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1. INTRODUCTION

Let X be a compact connected smooth 3-manifold. We let Diff (X') and Met(X)
denote the group of smooth diffeomorphisms of X, and the set of Riemannian
metrics on X, respectively, equipped with their C*°-topologies. Our focus in this
paper will be on Conjecture [T}

Conjecture 1.1 (Generalized Smale Conjecture [Sma61l[Gab01[HKMRI2]). If ¢
is a Riemannian metric of constant sectional curvature £1 on X, then the inclusion
Isom(X, g) — Diff (X) is a homotopy equivalence.

Smale’s original conjecture was for the case X = S [Sma61]. Cerf proved
that the inclusion Isom(S2, g) — Diff(S®) induces a bijection on path components
[Cer64al [Cer64bl [Cer64c, [Cer64d|, and the full conjecture was proven by Hatcher
[Hat83]. Hatcher used a blend of combinatorial and smooth techniques to show that
the space of smoothly embedded 2-spheres in R? is contractible. This is equivalent
to the assertion that O(4) ~ Isom(S3,g) — Diff(S3) is a homotopy equivalence
when g has sectional curvature 1. Other spherical space forms were studied start-
ing in the late 1970s. Through the work of a number of authors it was shown that
the inclusion Isom(X) — Diff (X) induces a bijection on path components for any
spherical space form X [Asa78 [Rub79.[CS79.Bon83l[RB84,[BO91]. Conjecture [Tl
was previously known for certain spherical space forms — those containing geometri-
cally incompressible one-sided Klein bottles (prism and quaternionic manifolds), as
well as Lens spaces other than RP? [[va82l[Iva84,[HKMRI2]. In a subsequent paper
[BK19] we provide a different proof of Conjecture [[LT] which covers all spherical
space forms, including RP3. The conjecture was proven for hyperbolic manifolds
by Hatcher and Ivanov in the Haken case [[va76l[Hat76] (extending the earlier work
of Waldhausen and Laudenbach [Wal68[Lau74]) and by Gabai in general [Gab01].
We recommend [HKMRI12], Section 1] for a nice discussion of these results and other
background on diffeomorphism groups. See Figure[llfor an overview over the status
of Conjecture [I.T] prior to this work.

In this paper we will use Ricci flow through singularities to prove:

Theorem 1.2. Let (X, g) be a compact connected Riemannian 3-manifold of con-
stant sectional curvature k € {£1}, other than S® or RP3, and let Mety=1(X) C
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S3 Hatcher 1983
RP3 previously unknown
lens spaces # RP? Ivanov 1984

prism and quaternionic manifolds | Hong, Kalliongis, McCullough,
Rubinstein 2012

tetrahedral manifolds previously unknown
octahedral manifolds previously unknown
icosahedral manifolds previously unknown
Haken hyperbolic manifolds Hatcher 1976, Ivanov 1976
general hyperbolic manifolds Gabai 2001

FIGURE 1. Overview over the status of the Generalized Smale Con-
jecture prior to this work

Met(X) be the space of Riemannian metrics on X of constant sectional curvature
k. Then Metg=r(X) is contractible.

By a well-known argument (see Lemma [22)), the contractibility of Met = (X)
is equivalent to the validity of the Generalized Smale Conjecture for X. Hence
Theorem confirms the Generalized Smale Conjecture for several new infinite
families of spherical space forms (tetrahedral, octahedral, and icosahedral mani-
folds), thereby completing the proof of the Generalized Smale Conjecture, apart
from the RP3 case. It also provides a new proof for the other spherical space
forms, and for hyperbolic manifolds. The proof of Theorem exploits Ricci flow
through singularities as developed in the papers [KL17,BK22|, and gives a concep-
tually simple treatment that works uniformly for all manifolds X as in the theorem.
By contrast, the previously known cases of Theorem [[.2] were established using tra-
ditional tools from 3-manifold topology. They rely on the presence of certain types
of distinguished surfaces: geometrically incompressible Klein bottles or surfaces ob-
tained from sweepouts in the spherical space form cases [[va82lIva84\[HKMRI12], or
canonical solid tori arising from the Gabai’s insulator techniques in the hyperbolic
case [Gab01].

The method used in this paper breaks down for S3 and RP?3 due to the geometric
structure of the “thin” part of a Ricci flow through singularities. We will treat these
cases in a separate paper [BK19] using a more involved approach (still based on
Ricci flow). Ricci flow also gives a strategy for analyzing diffeomorphism groups of
some other families of 3-manifolds [BK21].

We remark that it has been a longstanding question whether it is possible to use
techniques from geometric analysis to analyze diffeomorphism groups in dimension
3 (see, for example, [Rub07]). There are a variety of natural variational approaches
to studying the space of 2-spheres in R? (or S?) that break down due to the absence
of a Palais-Smale condition, because there are too many critical points, or because
the natural gradient flow does not respect embeddedness; analogous issues plague
other strategies based more directly on diffeomorphisms. Theorem is the first
instance where techniques from geometric analysis have been successfully applied to
the study of diffeomorphism groups of 3-manifolds. This success depends crucially
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on the recent results establishing existence and uniqueness of Ricci flow through
singularities for arbitrary initial conditions [KL17,[BK22].

Informal sketch of proof. Let X be as in the statement of Theorem To
simplify notation we will focus on the case in which X is a spherical space form;
at the end we comment on the modifications needed for the hyperbolic case. Thus
our aim is to show that Metx=1(X) is contractible, which reduces to showing that
all of its homotopy groups are trivial.

Let gx € Metx=1(X) be a reference metric. It is a classical fact that any two
metrics in Metx=1(X) are isometric.

Before proceeding, we first recall some the properties of Ricci flow through sin-
gularities, as established in [KL17,[BK22]. We keep the discussion informal, and
refer the reader to [KL17,[BK22] for more extensive presentations, and Section
for precise definitions and references.

For every g € Met(X), there exists a singular Ricci flow with initial data (X, g).
This is a Ricci flow spacetime, i.e. a 4-manifold M equipped with a time function
t and time vector field 9, as well as a Riemannian metric g along time slices that
satisfies the Ricci flow equation. Locally, the spacetime looks like a piece of a Ricci
flow defined for a short time in some open subset of U C R3, and the trajectories
of the time vector field 0y correspond to the spacetime tracks of points that are
motionless. The time-t slice M; of M is the result of evolving the metric (X, g)
under Ricci flow for a duration t. For small ¢ > 0 this corresponds to the usual Ricci
flow, but singularities may develop subsequently. These result in noncompact and
possibly incomplete time slices; near its ends an asymptotic condition is imposed
on the metric. Note that the data M,t, 0, g describing a singular Ricci flow is
not singular itself, as it only describes the “regular part of the flow”. A flow that
includes singular points can be obtained by taking the metric completion of the
time-slice.

Although the structure of the spacetime M may be rather complicated, it still
has good topological and geometric properties:

(a) For every t, at most one connected component of the time slice M, is diffeo-
morphic to X with possibly finitely many punctures, while the remaining
components are topologically trivial — copies of S® with possibly finitely
many punctures.

(b) There is a T' < oo, depending only on bounds on the geometry of g, such
that M; = 0 for t > T. We establish this fact using the extinction results
from [CMO5.[Per08], and the fact that X is prime and not aspherical.

(¢) Let w(g) € (0,T] be the supremum of the times ¢ € [0, co) for which M; has
a topologically nontrivial component. As ¢ — w(g), the time slice M; has a
unique component C; diffeomorphic to X, and C; becomes asymptotically
round as t — w(g), i.e. the family of Riemannian manifolds (Cj);<y(g)
converges, modulo rescaling, to (X, gx)-

We remark that assertion (c) is based on rigidity properties of k-solutions (the
geometric models for the large curvature part of M), and it makes use of the
assumption that X is not diffeomorphic to S or RP? in order to exclude more
complicated geometric behavior as t — w(g).
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Now consider a time t < w(g) close to w(g). By [KL1T7], there is a finite subset
S; C Cy such that the entire complement C; \ S; lies in the domain of the time-
(—t)-flow of the time vector field. In other words, every point in Cy \ S; lies on a
trajectory of the time vector field starting from the time-0 slice My = (X, g). Hence
we may pushforward the metric on Cy \ S; under the flow, to obtain a Riemannian
metric §; on open subset W, (t) of the time-0 slice My = X. We prove that g,
converges, modulo rescaling, to a metric § € Metg=1(W,), where W, C X is an
open subset, and the Riemannian manifold (Wy, §) is isometric (X \ Sy, gx) for
some finite set Sy.

To summarize, using singular Ricci flow we have taken an arbitrary Riemann-
ian metric g € Met(X), and produced a Riemannian metric of constant sectional
curvature 1, albeit one defined only on some open subset W, C X. We point out
that although W, might in principle be rather wild, it still contains the interesting
topology of X because it is diffeomorphic to X \ S, for some finite set S, C X.

Note that if g has constant sectional curvature 1, then M corresponds to an
ordinary Ricci flow and we have Cy = My, Wy(t) = X for all ¢t < w(g), and
Wg,9) = (X, 9).

Since the singular Ricci flow M is unique up to isometry [BK22], the partially
defined constant curvature metric (Wy, ¢) is canonically attached to g. Furthermore,
using the stability theorem [BK22] and [EGKOI5|, we show that (W, §) depends
continuously on g, in an appropriate sense.

We now return to the task of showing that the homotopy groups of Met =1 (X)
are trivial.

Pick m > 0, and consider a (continuous) map h : S — Metg=1(X). Our goal
is to extend h to a map h : D™t — Metg—1(X). Since Met(X) is contractible,

there is an extension g : D™+ — Met(X) of the composition S™ by Metg=1(X) <
Met(X).

For every p € D™ let (We)> 9(p)) be the partially defined metric described
in the preceding paragraphs. Note that (W), d(p)) = (X, g(p)) when p € S™.
To complete the proof, we show that after shrinking Wy, slightly, one can extend

J(p) to a metric ﬁ(p) with sectional curvature 1 defined on all of X, where ?L(p)
depends continuously on p.

We now give an indication of the extension process. Pick p € D™+, Since Wy
is diffeomorphic to X \ S,y and X is irreducible, there is a compact domain with

boundary Z, C W, such that the closure X \ Z, is a finite disjoint collection of
closed 3-disks. We would like to extend the restriction g(p)‘Zp across each of the

3-disk components of X \ Z, to obtain ﬁ(p) € Metg=1(X). Pick one such 3-disk
D. Tt is not hard to see that the extension problem is equivalent to an extension
problem for embeddings: for a suitable open neighborhood U of the boundary 0D
in D, one is given a smooth embedding of U into the round 3-sphere, and one has
to extend this to an embedding D — S3. Hatcher’s theorem [Hat83] implies that
this problem has a contractible solution set. To handle the full extension problem,
we take a suitable fine triangulation of D™%1, and carry out a parametrized analog
of this extension procedure, by induction over the skeleta. This is similar in spirit
to an argument using obstruction theory, where the obstruction group is trivial.
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We now discuss the hyperbolic case. Suppose X is a hyperbolic manifold, and
pick a hyperbolic metric gx € Metg=_1(X); for simplicity we assume here that X
is orientable.

Any g € Met(X) can be evolved into a singular Ricci flow M as before. Its prop-
erties are similar to those in the spherical space form case, except that assertions
(b) and (c) have to be modified: for every ¢ € [0,00) there is a unique compo-
nent C; of M; that is diffeomorphic to a punctured copy of X, and as t — oo the
family of Riemannian manifolds (Ct)t<oo converges, modulo rescaling, to (X, gx).
Proceeding as before we use this to construct a canonical partially defined metric
(Wy,§) with sectional curvature —1, where W, C X, and (W, g) is isometric to
(X'\ Sy, 9x) for some finite subset Sy C X. The rest of the proof is essentially the
same as for spherical space forms.

Remark 1.3. We point out that one may use singular Ricci flow to show that any
two metrics g(0), g(1) € Metx=1(X) are isometric, without appealing to Reidemeis-
ter or Whitehead torsion [Mil66]. (Of course the Ricci flow proof is vastly more
complicated than proofs using torsion, since it invokes Perelman’s work as well as
[BK22].) The idea is as follows. Let g : [0,1] — Met(X) be a path from ¢(0) to
g(1). For every p € [0, 1], we let MP be the singular Ricci flow with M} = (X, g;).
As explained in the sketch above, the spacetime MP? contains a family {C?} of time
slices that become asymptotically round as ¢ — w(g(p)). This may be used to con-
struct a family {(Up,y(p))}pe[m] of compact Riemannian manifolds with constant
sectional curvature 1 which interpolates between (X, g(0)) and (X, ¢g(1)) and which
varies continuously in the smooth topology on Riemannian manifolds. Therefore
the set of isometry classes of such metrics, equipped with the smooth topology
on Riemannian manifolds, is connected. On the other hand, one knows that the
space of isometry classes is finite: this follows from the isometric classification of
spherical space forms, or alternatively, from a simple general argument based on
the finiteness of the set of irreducible representations of a finite group. Hence it
contains a single point.

The same remark also applies to the hyperbolic case — using singular Ricci flow
one can give a new proof of Mostow rigidity assuming only local rigidity of hy-
perbolic metrics (in the appropriate form). However, to carry this out one would
have to modify the existing large-time analysis slightly so that it only invokes local
rigidity rather than Mostow-Prasad rigidity.

Organization of the paper. In Section [2, we discuss some of the preliminary
material. We recall some topological definitions and results and define the space
of partially defined metrics PartMet(X). Then we provide a precise definition of
singular Ricci flows and related terminology and state the existence, uniqueness and
convergence results for singular Ricci flows, on which our proof relies. Lastly, we list
the important topological and geometric properties of singular Ricci flows, which
will become important later. In Section Bl we describe a process that allows us to
extract a partially defined metric on the initial time slice from a singular Ricci flow;
this will lead to a canonical, continuous map of the form Met(X) — PartMet(X).
In Section ] we extend these partially defined metrics to globally defined constant
curvature metrics via a topological construction. In Sections [Bl [l we combine our
results to prove Theorem in the spherical and hyperbolic cases, respectively.
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2. PRELIMINARIES

2.1. Spaces of maps and metrics. If M, N are smooth manifolds with boundary,
we let Embed(M, N) denote the set of smooth embeddings M — N equipped with
the Cy% -topology.

If M is a smooth manifold, we let Met(M) denote the set of smooth Riemannian
metrics on M equipped with the C2-topology. For k € R, we let Met =5 (M) be

the subspace of metrics with constant sectional curvature k.
We will need the following consequence of the Smale Conjecture [Hat83].

Lemma 2.1. Let Embed (D3, 53) C Embed(D3,S3) be the subset of orientation-
preserving embeddings, and let

7 : Embed (D3, $%) — Embed(S?, %)
be the map induced by restriction. Then:

(a) 7 : Embed (D3, S%) — Embed(S?, S?) is a fiber bundle with contractible

ber.

(b) ]Zet m > 0. Suppose ¢pi1 1 D™ — Embed(S?, S3) is a continuous map
and ¢y, : S™ — Embed (D3 8%) is a lift of $mi1|S™, ie. 70 bp =
gzbmH‘Sm. Then there is an extension QASmH : D™ — Embed, (D3, S?)
of (}Em that is a lift of Gmy1-

Proof. The fact that 7 is a fiber bundle is a standard consequence of isotopy ex-
tension, which we briefly recall (see [HKMRI12]).

Given f; € Embed(S?,53) there is an open neighborhood N(fy) of fy and a
continuous map

® : N(fo) — Diff(S?)

such that for all f € N(fy) we have f = ®(f) o fo. The map ® may be obtained
by constructing a locally defined isotopy near fq(5?) using normal exponential
maps, and then gluing this to the identity map with a partition of unity. Letting
F :=7171(fy), we obtain a bundle chart N(fo) x F — 7~ 1(N(fy)) for m by sending

(f,9) to ®(f) 0 ¢
By [Hat83l p.604], the subset

Diff(D*reldD?) := {« € Diff(D?) | o], = idg2}
is contractible. If ¢g € F', then we obtain a homeomorphism
Diff(D*reldD?) — F

by sending a to ¢ o «. Hence F is also contractible. Thus assertion (a) holds.
Since 7 is a fiber bundle with contractible fiber, any map can be lifted relative
to its boundary. Hence assertion (b) holds. O

The following is well-known:

Lemma 2.2. Let X be a compact connected 3-manifold, and gx € Metg=x(X) for
k € {£1}. Then:

e There is a fibration Diff (X) — Metx=(X) with fiber homeomorphic to
Isom(X, gx).

e Diff(X) and Metx=x(X) are homotopy equivalent to CW complezes.

o Metg=r(X) is contractible if and only if the inclusion Isom(X,gx) —
Diff (X) is a homotopy equivalence.
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Sketch of proof. The metric gx is unique up to isometry; this follows from Mostow
rigidity when &k = —1, and by the isometric and smooth classification of spherical
space forms when k& = 1. Therefore the action Diff (X) ~ Metx=(X) by push-
forward is transitive, with stabilizer Isom(X, gx). The space Metx=x(X) is then
homeomorphic to the orbit space Diff(X)/Isom(X, gx), and we have a fibration
Diff (X) — Metg=¢(X) with fiber homeomorphic to Isom(X, gx). The diffeomor-
phism group Diff (X) is a Frechet manifold that is locally diffeomorphic to the space
Looe (TX) of C* vector fields on X. Using the orbit space representation, one gets
that Metx=¢(X) is a separable Frechet manifold modelled on a finite codimen-
sion closed subspace of I'cee (T'X). Hence both spaces have the homotopy type
of CW complexes. Finally, using the exact homotopy sequence of the fibration
Diff(X) — Metg=x(X), we get

Metg=(X) is contractible.
<= Metg=x(X) is weakly contractible.
<= The inclusion Isom(X, gx) — Diff (X) is a weak homotopy equivalence.
<= The inclusion Isom(X, gx) — Diff(X) is a homotopy equivalence.
(|

We will also work with the collection of Riemannian metrics defined on different
subsets of a given manifold.

Definition 2.3 (Topology on partially defined metrics). Let M be a smooth mani-
fold, and let PartMet(M) be the set of partially defined Riemannian metrics on M,
i.e. the set of pairs (U, h) where U C M is open and h is a smooth Riemannian met-
ric on U. We topologize PartMet (M) as follows. For every (U, ho) € PartMet(M),
K C Uy compact, k < co, and € > 0, we let

U(Uo, ho, K, k,€) :== {(U, h) e PartMet(X) | K C U, H(V?m(h —ho))(@)|ln, <€
forallz € K, j <k}.

The collection of all such subsets U(Uy, ho, K, k,€) is a basis for the topology on
PartMet(X).

Note that if Z is a metric space, then in order to verify that a map Z 3 z —
(U(z),9(%)) € PartMet(M) is continuous, it suffices to show that if z; — 2o, € Z,
then for every compact subset K C U(zs) we have K C U(z;) for large j, and
V’;(Zw)(g(zj) — g(200)) = 0 uniformly on K.

Remark 2.4. The topology on PartMet(M) has the somewhat alarming property of
being non-Hausdorff. This is due to the fact that it formalizes the lower semicon-
tinuous dependence of the open set U. It may be compared to the non-Hausdorff
topology on R generated by the set of open rays {(a,o0)},cr, which may be used
to characterize lower semicontinuous real-valued functions X — R.

2.2. Closeness and convergence of Riemannian manifolds. We now recall
notions of closeness for Riemannian manifolds.

Definition 2.5 (Geometric closeness). We say that a pointed Riemannian manifold
(M, g,z) is e-close to another pointed Riemannian manifold (M,g,Z) at scale
A > 0 if there is a diffeomorphism onto its image

P Bﬁ(f,efl) — M
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such that (%) = z and
H)‘_Qw*g - gHC[é’l](Bﬁ(E,e’l)) <€

Here the Cl¢ 'l-norm of a tensor h is defined to be the sum of the C%-norms of the
tensors h, V9h, VI2h, ..., VOl 'Ih with respect to the metric g. We say that
(M, g,7) is e-close to (M, g,T) if it is e-close at scale 1. We have analogous notions
for (unpointed) Riemannian manifolds: (M, g) is e-close to (M,g) if there is a
diffeomorphism 1 : M — M such that

[4°9 =3l cte-1iamy < €

The notion of closeness provides a notion of convergence of sequences (or families)
of Riemannian manifolds, in the usual way.

2.3. Ricci flow spacetimes. We now recall the properties of singular Ricci flows
that will be essential in this paper. We refer the reader to [KL17,[BK22] for more
details.

Definition 2.6 (Ricci flow spacetimes). A Ricci flow spacetime (starting at
time a € R) is a tuple (M, t, dy, g) with the following properties:

(1) M is a smooth 4-manifold with (smooth) boundary OM.

(2) t: M — [a,00) is a smooth function without critical points (called time
function). For any t > a we denote by M, := t~1(t) C M the time-t-slice
of M.

(3) We have M, = t~!(a) = OM, i.e. the initial time-slice is equal to the
boundary of M.

(4) 0y is a smooth vector field (the time vector field), which satisfies Oit = 1.

(5) g is a smooth inner product on the spatial subbundle ker(dt) € T M. For
any t > a we denote by g¢; the restriction of g to the time-t-slice M; (note
that g; is a Riemannian metric on M,).

(6) g satisfies the Ricci flow equation: L5,g = —2Ric(g). Here Ric(g) denotes
the symmetric (0, 2)-tensor on ker(dt) that restricts to the Ricci tensor of
(My, g¢) for all t > a.

For any interval I C [a,00) we also write M; = t~*(I) and call this subset the
time-slab of M over the time interval I. Curvature quantities on M, such as the
Riemannian curvature tensor Rm, the Ricci curvature Ric, or the scalar curvature R
will refer to the corresponding quantities with respect to the metric g; on each time-
slice. Tensorial quantities will be embedded using the splitting T M = ker(dt)® ().

Unless otherwise specified, we will implicitly take a = 0. When there is no chance
of confusion, we will usually abbreviate the tuple (M, t, d, g) by M.

Definition 2.7 (Survival). Let (M,t,dy, g) be a Ricci flow spacetime and = € M
be a point. Set ¢t := t(x). Consider the maximal trajectory v, : I — M, I C [0, 00)
of the time-vector field d¢ such that v, (¢f) = z. Note that then t(v,(t')) = ¢’ for all
t' € I. For any t' € I we say that z survives until time ¢, and we write

2(t') =7 (t).

Similarly, if X C M, is a subset in the time-t time-slice, then we say that X
survives until time ¢’ if this is true for every x € X and we set X (¢') := {z(t)
x e X}
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A product Ricci flow spacetime is a Ricci flow spacetime associated with
an ordinary Ricci flow (g(t))¢cja,7) On a manifold M, i.e. it is of the form (M x
la,T),t,0g), where t = 7, p) is projection onto the interval factor [a,T), O
corresponds to the vector field coming from [a,T), and g, = m},9(t) where mp :
M x [a,T) — M is the canonical projection.

Definition 2.8 (Product domain). Let (M, ¢, 0y, ¢g) be a Ricci flow spacetime and
let X C M be asubset. We call X a product domain if there is an interval I C [0, c0)
such that for any ¢ € I any point « € X survives until time ¢ and z(t) € X.

Definition 2.9 (Completeness of Ricci flow spacetimes). We say that a Ricci flow
spacetime (M, t, 0y, g) is 0-complete if, whenever v : [0, sg) — M is either an inte-
gral curve of £0; or a unit speed curve in some time slice, and sup,¢o ) | Rm [(v(s))
< 00, then limg_,, v(s) exists.

Lemma[Z.I0states that maximal product domains in 0-complete Ricci flow space-
times correspond to ordinary Ricci flows, provided their time slices are compact
manifolds.

Lemma 2.10. Let (M,t,0,,g) be a 0-complete Ricci flow spacetime, tg > 0, and
C C My, be a compact 3-dimensional submanifold without boundary (i.e. a finite
union of compact components). Let C C M be the mazimal product domain in
M4, with initial time slice C, and (h(t))icjt,,7) be the mazimal Ricci flow on C
whose initial metric h(to) s equal to the restriction of the time slice metric gy, to
C C M,,. Then C is isometric to the product Ricci flow spacetime associated with
(h(t))teito,T)-

Proof. Let I C [tg,00) be the time interval on which C is defined. The compactness
of C implies that I = [tg,ty) for some t, € (tp,00]. For t € [to,t4), let gi 4, be the
Riemannian metric on C' obtained by pushing forward g’Ct under the time-(ty — t)
flow of the time vector field 0¢. It follows from the definition of Ricci flow spacetimes
that the family of metrics (g¢,¢,)te[ty,¢,) defines a Ricci flow. By the uniqueness of
Ricci flow, we therefore have g, ;, = h(t) for t < min(7,t). It follows that t; <T.
Suppose t1 < T. Choose z € C. Since ty < T, the curvature |Rm|(x(t)) remains
uniformly bounded for ¢ € [tg, ¢+ ), and hence by 0-completeness, z survives until
time t,, and hence to some ¢’ > ¢,. By continuity of the flow of d;, an open
neighborhood of z in C' survives until some time ¢, > ¢;. By compactness C
survives until some time ¢’ > ¢, which is a contradiction. (]

2.4. Singular Ricci flows. To define singular Ricci flows, we require the definition
of a k-solution.

Definition 2.11 (x-Solution). An ancient Ricci flow (M, (9(t))ie(—cc,0) On & 3-di-
mensional manifold M is called a (3-dimensional) x-solution, for x > 0, if the
following hold:

(1) (M,g(t)) is complete for all t € (—o0, 0],

(2) |Rm| is bounded on M x I for all compact I C (—o0,0],

(3) secyry >0 on M for all t € (—o0,0],

(4) R>0on M x (—o0,0],

(5) (M,g(t)) is k-noncollapsed at all scales for all ¢t € (—o0, 0]

(Thls means that for any (z,t) € M x (—00,0] and any r > 0 if |Rm| <

r=2 on the time-t ball B(x,t,7), then we have |B(z,t,r)| > xr" for its
volume.)
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We can now define the canonical neighborhood assumption. This characterizes
the local geometry of a Ricci flow spacetime by the geometry of x-solution using
the notion of pointed closeness from Definition The main statement of this
assumption is that regions of small scale (i.e. high curvature) are geometrically
close to regions of x-solutions.

Definition 2.12 (Canonical neighborhood assumption). Let (M, g) be a (possibly
incomplete) Riemannian manifold. We say that (M, g) satisfies the e-canonical
neighborhood assumption at some point z if there is a k > 0 (which may depend
on z), a r-solution (M, (§(t))ie(—o0,0) and a point T € M such that |Rm|(Z,0) = 1
and such that (M, g, ) is e-close to (M, g(0),T) at some (unspecified) scale A > 0.

For r > 0, we say that a subset X of a Ricci flow spacetime (M, t, 0y, g) satisfies
the e-canonical neighborhood assumption at scales below r if the e-canonical
neighborhood assumption holds at all z € X with |[Rm|(x) > r~2.

Definition 2.13 (Singular Ricci flow). If € > 0 and 7 : [0,00) — (0,00) is a
nonincreasing function, then an (e, r)-singular Ricci flow is an orientable Ricci
flow spacetime (M, t, d, g) such that:

e The initial time slice M is compact.
e M is O-complete.
e My satisfies the e-canonical neighborhood assumption at scales < r(t).

A singular Ricci flow is a Ricci flow spacetime that is an (e, r)-singular Ricci flow
for some e, 7.

We remark that our notion of singular Ricci flow here is equivalent to the one in
[BK22|, which is weaker than the one in [KL17]. The existence theorem in [KL17]
yields singular Ricci flows satisfying the stronger condition.

Theorem 2.14 (Existence and uniqueness of singular Ricci flow).

o (Existence [KL17]) For every compact orientable Riemannian 3-manifold
(M, g) there is a singular Ricci flow M with Mg isometric to (M, g). More-
over, for every e > 0 there is an r : [0,00) — (0,00) such that M is an
(e,1)-singular Ricci flow, where r depends only on € and an upper bound on
|Rm | and a lower bound on the injectivity radius of M.

e (Uniqueness [BK22|) There is a universal constant €can > 0 such that if
ML, M? are (€can,T)-singular Ricci flows for some r : [0,00) — (0,00),

~

then any isometry ¢ : M{ — M3E extends to an isometry ¢ : M* — M?2.
Theorem [ZT0] is a direct consequence of [BK22, Theorem 1.5 & Addendum)].

Theorem 2.15 (Convergence of singular Ricci flows). Suppose {h;} is a sequence of
smooth Riemannian metrics on a compact orientable 3-manifold M, and h; — hoo
smoothly as j — 0o. For j € NU oo, let (M7, t/,0y,97) be a singular Ricci flow
with time-0 slice (M, h;), and for every T, C < oo, let

M, o= {z € M7 | t(z) <T,|Rm| < C}.

Then there is a sequence {M> D UJ 2 Vi MY} where:
(1) U7, VI are open, and ® is a diffeomorphism which restricts to the identity

map on the time 0 slice. _
(2) For every T, C, we have UJ D MF e, Vio MJT,C‘ for large j.
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(3) ®7 is time-preserving, and the sequences {(®7)*0y}, {(®7)*¢?} converge
smoothly on compact subsets of M to 0w and g, respectively.

If M is a manifold, then a punctured copy of M is a manifold diffeomorphic
to M\ S, where S C M is a finite (possibly empty) subset. Note that if M;, M are
compact 3-manifolds, then punctured copies of M; and My can be diffeomorphic
only if M, is diffeomorphic to Ms. This follows from the fact that if D, D’ are
3-disks where D' C Int D, then D\ D’ is diffeomorphic to S? x [0,1]. Hence the
notion of “filling in” punctures is well-defined.

The following result collects most of the topological and geometric properties of
singular Ricci flows that will be needed in this paper.

Theorem 2.16 (Structure of singular Ricci flows). Let (M, 1,0y, g) be an (€can,7)-
singular Ricci flow, where €cay 15 as in Theorem 214l Then:

(1) For every t € [0,00), each component C C M is a punctured copy of some
compact 3-manifold.

(2) Let ME be the (possibly empty) 3-manifold obtained from M, by filling in
the punctures and throwing away the copies of S®. Then M is a compact
3-manifold, i.e. all but finitely many components of My are punctured
copies of S3. Furthermore, for every t; < to the prime decomposition of
Mgl is part of the prime decomposition of M?IH Hence there are only
finitely many times at which the prime decomposition of M changes.

(3) MW s irreducible and aspherical for large t, depending only on the fol-
lowing bounds on the geometry of My: upper bounds on the curvature and
volume, and a lower bound on the injectivity radius.

(4) If the time-0 slice My is a spherical space form, then there is a time w €
[0,00) such that:

(a) For every t < w, precisely one component Cy of the time-t-slice M,
is a punctured copy of Mg, and all other components are punctured
copies of S3.

(b) For every t > w, the components of My are punctured S3s (this in-
cludes the case M; = 0).

(c) If My is not diffeomorphic to S* or RP3, then Cy has no punctures for
t close to w(g) and the family of Riemannian manifolds (Ct)i<w con-
verges smoothly, modulo rescaling, to a manifold of constant sectional
curvature 1 as t — w. More precisely, if to < w(g) is close enough to
w(g) that Cy, is compact and has positive sectional curvature, then:

(i) The mazimal product domain C with initial time slice Cy, is
defined on [to,w(g)), and is isometric to the Ricci flow spacetime
of the (mazximal) Ricci flow (g,t0)t0€ltow(q)) oM Ct, with initial
condition gy, .

(ii) Modulo rescaling, the family of Riemannian metrics
(9t.t0 )toeltow(q)) converges in the C>-topology as t — w(g) to
a metric g of constant sectional curvature 1.

(iii) For every t € [to,w(g)), the time slice C;, coincides with Cy.

(5) If My is diffeomorphic to a closed hyperbolic 3-manifold, then for every
t > 0 there is a unique component Cy C My that satisfies the condition
of assertion (4)(a). Furthermore, the family of Riemannian manifolds
(Mi)tefo,00) converges smoothly to Mo equipped with a hyperbolic metric
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as t = oo. More precisely, there is a to < 0o such that Cy, is compact, the
mazximal product domain Cy, with initial time slice Cy, is defined on [tg, 00)
and:

(i) If (9t,t0 ) toelto,o0) 18 the mazimal Ricci flow on Cy, with initial condition
gt (which corresponds to C (cf. Lemmal2ZI0])), then, modulo rescaling,
the family of Riemannian metrics (gs,t,)ie[to,00) CONVETges in the C>°-
topology as t — oo to a metric g of constant sectional curvature —1.

(ii) For every t € [tg,0), the time slice C; coincides with Cs.

Proof. The proof is a combination of known results.

(1) is contained in [KLI7, Prop. 5.31].

We now prove (2). Pick 0 < ¢; < t3 < o0. Let Y C My, be the union of
finitely many connected components none of which is a punctured copy of S, and
let YA be the result of filling in the punctures of Y. By [KLI7, Theorem 1.13],
there is a finite subset S C Y such that flow of the time vector field 9; is defined on
Y \ S over the time interval [t; — t2, 0], and hence it defines a smooth embedding
Y\ S < M,,. Taking t; = 0, we see that the prime decomposition of Y is part
of the prime decomposition of My, and hence the number of summands is bounded
independently of the choice of ¢, and Y. It follows that M (and similarly M)
are compact 3-manifolds, and without loss of generality we may assume that Y
is the union of all components of M, that are not punctured copies of S3. The
embedding Y < M,, implies that the prime decomposition of Mi“ is part of the
prime decomposition of M. This proves (2).

By [CMO05[Per08], there is a t < oo such that for any Ricci flow with surgery
(in the sense of Perelman [Per03]) with sufficiently precise cutoff and starting from
the Riemannian manifold My, then for any ¢t > t every component of the time-¢
slice is irreducible and aspherical or a copy of S2. Pick t > t. Choose a connected
component C' C M, (note that M denotes the singular Ricci flow and not a Ricci
flow with surgery) that is not a punctured copy of S3, and let Z C C be a compact
domain with spherical boundary components such that Int Z is diffeomorphic to C.
By the convergence theorem [KL17, Thm. 1.2] and [BK22, Cor. 1.4], the domain
Z smoothly embeds in the time-t slice of some Ricci flow with surgery starting
from M. It follows that filling in the punctures of C, we get an irreducible and
aspherical 3-manifold. This proves (3).

Suppose My is diffeomorphic to a spherical space form.

If My is a copy of S3, then by (2), for every ¢t > 0 all components of M; are
punctured copies of S3, and taking w = 0, assertions (a) and (b) follow.

If M, is not a copy of S2, then by (2) and (3) there is an w € (0, 00) such that
M is a copy of My for t < w and Ml = ) for t > w. If M is a copy of
My, then there is a compact domain with smooth boundary Z C M, such that
Int Z is a punctured copy of My. Applying the flow of the time vector field 0y for
short time, we see that Z embeds in M, for some ¢t > w, contradicting M = ().
Therefore M = (). Hence assertions (4)(a) and (4)(b) hold.

Now suppose My is not a copy of S2 or RP3. Choose t < w, and let Z C M; be
the component that is a punctured copy of M. Choose € > 0, and suppose Z is not
é-close modulo rescaling to Mg equipped with a K = 1 metric. By [KL17, Prop.
5.31], there is a finite disjoint collection {N;}¥_; where:
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(i) Each N; is a domain with boundary in Z which is diffeomorphic to one of
the following: S3, RP3, S% x S', RP3#RP3, S® x [0,00), D3, RP® \ B3,
or $2% x [0,1].

(ii) |Rm| < Cr~2(¢) on the complement Z \ U;N;, where C' is a universal con-
stant.

Since M, is not a copy of S3 or RP3 and Z is a punctured copy of My, which is
irreducible, each N; must be a copy of S? x [0,00), D3, or S? x [0,1]. The com-
ponents of Z \ U;N; embed in My, and are therefore punctured copies of S% or
M. Tt follows that some component W of Z \ U;N; is a punctured copy of M.
Let r. > 0 be a lower bound on r(t) for ¢ € [0,w). By the canonical neighborhood
assumption we can find a universal constant C, such that |0;|Rm|| < C.r* when-
ever [Rm| € (r;4,2r;?) (see [BK22, Lemma 8.1]). Integrating this inequality, using
the curvature bound in (ii) and 0-completeness, it follows that there is a constant
T = %C’; 192 > 0, which is independent of ¢, such that W survives until time ¢ + 7
and such that [Rm| < 2r;2 on W (¢') for all ¢’ € [t,t + 7] (compare [BK22, Lemma
8.4]). So if t is sufficiently close to ¢, then W survives until time w, contradicting
the fact that M = (). Hence modulo rescaling Z is é-close to My equipped with
a metric of constant sectional curvature 1. Thus the first part of assertion (4)(c)
holds.

Now suppose that C, is compact and has positive sectional curvature for some
to < w(g). Let C C M, o) be the maximal product domain with initial time slice
Ct,, and let [tg,t4) be the time interval on which C is defined. By Lemma [Z10]
C is isometric to the spacetime for the ordinary Ricci flow (¢4, )tefto,t) On Ct,
with initial condition given by g¢,,. Because g;, has positive sectional curvature, it
follows from [Ham82| that the metrics (g¢,¢,)ie[ty,¢,) converge modulo rescaling to
a K =1 metric g on Cy, as t — t4. If t4 > w(g), then M; would contain a copy
of X for some t > w(g), contradicting assertion (4)(b). If ¢4 < w(g), then by the
compactness of Cy, , we may flow C;, backward and forward under 9, for a short
time. By (4)(a) this yields C; for ¢ close to t4, and in particular C; for ¢ < t4 close
to t4+. Hence C may be extended past ¢, which is a contradiction. Thus ¢ = w(g).
Hence (4)(c)(i) and (4)(c)(ii) hold. Assertion (4)(c)(iii) follows from (4)(a).

Now suppose My is diffeomorphic to a hyperbolic 3-manifold.

Let (M7, t/,0y,97) — M be a convergent sequence of Ricci flow spacetimes
as in [KLI7, Thm. 1.2], i.e. the MJs are associated with a sequence of Ricci
flows with surgery with initial conditions isometric to Mg, where the Perelman
surgery parameter d; tends to zero as j — oco. By [BK22, Cor. 1.4] we may take
M = M. We recall that Perelman’s work implies that for fixed j, a statement
similar to (5) holds: as t — oo i.e. the Riemannian manifolds (M7,t~2g]) converge
in the smooth topology to M with a hyperbolic metric [Per03,Bam17]. Although
Perelman’s argument by itself does not provide the uniform control needed to pass
the statement to the limit to obtain (5) directly, his argument can nonetheless be
implemented by using some results from [KL17], as we now explain.

Claim. For every j € NU {oo}, and every t € [0, 00):
e The scalar curvature attains a nonpositive minimum R’ . (t) on M.

e the function ¢ — ﬁj (t) == RJ . (t)(V7)3(t) is nondecreasing, where V7 (t)
is the volume of M.

Moreover, R? — R° uniformly on compact sets as j — oo.
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Proof. For j € N, the fact that R’ . (t) is well-defined and negative, and ¢ —
R (t) is nondecreasing, was shown by Perelman. From the properness asserted
in [KL17, Thm. 1.2(a)] it follows that ¢t — R (¢) is a well-defined continuous
function, and the main assertion of [KL17, Thm. 1.2] then implies that Rf;lm —
i uniformly on compact sets.
Since V*° is continuous and V7 — V> uniformly on compact sets by [KLI7,
Thm. 4.1, Cor. 7.11], it follows that Ri — R uniformly on compact sets. Because

R is a uniform limit of nondecreasing functions, it is also nondecreasing. ([l

Using the fact that Ri — R uniformly on compact sets, the arguments from
[KLO8| Secs. 89-91] may now be implemented uniformly for all the Ricci flows with
surgery, with the slight modification that the “slowly varying almost hyperbolic
structures” in [KLO8, Prop. 90.1] are only defined on an interval [Ty, T;] for some
sequence T; — oo. After passing to a subsequence, we may use [KL17, Thm. 1.2] to
obtain a version of [KLO8, Prop. 90.1] for M = M°°. The proof of incompressibility
of the cuspidal tori as in [KLO8|, Sec. 91] carries over to the singular Ricci flow
M, since compressing disks avoid the thin parts of M. Alternatively, one may
deduce incompressibility in time slices of M from incompressibility in M7 for
large j. The complement of the (truncated) hyperbolic regions consists of graph
manifolds [KLO8, Sec. 91]. By (2) we conclude that there is precisely one hyperbolic
component, and it coincides with M¢° for large ¢t. Thus we have proven the first
part of assertion (5).

The proof of (5)(i)—(ii) is similar to the proof of (4)(c)(i)—(iii), except that instead
of appealing to [Ham82|, we use the convergence of normalized Ricci flow shown in
[Ye93[Bam14]. O

3. THE CANONICAL LIMITING CONSTANT CURVATURE METRIC

In this section, we let X be a 3-dimensional spherical space form other than S3
or RP3. Recall that 3-dimensional spherical space forms are always orientable.

By Theorem 2.16] a singular Ricci flow M starting from an arbitrary metric
g € Met(X) contains a family of time slice components whose metrics converge,
modulo rescaling, to a round metric. In this section, we will use a result from
[KL17] to flow these metrics back to the time 0 slice Mg ~ X, with the caveat that
the flow is not defined everywhere — it is only defined on the complement of a finite
subset. Using the uniqueness and continuity theorems of [BK22|, we show that this
process yields a canonical partially defined metric constant of sectional curvature 1
on X, which depends continuously on g in the sense of Definition [Z3] See Figure
for a depiction of this.

Pick g € Met(X) and let M be a singular Ricci flow with My = (X, g). Let
w(g) = w be as in Theorem 210, and for every t < w(g) let C; be the unique
component of M; that is a punctured copy of X.

For every t1,t2 € [0,w(g)), let Cy, 1, C C}, be the set of points in Cy, that survive
until time ¢o, i.e. the points for which the time (t; — ¢1)-flow of the time vector
field 0y is defined. Then Cy, 4, is an open subset of Cy,, and the time (t3 — ¢1)-flow
of O¢ defines a smooth map @, 1, : Ct, +, = My,, which is a diffeomorphism onto
its image. We define a metric g4, ¢, on Py, 1, (Chy 1) BY Giy .10 = (Puy 15) 461, , Where
g1, is the spacetime metric on Cy, ;, C My,. We let W, () := @,0(Ct0), 50 gi0 is
a metric on Wy(t).
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FIGURE 2. A Ricci flow spacetime M (aka singular Ricci flow)
with initial data (X, g). The time function t is expressed as height
function and the arrows indicate the time vector field ;. The
dashed level sets indicate time slices (the second and third time
slices are singular). For all ¢ < w(g) the time-t-slice contains ex-
actly one component Cy that is not diffeomorphic to a sphere. The
flow of 9 restricted to W is defined on the time interval [0,w(g)).
The union of these trajectories is shaded in dark gray. For each
t the trajectory of 0y starting from each but a finite set of points
Sy C Cy intersects the time-0-slice. These points are drawn as dark
dots and their trajectories, which cease to exist at a singular time,
as dotted curves.

15

Lemma 3.1 (Limiting K = 1 metric). Choose to < w(g) such that Cy, is compact
and has positive sectional curvature; such a time to exists by Theorem 2I6(4)(a).

Then:

(1) Wy(t) = Wy(to) =: Wy for all t € [to,w(g)).
(2) Modulo rescaling, g0 converges in the smooth topology to a K = 1 metric

g onWy ast — w(g).

(3) (Wy,g) is isometric to (X \ S, gx) for some finite (possibly empty) subset
S C X, where the cardinality of S is bounded above by a constant depending
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only on bounds on the curvature, injectivity radius, and volume of g, and
on w(g).

(4) If g has constant sectional curvature, then Wy = X and § = Ag for some
A€ (0,00).

We caution the reader that although (W, g) is isometric to (X, gx) with finitely
many points removed, the complement X , may have nonempty interior and
could, in principle, be quite irregular.

Proof of Lemma Bl Let C C My, ) be the maximal product domain with C;, =
Ct,- By Theorem[ZT6[4)(c), the domain C is defined on the time interval [tg, w(g)).
Hence for all ¢ € [tg,w(g)) we have C, 4, = Cy, Co = ‘b;tlo (Ci.0)s Pro = @iy 004,
and Wy (t) = @4,0(Ct0) = Pt,,0(Cry,0) = Wy(to). Thus (1) holds.

Note that on ®,¢(C} )

gt,0 = (‘bt,o)*gt = (Cbto,o)*(q)t,to)*(gt) = ((I)to,o)*gt,to .

By Theorem 2.T6(4), modulo rescaling, (s, )¢eftow(g)) converges in Met(Cy, o)
to the K = 1 metric g on Cy 0 as ¢ — w(g). Consequently, modulo rescaling,
(9t,0)telto.w(g)) converges in Met(W,) to the K = 1 metric (®4,,0).g. Thus asser-
tion (2) holds.

By [KL17, Theorem 1.13], all but finitely many points in Cy, survive until ¢ = 0,
ie. Oty \ Cyy 0 is finite; moreover the cardinality is bounded above depending only
on bounds on the curvature, injectivity radius, and the volume of My, and on w(g).
There is a unique K = 1 metric on X up to isometry [Mil66], so (Ct,,7) is isometric
to (X, gx). Since (Wy, g) is isometric to (Cy, 0,7), assertion (3) holds.

Now suppose g has constant sectional curvature. Then M is the product Ricci
flow spacetime corresponding to a shrinking round space form. Hence W, = X,
and g0 agrees with g modulo rescaling, for all ¢ € [0,w(g)), so ¢ agrees with g
modulo rescaling, and assertion (4) holds. (]

By Theorem [210] for every g € Met(X) there exists a singular Ricci flow M with
M isometric to (X, g) which is unique up to isometry; hence the pair (W,, §) is also
independent of the choice of M, i.e. it is a well-defined invariant of g € Met(X).

Next, we show that the pair (W, §) varies continuously with g, in the sense of
Definition 2.3l After unwinding definitions, this is a straightforward consequence
of the convergence theorem of [BK22].

Lemma 3.2. The assignment g — (W, g) defines a continuous map Met(X) —
PartMet(X).

Moreover, there is a map n : Met(X) — Zx>o such that for every g € Met(X) the
Riemannian manifold (Wy, §) is isometric to a constant curvature manifold with
n(g) points removed and n is locally bounded from above.

Proof. Suppose ¢/ — ¢ in Met(X). For all j € NU {oc}, let M7 be a singular
Ricci flow with MJ = (X, ¢7), let w(g?), C7, be as in Theorem 216, and (Wi, §7)
be as in Lemma 31l Choose a compact subset Z C Wyee. To prove the lemma, we
will show that Z C W, for large j, and that 3 — §° in the C*°-topology, on an
open subset containing Z.

Let ¢/ : M>™ D> U/ — VJ C M7 be the diffeomorphism onto its image from
Theorem
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Let to be the time from Lemma Bl for M®. By Theorem 215, the map ¢’ is
defined on Cg* for large j, and ( io)* ¢’ — ¢g* on Cpy. Therefore, without loss of
generality, we may assume that ¢’ is defined on Cpy for all j, and C’tjo has quarter-
pinched, positive sectional curvature. For j € NU{oc}, if C? € M7 is the maximal
product domain with time-to slice C7,, then €7 is defined on [to, w(g”)) and ¢} = CY
for all ¢ € [to,w(g”)), by Theorem 2.T6](4).

The flow @{’to of the time vector field dy; is defined on C} for t € [to,w(g7)), j €
NU{oo}, since C7 is a product domain in [tg,w(g?)). Thus, for j € NU{oco}, g{7t0 =
(fbgﬁto)*gj is a well-defined smooth metric on Cgo for all t € [tg,w(g”)), and modulo
rescaling, g{to = MetKEl(Cgo) as t — w(g’). By [FGKOI15, Theorem 1], since
(¢7)*g? — g™ on Cf° in the C*°-topology, it follows that (¢7)*g’ — g in the
C*>-topology and w(g?) — w(g*>).

By assumption Z C Wye, so it survives until time ¢y in M*, and &%, (Z) C
Ciy. Since Z is compact, there is a product domain N C M® defined on [0, to],
such that N°° has compact closure in M, and the time zero slice N§° is an open
subset of Wy containing Z.

For large j the map ¢’ is defined on N'*°, and we let N7 be the pullback of
M under ¢j|./\/°°, ie. Ni = (N= ¥ = t°,05,97) where 0y = (gi)j}./\/oo)*ag,
9= (¢j‘./\/°°)*gj. (Note that N7 is not quite a Ricci flow spacetime because it
has boundary points in the time-ty slice.) By Theorem 2.I0] we have 05 — Ogeo,
37 — ¢ in the C*°-topology on N’ as j — oc.

Now choose an open set Z' C N§° with compact closure in A§°, such that
Z C Z'. Since 9y converges to the product vector field di on N, it follows
that for large j, the flow 5%,t0|Z’ of 9y is defined and takes values in Cp?, and
‘f’%m’Z’ — <I>8f’tO’Z’ in the C*-topology as j — oo. Because ( {O)*yﬂ' — g™ as
J — 00, we get

(3.1) (®0s,) @1)F = @5,)7°=5° o 7

in the C'* topology, as j — oc.

The map ¢/ : Ni = @ (N>®) C M preserves time functions, time vector
fields, and metrics. Therefore, the assertions in the previous paragraph imply
that for large j, @67% is defined on Z’ and takes values in gb{o (Cre) = C’go and
P17 = (2,277 = (60)"(9),|2)F = (@4,|2)"(81,)F. By BI) we
conclude that gj\Z’ — g°°]Z’ in the C*°- topology as j — oo.

The last statement follows by combining the fact that w(g’) — w(g°°) along any
sequence g/ — ¢*° and Lemma [B.1)(3). O

Remark 3.3. In order to prove the continuous dependence of the limiting round
metric on the initial metric of positive sectional curvature, we invoked the continuity
theorem from [FGKO15]. However, in our applications in Section M it would work
equally well if instead of using the limiting K = 1 metric produced by Ricci flow,
we used some other geometric construction to replace a metric h that is e-close to a
round Riemannian metric with a round metric A, as long as h depends continuously
on h in the smooth topology and is equivariant with respect to diffeomorphisms.
For instance, one could use the smooth dependence of certain eigenspaces of the
Laplacian.
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4. EXTENDING CONSTANT CURVATURE METRICS

The goal of this section is Proposition Il which asserts that under certain
conditions a finite dimensional continuous family of partially defined K = 1 metrics
can be extended to a continuous family of globally defined K = 1 metrics.

In this section X will denote a spherical space form other than S3. Pick gx €
Metg=1(X). We recall that gx is unique up to isometry [Mil66l[dR40,[Fra35Rei35].

In the following we will use the term polyhedron to refer to (the geometric
realization of) a simplicial complex.

Proposition 4.1 (Extending K = 1 metrics). Let Py be a finite polyhedron, and
Qo C Py a subpolyhedron. Suppose Py > p — (W), g(p)) is an assignment with the
following properties:

(i) p— (Wp,9(p)) defines a continuous map Py — PartMet(X).
(ii) There is an n < oo such that for every p € Py the Riemannian manifold
(W, g(p)) is isometric to (X \ Sp,gx) for a finite subset S, C X with
|Spl < 7.
(i) Wy = X for all ¢ € Qo.
Then there is a continuous map g : Py — Metx=1(X) such that for every q € Qo
we have g(q) = g(q)-

We remark that we will only apply Proposition 1] in the case when P, is an
(m + 1)-disk and Qg = 9F, is its boundary m-sphere, for some m > 0.

Before proceeding with the proof, we first provide some motivation for the proof.

Take p € Py, and consider the open subset W,, C X. Since (W), g(p)) is isometric
to (X \ Sy, gx), the ends of W, are diffeomorphic to S? x [0, 00), and hence there
is a compact domain with smooth boundary Z, C W, with 2-sphere boundary
components, such that Int Z, is diffeomorphic to X \ S,. By a simple topological
argument, the closure of X \ Z, is a union of a disjoint collection C, of 3-disks. It
is not hard to see that for every 3-disk Y € C,, the restriction of g(p) to a small
neighborhood of Y in Y extends to a metric on Y with K = 1. Moreover, by using
Hatcher’s theorem, one can see that the extension is unique, up to contractible
ambiguity. Combining the extensions for each Y € C,, we obtain an extension of
g(p)‘Zp to X, which is also unique up to contractible ambiguity.

To adapt the preceding observations into a proof of the proposition, we first
choose a fine subdivision P of Py, and for every face o of P, we choose a domain
with smooth boundary Z, C X such that (among other things) Z, C W, for every
p € o, and Z, = X if p € QQg. We then prove the proposition by extending g
inductively over the skeleta of P. In the induction step, we assume that g has been
defined on the m-skeleton of P, and then we extend it to an (m + 1)-face o C P,
such that it agrees with g on Z,. Since the closure of X \ Z, is a disjoint collection
of 3-disks, our problem reduces to solving an extension problem for 3-disks, which
may be deduced from Hatcher’s theorem.

For the remainder of the section we fix an assignment Py 3 p — (W, g(p)) as in
the statement of Proposition E.1]

The first step in the proof of Proposition ] is to define the subdivision P and
the collection {Z, }seFace p described above.

Lemma 4.2. There is a subdivision P of Py, and to every face o of P we can
assign a triple (Zy,Cs, Uy ) with the following properties:
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(a) For every face o of P, Cy is a finite disjoint collection of 3-disks in X, and
Zy =X \Uyec.Y.
(b) For every strict inclusion of faces 01 C 09 we have Z,, C Int(Z,,).
(¢) For every face o of P, and every p € o, we have:
(i) U, is an open subset of X with Z, C Uy C W),
(i) (U, NY,g(p)) isometrically embeds in (S3,ggs) for every Y € C,.
(i) If o N Qo # 0, then Z, = X.

To prove Proposition d.J] using the combinatorial structure from Lemma 2] the
main ingredient is the following local extension lemma, which is based on (a version
of) the Smale conjecture, as proved by Hatcher [Hat83].

Lemma 4.3 (Extending K = 1 metrics over a ball). In the following, we let S?
and D? denote the unit sphere and unit disk in R3, respectively, and we let N,.(S?)
denote the metric r-neighborhood of S* C R3.

Suppose m >0, p > 0 and:

(1) hmg1 : D™ = Metg=1(N,(S?) N D?) is a continuous map such that for
all p € D™*L, the Riemannian manifold (N,(S?) N D3, hy,1(p)) isometri-
cally embeds in (S3, ggs). Here Metx=1(N,(S?) N D3) is equipped with the
Cre -topology.

(ii) B+ S™ = Met g =1(D?) is a continuous map such that for every p € S™
we have Tlm(p) = hm+1(p) on N,(S?) N D3, and (D3, hy,(p)) isometrically
embeds in (S®, ggs).

Then, after shrinking p if necessary, there is a continuous map ?Lmﬂ : DMLl
Met =1 (D?) such that:

(a) Tns1(p) = hons1(p) on N,(S*) N D? for allp € D™*!,
(b) hmt1(p) = hn(p) for all p € S™.

Proof of Proposition 1] assuming Lemmas and E3 Let P and the assignment
FaceP 3 0 — (Z,,C,,U,) be as in Lemma[L2l Let Q be the corresponding subdi-
vision of Q.

Pick m +1 > 0 with m + 1 < dim(P \ Q). Assume inductively that if m > 0,
then we have defined a continuous map G, : P UQ — Met g =1(X) such that for
every face 7 C P(™) U Q, and every p € 7, the metric §,,(p) agrees with g(p) on
Z C Wp.

Pick an (m + 1)-face 0 ¢ P+ with ¢ ¢ Q, and choose Y € C,. We wish
to apply Lemma B3l To that end we choose a diffeomorphism « : D® — Y, and
a homeomorphism 3 : D™t — . If p > 0 is sufficiently small, then a(N,(S?) N
D3) C NrcoZ7 by assertion (b) of Lemmal2l Since NrcoZ, C Uy C Npeoo W)y, by
assertion (c) of Lemma 2] we may define continuous maps

Bt s D™ — Metg—1 (N,(S?) N D), Ay : 8™ — Metg—y (D)

by himt1(p) = (a|N,(S%)ND*)*g(B(p)), hm(p) := a*Gm (B(p)). Note that for every
p € S™, the Riemannian manifold (D3, h,,(p)) isometrically embeds in (X, gx) by
construction, and since D3 is simply connected, this embedding may be lifted to
an isometric embedding (D?’,ﬁm(p)) — (S3,gg3). Similarly, for every p € D™+,
the manifold (N,(5%)N D3, hy,t1(p)) isometrically embeds in (53, ggs) by assertion
(c)(ii) of Lemma
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Applying Lemma 3] after shrinking p, we obtain a continuous map Bm_i'_l :
D™ — Metg=1(D?) such that h,1(p) = hm(p) for all p € S™, hyyi1(p) =
hmt1(p) on N,(S%) N D3 for all p € D™, Now let g,y : 0 — Metg=1(Y) be

given by go,v (8(p)) = alim1(p)-

We may extend §,, to a continuous map g1 : P UQ — Metg—1(X) by
letting g1 ’U agree with g,y on Y for each Y € C,. Note that by construction,
for every face o of P™*1) and every p € o, Gmy1(p) agrees with g(p) on Z,, and
hence on X if p € @, by assertion (c)(iii) of Lemma

By induction we obtain the desired map g: P — Metg=1(X). O

We now prove Lemmas and Before proving Lemma 2] we need a
preparatory result.

Lemma 4.4.

(1) Let C be a finite disjoint collection of 3-disks in X, and Z C X be a do-
main with smooth boundary diffeomorphic to X \ UyeccY . Then there is a
(unique) finite disjoint collection of 3-disks C' such that Z = X \ Uycc'Y.

(2) Let C be a collection of at most j closed balls of radius at most r in a metric
space Z. Then there is a disjoint collection C' of at most j closed balls of
radius < 497 such that {IntY }yecr covers UyecY.

Proof. (1) Recall that X is irreducible and not diffeomorphic to S2, so every em-
bedded 2-sphere in X bounds two domains with boundary, precisely one of which
is a 3-disk.

Let C' be the collection of closures of the components of X \ Z. Suppose that
Yy € (' is not diffeomorphic to a 3-disk. Then X \ Int Y] is a 3-disk, and hence
Z C X \Int Yy embeds in S®. But then the embedding Z — S® may be extended to
a diffeomorphism X — S by extending over the 3-ball components of X \ Z; this
is a contradiction. Therefore C’ is a collection of 3-disks, and assertion (1) follows.
(2) This follows by induction on j, by replacing a pair of balls B(z1,71), B(z2,r2)
with r1 < ry such that B(z1,71) N B(za,r2) # 0 with B(xza,4rs). O

Proof of Lemma 2l Let rx > 0 be injectivity radius of (X, gx ), and let r € (0,7x)
be a constant to be determined later.

For p € D™ let d, be the Riemannian distance function for (W,, g(p)), and
let (W,,d,) be the completion of the metric space (W, d,). By assumption (ii) of
Proposition T}, we know that (W, d,) is isometric to (X, dx).

For each p € Py, we let Zg =W, \ Upew,\w, Ba, (z,7), so Zg CcW,CX. By
the definition of the topology on PartMet(X) and condition (i) of Proposition 1]
for all p € Py there is an open subset V,, C Py such that for all p’ € V},, we have
Zg C Wy, and 27 g(p) < g(p’) < 2g(p) on Zg. Let P be a subdivision of Py such
that the closed star cover {St(v, P)},cp refines the cover {V,}pep, (Recall that
St(v, P) denotes the union of all faces that contain v). For every vertex v € P(©)
choose p, € P such that V,, D St(v, P), and let Z! = Z) . After refining P if
necessary, we may assume Z; = X for every vertex v with ﬁ(v, PYNQ #0.

For every face o of P, choose b, € o, and let Z} := U c 0 Z.. Note that if
p € o, then Z1 C W, and 271g(b,) < g(p) < 2g(b,) on Z}.
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Claim. (Let n be the constant from Proposition [1Jii)). There exist universal
constants {cg}tr>0, {¢}(n)}r>0, {F(k,n)}k>0 such that if r < 7(dim P, n), then
there are collections {C, }scrace p Such that:
(a) C, is a disjoint collection of 3-disks in X for every o € Face P.
(b) {IntY}yec, covers X \ Z! for every o € Face P.
(c) For every k-face o of P, |C,| < ¢xn and for every Y € C,, the boundary
2-sphere 9Y has intrinsic diameter < ¢} (n)r w.r.t. the Riemannian metric
g(b,). Note that g(b,) is defined on 9Y since (b) implies Y C ZL C W, .
(d) For all o1 C o2 the collection {IntY }yec,, covers Uyec, Y.
(e) If o € Face P and W,,, = X for every v € ¢(®), then C, = §.

Proof. By induction on m we will prove the existence of the constants {ck}r<m,
{céC (?)}kgm, {F(k,n)}k<m, and collections C,, where o ranges over the m-skeleton
pim),

First suppose that m = 0, and pick a vertex v € P(®). Let C? := {ng (x,2r) |
xz € W, \W,, }, and hence {Int Y }yeco covers W, \Z)) . Applying Lemmad, we
get a disjoint collection C} of closed balls in (W, ,d,, ) such that {Int Y}yecy covers
UyeeoY, where |C}| < n, and every Y € C, has radius < 4"-2r. If 4"-2r < rx, then
every Y is a 3-disk, and hence by Lemma [£.4] there is a unique disjoint collection
Cy of 3-disks in X such that X \ Uyec,Y = W), \ UyecerY. Taking ¢g = 1,
¢y = 4"21, 7(0) = g 'ry, since g(b,) < 2g(p,) on Z} = Z9)  properties (a)—(d)
follow immediately. If W, = X, then CJ = 0, so (e) holds.

Now suppose m > 0, and assume that universal constants {cx}r<m—1,
{¢}.(n) }k<m—1, {T(k,n)} k<m—1, and collections C; where 7 ranges over the (m —1)-
skeleton P(™~1) have been chosen so that (a)—(e) hold.

Pick an m-face o C P.

By our induction assumption, for every 7 C o, {IntY}ycc. covers X \ Z1.
Since Z! ¢ Z c W, it follows that {IntY }ycc. covers X \ Z1, and we may
apply Lemma M4 to obtain a disjoint collection C2 of 3-disks in Wy, such that
Wi, \UyecoY = X \ Uyec,Y. By (c) of our induction assumption and the fact
that 27 1g(b,) < g(by) < 2g(b;) on Z}, for all Y € C2 the boundary 2-sphere 9Y
has intrinsic diameter < 2¢/, _;(n)r with respect to g(b,). So for all Y € CY, the

m—1
boundary dY is contained in a dj,-ball By C Wy, of radius 2¢/,_;(n)r. Therefore
if 2¢),_1(n)r < rx, we get that 9Y bounds a 3-disk Dy in By. We must have

Dy =Y, since Y bounds two domains with boundary in W5, , precisely one of
which is a 3-disk; hence Y C By.

Now let C0 = U{C? | 7 C o is an (m — 1)-face}. Thus |C| < (m + 1)cpm_1n.
Applying Lemmaldlto C%, we obtain a disjoint collection C} of closed balls of radius
< 4(mADemaan9c/  (n)r, where |CL| < (m + 1)ep—1n, such that {IntY }yecs
covers Uy co Y. Provided r < 4=(mFem—an(2¢)  (n))~rx, every Y € C} will be
a 3-disk.

Applying Lemma[£.4] there is a unique disjoint collection C, of 3-disks in X such
that X \Uyec,Y = W, \Uyec1 Y. As {Int Y} cc1 covers Ct for every (m—1)-face
7 of o, we have

X\ Uyee, IntY =Wy, \Uyeer IntY C Wy, \ UyecoIntY = X \ Uyec, Y.

Therefore, {Int Y }y¢c, covers C, for every (m — 1)-face 7 of o, and hence by the
induction assumption, it also covers X \ ZL. Also, if W,,, = X for every v € ¢(©),
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then by our induction assumption C, = @ for every (m — 1)-face 7 C o, which
implies that C, = () as well.

Letting c,, = (m + 1)cpm_1, ¢, (n) = 4mtDem—n 9¢ (p)r, and 7(k,n) =
(n)~rx, assertions (a)—(e) of the claim follow. O

Cin
For every 0 € Face P we let Z, := X \Uyec,Y. Hence assertion (a) of
Lemma [4.2] holds.

If 01,09 € Face P and o1 C o9, then by assertion (b) of the claim {Int Y}Yecw
covers UYeCUIY~ Hence

Loy =X \ UYGCQ IntY Cc X \ UYEC(TI Y =1Int Z,,

and assertion (b) of Lemma 2] holds.
Pick o € Face P. For every 7 C o, and every p € o, assertion (b) of the claim
and the definition of Z! give

ZyCIntZ, C Zt c Z} cw,.

We let U, be an open subset of Nrco Int Z. containing Z, such that U, NY is
simply-connected for all Y € C,. If U, : (W, g9(p)) — (X \ Sp,gx) is an isometry
as in assertion (ii) of Proposition 1] then for every Y € C,, p € o, the composition

Uy Y — W, ~5 X\ S, — X

is an isometric embedding of (U, NY, g(p)) into (X, gx). This lifts to an isometric
embedding of (U, NY, g(p)) into the universal cover of (X, gx), which is isometric
to (53, ggs). Thus assertions (c)(i) and (c)(ii) of Lemma 2 hold. If o N Qg # 0,
then for every v € o(®) we have St(v, P) N Qg # (), which implies that W,, = X by
the choice of p,. Assertion (e) of the claim gives C, = ), so Z, = X, and assertion
(c)(iii) of Lemma 2] holds. O

Proof of Lemma 3l The idea of the proof is to convert the extension problem for
the family of K = 1 metrics to an extension problem for embeddings into S2, by
working with (suitably normalized) isometric embeddings, rather than the metrics
themselves. The extension problem for the embeddings can then be solved by
appealing to Hatcher’s theorem.

Pick # € S?%, 2/ € S3 and oriented bases e1,e2,e3 C T,R3, ¢/, eb,e4 C Ty S3
which are orthonormal with respect to ggs and ggs respectively. For each p € D™t
apply the Gram-Schmidt process to ej,es,e3 to obtain an hp,41(p)-orthonormal
basis fl(p)va(p)va(p) for TIRB For all JIS D™ et merl(p) : (NP(SZ) N
D3 hyy1(p)) = (S3,gss) be the isometric embedding that sends f1(p), f2(p), f3(p)
to ef,eh, eh; similarly, for p € S™ let @m(p) : (D?’,?Lm(p)) — (83,ggs) be the
isometric embedding sending f1(p), f2(p), f3(p) to €}, €}, 5. By standard regularity
for isometries, this yields continuous maps

Uit : D™ = Embed, (N,(S2) N D?,8%), ¢y : S™ = Embed (D%, %),

where QZ,,L(p)|(Np(S2) N D3) = 1,41 (p) for all p € S™.

Next, we apply Lemma 2] to produce a continuous map aerl . DMl
Embed_ (D3, 53) such that ¢n,41(p) agrees with ¢,41(p) on S for all p € D™+1,
and $m+1(p) = @m(p) for all p € S™.

Although $m+1 agrees with/\am on S2, it may not agree with am near S2. To

address this issue, we adjust ¢,,11 by precomposing it with a suitable family of
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diffeomorphisms of D? that fix D3 pointwise. To that end, after shrinking p if
necessary, let ®,,11 : D™ — Diff(D3reldD3) be a continuous map such that

S

Gmr1(p) = idps for all p € S™, and Bpi1(p) = Gyl 1(P) 0 Umr1(p) on N,(S%) N D?
for all p € D™+, The map ®,,.1(p) may be obtained, for instance, by interpolating
between (b;LlJrl(p) 0 ¥m+1(p) and idps using a partition of unity, i.e. letting

Oms1(p) (@) = ullal) (51 (P) 0 i1 (P)(@)) + (1 = ullz]))a,

where w : [0,1] — [0,1] is a smooth function supported in [1 — €, 1] for some
sufficiently small € > 0, and €||0,ul|co, €2]|02ul|co < C for some universal constant
C.

We now let ¥,41(p) := ¢mi1(p) 0 Ppuy1(p) on D? for all p € D™FL. By the
construction of @, it follows that 1, +1(p) agrees with ¢, 11(p) on N,(S?)N D3,

and nmi1(p) = dmi1(p) for all p € S™. Setting A1 (p) = Yy, 11953, we obtain
the desired map hy,+1 : D™ — Met =1 (D3, S3). O

5. PROOF oF THEOREM FOR SPHERICAL SPACE FORMS

Let X be a spherical space form other than S or RP3. Choose m > 0, and a
map h: S™ — Metg=1(X).

Let g : D™ — Met(X) be a continuous extension of the composition S™ N
Met g=1(X) < Met(X). For every p € D" let (W), J(p)) € PartMet g=1(X)
be the canonical partially defined metric constructed in Section Bl By Lemma 3.2
the assignment p — (Wy(,), g(p)) defines a continuous map D™ — PartMet(X).
Taking Py = D™, Qp = S™, by Lemma [3.2 and the compactness of D™+, the
map p — (W), g(p)) satisfies the hypotheses of Proposition EIl Now the map
D™+l 5 p s g(p) furnished by Proposition EI] defines a continuous extension
G: D™ — Metg—1(X) of h.

The argument above implies that the homotopy groups of Met x=1 (X)) are trivial.
The space Metg=1(X) is homotopy equivalent to a CW complex (see Lemma [22)),
so it is contractible by Whitehead’s Theorem.

6. PROOF OoF THEOREM FOR HYPERBOLIC MANIFOLDS

The proof of Theorem for hyperbolic manifolds is the same as the proof for
spherical space forms, apart from some minor changes, which we now explain.

In Section Bl (see Lemma B.2) we used [Ham82[FGKO15] to show that when
Y is a spherical space form, if g € Met(Y') has positive sectional curvature, then
modulo rescaling the maximal Ricci flow (g(t)):efo,r) with g(0) = g converges in
the C'*°-topology to a metric g € Metx=1(Y") as ¢ tends to the blow-up time T, and
the limit g depends continuously on g. Here we may replace this with the assertion
that for every gx € Metg=_1(X), there is an €, > 0 such that if g € Met(X) is
€gx-close to gx and (g(t))¢efo,r) is the maximal Ricci flow with g(0) = g, then:

(i) T = oc.
(ii) Modulo rescaling g(t) converges in the C®-topology to a metric § €
Metg=_1(X) as t — oo.

(iii) The limit metric g depends continuously on g.

Statements (i) and (ii) follow immediately from the convergence of normalized Ricci
flow shown in [Ye93l[Bami4]. The continuity assertion (iii) is a consequence of the
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uniform exponential decay of the time derivatives, which follows readily from their
arguments.

We now adapt the results in Section [3] to the hyperbolic case. The statements
are nearly identical, apart from obvious changes.

Let X be a compact, connected, hyperbolic manifold. We first assume in addition
that X is orientable; we will remove this assumption below.

Pick a hyperbolic metric gx € Metg=_1(X). Pick g € Met(X) and let M be a
singular Ricci flow with My = (X, g). By Theorem [ZT0 for every t < co there is
a unique component C; of M, that is a punctured copy of X.

For every t1,ts € [0,00), let Cy, 1, C Cy, be the set of points in Cy, that survive
until time ¢5, i.e. the points for which the time (to — ¢;)-flow of the time vector
field Oy is defined. Then CYy, 4, is an open subset of Cy,, and the time (ty — ¢1)-flow
of O¢ defines a smooth map @y, 4, : Cy, 1, = My,, which is a diffeomorphism onto
its image. We define a metric g, 4, on @y, +,(C, 1) DY Gty 15 = (Pry t5)+Gt, , Where
gt, is the spacetime metric on Cy, 1, C My,. We let W, () := @,0(Ct o), 50 gro is
a metric on Wy(t).

Lemma 6.1 (Limiting K = —1 metric). Choose ty < 0o such that Cy, is compact
and €4, -close to (X, gx), where €5, > 0 is the constant for which (i)-(iil) hold.
Then:

(1) Wy(t) = Wy(to) =: Wy for all t € [tg, 00).

(2) Modulo Tescalmg, gt,0 converges in the smooth topology to a K = —1 metric
g on Wy ast — oo.

(3) (Wy,3g) is isometric to (X \ S, gx) for some finite (possibly empty) subset
S C X, where the cardinality of S is bounded above depending only on tg,
and the bounds the curvature, injectivity radius, and volume of g, and on
the time to from Theorem 216(5).

(4) If g has constant sectional curvature, then Wy, = X and § = Ag for some
A€ (0,00).

The proof is nearly identical to the proof of Lemma [3.1] except that we appeal
to Theorem 216(5) rather than Theorem 216(4).

As in the spherical space form case, Theorem implies that (Wy, g) is well-
defined. Then the proof of continuity in Lemma carries over, using Theo-
rem [2T6l(5) and (iii) instead of Theorem 2.16(4) and [FGKOI5].

Now assume that X is not orientable.

Let X — X be the 2-fold orientation cover, with deck group action Lo X. For
every g € Met( ), let §,9x € Met(X ) be the pullbacks of g, § to X, respectively,
and let M be a singular Ricci flow with Mg given by (X 9).

By Theorem 2T14] the deck _group action Zz X = M, extends unlquely
to an isometric action Zs ~ M. Since the partially defined metric (Wg,g) €
PartMet KE_l()A( ) is canonical and depends continuously on g, it is Zg-invariant,
and descends to X, yielding a partially defined metric (Wy, §) € PartMetx=_1(X),
which depends continuously on g.

By Lemma [6.1] the Riemannian manifold (W3,3,,) is isometric to (X gx) punc-
tured at a finite set of points of cardinality controlled by bounds on the geometry
of g and tp, as in assertion (3) of Lemma Therefore the metric completion

(W5 .q) of (W35 ~,g) is isometric to ()?,ﬁx) The isometric action Zgo (Wg,ﬁ)
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=

extends canonically to an isometric action Zs ~ (W5,g). Suppose some point

x € (Wg,/g'\) \ (Wg,@) is fixed by the Zs action. Then the Zs-action will preserve a
small metric sphere N C W5 centered at z, preserving an orientation of its normal
bundle. It follows that the quotient N/Z, is a 2-sided copy of RP? embedded in X.
This contradicts the fact that X is a compact hyperbolic manifold and therefore
its fundamental group cannot have elements of finite order. Therefore the action

Zo (Wg,ﬁ) is free. Hence the completion of (W, §) is a compact hyperbolic
3-manifold (X, ¢',), and (Wy, g) is isometric to (X' \ 5’,¢%/). Now the embed-
ding X'\ ' ~ W, — X, together with the irreducibility of X, implies that X' is
diffeomorphic to X.

Thus we have shown that we have a well-defined continuous assignment g +—
(W, §) € PartMet(X) such that (Wy, §) is isometric to (X \ Sy, gx) for some finite
set Sy C X, where the cardinality |Sy| is controlled by the constant ¢ty = to(g) as
in Lemma [6.] and bounds on the geometry of g. However, by Theorem and
the convergence property stated in (i)—(iii) in the beginning of this section we may
choose tp(g) to be a locally bounded function of g. In particular, on any compact
subset of Met(X), we may choose g — to(g) to be bounded.

Sections [ and Bl now carry over after making the obvious change in the sign of
curvature, and replacing S3 with hyperbolic 3-space H?.

Remark 6.2 (cf. Remark [33]). Rather than using the uniform exponential conver-
gence of the normalized Ricci flow to a hyperbolic metric, for the applications in
this paper it would work equally well if we used another procedure for converting
an almost hyperbolic metric to a hyperbolic metric. For instance, if (X, gx) is a
hyperbolic manifold, and g € Met(X) is sufficiently close to gx, then there is a
unique harmonic map ¢, : (X,g) — (X, gx) homotopic to the identity map idx,
and the pullback ¢7gx is a hyperbolic metric. Furthermore (by a simple compact-
ness argument) ¢y gx varies continuously with g.
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