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Abstract
Evolutionary algorithms (EAs) are well suited for solving
many real-world multiagent coordination problems with
global, long-term feedback. However, EAs struggle when
the feedback becomes sparse and uninformative. In such
cases, a system designer can use Fitness Critics, which are
functional models that estimate the value of an agent’s con-
tribution to transform the sparse domain feedback into a
dense reward signal. However, existing methods for updat-
ing �tness critics do not leverage the temporal information
about when a reward is received. Ideally, temporal di�erence
(TD) methods can leverage temporal information about the
sparse feedback signal to bootstrap Fitness Critics. Yet, due
to the structure Fitness Critics, direct application of TDmeth-
ods coevolutionary algorithms result in Fitness Critics that
under-represent the rewards that are received earlier in the
episode. This paper introduces Bidirectional Fitness Critics
(BFCs), which makes use of a novel, bidirectional temporal
di�erence method, to successfully bootstrap the training of
�tness critics with temporal reward information, without
under-representing early rewards. The paper demonstrates a
signi�cant increase in the converged performance of agents
coevolved with BFCs on a multiagent coordination domain.

CCS Concepts: • Computing methodologies ! Multi-
agent systems; Partially-observable Markov decision
processes; Reinforcement learning.
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1 INTRODUCTION
This paper introduces the bidirectional temporal di�erence
method to bootstraps the training of Bidirectional Fitness
Critics (BFCs), while keeping equal temporal representation
in the approximated �tness evaluation. BFCs introduce a
reverse value concept, which is a measure of the sum of
past rewards, to counterbalance the future-focused & values
found in TD methods. The paper demonstrates a signi�cant
increase in the converged performance of agents trained
with BFCs on a multiagent coordination domain.

2 Related Works
Approximating the �tness function [1, 4, 6] in evolutionary
algorithms (EAs) can be a useful strategy in many di�cult
problems. Fitness Critics [5] (in Section 2.3) extend the idea
of �tness approximation to partially-observable Markov de-
cision processes (in Section 2.1). However, unlike with other
methods, the approximated �tness of Fitness Critics isn’t
a direct function of the policy parameters that are being
evolved. Instead, the approximated �tness is based on the
expression of that policy though the agent’s observations
and actions.

2.1 Partially-Observable Markov Decision Processes
In a partially-observable Markov decision process (POMDP),
an agent receives an observation > 2 ⌦ every time-step,
which is based on the environment’s current state B 2 ( .
The agent then responds to each observation with an action
0 2 �. After the agent executes the action, the environment
reaches a new state B 0 2 ( . Subsequently, the agent receives
a reward A 2 R to re�ect its performance in the environment.
This agent interacts with the environment repeatedly for
multiple time-steps, in response to new states and observa-
tions. Typically, agents determine their actions by following
a trainable policy.

2.2 Policy Search with Evolutionary Algorithms
Evolutionary algorithms (EAs) improve the quality of candi-
date solutions through multiple cycles of the evolutionary
operations: evaluation, selection, recombination, mutation
and reinsertion [2]. EAs can be applied to �nd high perform-
ing agent policies [8, 10].
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The cross-entropy method is an evolutionary strategy that
operates on a parameterized distribution of candidate solu-
tions. The cross-entropy � (?,@) is a measure of how one
probability distribution @ is di�erent from another proba-
bility distribution ? . Every generation, the cross-entropy
method update a policy-sampling distribution Q to a new
distribution D that minimizes the cross-entropy to the distri-
bution P that is formed by the set of elite candidate policies:

Q  argmin
D

�
� (P,D) + B� (Q,D)

�
(1)

A cross-entropy divergence penalty B � 0 is introduced
to the cross-entropy method as a smoothing parameter, to
prevent the prematurely convergence of Q by reducing the
divergence from D to Q.

2.3 Fitness Critics
The Fitness Critic � : () ; Æ?) 7! 5 is a function approximator
that maps an agent’s trajectory) = h(>1,01), ..., (>=,0=)i to a
�tness evaluation 5 2 R, and is parameterized by the vector
Æ? 2 R: of size : . The Fitness Critic makes use of an interior
functional model called the step-wise critic⇠ : (>,0; C, Æ?) 7! 2 ,
which is updated alongside the training of the agent’s policy.
These updates allow the Fitness Critic to learn the relation-
ship between the experienced agent trajectories and the sam-
pled feedback for those trajectories. The Fitness Critic then
uses the step-wise critic to evaluate each observation-action
pair in the agent’s trajectory. The Fitness Critics aggregates
these evaluations (e.g. by taking the mean) into a single
�tness score that the evolutionary algorithm can use:

� () ; Æ?) = 1
=

=’
C=1

⇠ (>C ,0C ; C, Æ?) (2)

2.3.1 Trajectory-Wise Updates using Sampled Fitness
Score. The Fitness Critic parameters Æ? can be updated with
gradient descent to regress the Fitness Critic towards a sam-
pled �tness score R:

Æ?  Æ? + U [R � � () ; Æ?)]rÆ?� () ; Æ?) (3)

where U is the learning rate. R is typically the sum of all
rewards experienced throughout an episode.

2.3.2 Step-Wise Updates using Sampled Fitness Score.
Alternatively, Æ? can be updated with gradient descent per-
formed in a step-wise manner to regress each individual
step-wise evaluation to the sampled �tness score R:

Æ?  Æ? + U [R � 2C ]rÆ?2C
2C := ⇠ (>C ,0C ; C, Æ?)

(4)

2.4 Temporal Di�erence Methods
In reinforcement learning, temporal di�erence methods [10,
11] can bootstrap the learning of the value estimates by
leveraging the values estimates of future time-steps. Many
reinforcement learning methods involve training a function

approximator &̂ : (>,0; C, Æ?@) 7! @ [9] to approximate a &
value function for guiding the policy optimization process.
The & function approximator is parameterized by the vector
Æ?@ . For brevity, the &̂ value term @C that is used throughout
this paper is de�ned as:

@C := &̂ (>C ,0C ; C, Æ?@) (5)

State-Action-Reward-State-Action (SARSA) is a common
temporal di�erence learning techniquewhere the parameters
of the & function approximator is updated as follows:

Æ?@  Æ?@ + U [AC + W@C+1 � @C ]r Æ?@@C (6)

where U is the learning rate; W is the discount factor; and AC is
the reward received at time-step C . The advantage function
method [3] is another temporal di�erence method that uses
an advantage function that addresses the problem of bias in
the &̂ value estimate.

TD-_ is an temporal di�erence method that uses eligibility
traces [7]. The method use a trace factor _ 2 [0, 1] to deter-
mine the balance between pure temporal di�erence methods
(_ = 0) and Monte Carlo methods (_ = 1). The temporal
di�erence target for one step can be calculated e�ciently
from the temporal di�erence target for the next step:

IC = AC + W [(1 � _)@C+1 + _IC+1] (7)

3 Overview: Bidirectional Fitness Critics
Bidirectional Fitness Critics (BFCs) combine many concepts
in order to provide agents with informative feedback:

• BFCs build upon Fitness Critics to turn sparse feed-
back signal into dense feedback that the agent can
better learn from.

• BFCs use bidirectional temporal di�erence to lever-
age temporal reward information that can bootstrap
the training of the Fitness Critic.

• The bidirectional temporal di�erence update extends
temporal di�erence by introducing a reverse value
to ensure that all rewards are weighted equally.

• Similarly, BFC use eligibility traces to �ne-tune the
temporal di�erence update.

• BFCs use Ensemble Fitness Critics models to avoids
self-referential problems in the temporal di�erence
update.

4 Bidirectional Temporal Di�erence
Methods For Fitness Critics

Training Fitness Critics with temporal di�erence methods
can result in Fitness Critics that underrepresent early re-
wards. This is due to the & value being a function of future
rewards. That is, the �rst & value will represent all future
results, the second & value will represent all potential re-
wards after the �rst step, the third & value will represent
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all potential rewards after the second step and so on. Aggre-
gating these & values will lead to an underrepresentation
of early rewards, as the rewards for those early steps are
only represented in early & values while later rewards are
represented in early and later & values.
The bidirectional temporal di�erence method addresses

the underrepresentation of early rewards by introducing a
reverse value term that represents the sum of past rewards.
BFCs sum the reverse value with the & value to equalize the
temporal representation of agent rewards. In BFCs, reverse
value D is approximated with the function approximator
+̂A4E : (> ; C, Æ?D) 7! D. These parameters Æ?D for this function
approximator can be updated as such:

Æ?D  Æ?D + U [AC�1 + DC�1 � DC ]r Æ?DDC
DC := +̂rev (>C ; C, Æ?D)

(8)

By adding the results of the & function approximator and
the reverse value function approximator +̂A4E together, the
resulting step-wise critic ⇠̂Bidi : (>,0; C, Æ?@D) 7! 2 addresses
the problem of the underrepresentation of early rewards:

⇠̂Bidi (>C ,0C ; C, ( Æ?@, Æ?D)) = &̂ (>C ,0C ; C, Æ?@) + +̂rev (>C ; C, Æ?D) (9)

Reverse eligibility traces combines the reverse value con-
cept with eligibility traces. With reverse eligibility traces,
the approximator update is based on the value of past steps:

Irev,C = AC�1 + [(1 � _)DC�1 + _Irev,C�1] (10)

5 Ensemble Fitness Critics
With the temporal di�erence (TD) method, updating the
approximator for one time-step could invalidate the value
approximation for other time-steps. To address the TD self-
referential problem, the Ensemble Fitness Critics is made up
of multiple independent functional submodels, one for each
time-step. Now, updating the value function associated with
one time-step will not a�ect the value function associated
with another time-steps. In this paper, these submodels are
refered to as sub-step critics.
For evaluating an observation-action pair, the ensemble

step-wise critic can take the weighted average of each sub-
step critics evaluation. The ensemble step-wise critic is de-
�ned as:

⇠Ens (>,0; Æ?) =
=’
9=1

F 9⇠ 9 (>,0; Æ? 9 ) (11)

where ⇠ is the ensemble step-wise critic; ⇠ 9 is the sub-step
critic for the time-step 9 ; F 9 is the weighting that re�ects
the certainty in ⇠ 9 ’s current evaluation; Æ? 9 is the parameter
vector for ⇠ 9 .

Due to the double summation over time-steps, a simple
implementation of Ensemble Fitness Critic methods can be
slow compared to non-ensemble Fitness Critic implementa-
tions. However, if the sub-step critics are implemented as
lookup tables (i.e. associated arrays), then critic values can

be stores and updated with lazy evaluations in a method
that somewhat resembles the weighted cumulative moving
average method. This resulting method is called E�cient
Ensemble Fitness Critics with Lookup Tables (EEFCLT).

6 Experiments and Results
This paper compares the performance of the agents trained
with di�erent variations of the Fitness Critics, including the
Bidirectional Fitness Critics. Agents are trained on a multia-
gent coordination domain. Agents trained without Fitness
Critics (No Critic) use the sum of rewards as the policy’s
�tness score. All Ensemble Fitness Critics are some modi-
�cation of E�cient Ensemble Fitness Critics with Lookup
Tables (EEFCLT). Non-Ensemble Fitness Critics use cumula-
tive moving average schemes that are conceptually compa-
rable to EEFCLT. For the Fitness Critics that use eligibility
traces, a schedule determines what the eligibility trace factor
_ should be for a given evolutionary generation. The agents’
policies are evolved with cross-entropy optimization. The
agents’ policies are modelled as lookup tables that map an
observation to an action-sampling categorical distribution.
The tightly coupled multi-rover domain is a multiagent

coordination domain with sparse feedback. In this domain,
there are 4 rovers are operating in a 10 by 10 gridworld
environment. There are also 4 points of interest (POIs). The
rovers have limited sensing capabilities and are tasked with
capturing asmany POIs as possible within a time-frame. For a
POI to be captured, two rovers must occupy that POI’s cell at
the same time. Once a POI is captured, that POI is removed
from the environment and another POI is generated at a
random location; additionally, the rovers’ team performance
score is increased by 1 with every captured POI. The rovers
start at the middle of the gridworld at the beginning of each
episode. The initial POIs positions are random. There are 100
time-steps for each episode. The rover sensing capabilities
are illustrated in Figure 1.

The agents in the tightly coupled multi-rover domain were
trained for 6000 generations. The results for these experi-
ments are present in Table 1 that shows the converged per-
formance scores for the agents.

Bidirectional Ensemble TD(_) Fitness Critics achieved the
highest performance. Bidirectional Ensemble Fitness Critics
with pure temporal di�erence methods (TD(0))) were slow to
train, probably due to large delays in the reward signal. Due
to the sparsity of the reward signal, agents trained without
Fitness Critics, and those trained with Trajectory-wise Up-
date Fitness Critics achieved a low performance. Due to the
underrepresentation of early rewards, the SARSA and Advan-
tage Fitness Critics were not able to reach the performance of
the Bidirectional Ensemble Fitness Critics, despite all three
method using some version of TD learning. The application
of ensemble methods does not show any signi�cant impact
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Figure 1. The tightly coupled multi-rover domain. Rovers
are able to target either the closest point of interest (POI),
or other rovers. The rover’s observation is based one of four
target types, the distance to the target, and which quadrant
the target is in.

Table 1. Converged Performance Scores for Various Fitness
Critics on the Tightly Coupled Multi-Rover Domain

Fitness Critic Variation Score
Bidirectional Ensemble TD(_) 5.2 ± 0.23
Bidirectional Ensemble TD(0) 0.7 ± 0.07
Bidirectional Ensemble TD(1) 3.6 ± 0.22

Bidirectional TD(_) 1.3 ± 0.72
SARSA Ensemble TD(_) 3.8 ± 0.12

SARSA TD(_) 3.6 ± 0.13
Advantage Ensemble TD(_) 3.6 ± 0.29

Step-Wise Ensemble 3.6 ± 0.16
Step-Wise 3.5 ± 0.15

Trajectory-Wise 0.7 ± 0.16
No Fitness Critic 0.9 ± 0.08

for the Fitness Critics with step-wise updates, as these Fit-
ness Critics do not use TD learning; ensemble methods were
introduced to improve TD methods. Ensemble methods were
most e�ective when paired with the Bidirectional Fitness
Critic method. All other Fitness Critic variations performed
similarly and achieved a moderate performance score.

7 Conclusion and Future Work
This paper introduces Bidirectional Fitness Critics (BFC),
which makes use of temporal reward information to suc-
cessfully bootstrap the training of Fitness Critics. Existing
methods for updating Fitness Critics are unable to lever-
age to temporal information about when the rewards were
received throughout an episode. Using standard temporal
di�erence (TD) methods to access this temporal reward in-
formation results in the Fitness Critic that underrepresent

early rewards, which can negatively impact the evolution of
good agent policies. The bidirectional temporal di�erence
method extends TD concepts to enable BFCs to maintain
equal temporal representation of rewards. This paper shows
the e�ectiveness of Ensemble BFCs in a representative mul-
tiagent coordination problem.
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