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ABSTRACT
Evolutionary multiagent systems have been successfully applied to
many real world problems, including search and rescue and ocean
exploration. However, as the number of agents increases in such
problems, the evaluation function captures an individual agent’s
�tness less and less accurately. As a consequence, agents adopt a
small set of acceptable behaviors that are neither optimal nor robust
to environmental changes or teammate failures. Fitness shaping,
intrinsic �tnesses, or multi-�tness learning alleviate some of these
concerns but generally require domain knowledge or the functional
form of the evaluation function. In this paper, we introduce Entropy-
Based Local Fitnesses (EBLFs) that generate diverse behaviors for
agents and produce robust team behaviors without requiring envi-
ronmental knowledge. The key contribution of EBLFs is to inject
a dense, entropy-based �tness into the agents’ evolution without
interfering with the sparse, high-level system evaluation function.
Our results show that the agents using EBLFs learn new skills in dif-
�cult environments with sparse feedback without requiring domain
knowledge. In addition, EBLFs generated new team-level behaviors
that were not de�ned by a human operator, but bene�cial to robust
team performance.

CCS CONCEPTS
• Computing methodologies!Multi-agent reinforcement
learning.

KEYWORDS
Evolutionary robotics, Multi-agent systems, Neuroevolution

ACM Reference Format:
Ayhan Alp Aydeniz, Anna Nickelson, and Kagan Tumer. 2022. Entropy-
Based Local Fitnesses for Evolutionary Multiagent Systems. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’22 Companion),
July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3520304.3529035

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3529035

1 INTRODUCTION
Multiagent robotic systems enable humans to conduct remote re-
search in challenging environments, such as exoplanets and deep
ocean. Research in these remote environments often consists of
long-term tasks that are di�cult to de�ne in advance. Agent teams
must have the capacity to explore and learn new team-level policies,
as well as individual agent-level behaviors. Each agent must explore
a diverse set of individual behaviors in order to distinguish those
that contribute most to the team objectives.

Evolutionary methods learn through a team �tness score to en-
courage team-level learning. However, when the team �tness is
sparse, agents struggle to generate e�ective local behaviors. Mul-
tiagent Evolutionary Reinforcement Learning (MERL) [6] o�ers a
partial solution by combining the local gradient-based learning of
Reinforcement Learning (RL) with the power of an Evolutionary Al-
gorithm (EA). Agents learn local behaviors trained on agent-speci�c
�tnesses using a gradient-based RL algorithm; team behaviors are
learned through an EA whose objective is to maximize a sparse
global team �tness and agent-speci�c behaviors are learned through
the gradient-based learner. However, the local learner requires a
pre-de�ned objective which is not capable of capturing dynamics
of an environment with complex tasks.

Entropy maximization is a promising technique that encourages
agents to learn diverse policies. Entropy-based approaches have
gained traction in single agent systems; prior works maximize
the entropy of policies through variance in the neural network
weights or variability in the states (and/or actions) that policies
visited [2]. Entropy-based methods are able to achieve unsupervised
emergence of diverse skills; however, they do not directly extend to
multiagent settings due to the added complexity of team dynamics.

In this paper we introduce Entropy-Based Local Fitnesses (EBLFs)
for multiagent systems. Our method combines the diversity learned
via an entropy-based learner with the power of MERL. We �rst
semantically disambiguate states to distinguish “novel” states, then
measure the entropy of the distribution of those states. As a result,
an agent receives contribution of this state to the entropy as a
local �tness. EBLFs enable agents to generate diverse agent-speci�c
policies bene�cial to the desired team behavior.

The key feature of EBLFs is to shift the paradigm of �nding good
domain-speci�c �tness functions to evolve agent skills to generat-
ing domain-independent �tness functions that rate the exploration
skills of the agents. Our main contribution is to introduce a new �t-
ness structure, Entropy Based Local Fitnesses (EBLFs), that enables
agents to learn diverse skills in order to collectively solve complex
tasks.

https://doi.org/10.1145/3520304.3529035
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2 BACKGROUND AND RELATEDWORK
In this section, we provide background information on methods
used and concepts promoting diversity via entropy maximization
as related works.

2.1 Evolutionary Reinforcement Learning
Both reinforcement learning (RL) algorithms and evolutionary algo-
rithms (EAs) have strong advantages that has been shown through
their successful applications [4]. RL based algorithms are able to
learn fast, but they do not perform well when the �tnesses are
sparse [10]. The population-based approach of EAs is advantageous
for generating diverse experiences [1], especially incorporating
the idea of searching for novelty [5]. Evolutionary Reinforcement
Learning (ERL) [4] combines these two approaches to leverage the
advantages of each. The EA generates a diverse set of experiences
to train the RL agent (any RL agent utilizing an actor critic) and the
gradient information of the RL agent is reincorporated in the EA.
The transmission between these two is done through a replay bu�er
where every experience after each time step is stored. Because EA
optimizes the global reward given at the end of each episode, it bi-
ases the exploration to the states that contribute most to long-term
objectives. A version of this algorithm used in multiagent systems
is Multiagent Reinforcement Learning (MERL) [6]. MERL utilizes
a gradient-based algorithm to learn agent-speci�c skills and the
EA learns the team skills by optimizing the global reward. In this
paper, we utilize MERL as a learning framework, due to its two-tier
structure and biasing towards the states having long-term returns.
In our experiments, we use TD3 as the gradient-based learner of
MERL.

2.2 Entropy Maximization in Reinforcement
Learning

Designing a �tness function requires domain-speci�c objectives and
pre-de�nition of certain behaviors [3]. However, capturing every
need of a domain is not always possible, due to large state-spaces
and the e�ect of complexity on the de�nition of a task. Entropymax-
imization in reinforcement learning solves this issue by providing
learning frameworks utilizing discriminators or entropy functions
that are used to learn without rewards [2]. In reinforcement learn-
ing, entropy is typically de�ned as the randomness of a skill, a skill
set, or a policy (including neural network networks).

In multiagent systems, learning through entropy maximization
presents challenges, as the learning agents must also account for
team coordination to achieve a global task. In this work, we leverage
entropy to generate dense local rewards.

3 ENTROPY-BASED LOCAL FITNESSES
The core ideawhichwe rely on is thatmaintaining diversity through
the states visited by agents will provide more diverse policies to
the evolutionary algorithm. Throughout the paper, we de�ne an
agent-speci�c behavior as a policy that visits di�erent states until
an episode ends. We encourage agents to learn to visit as many
di�erent states as they can and distinguish the states that contribute
most to the global team objective. The goal is to provide more
diverse and discriminable policies to the evolutionary algorithm.

This, in turn, will have signi�cant impacts in achieving the global
objective.

In continuous domains, it is uninformative to use raw sensor
values to di�erentiate states, as each new sensor reading will look
like a new state. Therefore, we �rst apply quantization methods to
distinguish signi�cantly di�erent states. Second, wemeasure the en-
tropy over a memory which is a history of states visited throughout
an episode. We compute entropy-based local �tnesses (EBLFs) with
an objective to maximize the entropy over this memory; therefore,
we provide the contribution of an action to the entropy as �tnesses.

In this paper, we can de�ne our path to diversity in policies of
multiagent systems as:

• Explore novel states
• Learn policies that have more diversity at agent level
• Expand diversity of agents’ experiences through evolution

3.1 Entropy Maximization
Entropy is a measure of information. We encourage agents to have
more distinguishable policies and to search more information in the
environments with high uncertainty and unknowns. Agents’ own
positions, the other agents’ positions, the positions of the tasks can
be seen as uncertainties and unknowns in an environment.

Our de�nition of an agent-speci�c behavior leads us to keep a
memory of state observations for each agent and we measure the
entropy within these memories. Because each policy will result in a
di�erent distribution within these memories, maximizing diversity
within these memories also enhances diversity within these policies.

("4<>A~C 9 = {B1, . . . , B8 , . . . , BC 9 } (1)

Our aim is to minimize the recurrence of a state, B8 in ("4<>A~ 9 .
Shannon’s entropy of ("4<>A~ 9 is mathematically described as,

� (("4<>A~C 9 ) = �
=C 9’
8=1

?B8 ln?B8 (2)

where � (("4<>A~C 9 ) is the entropy of the memory that has
the observations generated by a policy until the time step, C 9 , =C 9
is the amount of all observations generated until time, C 9 , and ?B8
is the probability of the state observation [9]. It is important to
note that EBLFs are not the entropy of ("4<>A~ 9 , but they are
the probabilistic contribution of an action to this entropy. Our
objective minimizes ?B8 , thus � (("4<>A~C 9 ) of equation 2. Maxi-
mum entropy is reached by a skill that is able to achieve a uniform
distribution over the observation vector, ("4<>A~ 9 . Hence, the
probability of a randomly chosen B8 needs to be low to maximize
the diversity generated by a policy.

?B8 =
=B8
=C 9

(3)

In the Equation 3, =B8 is the frequency (or the recurrence) of
states. State quantization helps us to calculate the frequency of
states, because we aim to use EBLFs in continuous domains.

5;>20;B =
1
=B8

(4)
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In order to provide �tness minimizing the occurrence of a state,
B8 , we design our �tnesses as given in the equations 4. Later, the
entropy can be measured as shown in Equation 5.

� (("4<>A~C 9 ) = �
=C 9’
8=1

=B8
=C 9

ln
=B8
=C 9

(5)

To give an example, the policy generated ("4<>A~C3 already
visited the state, B~ ; therefore, we do not want the agent to visit a
similar or the same state again. Because it adds one more B~ to its
state vector below at C4, it receives a discounted reward, 1/2, given
as below.

("4<>A~C3 = {BG , B~, BI } (6)

("4<>A~C4 = {BG , B~, BI , B~} (7)

5;>20;C4 =
1
2

(8)

However, when agents enter states that have useful information
like a target, they receive the given reward. In this paper, domain
used in the experiments has di�erent points of interest (POIs) [6].
We incorporated the value of the POIs visited to the reward via
multiplying with the value of sub-tasks, so that the agents are
encouraged to visit the states having bene�t to the overall team
behavior.

4 EXPERIMENTS
In our experiments, we adopt the environment used in the works
[6, 8]. This allows us to test agents learning through EBLFs in a
continuous multiagent domain.

4.1 Multi-Rover Exploration Domain
We use Multi-Rover Exploration Domain in the traditional settings
where there are multiple rovers and multiple points of interest
(POI)s in a continuous environment. The rovers need to cooperate
with each other to achieve a team goal. Each POI can be seen as
a sub-task and must be observed simultaneously by a number of
rovers, which is determined by the coupling requirement. Rovers
are not given any information about the other teammates or the
POIs and there is no explicit communication among the agents.

4.2 Experimental Design
We design experiments to compare our approach, S-EBLFs, against
the domain-speci�c objective function used in the paper proposed
MERL, denoted D-MERL [6]. Through our experiments, we show
that achieving the global goal without any domain-speci�c knowl-
edge helps agents build a robust team behavior.

5;>20;B =
1
=B8

+%$� (9)

Equation 9 shows how POI values incorporated into the equa-
tion 4 to compute EBLFs by a simple multiplication. This simple
modi�cation to the �tness functions are of signi�cant impact on
the robustness of team behavior and we will discuss it further in
our results.

4.2.1 Parameters: We outline three sets of parameters used for
our experiments: pre-de�ned �tness, state quantization, and
environmental settings.

Pre-De�ned Fitness for Comparisons: In multi-rover explo-
ration domain, the objective is to observe POIs as a team of rovers;
therefore, Khadka et al. [6] de�nes the objective function as to
minimize the distance to the closest POI as de�ned in the work [6].

5<4A; =
A02C
3%$�2

(10)

where 5<4A; is the �tness function used in the paper [6], A02C is
the activation radius of a POI, 3%$�2 is the distance to the closest
POI, %$�2 . Here, minimizing distance is what we de�ne as domain-
speci�c objective, because the global objective is to observe POIs
within a certain radius. To compute this �tness function, an operator
needs to have more information than an agent can provide through
its sensor. For example, 5<4A; requires �nding the closest POI which
is not captured directly in rover domain where sensors capturing
the ratio of the value of a POI to the square of its distance.

State quantization is used to make states more signi�cantly
distinguishable in our work (to distinguish pragmatically and se-
mantically di�erent states). In our experiments, we set the level of
quantization as 1. In other words, if a sensor captures a POI or an-
other teammate, convert the sensory value to 1, otherwise convert
to 0. Increasing this level increases resolution of an observation;
therefore, the observation space used to compute EBLFs expands
signi�cantly. The probabilistic values used in the equations 2 de-
crease as the observation space expands, so observations generated
through a policy will converge to a uniform distribution, as we
increase the quantization level. Though this sounds promising, this
will result in premature increase in the entropy and �tnesses will
become less informative; as a result, learning will decrease.

Environmental settings in multi-rover domain is crucial as
it allows us to test the number of tasks and varying features of
tasks. In the �rst setting, we test 6 agents and 4 POIs (randomly
distributed and all with the same value) in a 15x15 environment
and we conduct experiments to test how agents handle coupling
(complexity). As our second setting of experiments, we use 6 agents
and 6 POIs (randomly distributed POIs with the value of 2 on a
inner circle, and randomly distributed POIs with the value of 5 on
a outer circle) in a 20x20 environment where we test agents within
more diverse tasks and tight-coupling to see how EBLFs help
agents explore more.

4.2.2 Experiments: our experiments demonstrate the impact of
EBLFs on three factors: tight-coupling, task diversity, and team
behavior.

Tight-coupling in multiagent systems requires agents to co-
ordinate to contribute to the overall team behavior and we use
it as a measure of task complexity throughout this paper. In the
experiments, we test EBLFs to show how agents learning through
entropy-based �tnesses generate more robust team behaviors. In-
creasing the coupling factor does not expand the state-space, thus
we only consider its e�ect on the task complexity. Team perfor-
mance will certainly decrease, when we increase the coupling factor
because we do not provide more mission time to achieve tasks.
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Task diversity is a inevitable aspect of most of the real world
problems. Multiple tasks may have varying outcomes. The experi-
ments testing EBLFs with a diverse set of tasks includes POIs having
di�erent values. We designed a task con�guration to test the e�ect
of EBLFs on exploration within the second environmental settings.
Additionally, we demonstrate how exploration is a�ected by the
complexity of tasks.

Team behavior is a crucial as we design EBLFs for complex
multiagent systems. In our experiments, we compare the learned
team behavior learned by teams using D-MERL and EBLFs within
second environmental settings.

5 RESULTS AND DISCUSSION

Figure 1: 6 Rovers and
4 POIs (Randomly Dist.)
Coupling = 4

Figure 2: 6 Rovers and
6 POIs (3 POIs on inner and 3
POIs on outer circles)
Coupling = 4

The performance metric is calculated as: The team with the
highest �tness, champion, is selected in every generation, then it
was tested on 10 rollouts in the environment. Then, we recorded
the average score achieved by the champion. The x-axis shows
the number of steps taken in the environment (a local reward is
given). These metrics and the parameters of MERL are determined
according to the work [6]. Each plot is generated with the average
of 5 statistical runs.

In the Figures 1, and 2, EBLFs outperform the pre-de�ned �tness,
D-MERL. Particularly, in the circular POI settings, agents using
EBLFs learn a unexpected speci�c behavior that allows them to
explore POIs with higher values, whereas agents using D-MERL
are not capable of exploring under more complex task. The Figure
3 shows how agents using EBLFs are more scalable than D-MERL
agents as the task complexity increases.

6 CONCLUSION AND FUTUREWORK
This work considers a simple and novel �tness structure for multia-
gent systems that enables agents to generate diverse agent-speci�c
policies bene�cial to the desired team behavior. Our method is
based on entropy maximization. Unlike previous entropy-based
methods in RL, EBLFs do not require any modi�cation on a learn-
ing framework. We propose EBLFs within MERL framework and
show that agents can generate diverse behaviors without relying
on any domain-speci�c objective.

Our results show that pre-de�ned objectives that heavily rely on
domain-speci�c information do well, but only when the environ-
ments are relatively simple. As we move agents learning through

Figure 3: Slopes represent scalability to more complex tasks
for EBLFs and D-MERL - 6 Rovers, 6 POIs (3 POIs on inner
and 3 POIs on outer circles) - Coupling 2, 3, 4

these objectives to more complex tasks, they struggle or fail to
solve these tasks as a team. EBLFs are able to achieve similar per-
formance in simple domains and maintain higher performance as
the environmental complexity increases. The results are proof of
the concept that learning with no pre-de�ned �tnesses results in
unsupervised emergence of new behaviors that contribute to team
behavior in evolutionary multiagent systems.

As future work, we propose investigating the e�ect of EBLFs on
neural networks to show how EBLFs can contribute adaptive team
behavior. Some evolutionary concepts like phenotypic plasticity of
neural networks [7] or agents’ policies can be applied throughout
EBLFs and show how agents trained through EBLFs can adapt to
di�erent environments as well (like Transfer Learning).
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