ X, where the cardinality of S is bounded above by a constant depending
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16 RICHARD H. BAMLER AND BRUCE KLEINER

only on bounds on the curvature, injectivity radius, and volume of g, and
on ω(g).

(4) If g has constant sectional curvature, then Wg = X and ǧ = λg for some
λ ∈ (0,∞).

We caution the reader that although (Wg, ǧ) is isometric to (X, gX) with finitely
many points removed, the complement X \ Wg may have nonempty interior and
could, in principle, be quite irregular.

Proof of Lemma 3.1. Let C ⊂ M[t0,∞) be the maximal product domain with Ct0 =
Ct0 . By Theorem 2.16(4)(c), the domain C is defined on the time interval [t0, ω(g)).
Hence for all t ∈ [t0, ω(g)) we have Ct,t0 = Ct, Ct,0 = Φ−1

t,t0(Ct0,0), Φt,0 = Φt0,0◦Φt,t0

and Wg(t) = Φt,0(Ct,0) = Φt0,0(Ct0,0) = Wg(t0). Thus (1) holds.
Note that on Φt,0(Ct,0)

gt,0 = (Φt,0)∗gt = (Φt0,0)∗(Φt,t0)∗(gt) = (Φt0,0)∗gt,t0 .

By Theorem 2.16(4), modulo rescaling, (gt,t0)t∈[t0,ω(g)) converges in Met(Ct0,0)
to the K ≡ 1 metric g on Ct0,0 as t → ω(g). Consequently, modulo rescaling,
(gt,0)t∈[t0,ω(g)) converges in Met(Wg) to the K ≡ 1 metric (Φt0,0)∗g. Thus asser-
tion (2) holds.

By [KL17, Theorem 1.13], all but finitely many points in Ct0 survive until t = 0,
i.e. Ct0 \ Ct0,0 is finite; moreover the cardinality is bounded above depending only
on bounds on the curvature, injectivity radius, and the volume of M0, and on ω(g).
There is a unique K ≡ 1 metric on X up to isometry [Mil66], so (Ct0 , g) is isometric
to (X, gX). Since (Wg, ǧ) is isometric to (Ct0,0, g), assertion (3) holds.

Now suppose g has constant sectional curvature. Then M is the product Ricci
flow spacetime corresponding to a shrinking round space form. Hence Wg = X,
and gt,0 agrees with g modulo rescaling, for all t ∈ [0, ω(g)), so ǧ agrees with g
modulo rescaling, and assertion (4) holds. �

By Theorem 2.16, for every g ∈ Met(X) there exists a singular Ricci flowM with
M0 isometric to (X, g) which is unique up to isometry; hence the pair (Wg, ǧ) is also
independent of the choice of M, i.e. it is a well-defined invariant of g ∈ Met(X).

Next, we show that the pair (Wg, ǧ) varies continuously with g, in the sense of
Definition 2.3. After unwinding definitions, this is a straightforward consequence
of the convergence theorem of [BK22].

Lemma 3.2. The assignment g �→ (Wg, ǧ) defines a continuous map Met(X) →
PartMet(X).

Moreover, there is a map n : Met(X) → Z≥0 such that for every g ∈ Met(X) the
Riemannian manifold (Wg, ǧ) is isometric to a constant curvature manifold with
n(g) points removed and n is locally bounded from above.

Proof. Suppose gj → g∞ in Met(X). For all j ∈ N ∪ {∞}, let Mj be a singular

Ricci flow with Mj
0 = (X, gj), let ω(gj), Cj

t , be as in Theorem 2.16, and (Wgj , ǧj)
be as in Lemma 3.1. Choose a compact subset Z ⊂ Wg∞ . To prove the lemma, we
will show that Z ⊂ Wgj for large j, and that ǧj → ǧ∞ in the C∞-topology, on an
open subset containing Z.

Let φj : M∞ ⊃ U j → V j ⊂ Mj be the diffeomorphism onto its image from
Theorem 2.15.
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Let t0 be the time from Lemma 3.1 for M∞. By Theorem 2.15, the map φj is
defined on C∞

t0 for large j, and (φj
t0)

∗gj → g∞ on C∞
t0 . Therefore, without loss of

generality, we may assume that φj is defined on C∞
t0 for all j, and Cj

t0 has quarter-

pinched, positive sectional curvature. For j ∈ N∪ {∞}, if Cj ⊂ Mj is the maximal

product domain with time-t0 slice Cj
t0 , then Cj is defined on [t0, ω(g

j)) and Cj
t = Cj

t

for all t ∈ [t0, ω(g
j)), by Theorem 2.16(4).

The flow Φj
t,t0 of the time vector field ∂tj is defined on Cj

t for t ∈ [t0, ω(g
j)), j ∈

N∪{∞}, since Cj is a product domain in [t0, ω(g
j)). Thus, for j ∈ N∪{∞}, gjt,t0 :=

(Φj
t,t0)∗g

j is a well-defined smooth metric on Cj
t0 for all t ∈ [t0, ω(g

j)), and modulo

rescaling, gjt,t0 → gj ∈ MetK≡1(C
j
t0) as t → ω(gj). By [FGKO15, Theorem 1], since

(φj)∗gj → g∞ on C∞
t0 in the C∞-topology, it follows that (φj)∗gj → g∞ in the

C∞-topology and ω(gj) → ω(g∞).
By assumption Z ⊂ Wg∞ , so it survives until time t0 in M∞, and Φ∞

0,t0(Z) ⊂
C∞

t0 . Since Z is compact, there is a product domain N∞ ⊂ M∞ defined on [0, t0],
such that N∞ has compact closure in M∞, and the time zero slice N∞

0 is an open
subset of Wg∞ containing Z.

For large j the map φj is defined on N∞, and we let N̂ j be the pullback of

Mj under φj
∣∣N∞, i.e. N̂ j := (N∞, t̂j = t∞, ∂

̂tj , ĝ
j) where ∂

̂tj := (φj
∣∣N∞)∗∂tj ,

ĝj := (φj
∣∣N∞)∗gj . (Note that N̂ j is not quite a Ricci flow spacetime because it

has boundary points in the time-t0 slice.) By Theorem 2.15, we have ∂
̂tj → ∂t∞ ,

ĝj → g∞ in the C∞-topology on N∞ as j → ∞.
Now choose an open set Z ′ ⊂ N∞

0 with compact closure in N∞
0 , such that

Z ⊂ Z ′. Since ∂
̂tj

converges to the product vector field ∂t∞ on N∞, it follows

that for large j, the flow Φ̂j
0,t0

∣∣Z ′ of ∂
̂tj

is defined and takes values in C∞
t0 , and

Φ̂j
0,t0

∣∣Z ′ → Φ∞
0,t0

∣∣Z ′ in the C∞-topology as j → ∞. Because (φj
t0)

∗gj → g∞ as
j → ∞, we get

(3.1)
(
Φ̂j

0,t0

)∗
(φj

t0)
∗gj → (Φ∞

0,t0)
∗g∞ = ǧ∞ on Z ′

in the C∞ topology, as j → ∞.

The map φj : N̂ j → φj(N∞) ⊂ Mj preserves time functions, time vector
fields, and metrics. Therefore, the assertions in the previous paragraph imply
that for large j, Φj

0,t0
is defined on Z ′ and takes values in φj

t0(C
∞
t0 ) = Cj

t0 and

ǧj
∣∣Z ′ = (Φj

0,t0

∣∣Z ′)∗gj = (φj
0)

∗(Φj
0,t0

∣∣Z ′)∗gj = (Φ̂j
0,t0

∣∣Z ′)∗(φj
t0)

∗gj . By (3.1) we

conclude that ǧj
∣∣Z ′ → ǧ∞

∣∣Z ′ in the C∞- topology as j → ∞.

The last statement follows by combining the fact that ω(gj) → ω(g∞) along any
sequence gj → g∞ and Lemma 3.1(3). �

Remark 3.3. In order to prove the continuous dependence of the limiting round
metric on the initial metric of positive sectional curvature, we invoked the continuity
theorem from [FGKO15]. However, in our applications in Section 4, it would work
equally well if instead of using the limiting K ≡ 1 metric produced by Ricci flow,
we used some other geometric construction to replace a metric h that is ε-close to a
round Riemannian metric with a round metric h, as long as h depends continuously
on h in the smooth topology and is equivariant with respect to diffeomorphisms.
For instance, one could use the smooth dependence of certain eigenspaces of the
Laplacian.
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18 RICHARD H. BAMLER AND BRUCE KLEINER

4. Extending constant curvature metrics

The goal of this section is Proposition 4.1, which asserts that under certain
conditions a finite dimensional continuous family of partially defined K ≡ 1 metrics
can be extended to a continuous family of globally defined K ≡ 1 metrics.

In this section X will denote a spherical space form other than S3. Pick gX ∈
MetK≡1(X). We recall that gX is unique up to isometry [Mil66,dR40,Fra35,Rei35].

In the following we will use the term polyhedron to refer to (the geometric
realization of) a simplicial complex.

Proposition 4.1 (Extending K ≡ 1 metrics). Let P0 be a finite polyhedron, and
Q0 ⊂ P0 a subpolyhedron. Suppose P0 � p �→ (Wp, g(p)) is an assignment with the
following properties:

(i) p �→ (Wp, g(p)) defines a continuous map P0 → PartMet(X).
(ii) There is an n < ∞ such that for every p ∈ P0 the Riemannian manifold

(Wp, g(p)) is isometric to (X \ Sp, gX) for a finite subset Sp ⊂ X with
|Sp| ≤ n.

(iii) Wq = X for all q ∈ Q0.

Then there is a continuous map ĝ : P0 → MetK≡1(X) such that for every q ∈ Q0

we have ĝ(q) = g(q).

We remark that we will only apply Proposition 4.1 in the case when P0 is an
(m+ 1)-disk and Q0 = ∂P0 is its boundary m-sphere, for some m ≥ 0.

Before proceeding with the proof, we first provide some motivation for the proof.
Take p ∈ P0, and consider the open subset Wp ⊂ X. Since (Wp, g(p)) is isometric

to (X \ Sp, gX), the ends of Wp are diffeomorphic to S2 × [0,∞), and hence there
is a compact domain with smooth boundary Zp ⊂ Wp with 2-sphere boundary
components, such that IntZp is diffeomorphic to X \ Sp. By a simple topological
argument, the closure of X \ Zp is a union of a disjoint collection Cp of 3-disks. It
is not hard to see that for every 3-disk Y ∈ Cp, the restriction of g(p) to a small
neighborhood of ∂Y in Y extends to a metric on Y with K ≡ 1. Moreover, by using
Hatcher’s theorem, one can see that the extension is unique, up to contractible
ambiguity. Combining the extensions for each Y ∈ Cp, we obtain an extension of
g(p)

∣∣Zp to X, which is also unique up to contractible ambiguity.
To adapt the preceding observations into a proof of the proposition, we first

choose a fine subdivision P of P0, and for every face σ of P , we choose a domain
with smooth boundary Zσ ⊂ X such that (among other things) Zσ ⊂ Wp for every
p ∈ σ, and Zσ = X if p ∈ Q0. We then prove the proposition by extending g
inductively over the skeleta of P . In the induction step, we assume that ĝ has been
defined on the m-skeleton of P , and then we extend it to an (m + 1)-face σ ⊂ P ,
such that it agrees with g on Zσ. Since the closure of X \Zσ is a disjoint collection
of 3-disks, our problem reduces to solving an extension problem for 3-disks, which
may be deduced from Hatcher’s theorem.

For the remainder of the section we fix an assignment P0 � p �→ (Wp, g(p)) as in
the statement of Proposition 4.1.

The first step in the proof of Proposition 4.1 is to define the subdivision P and
the collection {Zσ}σ∈FaceP described above.

Lemma 4.2. There is a subdivision P of P0, and to every face σ of P we can
assign a triple (Zσ, Cσ, Uσ) with the following properties:
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(a) For every face σ of P , Cσ is a finite disjoint collection of 3-disks in X, and

Zσ = X \ ∪Y ∈Cσ
Y .

(b) For every strict inclusion of faces σ1 � σ2 we have Zσ2
⊂ Int(Zσ1

).
(c) For every face σ of P , and every p ∈ σ, we have:

(i) Uσ is an open subset of X with Zσ ⊂ Uσ ⊂ Wp.
(ii) (Uσ ∩ Y, g(p)) isometrically embeds in (S3, gS3) for every Y ∈ Cσ.
(iii) If σ ∩Q0 �= ∅, then Zσ = X.

To prove Proposition 4.1 using the combinatorial structure from Lemma 4.2, the
main ingredient is the following local extension lemma, which is based on (a version
of) the Smale conjecture, as proved by Hatcher [Hat83].

Lemma 4.3 (Extending K ≡ 1 metrics over a ball). In the following, we let S2

and D3 denote the unit sphere and unit disk in R3, respectively, and we let Nr(S
2)

denote the metric r-neighborhood of S2 ⊂ R3.
Suppose m ≥ 0, ρ > 0 and:

(i) hm+1 : Dm+1 → MetK≡1(Nρ(S
2) ∩D3) is a continuous map such that for

all p ∈ Dm+1, the Riemannian manifold (Nρ(S
2) ∩D3, hm+1(p)) isometri-

cally embeds in (S3, gS3). Here MetK≡1(Nρ(S
2) ∩D3) is equipped with the

C∞
loc-topology.

(ii) ĥm : Sm → MetK≡1(D
3) is a continuous map such that for every p ∈ Sm

we have ĥm(p) = hm+1(p) on Nρ(S
2) ∩D3, and (D3, hm(p)) isometrically

embeds in (S3, gS3).

Then, after shrinking ρ if necessary, there is a continuous map ĥm+1 : Dm+1 →
MetK≡1(D

3) such that:

(a) ĥm+1(p) = hm+1(p) on Nρ(S
2) ∩D3 for all p ∈ Dm+1.

(b) ĥm+1(p) = hm(p) for all p ∈ Sm.

Proof of Proposition 4.1 assuming Lemmas 4.2 and 4.3. Let P and the assignment
FaceP � σ �→ (Zσ, Cσ, Uσ) be as in Lemma 4.2. Let Q be the corresponding subdi-
vision of Q0.

Pick m + 1 ≥ 0 with m + 1 ≤ dim(P \ Q). Assume inductively that if m ≥ 0,
then we have defined a continuous map ĝm : P (m) ∪Q → MetK≡1(X) such that for
every face τ ⊂ P (m) ∪ Q, and every p ∈ τ , the metric ĝm(p) agrees with g(p) on
Zτ ⊂ Wp.

Pick an (m + 1)-face σ ⊂ P (m+1) with σ �⊂ Q, and choose Y ∈ Cσ. We wish
to apply Lemma 4.3. To that end we choose a diffeomorphism α : D3 → Y , and
a homeomorphism β : Dm+1 → σ. If ρ > 0 is sufficiently small, then α(Nρ(S

2) ∩
D3) ⊂ ∩τ�σZτ by assertion (b) of Lemma 4.2. Since ∩τ�σZτ ⊂ Uσ ⊂ ∩p∈∂σWp by
assertion (c) of Lemma 4.2, we may define continuous maps

hm+1 : Dm+1 −→ MetK≡1(Nρ(S
2) ∩D3) , ĥm : Sm −→ MetK≡1(D

3)

by hm+1(p) := (α
∣∣Nρ(S

2)∩D3)∗g(β(p)), ĥm(p) := α∗ĝm(β(p)). Note that for every

p ∈ Sm, the Riemannian manifold (D3, ĥm(p)) isometrically embeds in (X, gX) by
construction, and since D3 is simply connected, this embedding may be lifted to

an isometric embedding (D3, ĥm(p)) → (S3, gS3). Similarly, for every p ∈ Dm+1,
the manifold (Nρ(S

2)∩D3, hm+1(p)) isometrically embeds in (S3, gS3) by assertion
(c)(ii) of Lemma 4.2.
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Applying Lemma 4.3, after shrinking ρ, we obtain a continuous map ĥm+1 :

Dm+1 → MetK≡1(D
3) such that ĥm+1(p) = ĥm(p) for all p ∈ Sm, ĥm+1(p) =

hm+1(p) on Nρ(S
2) ∩ D3 for all p ∈ Dm+1. Now let gσ,Y : σ → MetK≡1(Y ) be

given by gσ,Y (β(p)) = α∗ĥm+1(p).

We may extend ĝm to a continuous map ĝm+1 : P (m+1) ∪ Q → MetK≡1(X) by
letting ĝm+1

∣∣σ agree with gσ,Y on Y for each Y ∈ Cσ. Note that by construction,

for every face σ of P (m+1) and every p ∈ σ, ĝm+1(p) agrees with g(p) on Zσ, and
hence on X if p ∈ Q, by assertion (c)(iii) of Lemma 4.2.

By induction we obtain the desired map ĝ : P → MetK≡1(X). �

We now prove Lemmas 4.2 and 4.3. Before proving Lemma 4.2, we need a
preparatory result.

Lemma 4.4.

(1) Let C be a finite disjoint collection of 3-disks in X, and Z ⊂ X be a do-

main with smooth boundary diffeomorphic to X \ ∪Y ∈CY . Then there is a

(unique) finite disjoint collection of 3-disks C′ such that Z = X \ ∪Y ∈C′Y .
(2) Let C be a collection of at most j closed balls of radius at most r in a metric

space Z. Then there is a disjoint collection C′ of at most j closed balls of
radius < 4jr such that {IntY }Y ∈C′ covers ∪Y ∈CY .

Proof. (1) Recall that X is irreducible and not diffeomorphic to S3, so every em-
bedded 2-sphere in X bounds two domains with boundary, precisely one of which
is a 3-disk.

Let C′ be the collection of closures of the components of X \ Z. Suppose that
Y0 ∈ C′ is not diffeomorphic to a 3-disk. Then X \ IntY0 is a 3-disk, and hence
Z ⊂ X \ IntY0 embeds in S3. But then the embedding Z → S3 may be extended to
a diffeomorphism X → S3 by extending over the 3-ball components of X \ Z; this
is a contradiction. Therefore C′ is a collection of 3-disks, and assertion (1) follows.

(2) This follows by induction on j, by replacing a pair of balls B(x1, r1), B(x2, r2)

with r1 ≤ r2 such that B(x1, r1) ∩B(x2, r2) �= ∅ with B(x2, 4r2). �

Proof of Lemma 4.2. Let rX > 0 be injectivity radius of (X, gX), and let r ∈ (0, rX)
be a constant to be determined later.

For p ∈ Dm+1 let dp be the Riemannian distance function for (Wp, g(p)), and

let (W p, dp) be the completion of the metric space (Wp, dp). By assumption (ii) of

Proposition 4.1, we know that (W p, dp) is isometric to (X, dX).

For each p ∈ P0, we let Z0
p := W p \ ∪x∈Wp\Wp

Bdp
(x, r), so Z0

p ⊂ Wp ⊂ X. By

the definition of the topology on PartMet(X) and condition (i) of Proposition 4.1,
for all p ∈ P0 there is an open subset Vp ⊂ P0 such that for all p′ ∈ Vp, we have
Z0
p ⊂ Wp′ , and 2−1g(p) < g(p′) < 2g(p) on Z0

p . Let P be a subdivision of P0 such

that the closed star cover {St(v, P )}v∈P (0) refines the cover {Vp}p∈P0
(Recall that

St(v, P ) denotes the union of all faces that contain v). For every vertex v ∈ P (0)

choose pv ∈ P such that Vpv
⊃ St(v, P ), and let Z1

v := Z0
pv
. After refining P if

necessary, we may assume Z1
v = X for every vertex v with St(v, P ) ∩Q �= ∅.

For every face σ of P , choose bσ ∈ σ, and let Z1
σ := ∪v∈σ(0)Z1

v . Note that if
p ∈ σ, then Z1

σ ⊂ Wp, and 2−1g(bp) < g(p) < 2g(bp) on Z1
σ.
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Claim. (Let n be the constant from Proposition 4.1(ii)). There exist universal
constants {ck}k≥0, {c′k(n)}k≥0, {r(k, n)}k≥0 such that if r ≤ r(dimP, n), then
there are collections {Cσ}σ∈FaceP such that:

(a) Cσ is a disjoint collection of 3-disks in X for every σ ∈ FaceP .
(b) {IntY }Y ∈Cσ

covers X \ Z1
σ for every σ ∈ FaceP .

(c) For every k-face σ of P , |Cσ| ≤ ckn and for every Y ∈ Cσ, the boundary
2-sphere ∂Y has intrinsic diameter ≤ c′k(n)r w.r.t. the Riemannian metric
g(bσ). Note that g(bσ) is defined on ∂Y since (b) implies ∂Y ⊂ Z1

σ ⊂ Wbσ .
(d) For all σ1 � σ2 the collection {IntY }Y ∈Cσ2

covers ∪Y ∈Cσ1
Y .

(e) If σ ∈ FaceP and Wpv
= X for every v ∈ σ(0), then Cσ = ∅.

Proof. By induction on m we will prove the existence of the constants {ck}k≤m,
{c′k(n)}k≤m, {r(k, n)}k≤m, and collections Cσ, where σ ranges over the m-skeleton

P (m).
First suppose that m = 0, and pick a vertex v ∈ P (0). Let C0

v := {Bdpv
(x, 2r) |

x ∈ W pv
\Wpv

}, and hence {IntY }Y ∈C0
v
covers W pv

\Z0
pv
. Applying Lemma 4.4, we

get a disjoint collection C1
v of closed balls in (W pv

, dpv
) such that {IntY }Y ∈C1

v
covers

∪Y ∈C0
v
Y , where |C1

v | ≤ n, and every Y ∈ C1
v has radius < 4n ·2r. If 4n ·2r < rX , then

every Y is a 3-disk, and hence by Lemma 4.4 there is a unique disjoint collection
Cv of 3-disks in X such that X \ ∪Y ∈Cv

Y = W pv
\ ∪Y ∈C1

v
Y . Taking c0 = 1,

c′0 = 4n+2π, r(0) = c−1
0 rX , since g(bv) ≤ 2g(pv) on Z1

v = Z0
pv

properties (a)–(d)

follow immediately. If Wpv
= X, then C0

v = ∅, so (e) holds.
Now suppose m > 0, and assume that universal constants {ck}k≤m−1,

{c′k(n)}k≤m−1, {r(k, n)}k≤m−1, and collections Cτ where τ ranges over the (m−1)-

skeleton P (m−1), have been chosen so that (a)–(e) hold.
Pick an m-face σ ⊂ P .
By our induction assumption, for every τ � σ, {IntY }Y ∈Cτ

covers X \ Z1
τ .

Since Z1
τ ⊂ Z1

σ ⊂ Wbσ , it follows that {IntY }Y ∈Cτ
covers X \ Z1

σ, and we may
apply Lemma 4.4 to obtain a disjoint collection C0

τ of 3-disks in W bσ such that
W bσ \ ∪Y ∈C0

τ
Y = X \ ∪Y ∈Cτ

Y . By (c) of our induction assumption and the fact

that 2−1g(bτ ) < g(bσ) < 2g(bτ ) on Z1
σ, for all Y ∈ C0

τ the boundary 2-sphere ∂Y
has intrinsic diameter < 2c′m−1(n)r with respect to g(bσ). So for all Y ∈ C0

τ , the

boundary ∂Y is contained in a dbσ -ball BY ⊂ W bσ of radius 2c′m−1(n)r. Therefore
if 2c′m−1(n)r < rX , we get that ∂Y bounds a 3-disk DY in BY . We must have

DY = Y , since ∂Y bounds two domains with boundary in W bσ , precisely one of
which is a 3-disk; hence Y ⊂ BY .

Now let C0
σ = ∪{C0

τ | τ ⊂ σ is an (m− 1)-face}. Thus |C0
σ| ≤ (m + 1)cm−1n.

Applying Lemma 4.4 to C0
σ, we obtain a disjoint collection C1

σ of closed balls of radius
≤ 4(m+1)cm−1n · 2c′m−1(n)r, where |C1

σ| ≤ (m + 1)cm−1n, such that {IntY }Y ∈C1
σ

covers ∪Y ∈C0
σ
Y . Provided r < 4−(m+1)cm−1n(2c′m−1(n))

−1rX , every Y ∈ C1
σ will be

a 3-disk.
Applying Lemma 4.4, there is a unique disjoint collection Cσ of 3-disks in X such

that X \∪Y ∈Cσ
Y = W bσ \∪Y ∈C1

σ
Y . As {IntY }y∈C1

σ
covers C1

τ for every (m−1)-face
τ of σ, we have

X \ ∪Y ∈Cσ
IntY = W bσ \ ∪Y ∈C1

σ
IntY ⊂ W bσ \ ∪Y ∈C0

τ
IntY = X \ ∪Y ∈Cτ

Y.

Therefore, {IntY }Y ∈Cσ
covers Cτ for every (m − 1)-face τ of σ, and hence by the

induction assumption, it also covers X \ Z1
σ. Also, if Wpv

= X for every v ∈ σ(0),
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then by our induction assumption Cτ = ∅ for every (m − 1)-face τ ⊂ σ, which
implies that Cσ = ∅ as well.

Letting cm := (m + 1)cm−1, c
′
m(n) = 4(m+1)cm−1n · 2c′m−1(n)π, and r(k, n) =

c′m(n)−1rX , assertions (a)–(e) of the claim follow. �

For every σ ∈ FaceP we let Zσ := X \ ∪Y ∈Cσ
Y . Hence assertion (a) of

Lemma 4.2 holds.
If σ1, σ2 ∈ FaceP and σ1 � σ2, then by assertion (b) of the claim {IntY }Y ∈Cσ2

covers ∪Y ∈Cσ1
Y . Hence

Zσ2
= X \ ∪Y ∈Cσ2

IntY ⊂ X \ ∪Y ∈Cσ1
Y = IntZσ1

and assertion (b) of Lemma 4.2 holds.
Pick σ ∈ FaceP . For every τ � σ, and every p ∈ σ, assertion (b) of the claim

and the definition of Z1
τ give

Zσ ⊂ IntZτ ⊂ Z1
τ ⊂ Z1

σ ⊂ Wp .

We let Uσ be an open subset of ∩τ�σ IntZτ containing Zσ such that Uσ ∩ Y is
simply-connected for all Y ∈ Cσ. If Ψp : (Wp, g(p)) → (X \ Sp, gX) is an isometry
as in assertion (ii) of Proposition 4.1, then for every Y ∈ Cσ, p ∈ σ, the composition

Uσ ∩ Y −→ Wp
Ψp−→ X \ Sp −→ X

is an isometric embedding of (Uσ ∩ Y, g(p)) into (X, gX). This lifts to an isometric
embedding of (Uσ ∩ Y, g(p)) into the universal cover of (X, gX), which is isometric
to (S3, gS3). Thus assertions (c)(i) and (c)(ii) of Lemma 4.2 hold. If σ ∩ Q0 �= ∅,
then for every v ∈ σ(0) we have St(v, P ) ∩Q0 �= ∅, which implies that Wpv

= X by
the choice of pv. Assertion (e) of the claim gives Cσ = ∅, so Zσ = X, and assertion
(c)(iii) of Lemma 4.2 holds. �

Proof of Lemma 4.3. The idea of the proof is to convert the extension problem for
the family of K ≡ 1 metrics to an extension problem for embeddings into S3, by
working with (suitably normalized) isometric embeddings, rather than the metrics
themselves. The extension problem for the embeddings can then be solved by
appealing to Hatcher’s theorem.

Pick x ∈ S2, x′ ∈ S3 and oriented bases e1, e2, e3 ⊂ TxR
3, e′1, e

′
2, e

′
3 ⊂ Tx′S3

which are orthonormal with respect to gR3 and gS3 respectively. For each p ∈ Dm+1,
apply the Gram-Schmidt process to e1, e2, e3 to obtain an hm+1(p)-orthonormal
basis f1(p), f2(p), f3(p) for TxR

3. For all p ∈ Dm+1 let ψm+1(p) : (Nρ(S
2) ∩

D3, hm+1(p)) → (S3, gS3) be the isometric embedding that sends f1(p), f2(p), f3(p)

to e′1, e
′
2, e

′
3; similarly, for p ∈ Sm let ψ̂m(p) : (D3, ĥm(p)) → (S3, gS3) be the

isometric embedding sending f1(p), f2(p), f3(p) to e′1, e
′
2, e

′
3. By standard regularity

for isometries, this yields continuous maps

ψm+1 : Dm+1 → Embed+(Nρ(S
2) ∩D3, S3) , ψ̂m : Sm → Embed+(D

3, S3) ,

where ψ̂m(p)
∣∣(Nρ(S

2) ∩D3) = ψm+1(p) for all p ∈ Sm.

Next, we apply Lemma 2.1 to produce a continuous map φ̂m+1 : Dm+1 →
Embed+(D

3, S3) such that φ̂m+1(p) agrees with ψm+1(p) on S2 for all p ∈ Dm+1,

and φ̂m+1(p) = ψ̂m(p) for all p ∈ Sm.

Although φ̂m+1 agrees with φ̂m on S2, it may not agree with φ̂m near S2. To

address this issue, we adjust φ̂m+1 by precomposing it with a suitable family of
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diffeomorphisms of D3 that fix ∂D3 pointwise. To that end, after shrinking ρ if

necessary, let Φ̂m+1 : Dm+1 → Diff(D3rel∂D3) be a continuous map such that

φ̂m+1(p) = idD3 for all p ∈ Sm, and Φ̂m+1(p) = φ̂−1
m+1(p)◦ψm+1(p) on Nρ(S

2)∩D3

for all p ∈ Dm+1. The map Φ̂m+1(p) may be obtained, for instance, by interpolating

between φ̂−1
m+1(p) ◦ ψm+1(p) and idD3 using a partition of unity, i.e. letting

φ̂m+1(p)(x) = u(|x|)
(
φ̂−1
m+1(p) ◦ ψm+1(p)(x)

)
+ (1− u(|x|))x,

where u : [0, 1] → [0, 1] is a smooth function supported in [1 − ε, 1] for some
sufficiently small ε > 0, and ε‖∂xu‖C0 , ε2‖∂2

xu‖C0 < C for some universal constant
C.

We now let ψ̂m+1(p) := φ̂m+1(p) ◦ Φ̂m+1(p) on D3 for all p ∈ Dm+1. By the

construction of Φ̂m+1 it follows that ψ̂m+1(p) agrees with ψm+1(p) on Nρ(S
2)∩D3,

and ψ̂m+1(p) = φ̂m+1(p) for all p ∈ Sm. Setting ĥm+1(p) := ψ̂∗
m+1gS3 , we obtain

the desired map ĥm+1 : Dm+1 → MetK≡1(D
3, S3). �

5. Proof of Theorem 1.2 for spherical space forms

Let X be a spherical space form other than S3 or RP 3. Choose m ≥ 0, and a
map h : Sm → MetK≡1(X).

Let g : Dm+1 → Met(X) be a continuous extension of the composition Sm h→
MetK≡1(X) ↪→ Met(X). For every p ∈ Dm+1, let (Wg(p), ǧ(p)) ∈ PartMetK≡1(X)
be the canonical partially defined metric constructed in Section 3. By Lemma 3.2,
the assignment p �→ (Wg(p), ǧ(p)) defines a continuous map Dm+1 → PartMet(X).

Taking P0 = Dm+1, Q0 = Sm, by Lemma 3.2 and the compactness of Dm+1, the
map p �→ (Wg(p), ǧ(p)) satisfies the hypotheses of Proposition 4.1. Now the map

Dm+1 � p �→ ĝ(p) furnished by Proposition 4.1 defines a continuous extension
ĝ : Dm+1 → MetK≡1(X) of h.

The argument above implies that the homotopy groups of MetK≡1(X) are trivial.
The space MetK≡1(X) is homotopy equivalent to a CW complex (see Lemma 2.2),
so it is contractible by Whitehead’s Theorem.

6. Proof of Theorem 1.2 for hyperbolic manifolds

The proof of Theorem 1.2 for hyperbolic manifolds is the same as the proof for
spherical space forms, apart from some minor changes, which we now explain.

In Section 3 (see Lemma 3.2) we used [Ham82, FGKO15] to show that when
Y is a spherical space form, if g ∈ Met(Y ) has positive sectional curvature, then
modulo rescaling the maximal Ricci flow (g(t))t∈[0,T ) with g(0) = g converges in
the C∞-topology to a metric g ∈ MetK≡1(Y ) as t tends to the blow-up time T , and
the limit g depends continuously on g. Here we may replace this with the assertion
that for every gX ∈ MetK≡−1(X), there is an εgX > 0 such that if g ∈ Met(X) is
εgX -close to gX and (g(t))t∈[0,T ) is the maximal Ricci flow with g(0) = g, then:

(i) T = ∞.
(ii) Modulo rescaling g(t) converges in the C∞-topology to a metric g ∈

MetK≡−1(X) as t → ∞.
(iii) The limit metric g depends continuously on g.

Statements (i) and (ii) follow immediately from the convergence of normalized Ricci
flow shown in [Ye93,Bam14]. The continuity assertion (iii) is a consequence of the
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uniform exponential decay of the time derivatives, which follows readily from their
arguments.

We now adapt the results in Section 3 to the hyperbolic case. The statements
are nearly identical, apart from obvious changes.

LetX be a compact, connected, hyperbolic manifold. We first assume in addition
that X is orientable; we will remove this assumption below.

Pick a hyperbolic metric gX ∈ MetK≡−1(X). Pick g ∈ Met(X) and let M be a
singular Ricci flow with M0 = (X, g). By Theorem 2.16, for every t < ∞ there is
a unique component Ct of Mt that is a punctured copy of X.

For every t1, t2 ∈ [0,∞), let Ct1,t2 ⊂ Ct1 be the set of points in Ct1 that survive
until time t2, i.e. the points for which the time (t2 − t1)-flow of the time vector
field ∂t is defined. Then Ct1,t2 is an open subset of Ct1 , and the time (t2 − t1)-flow
of ∂t defines a smooth map Φt1,t2 : Ct1,t2 → Mt2 , which is a diffeomorphism onto
its image. We define a metric gt1,t2 on Φt1,t2(Ct1,t2) by gt1,t2 := (Φt1,t2)∗gt1 , where
gt1 is the spacetime metric on Ct1,t2 ⊂ Mt1 . We let Wg(t) := Φt,0(Ct,0), so gt,0 is
a metric on Wg(t).

Lemma 6.1 (Limiting K ≡ −1 metric). Choose t0 < ∞ such that Ct0 is compact
and εgX -close to (X, gX), where εgX > 0 is the constant for which (i)–(iii) hold.
Then:

(1) Wg(t) = Wg(t0) =: Wg for all t ∈ [t0,∞).
(2) Modulo rescaling, gt,0 converges in the smooth topology to a K ≡ −1 metric

ǧ on Wg as t → ∞.
(3) (Wg, ǧ) is isometric to (X \ S, gX) for some finite (possibly empty) subset

S ⊂ X, where the cardinality of S is bounded above depending only on t0,
and the bounds the curvature, injectivity radius, and volume of g, and on
the time t0 from Theorem 2.16(5).

(4) If g has constant sectional curvature, then Wg = X and ǧ = λg for some
λ ∈ (0,∞).

The proof is nearly identical to the proof of Lemma 3.1, except that we appeal
to Theorem 2.16(5) rather than Theorem 2.16(4).

As in the spherical space form case, Theorem 2.16 implies that (Wg, ǧ) is well-
defined. Then the proof of continuity in Lemma 3.2 carries over, using Theo-
rem 2.16(5) and (iii) instead of Theorem 2.16(4) and [FGKO15].

Now assume that X is not orientable.
Let X̂ → X be the 2-fold orientation cover, with deck group action Z2 � X̂. For

every g ∈ Met(X), let ĝ, ĝX ∈ Met(X̂) be the pullbacks of g, ĝ to X̂, respectively,

and let M̂ be a singular Ricci flow with M0 given by (X̂, ĝ).

By Theorem 2.14, the deck group action Z2 � X̂ = M0 extends uniquely

to an isometric action Z2 � M̂. Since the partially defined metric (Wĝ, ̂̌g) ∈
PartMetK≡−1(X̂) is canonical and depends continuously on g, it is Z2-invariant,
and descends to X, yielding a partially defined metric (Wg, ǧ) ∈ PartMetK≡−1(X),
which depends continuously on g.

By Lemma 6.1 the Riemannian manifold (Wĝ, ĝω) is isometric to (X̂, ĝX) punc-
tured at a finite set of points of cardinality controlled by bounds on the geometry
of g and t0, as in assertion (3) of Lemma 6.1. Therefore the metric completion

(Wĝ, ̂̌g) of (Wĝ, ̂̌g) is isometric to (X̂, ĝX). The isometric action Z2 � (Wĝ, ̂̌g)
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extends canonically to an isometric action Z2 � (Wĝ, ̂̌g). Suppose some point

x ∈ (Wĝ, ̂̌g) \ (Wĝ, ̂̌g) is fixed by the Z2 action. Then the Z2-action will preserve a
small metric sphere N ⊂ Wĝ centered at x, preserving an orientation of its normal
bundle. It follows that the quotient N/Z2 is a 2-sided copy of RP 2 embedded in X.
This contradicts the fact that X is a compact hyperbolic manifold and therefore
its fundamental group cannot have elements of finite order. Therefore the action

Z2 � (Wĝ, ̂̌g) is free. Hence the completion of (Wg, ǧ) is a compact hyperbolic
3-manifold (X ′, g′X′), and (Wg, ǧ) is isometric to (X ′ \ S′, g′X′). Now the embed-
ding X ′ \ S′ � Wg ↪→ X, together with the irreducibility of X, implies that X ′ is
diffeomorphic to X.

Thus we have shown that we have a well-defined continuous assignment g �→
(Wg, ǧ) ∈ PartMet(X) such that (Wg, ǧ) is isometric to (X \Sg, gX) for some finite
set Sg ⊂ X, where the cardinality |Sg| is controlled by the constant t0 = t0(g) as
in Lemma 6.1, and bounds on the geometry of g. However, by Theorem 2.15 and
the convergence property stated in (i)–(iii) in the beginning of this section we may
choose t0(g) to be a locally bounded function of g. In particular, on any compact
subset of Met(X), we may choose g �→ t0(g) to be bounded.

Sections 4 and 5 now carry over after making the obvious change in the sign of
curvature, and replacing S3 with hyperbolic 3-space H3.

Remark 6.2 (cf. Remark 3.3). Rather than using the uniform exponential conver-
gence of the normalized Ricci flow to a hyperbolic metric, for the applications in
this paper it would work equally well if we used another procedure for converting
an almost hyperbolic metric to a hyperbolic metric. For instance, if (X, gX) is a
hyperbolic manifold, and g ∈ Met(X) is sufficiently close to gX , then there is a
unique harmonic map φg : (X, g) → (X, gX) homotopic to the identity map idX ,
and the pullback φ∗

ggX is a hyperbolic metric. Furthermore (by a simple compact-
ness argument) φ∗

ggX varies continuously with g.
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