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Abstract—Integrated access and backhaul (IAB) is a novel
feature for extending the network coverage in 5G cellular
networks, based on sharing/efficient allocation of owner’s spec-
trum traditionally reserved for access. However, since ultra-
reliability and low latency (URLLC) requirements are a key
component of 5G advanced services, provisioning such services
present stringent challenges for IAB multi-hop network design.
To fulfill the URLLC requirements in the IAB network, we
propose a cross-layer design on routing and resource allocation
under the current 3rd Generation Partnership Project (3GPP)
5G standards. We first formulate a routing problem for the
IAB multi-hop network, which minimizes the latency while
satisfying the reliability requirement. Subsequently, we present
a reinforcement learning (RL) framework to solve the resource
allocation and routing problem based on the local information
of each agent (IAB node) in the environment. Afterward, we
propose a novel entropy-based RL algorithm with federated
learning (FL) mechanism to improve the overall performance
as well as accelerate the convergence speed. Via the simulation,
the proposed algorithm outperforms baseline algorithms from
the latency and reliability perspective, respectively. Meanwhile,
the convergence speed with the proposed algorithm also improves
by using FL.

Index Terms—5G, IAB, multi-hop, routing, resource allocation

I. INTRODUCTION

With growing demand for wireless access in support of new
applications, next evolution of cellular networks will not only
provision for network capacity, but also in conjunction with
a significantly lower application delays, while maintaining
coverage [2]. 5th generation (5G) and beyond deployments
promise to increase average link speeds relative to 4G Long
Term Evolution (LTE) by 10x (and peak rates by 100x).
Coupled with edge computing (locating compute, storage
and associated network functions close to the end-user) that
promises to reduce network latency by 2 orders of magnitude,
new mobile broadband use cases, e.g., Augmented (AR) and
Virtual Reality (VR) enabled user devices and automation
in industrial manufacturing and transportation/logistics based
on Vehicle-to-Everything (V2X) networking, are expected.
In pursuit of higher network capacity, frequencies above 24
GHz have been identified for Radio Access Networks (RANs)
- so-called Frequency Range 2 (FR2) or millimeter-wave
(mmWave) band - for 5G networks, for meeting the demands
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Fig. 1: Illustration of IAB in 3GPP Release 16.

from traffic growth that is challenging the capacity of access
networks below 6 GHz. Large channel bandwidths (several
hundred MHz) available at those mainly underutilized spec-
trum portions thereby have unleashed plenty of opportunities
to deliver the RAN Gbps-throughput promise [3]. However,
mmWaves exhibit unfavorable propagation characteristics such
as high isotropic losses and marked susceptibility to blockages
and signal attenuation [4]. Indeed, mmWave deployments are
typically coverage-limited, leading to denser deployments for
hot-spot (high-demand) style scenarios [5]. Clearly, achiev-
ing such dense 5G deployments (even if localized) incurs
significant capital expenditures (CAPEX) such as the fiber
construction and site acquisition costs.

In order to provide a technically effective and economically
viable solution to the required network densification, wireless
backhaul solutions for 5G networks have recently emerged
as a viable strategy. Notably, 3GPP Release 16 specifica-
tions introduced a new multi-hop wireless access architecture,
Integrated Access and Backhaul (IAB), a wireless backhaul
solution in which the access and backhaul links share the same
hardware, protocol stack, and also spectrum. As illustrated in
Fig. 1, IAB uses relaying among infrastructure nodes (IAB-
nodes) to extend the coverage for the mobile edge users to the
base station (IAB-donor) that is connected by high bandwidth
wireline to the 5G core. In addition to the cost reduction, other
factors are motivating the implementation of IAB networks. 1)
Joint utilization of FR2 by access and backhaul: With 5G and
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Fig. 2: Protocol stack for UE-access using IAB-relaying with the BAP layer in 3GPP IAB architecture 1a.

beyond, the access links will also operate in the mmWave
spectrum. The spectrum range, which was previously used for
backhauling, will also be used by the access links. As a result,
there may be a conflict of interest between the access and
backhaul links, which requires standardization. 2) Supporting
NLOS backhauling: With low-height access points installed
on, e.g., lamp posts, there exists a probability for blockage.
Thus non-line-of-sight (NLoS) communication is also taken
into account in the backhaul links [6].

We focus on the wireless multi-hop access and backhaul
network where the different links reuse the same frequency
band, leading to potential mutual interference-limited capacity
considerations. Therefore, proper management of the radio
resource allocation is fundamental to operate this network to
fulfill the URLLC requirements of different 5G new advanced
services. In particular, since the proposed media access control
(MAC) solution is based on the Time Division Multiple Access
(TDMA) method, it involves the optimization of routing
paths and scheduling of directional transmissions along with
established links [3]. As a result, this paper investigates the
routing and resource allocation for 5G IAB multi-hop network
where the URLLC requirements are highly strict.

A. Related Work

Recent implementations of multi-hop wireless networks
include the well-known IEEE 802.11s enhancement to the
base CSMA/CA medium access control (MAC) protocol. Such
802.11s AP meshes were used for range extension to end
users, typically limited to a few hops to manage the resulting
increased interference due to frequency reuse among co-
channel links.

As far as cellular networks, 3GPP defined a version of LTE
relays [7] limited to two-hop communications, that did not
achieve significant commercial success. Conversely, 5G NR
is a beam-based air interface relying on dedicated reference
symbols and channels, alleviating many of the constraints LTE
suffered. Because mmWave transmissions are highly direc-
tional, interference is naturally mitigated with appropriately
elevated BS locations. Thus, mmWave multi-hop based in
IAB can be designed more like a wired multi-hop network

with switches and hubs than a conventional wireless multi-
hop system. The backhaul traffic is routed to the donor node,
with scheduling at each hop, effectively managing the network
interference.

In this work, we focus on joint routing and resource
allocation for IAB multi-hop networking in 5G NR. The
performance analysis of such mmWave multi-hop network is
relatively recent, beginning with initial work in [8], [9]. [10]
presented an analytical framework for IAB-enabled cellular
networks on the coverage and performance. In addition, the
study [11] proposed a global traffic allocation scheme to
achieve the low latency requirements in multi-hop transmis-
sion. In [12], a novel joint incentive and resource allocation
design were proposed for the IAB problem. However, the
primary shortcoming of all above works is that they do not
address the URLLC requirements in 5G networks. Due to a
lack of global network status information and imperfect sens-
ing, achieving URLLC latency bounds in multi-hop networks
is a largely unsolved problem.

Towards intelligent operations and scheduling, there has
been a growing interest in the application of artificial intelli-
gence (AI) strategies in 5G NR. In tandem with the new broad
and complex features offered by the new IAB protocols, data-
driven approaches would enable their optimal usage for real-
world applications to achieve the quality, reliability, latency,
and efficiency requirements like URLLC. Among all the AI
strategies, reinforcement learning (RL) is designed to learn
from the environment by exploring the underlining connection
of different parameters, which has shown a good fit and perfor-
mance gain in the scheduling and resource allocation problem
[13]–[15]. An optimization-aided DRL-based framework was
developed in [16] to aim at maximizing the eMBB data rate
subject to a URLLC reliability constraint in resource slicing
problem. [17] proposed an Advantage Actor-Critic (A2C)
based RL approach on the IAB resource allocation algorithm,
which was able to cope with the dynamics of the link status
in mmWave 5G IAB networks. The aforementioned works
mainly apply the DRL algorithms to obtain a deterministic
policy in the wireless communication optimization problem.
However, convergence speed and model generalization are
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significant concerns regarding the development in the real
world. This paper introduces a model-free off-policy DRL
algorithm based on maximum entropy reinforcement learning,
Soft Actor-Critic (SAC) [18], to accelerate the convergence
speed and also align with the current 3GPP standard. In this
paper, we mainly focus on the cross-layer modeling on the
resource allocation and routing in the IAB multi-hop network.
The main contributions of this paper are as follows:
• We formulate a routing optimization problem for the

IAB multi-hop network that minimizes the transmis-
sion latency while satisfying the reliability require-
ment, respectively. We analyze the multi-hop network
under the current 3GPP 5G standard and propose an
optimal routing algorithm with global information.

• We present a deep reinforcement learning (DRL)
framework to solve the routing and resource allo-
cation problem based on the local information in
the multi-hop network. The proposed framework only
requires the local information to optimize the routing
paths and resource scheduling of directional transmis-
sions along with established links.

• We propose a novel entropy-based reinforcement
learning (RL) algorithm with federated learning (FL)
mechanism to accelerate the convergence speed. The
computation complexity of the proposed algorithm is
investigated in terms of convergence speed and runtime.
This architecture can be further extended to other similar
DRL-based decision-making scenarios.

This paper is organized as follows: A brief recap of IAB
architecture and routing and resource allocation mechanism
is summarized in Section II. Section III analyzes the latency
and reliability for multi-hop transmission and formulate an
optimal routing problem. In Section IV, we present a DRL
framework for the resource allocation and routing problem,
which our proposed SAC algorithm can further solve with the
FL mechanism. Section V compares performances between
our proposed algorithm and baseline algorithms from different
perspectives based on ns-3 simulation results. Finally, Section
VI draws the conclusions.

II. SYSTEM ARCHITECTURE

A. Integrated Access and Backhaul Architectures in 5G NR

To cope with the need for appropriate backhaul rates for
small cell networks, 3GPP first proposed a study item on
IAB in [19]. The physical-layer specification of IAB were
completed in 2019, and higher-layer protocols and architecture
were completed in 3GPP Rel-16 [20]. Further enhancements
(e.g., mobile IAB) have been carried out in 3GPP Rel-17.
However, despite the consensus about IAB’s ability to reduce
costs, designing a high-performance IAB network is still an
open research challenge [21].

As Fig. 2 shows, two types of wireless links constitute
the IAB network: access and backhaul links. An access link
connects UE and an IAB node or IAB donor, while a backhaul
link exists between IAB parent and IAB child node. The IAB
functionality requires two network entities: IAB-donor and
IAB-node(s). An IAB-donor is a gNB that provides network

access to UEs via a network of backhaul and access links.
The IAB donor is split into a centralized unit (CU), which
terminates the Packet Data Convergence Protocol (PDCP) and
the Radio Resource Control (RRC) protocol as well as a
distributed unit (DU) that terminates the lower protocols, i.e.,
Radio Link Control (RLC), Medium Access Control (MAC)
and the physical (PHY) [20]. The motivation of the CU/DU
functional split in the IAB donor is that all time-sensitive
functionalities, e.g., scheduling, fast re-transmission, segmen-
tation, etc., can be realized in the DU, i.e., close to the radio
and the antenna. At the same time, it is possible to centralize
the more minor time-sensitive radio functionalities in the CU
[22]. The IAB-donor connects to the IAB-node(s) using the
5G access interface and is connected to the Core Network
(CN). A Backhaul Adaptation Protocol (BAP) layer is added
above the RLC layer to include routing information and
allow for hop-by-hop forwarding. The IAB node comprises
mobile termination (MT) and DU functionalities. The IAB
node connects to an upstream IAB node or an IAB donor’s DU
via MT function, while it also provides wireless backhaul for
the downstream IAB nodes and UEs via the DU function. Note
that IAB nodes can be cascaded without a technical limit to the
number of IAB nodes. Therefore, it is important to consider
the latency and reliability of multi-hop transmission.

The 3GPP standard proposed five different configurations
for IAB architecture, with various levels of decentralization
of the network and backhauling functionalities [21]. In this
paper, we consider Architecture 1a, which has more chance to
be selected for future standardization according to the 3GPP
nomenclature [21]. It should be noted that this architecture
not only leverages CU/DU-split architecture but also adds
an adaptation layer that replaces the IP functionality to hold
wireless routing information enabling hop-by-hop forwarding
[19]. Fig. 2 shows Architecture 1a, where multiple IAB-
nodes use wireless backhaul, while IAB-donors have fiber
connectivity toward the core network. In this architecture, the
IAB donor is the node that serves the IAB nodes and other
UEs that are directly connected to it. Each IAB node has a
mobile termination (MT) function which connects to a parent
DU (IAB donor DU or another IAB node DU) and a DU
function that serves UEs or the MT functions of child IAB
nodes. Such a configuration yields the most limited impact on
the core network and signaling overhead and the lowest relay
complexity and processing requirements [22]. Compared with
other architectures, Architecture 1a implements a functional
split of the radio protocol stack (the split happens at the RLC
layer), with the control and upper layers in the IAB-donor CU
and the lower layers in the DUs of the IAB-nodes. Therefore,
the RRC, SDAP, and PDCP layers reside in the CU, while
RLC, MAC, and PHY are in the DUs. An additional adaptation
layer manages the routing on top of RLC, enabling the end-
to-end connection between DUs and CU.

B. Packet transmission over wireless backhaul

1) Multi-hop forwarding and routing with BAP layer: The
multi-hop forwarding is newly enabled via the IAB-specific
BAP, inserted as a specific header in the RAN layer 2 stack.
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Consider a general IAB network as illustrated in Fig. 2.
Several IAB nodes are transmitting backhaul traffic to the
IAB-donor over the wireless link and then forward to the core
network. Since the IAB-donor assigns a unique L2 address
(BAP address) to each IAB node that it controls. After the
initialization, the IAB donor will know the existing IAB nodes
inside its network. Then each IAB node is able to know the
total number of nodes as well as its neighbor nodes in the
current network under the global configuration of the IAB
donor. For the transmission between the IAB nodes and IAB
donor, the BAP header will include the source and destination
ID as well as an optional path ID. Each IAB node has its
routing table (configured by the IAB donor) containing the
next hop identifier for each BAP ID. The routing tables for
the downlink (DL) and uplink (UL) directions can be different,
used by DU or MT parts separately.

2) Features for IAB networks on PHY, MAC and RLC
layer: The physical layer of IAB is intended to support in-
band backhauling with the same carrier frequencies for both
the NR backhaul links and the access links. The in-band
operation comes with a half-duplex constraint, implying that
the IAB-MT part of an IAB node cannot receive while its
collocated DU is transmitting and vice versa to avoid intra-
site interference. Therefore, a strict time-domain separation
is required between transmission and reception phases within
each IAB node. At the MAC layer, the IAB-nodes support
flexible resource allocation for both DL and UL, which is
thus similar to the normal UE allocation. An IAB network
attempts to schedule the wireless resources to meet each UE
bearer’s requirement regardless of the number of hops a given
UE is away from the Donor DU. The scheduler on the wireless
backhaul link can distinguish the Quality of Service (QoS)
profiles associated with different RLC channels. It may also
apply information regarding the number of hops a packet needs
to traverse, in addition to the QoS profile of the bearers, in
order to provide hop-agnostic performance. Backhaul (BH)
channel is a logistic mapping for transporting packets between
IAB nodes/donor. Different packets from UEs will map to a
single BH RLC channel that is established only between two
IAB entities.

With the features provided by the IAB network, we can
design the routing and resource allocation algorithms. Wire-
less backhaul links are vulnerable to blockage, e.g., due to
moving objects such as vehicles, seasonal changes (foliage), or
infrastructure changes (new buildings). Such vulnerability also
applies to physically stationary IAB-nodes. In addition, traffic
variations can create uneven load distribution on wireless
backhaul links, leading to local link or node congestion [22].
Therefore, topology adaptation for physically fixed relays shall
be supported to enable the robust operation and dynamic
routing, which is still a challenge for the IAB networks.

In the 5G network, the channel conditions are obtained
as follows: the receiver (RX) reports channel information,
i.e., channel status information (CSI), to help the transmitter
(TX) to determine the MCS and the resources for packet
transmission. Following the 3GPP standard, this method is
also applied to multi-hop networks. The feedback from the
RX node contains the channel quality indicator (CQI) that

estimates at the RX node and instructs the TX node to select
a corresponding MCS for a certain block error rate (BLER).
The CQI feedback is based on the CSI reference signal of
each subband (which contains several contiguous RB). The
TX node then uses the CQI value to determine the MCS for
each transmission.

C. Node management and Routing

In the IAB routing mechanism, each IAB node is assigned
a unique address (BAP address), and the IAB donor CU
configures a routing table at each IAB node to direct the
flow of traffic based on these node addresses. A mechanism
is established within the IAB network to help forward it via
multiple intermediate IAB nodes between the IAB donor and
a specific UE from a packet perspective. It includes the route
selection and the next-hop destination at each IAB node once
a route is selected. However, due to the multi-hop nature
of IAB networks, the backhaul link failure may occur on
intermediate IAB nodes along a transmission path which is
caused by the differences in their effective link capacities (i.e.,
different SINRs). In addition, high latency will also be incurred
because of the different congestion conditions on intermediate
IAB nodes. Therefore, an optimal route needs to be selected
between the IAB donor and the specific UE in the IAB
networks based on the reliability and latency requirements.

It should be noted that each IAB is only able to acquire
the local information regarding all its nearby IAB nodes; by
contrast, IAB donor obtains the information from all IAB
nodes in an IAB network. When an IAB node obtains new
local information, the relevant routing decisions (routing ta-
bles) will be globally renewed/reconfigured by the IAB donor.
Meanwhile, in order to avoid congestion-related packet drops
among the IAB-nodes, the routing within IAB networks is also
supported for both UL and DL directions which can happen on
different nodes and links between the IAB donor and a specific
UE. Although the link failure or the congestion problem
can be handled by higher-layer protocols, e.g., Transmission
Control Protocol (TCP), the scope of the impacted nodes will
extend well beyond the RAN/IAB network. Furthermore, if
packets are dropped due to congestion in the IAB network, the
TCP congestion avoidance and slow start mechanisms may be
triggered, and the end-to-end performances can be significantly
impaired.

The problem of routing in IAB networks has been investi-
gated under different cases [23]–[25]. On the other hand, deep
reinforcement learning (DRL) algorithm-based solutions have
been previously proposed for different (non-IAB) network use-
cases/topology [26]–[28]. While some DRL was also applied
in the IAB-based networks from different perspectives [29],
[30]. The DRL can be also an appropriate approach to cope
with previous issues in the multi-hop transmission problem.
The main reason is that each agent (node) in the IAB network
can be constructed to find a route that maximizes the expected
reward through interaction with the real-time environment.
Under the DRL algorithm, the selected route(s) in the UL/DL
direction can consider both the latency and reliability require-
ments. Meanwhile, since such optimal route(s) can be achieved
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with a fast convergence speed, the DRL approach is still
applicable when some changes happen abruptly in the IAB
network, e.g., the leaving or coming UEs or the change of
IAB network topology.

III. SYSTEM MODEL

This section provides an analysis of the latency and relia-
bility requirements in multi-hop networks for the edge users
according to the current 3GPP NR standards. We follow
the analysis in Section II about the resource allocation and
routing problem. Then based on the analysis, we formulate
the problem as an optimal routing problem with the central
knowledge that could be solved with Dijkstra’s algorithm.

A. Latency for Multi-hop transmission

A key degree of freedom in 5G for resource allocation is the
flexible numerology (u) [31] that allows sub-carrier spacing to
scale as 2u × 15 kHz to provide a balance between different
service requirements. LTE system latency in the user plane is
typically measured as a multiple of Transmission Time Interval
(TTI). The analysis of NR can reuse the same approach but
with different system parameters due to enhanced hardware
capability and numerology, summarised by [32], [33]. The NR
TTI length is equal to the slot length1.

For a direct transmission from the base station to user
equipment (UE), the total delay depends upon 4 components -
i) queuing time before transmission Tque, ii) stack processing
time at source (gNB) T s

proc, iii) transmission time Ttrans,
and iv) processing time at destination (UE) T dest

proc . All these
delay components are a multiple of TTI (same length as
slot) as suggested above. Then the total delay of the direct
transmission is calculated in Eq. (1).

T dir
delay = Tque + T s

proc + T dest
proc + Ttrans, (1)

where the processing delay is normally Tproc = T s
proc +

T dest
proc = 4 · TTI [34]. The transmission delay is related

to both the packet size pkt required to be transmitted in
current slot and the modulation and coding scheme (MCS).
For a given MCS, the transmission block size TB can be
determined 2. Then the transmission time is calculated as
Ttrans = d pktTB e · TTI.

With regard to the multi-hop transmission, the packet in the
relay nodes, which is forwarded to the next node, does not
need to go through all the stack procedures as discussed above.
By introducing the CU/DU split architecture, the processing
time is reduced since there is no need to go pass all the whole
L2 and L3 stacks compared with the none split option. We
assume that each relay node would immediately forward the
packet to the next node, the latency caused by each relay is
thereby half of the processing time plus the transmission time,
i.e., Trelay = 1

2Tproc + T relay
trans . Thus, the total delay from the

source to destination through n relay nodes is calculated in

1For example, the TTI is 1
23

ms when using numerology 3.
2The detailed calculation is shown in 3GPP standard [35].

Eq. (2):

Tdelay = T dir
delay + n · Trelay

= Tque +
n+ 2

2
Tproc +

n+1∑
i=1

Ttrans(i),
(2)

where Ttrans(i) is the transmission time at the link i.

B. Resource allocation and Reliability

In 5G network, the receiver (RX) reports channel status
information (CSI) to help the transmitter (TX) to determine the
MCS and which RB to transmit. This method is also applied
for the multi-hop networks. The feedback from the RX sides
contains the channel quality indicator (CQI) that estimates at
the RX and instructs the TX to select a corresponding MCS
for a certain block error rate (BLER). The CQI feedback is
based on the CSI reference signal of each subband (contains
several contiguous RB). The TX then uses the CQI value
to determine the MCS for each transmission. In a multi-
hop network, the nodes are not all scheduled by a center
controller, thus the collision and interference may happen
when two close nodes transmit at the same time. On the basis
of the procedures analysis above, the reliability is composed
of two parts, the collision probability pc

3 and the BLER
pb on each link. Regarding a multi-hop transmission with
n relays (total n + 2 nodes and n + 1 transmissions), we
assume the transmission between two nodes is independent,
the probability of a successful multi-hop transmission P is
thus given by

P =

n+1∏
i=1

(1− pb(i))(1− pc(i)) =

n+1∏
i=1

ps(i)(1− pc(i)), (3)

where pb(i) is pre-configured for the ith link and ps(i) =
1− pb(i) denotes the probability of a successful transmission
expected by the current configuration. In this paper, we con-
sider the 3GPP channel model [36]. It supports the modeling
of wireless channels between 0.5 and 100 GHz by means of
a stochastic Spatial Channel Model (SCM), in which a single
instance of the channel matrix H is computed according to
random distributions for large scale fading parameters (i.e.,
the delay profile, the angles of arrival and departure, and
the shadowing) and for the small scale fading (i.e., for small
variations in the channel, for example, as given by the Doppler
spread).

C. Routing and Graph Model

Without loss of generality, the connection and links between
different devices could be modeled as a graph. In this graph
G = (V, E), the vertex V represents the network devices
(nodes) and the edges E represent the communication links
between the pairs of network nodes. Each node is aware of the
connection thereof to neighbour nodes and associated channel
conditions, and then according to the configuration, it can
obtain the pb in the link. We first consider the routing problem,

3The collision happens when two close nodes select the same subband at
the same time for packet transmission.
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that the destination node (serving as a controller) have the
perfect knowledge of the network topology and the channel
conditions. A further assumption is that there is no hidden
terminal problem and the edge nodes are far enough not to
interfere with each other thus there is no collision due to the
RB selection, i.e., pc = 0. Then this could be formulated as a
problem of finding the path q of minimum latency for a given
reliability constraint σ. Notably, the retransmission procedure
can improve the reliability, thus, the formulation is conducted
to minimum latency as the objective and find a path q from
the set QS,D = {qS,D|∀qS,D ∈ G} of all paths connecting
Source (S) to Destination (D) for a given MCS.

Problem 1 (Optimal Routing Problem).

min
q∈QS,D

Tdelay(q), s.t. P(q) ≥ σ. (4)

Notice that the given constraint is related to the reliability,
P, expressed in Eq. (4), which has considered the resource con-
straint (i.e., collision probability and BLER). The constrained
optimization problem in (4) can be transformed into an uncon-
strained problem by applying the Lagrange multiplier method
and expressions as follows with immediately scheduling (no
queuing delay):

min
q∈QS,D

Tdelay(q)− µ log(P(q))

= Tproc +
∑
i∈q

(
1

2
Tproc + Ttrans(i) + µ · log(

1

ps(i)
)

= C +
∑
i∈q

c(i, µ),

(5)
where µ ≥ 0 is the Lagrange multiplier, C is a constant and
c(i, µ) , 1

2Tproc + Ttrans(i) + µ · log( 1
ps(i)

). In terms of a
particular Lagrange multiplier µ, the optimal path q∗ can be
obtained by the Dijkstra’s algorithm [37] by setting c(i, µ) as
the weight of each link. Then the problem is reduced to finding
a solution of µ∗ by the following lemma and algorithm.

Lemma 1. The optimal q∗(µ) solves the problem 1, when
there exists a µ that achieves q∗(µ) = σ.

Proof: Please see the proof in App. A.

Lemma 1 introduces a way to obtain the optimal µ∗ by
finding the one that satisfies P (q∗(µ)) = σ. A bisection
approach is employed with exponential convergence rate to
find the optimal µ∗ as shown in Algorithm 1 in App. B.

For each link i, the Ttrans(i) is also related to the MCS
choice from the possible set Mcs. The weight now used in the
unconstrained optimization (5) become

c̃(i, µ) , min
Mcs∈{1,2,... }

1

2
Tproc +Ttrans(i)+µ·log(

1

ps(i)
). (6)

The optimal MCS M∗cs(i, µ
∗) then can be obtained according

to Lemma 1 by

M∗cs(i, µ
∗) = arg min

Mcs∈{1,2,... }

1

2
Tproc+Ttrans(i)+µ·log(

1

ps(i)
).

(7)
Recalling the BAP layer that contains the information of the

path from the source node to the destination, the nodes can

build up the network topology from the history information.
Notice that increasing the relay nodes in the path will increase
delay and decrease the reliability, so we can use Dijkstra’s al-
gorithm with the same weight c(i) to avoid the backwards path
and the neighbours with more hops. In this way, we narrow
down the original routing and resource allocation problem so
that IAB node selects the next hop with corresponding MCS
and slots.

IV. DEEP REINFORCEMENT LEARNING

In section III, we show an optimal routing solution with
the assumption of the perfect network knowledge and no
interference among nodes for the resource allocation in the
uplink (UL) and downlink (DL), respectively. Though the
algorithm requires global information, we can apply it to
reduce the complex routing problem based on the graph to the
neighbor selection and resource allocation problem. Problem
1 considering Dijkstra in the previous section is used to
determine an optimal routing scheme. Since the location of
IAB nodes keeps fixed in the IAB networks, we thereby
adopt the solution to Problem 1 as the pre-configured/default
routing setup for the IAB networks. Afterward, we propose
SAC to solve the joint optimization problem between resource
allocation and possibly to change the routing by choosing a
different neighbor. Each IAB node initially utilizes the pre-
configured routing setup for the routing problem and then re-
selects its neighbors to modify the optimal routing path when
it learns from the environment. As a result, the proposed DRL
algorithm helps each IAB node update its resource allocation
scheme and periodically overwrites the previous routing setup.
Therefore, resource allocation and routing portions run simul-
taneously under the proposed DRL algorithm.

The challenges to addressing the joint optimization problem
between resource allocation and routing for the IAB network
are summarized as follows: 1) Dynamic channel: with 5G
and beyond, the mmWave channel is changing rapidly, which
is vulnerable to penetration, attenuation, and blockage in the
IAB networks. 2) Dynamic UE traffic: Since UEs in the IAB
network are primarily mobile users, UE traffic is also quite
dynamic in terms of UE packet throughput and leaving/coming
of UE nodes. 3) Imperfect feedback: The CSI feedback that
an IAB node receives could be inaccurate due to the delay or
the imperfect channel estimation. In summary, the IAB nodes
may be relatively fixed and static, while the wireless environ-
ments change from time to time, so we also need a dynamic
resource allocation algorithm. The DRL-based algorithm is
able to cope with these challenges. This is because each IAB
node aided by DRL can learn the potential patterns (aimed
for dynamic changes) as well as the bias (aimed for imperfect
feedback) from the environment. By contrast, traditional rout-
ing algorithms, such as meta-heuristic algorithms, only aim for
the routing problem rather than the joint optimization of the
routing and the resource allocation. Thus they cannot cope
with the previously illustrated dynamic changes and correct
the bias incurred by the imperfect feedback. Therefore, with
traditional routing algorithms, the overall performance of IAB
networks in such a dynamic environment will significantly
degrade.
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Fig. 3: Illustration of DRL Architecture.

A. Deep Reinforcement Learning

As illustrated in Fig. 3, the framework of reinforcement
learning consists of agents and environments where each agent
interacts with each other. In the multi-hop network, each IAB
node is considered as an agent, and the wireless channel
and transmission results are regarded as the environment that
presents a collection of the channel states and the feedback
for each transmission. Meanwhile, each IAB node is able to
know the total number of nodes in the current network based
on the global configuration of the IAB donor. Each node is
assumed to allocate the resources based on the Time Division
Multiple Access (TDMA) method.

At each time slot t, each IAB node can acquire the related
information of its neighboring IAB nodes in the UL/DL
direction respectively. The obtained information from each
neighboring IAB node includes the channel information (i.e.,
CSI), total latency Tdelay, and reliability (the probability
of success P). If we denote the total number of nodes in
the multi-hop network is M , the state st of the IAB node
m(1 ≤ m ≤M) at slot t is given by

smt =


CSIUL1 , TUL1,delay, PUL1

CSIDL1 , TDL1,delay, PDL1
...

...
...

CSIULM , TULM,delay, PULM
CSIDLM , TDLM,delay, PDLM

 , (8)

where Tn,delay and Pn of node n(1 ≤ n ≤M) in the UL/DL
direction are expressed in Eq. (2) and Eq. (3). Note that if a
node does not belong to the neighboring node set of node m
(including node m), all parameters related to this node in smt
will be set to a special value to indicate such a relation. As a
result, each IAB node has the state with the same dimension,
however, only the information from the neighboring nodes are
truly effective in its state matrix.

The node m then takes action, i.e., choosing the best
neighboring nodes to transmit its packets. Since the channel

condition, latency and reliability vary at each neighboring
node. The best chosen neighboring nodes may be different
each time. To solve the problem above, we thereby implement
the DRL algorithm where the state smt of node m is regarded
as the input while the output is an action score list. The action
score list of node m at time slot t includes the scores of all
nodes in the IAB network, which is expressed in Eq. (9).

amt =

[
aUL1 , · · · , aULn , · · · , aULM
aDL1 , · · · , aDLn , · · · , aDLM

]
, (9)

where an denotes the score of the node n in the UL/DL
direction. This also benefits the model transfer and relay
selection in the following discussion. Once the action score
list is updated, node m chooses the node(s) with the highest
UL/DL transmissions scores. For the UL resource allocation,
the node m chooses some nodes with the highest scores and
schedules the corresponding time slots for the chosen nodes to
transmit their packets. Meanwhile, node m chooses the nodes
with the highest scores for the DL resource allocation and then
forwards their own packets to the chosen nodes immediately.
Note that each node buffers a different number of packets to
be transmitted in the UL direction, the chosen neighboring
nodes need to transmit the packets in their buffers in order of
node priority 4. Therefore, when the node m chooses l nodes
with the highest scores in the UL direction, l will depend on
the number of packets as well as the packet size in the buffer
of the higher priority node.

The decision function taken by each node is determined
by the policy πθ, where θ is the parameter of the policy π.
There are many different RL algorithms to find and improve
the policy π, while the objective of the standard RL is to
maximize the expected sum of rewards from time t:

Rt(π) = E(st,at)∼πθ

[ ∞∑
k=t

γ(k−t)rk

]
, (10)

where γ ∈ [0, 1] is the discount factor used to avoid the
accumulated reward to be infinity, and r(st, at) is the reward
by taking action at at state st. In reinforcement learning, the
transition of the state st and reward rt are stochastic and
modelled as a Markov decision process (MDP), where the
transition probability of state st+1 depends only on the last
state st and the action at taken by the agent. Therefore, each
transition from st to st+1 can be characterized by a conditional
probability p (st+1 | st,at) . The reward rt is used to guide the
training and improve the policy. In the IAB multi-hop network,
each node can calculate the reward based on the feedback
(ACK/NACK) from the environment each time.

The node selection’s objective is to meet the latency and
reliability constraints in the UL/DL direction. After each
action in a direction, the environment returns a reward to
the agent to evaluate such an action. Therefore, the reward
function that guides learning should be consistent with the
objective. In our framework, the reward function consists of
two components: the latency component and the reliability

4After the node with the highest score transmits all the packets in its buffer,
the node with the second highest score is the allowed to transit packets. The
same procedure is applied for the remaining chosen nodes in the UL direction.
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component. Let ot denotes the feedback at time slot t from
the environment: ot = 0 when ACK is received, otherwise
ot = 1 when NACK is received. For the latency component,
if the ACK is received within the latency constraint τ (i.e.,
Tdelay < τ ), a successful transmission happens with a positive
reward which is expressed as τ − Tdelay. This indicates the
smaller Tdelay is, the higher the reward can be returned from
the environment. However, if the NACK (or timeout) happens
(i.e., Tdelay ≥ τ 5), τ − Tdelay is also used to quantify
the impact on the reward. If the remaining time within the
latency constraint is long enough for accommodating a re-
transmission, i.e., τ−Tdelay

Tdelay
> 1, due to the higher latency, a

positive but lower reward will be returned for a successful re-
transmission. Otherwise, a negative reward will be returned.
For the reliability component, the more re-transmissions a
packet needs, the lower the returned reward of this packet.
Considering both components, the reward rt in the UL/DL
direction is thereby expressed as:

rt = ψd

(
(τ − Tdelay)

(Tdelay)ot
+ (−1)ot

)
− ψr(Ktrans − 1), (11)

where τ is the latency constraint. Ktrans is the total number
of transmissions for the same packet. ψd, and ψr are the
coefficients which determine the weight of the latency and the
reliability component, respectively. In order to obtain a long
term performance which successfully achieves the URLLC
requirements, both the immediate rewards and future rewards
should be taken into consideration as the RL objective in
Eq. (10). Note that Eq. (11) is applied for both UL and DL
direction. However, the reward rt in the UL/DL direction are
different even though the link used for UL and DL between the
agent and its neighbouring node is the same, this is because
the channel conditions and latency/reliability requirements are
different in two directions.

B. Soft Actor-Critic

The brittle convergence properties and the requirements for
meticulous hyperparameter tuning at different RL algorithms
environments limit such methods’ applicability to a complex,
real-world domain like the routing and resource allocation
problem for IAB multi-hop network. Most RL algorithms
applied in current wireless network problems, like Deep Q
Network (DQN) and Deep Deterministic Policy Gradient
(DDPG), always obtain a deterministic policy, i.e., the policy
only considers one optimal action for a given state. However,
it is hard to generalize the property to other similar environ-
ments. Besides, the policy for routing and resource allocation
in the IAB network is not always unique. Thus it is natural to
consider a more robust algorithm with a stochastic policy for
the model generalization in our resource allocation and routing
problem.

In this section, we introduce Soft Actor-Critic (SAC), a
model-free off-policy deep reinforcement learning algorithm
based on maximum entropy reinforcement learning [18]. In-
stead of maximizing the expected sum of rewards in Eq. (10),

5The reason τ ≥ Tdelay is that the timer will timeout and set NACK before
Tdelay reaches τ .

the SAC algorithm introduces the entropy component into the
objective at time t with the discount factor:

Jt(π) = E(st,at)∼ρπ

[ ∞∑
k=t

γ(k−t)E [rk + αH (π (· | sk)) | sk,ak]

]
,

(12)
where the temperature parameter α controls the degree of
randomness of the optimal strategy and the importance of
entropy relative to the reward, and H (π (· | st)) is the entropy
of each action obtained by the policy. We use ρπ (st,at) and
ρπ (st) to denote the state and state-action marginals of the
trajectory distribution induced by a policy π(at | st).

The SAC algorithm consists of an actor-critic architecture
with separate policy and value function networks as illustrated
in Fig. 3. The actor updates the policies based on the policy
gradient method, and the objective of the critic part is to
evaluate the policy that the learning algorithm searches. More
specifically, the SAC algorithms aim to use deep neural net-
works to learn the basic two functions - the policy function πθ
with parameter θ and the soft Q-function Qω with parameter
ω.

The Q-function in typical RL algorithms is defined as a
cumulative discounted reward by taking action at at state st,
and can be calculated using the Bellman equation []. In the
maximum entropy reinforcement learning framework, we then
regard the entropy as part of the reward to calculate the soft
Q-function.

Qπ (st,at) = r (st,at) + γE(st+1,at+1)∼ρπ [V (st+1)], (13)

where V (st) is the value function defined as

V π(st) = E(at)∼π[Qπ (st,at)− α log π (st,at)]. (14)

The soft Q-function parameters can be trained to minimize the
soft Bellman residual

JQ(ω) = E(st,at)∼D

[
1

2

(
Qω −

(
rt + γEst+1∼π [Vω̄ (st+1)]

))2]
,

(15)
where the value function is implicitly parameterized through
the soft Q-function parameters via Eq. (14), and it can be
optimized with stochastic gradient

∇̂ωJQ(ω) =∇ωQω (Qω − (rt + γ (Qω̄ − α log (πθ (at+1 | st+1))))
(16)

The update makes use of a target soft Q-function with param-
eters ω̄ obtained as an exponentially moving average of the
soft Q-function weights, which is shown to stabilize training
[38].

C. Federated Learning

Each IAB node in the coverage of the IAB donor first uses
the described SAC algorithm for the routing and resource
allocation with random initialization of the neural network
(NN) weight θ. However, some nodes are likely initialized
with worse NN weights. There may arise an issue where the
weights of NN in these nodes may never converge due to the
faster change in the environment, such as channel condition.
As a result, the applied SAC algorithm does not function in
some nodes. To cope with such an issue, we consider adding
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one more mechanism to this network, Federated Learning
(FL) [39], [40], which refers to learning a high-quality global
model based on decentralized data storage for many nodes.
Note we initialize the states of the IAB-nodes inside the
same networks with the same size, thus we can use the FL
algroithms to average the NN weights. FL has been shown
to be a fast convergent method in distributed networks. We
thereby propose our FL mechanism at the IAB donor side
based on FedAvg [41].

V. PERFORMANCE EVALUATION

200 m

IAB donor

IAB node

UE

Fig. 4: Simulation Scenario.

In this section, we analyze the performance of our proposed
methods. We conduct the simulation based on the homoge-
neous scenario (urban micro) based on 3GPP standard [19].
As shown in Fig. 4, we consider three hexagonal grids with
the IAB-donor located in the center, and six IAB nodes are
located inside each grid. We also use the 3GPP channel model
in mmWave for the links among IAB nodes and UEs. The
major parameters for the channel model are summarized in
Table I. The UEs are dropped independently with uniform
distribution and connected to the closest IAB nodes. The UEs
randomly walk within its IAB nodes’ coverage and move with
a speed of 80% indoor (3km/h), 20% outdoor (30km/h) as
suggested in the standard. We change the number of UEs to
generate different traffic loads in the simulation. We adapt
the FTP model 3 as the traffic model where the packet size
is 0.1 Mbytes while the packet’s arrival follows a Poisson
distribution with a mean of 100/3 per second. In addition, the
ratio of access DL/UL traffic is 4:1. We set the traffic type
as the VR/AR traffic with the expected latency less than 5 ms
and reliability of 0.999 successful rates as defined in the 3GPP
standard [42].

For comparison, we implement a greedy algorithm charac-
terized by Eq. (4)-Eq. (7) as the baseline. Note that the greedy
algorithm is an extension of Semi-Persistent Scheduling algo-
rithm defined in 3GPP standard [43], because greedy algorithm
always tends to stick with the current transmission policy and
adopt a new transmission policy only if some conditions fulfill.
In the greedy algorithm, each IAB node selects the next-hop
with the best channel condition, i.e., choosing the maximum
MCS in the current transmission, and if one transmission
fulfills the URLLC requirement, it keeps the transmission

TABLE I: Simulation Parameters in ns-3.

Parameter Value
Power 23 dBm

Bandwidth 100 MHz
Channel model 3GPP mmWave channel model

Environment 3GPP Urban Micro (UMi)
UE receiver noise figure 10 dB

Numerology 3
Center frequency 28 GHz
Pathloss model 3GPP MmWave propagation loss model

BS receiver noise figure 7 dB
UE traffic model FTP model 3

on the same nodes until the URLLC requirement will not
be satisfied. Besides, we choose the Advantage Actor-Critic
(A2C) method proposed in [17] to compare the enhancement
of our proposed SAC algorithm. A2C approach can leverage
merits of both value based approach and policy gradient and it
empirically performs better than other similar RL approaches
on coping with dynamic link blockages in a complicated IAB
scenario, where each node selects a pattern (a set of links
activated in parallel) according to the current policy, and then
the links in this pattern are activated and enabled to transmit
data.

TABLE II: Main SAC hyperparameters.

Parameter Value
Batch size 1024
Learning rate 1e-3
γ 0.99
Critic NN (256, 1024, 1024, 256)
Actor NN (128, 512, 512, 128)

Table. II summarized the main parameters for the SAC
networks that we explored. For the other hyper-parameters,
we use similar setups from the work [18]. The SAC algorithm
is a feasible deep RL toward the real-world setup and is less
sensitive to some hyperparameters. During our experiments,
the convergence speed and performance of the SAC algorithm
mainly depend on the neural network design and related
training parameters. For example, we need a more extensive
network for the Critic Network because it needs to learn to
predict the values of different actions, which requires a more
considerable learning ability. Thus we choose a sizeable NN
setup to have a better generality in different scenarios. More
complex models and other parameters can be explored in
future work.

We first provide the algorithms’ computational complexity
and the average running time for each allocation, which are
reflected in Table. III. In the row of computational complexity,
N indicates the number of IAB nodes. In contrast, n indicates
the maximum number between the total number of sub-carriers
that all IAB nodes utilize (as the nodes in the input layer) and
the number of nodes in the hidden layer in the neural network
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Fig. 5: Average simulation results of different UE numbers.

6. Note all the feedback like CSI and ACK is followed the
3GPP standard from the control link, so there is no additional
overhead needed for the DRL algorithm. For the FL, the
updates are around 1 minute with less than 2 Mbytes of data;
thus, the overhead can be ignored.

TABLE III: Computational complexity.
Algorithm Greedy Expert SAC A2C
Computational complexity O(N ) O(N logN ) O(n2) O(n2)
10 IAB case (ms) 0.0323 0.0976 0.635 0.548
20 IAB case (ms) 0.0703 0.2413 1.141 1.211

Fig. 5 shows the simulation results of different numbers
of UEs. The proposed SAC algorithm outperforms the other
two algorithms from latency and reliability perspectives. As
Fig. 5(a) shows, the average latency in the three algorithms
increases with the increasing number of UEs. This is because
the more the number of UEs is, the higher the queuing delay
will be induced in T dirdelay which is expressed in Eq. (1), leading
to higher total latency. Note that both greedy and A2C methods
do not meet the target latency requirement under the cases of a
large number of UEs. However, our proposed SAC algorithm
can always fulfill such a defined requirement, whatever the
number of UEs is. Meanwhile, as is shown in Fig. 5(b), the
average transmission failure probability with SAC is signifi-
cantly lower than the other two algorithms, especially when
the number of UEs is large. Notice that the proposed SAC
algorithm is able to fulfill the target reliability requirement in
most cases while the other two algorithms always fail. Besides,
the failure probability in the three algorithms increases with
the increasing number of UEs. With more UEs, IAB nodes
are more likely to be scheduled to transmit at the same slot,
causing a higher collision probability pc. Thus the probability
of a successful multi-hop transmission, P expressed in Eq. (3),
will decrease accordingly. As a result, as the number of UEs
increases, the average delay in Fig. 5(a) will be impacted by
the average transmission failure probability since a successful
multi-hop transmission is likely to need more retransmissions.

6For instance, if there are 10 IAB nodes in total, and the bandwidth size for
packet transmission is 12 sub-carriers, i.e., the total number of sub-carriers
that all IAB nodes utilize is 120. If the maximum number of neuron in the
hidden layer is 512, then n = max{120, 512} = 512.

We further explore the relevant performances under a fixed
topology with a fixed number of UEs. Fig. 6(a) shows the
cumulative distribution function (CDF) of latency for 40
UEs among the discussed algorithms. Since the given latency
requirement is 5 ms, it is straightforward to see that almost
99% UEs can satisfy such a requirement under the proposed
SAC. By contrast, the corresponding percentages are much
lower under the other algorithms. Particularly, the CDF with
the Greedy algorithm has a long tail, which indicates that some
UEs may suffer from extraordinarily high latency larger than 8
ms. However, this issue is well coped with under the other two
algorithms, where the corresponding highest latency is only
around 6 ms and 6.5 ms under SAC and A2C, respectively.

Fig. 6(b) shows the distribution of the number of relay nodes
used for multi-hop transmissions among three algorithms.
Compared with the other two algorithms, the proposed SAC
always utilizes fewer relay nodes to complete a multi-hop
transmission. Particularly, the percentage of using one relay
node with SAC is around 10% higher than that with A2C
while around 30% higher than that with greedy. Meanwhile,
the number of relay nodes with SAC is up to 3 while it
reaches 4 in both greedy algorithm and A2C. From the latency
perspective, the fewer the number of relay nodes is utilized,
the lower aggregate transmission time and processing time that
will be induced in the total delay expressed in Eq. (2), i.e.,
the smaller the expectation of n will be in Eq. (2). Therefore,
with the same number of UEs, the average delay with SAC is
always lower than that with the other two algorithms, which
has been validated in Fig. 5(a). From the reliability perspective,
fewer relay nodes also reduce the number of links in a multi-
hop transmission, as a result, one packet transmission is less
likely to be impacted by the collision probability or the BLER,
which thereby increases P expressed in Eq. (3). The simulation
results can also validate this regarding the average transmission
failure probability in Fig. 5(b).

Fig. 6(c) illustrates how the number of relay nodes impacts
the average delay under the same topology with the same
number of UEs. As we can see, the average delay shows
a linear increase with the increasing number of relay nodes
among the three algorithms. This can be explained by the
fact that the processing time and transmission time included
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Fig. 6: Detailed simulation results of 40 UE numbers.
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Fig. 7: Simulation results under a fixed topology with 40 UEs and different traffic loads.

in the total delay, as Eq. (2) suggests, is proportional to the
number of relay nodes. Notice that although the increase of
relay nodes also increases the average delay due to a higher
failure probability, the increment of failure probability is not
so sensitive, indicating that the increment of average delay is
dominated by the processing time and transmission time when
a node is added. Besides, SAC always outperforms the other
two algorithms on the average delay, regardless of the number
of relay nodes. Therefore, the SAC algorithm is more capa-
ble of learning from the environment and making stochastic
decisions by regarding the entropy as part of the reward in
the SAC algorithm. This adapts to different environments and
handles the decision-making procedure.

More details under a fixed 40 UEs and different traffic
loads are shown in Fig. 7. With the fixed topology, we can
then use the graph model proposed in Sec III-C to give
the expert solution. We allocate the traffic among the users
proportional to the traffic load requiring among the IAB nodes
and UEs for both DL and UL. Fig. 7(a) shows the cumulative
distribution function (CDF) of delay for traffic load 300 Kbytes
among four algorithms. The CDF with SAC grows faster than
the other two algorithms, indicating that SAC outperforms
the other two algorithms due to the higher ratio of low-
latency packets. Particularly, the probability of the delay ≤
5 ms reaches around 95% with SAC, while the corresponding
probability with the other two algorithms only reaches around
50%. Note that the CDF with A2C has the longest tail; its
variance is thereby the largest among them. Subsequently,
we investigate the latency regarding the traffic load, which
is shown in Fig. 7(b). Due to the linear increment of traffic

load, the latency with each algorithm shows a linear growth in
the region of low traffic loads, where the latency with SAC is
always the lowest. However, when traffic load is 500 Kbytes,
the latency with both A2C and greedy algorithms grows faster
because a large traffic load also incurs the increase of collision
probability that impacts the total delay.

Fig. 7(c) shows the comparison between SAC and A2C
on the reward convergence for traffic load 10 Kbytes. We
conducted such a simulation with 10000-time steps to ensure
that the returned reward could converge in both algorithms. As
we can see, SAC outperforms A2C on the reward convergence
in three aspects: 1) Convergence speed: SAC converges quite
faster than A2C. More precisely, SAC takes around 700-
time steps while A2C takes around 2100 time steps to reach
the convergence; 2) Steady reward value: the steady reward
value with SAC is at least 30% larger than that with A2C;
3) Stability: the returned reward trend with SAC is more
stable than that with A2C after 2100 time steps. Therefore,
the stochastic policy generated by the SAC algorithm en-
hances the ability to transfer knowledge compared with the
A2C algorithm. Besides, the SAC algorithm’s objective also
encourages exploring more possible actions that contribute to
faster convergence.

Afterward, we study the impact of FL on the convergence
speed of SAC and A2C. As Fig. 8 shows, the reward in both
algorithms with FL converges faster than that without FL.
In particular, while the convergence speed of two algorithms
without FL are quite close, SAC with FL takes around 2500
time steps fewer than that with SAC without FL, and A2C
with FL take around 2000 time steps fewer than that with A2C

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2022.3200673

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 04,2022 at 19:14:04 UTC from IEEE Xplore.  Restrictions apply. 



12

Fig. 8: FL and the convergence speed 7.
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Fig. 9: The average running time.

without FL, indicating that SAC achieves more improvement
on A2C after adding FL. Hence the reward with SAC with
FL still outperforms A2C with FL. This indicates that The
structure of the entropy-based reinforcement learning with
federated learning has the potential to be implemented in the
radio intelligence controller in 5G and beyond networks.

Furthermore, we implement the SAC algorithm through
PyTorch to measure the runtime of selecting actions for a
given state. We run such a simulation with the mean packet
size is 30K Bytes. The simulation results are shown in Fig.
9. As the number of neighboring nodes increases, the average
runtime increases slowly at first. Since the policies are running
parallel, the increased time is not so significant based on the
comparison of the action score. After the number exceeds 4,
however, the running time doubles due to the limitation of the
computation resources; thus the policies are no longer running
parallel. Note that the algorithm runtime is approximately
around 0.5 ms for the case of 1 neighboring node. This
performance may be impacted by the efficiency of PyTorch
and the computing ability of the computer. The efficiency and
computing ability can be further improved in a real system
where the proposed algorithm can be implemented on the

7The standard deviation over all time steps are 92.96, 74.17, 16.87, and
32.03, respectively (aligning with the same order of algorithms in Fig. 8);
while the standard deviation after the convergence point (around 4500) for all
algorithms: 12.73, 11.61, 10.95, and 11.34, respectively.

hardware and software.

VI. CONCLUSION

In this paper, we focused on the cross-layer modeling on the
routing and resource allocation in the multi-hop IAB network
under the latest 5G NR standard. An optimal routing problem
that minimized the transmission latency and also satisfied the
transmission reliability constraint was first formulated and
analyzed. Subsequently, we presented a DRL framework to
solve the proposed routing and resource allocation problem in
the IAB network based on the local information. Afterwards,
we proposed a novel entropy based reinforcement learning
algorithm with federated learning mechanism to accelerate
the convergence speed as well as decrease the algorithm
complexity. The numerical results showed that our proposed
algorithm outperformed the existing algorithms on the aspects
of latency and reliability from different perspectives.

Since this work provided a general solution to the in-
vestigated joint optimization problem in the IAB networks
regardless of network topology, this work also hints at the
effectiveness of mesh-based communication in IAB networks
while it is not yet considered by 3GPP IAB standardization.
In the future, it would be interesting to explore how effective
the proposed algorithm can be on the meshed IAB networks
after such an IAB architecture is standardized. Besides, we
would like to consider the industrial aspects of IAB with more
realistic setups, i.e, limiting the maximum hops and testing
under the open source test-beds.

APPENDIX

A. Proof of Lemma 1

Proof: When q∗(µ) = σ, we have logP (q∗(µ)) = log σ.
For any other q

′ ∈ Q that satisfies P
(
q
′
(µ)
)
≥ σ , we have

by applying Eq. (5),

Tdelay (q∗(µ))− µ logP (q∗(µ)) ≤ Tdelay

(
q
′
)
− µ logP

(
q
′
)

≤ Tdelay

(
q
′
)
− µ logP (σ) .

(17)
From Eq. (17), we then obtain that Tdelay (q∗(µ)) ≤
Tdelay

(
q
′
)

. Therefore q∗(µ) is the optimal solution for the
original Problem 1.

B. Bisection Approach

The Bisection approach to find the optimal µ∗ is shown in
Algorithm 1.

Algorithm 1 Bisection approach to find µ∗.

1: µlow = µ = 0, µup = MAX MU
2: while (P (q∗(µ)) < σ) or (P (q∗(µ)) > σ + η0) do
3: if (P (q∗(µ)) < σ) then µlow ← µ
4: else µup ← µ

5: µ← µlow+µup

2

6: return µ∗ ← µ
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