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1. Introduction

1.1. Overview

The interplay between symmetric functions and probability blossomed in the last 
twenty years. In particular, the framework of Schur processes [48], [49] and Macdonald 
processes [9] has lead to a significant progress in understanding a number of interesting 
stochastic models from the so-called Kardar-Parisi-Zhang universality class. More re-
cently much attention was directed at the role of quantum integrability (in the form of the 
Yang-Baxter equation/Bethe ansatz) in the theory of symmetric functions, with further 
applications to probability. It was discovered that combinatorial properties (most promi-
nently, the Cauchy identity and symmetrization formulas) of many interesting families of 
symmetric functions can be traced back to integrability (e.g., see [7], [56]). Employing this 
point of view and starting with more general solutions to Yang-Baxter equation, [7] and 
[21] defined two families of symmetric functions: the spin Hall-Littlewood (sHL) ratio-
nal symmetric functions and the spin q-Whittaker (sqW) symmetric polynomials, which 
are one-parameter generalizations, respectively, of the classical Hall-Littlewood and q-
Whittaker symmetric functions, and obey similar combinatorial relations. See Fig. 1 for 
the scheme of various symmetric functions and degenerations between them.

The goal of the present paper is to further study structural properties of the sHL 
and sqW functions and connect them to known and new stochastic models. Here is a 
summary of our results.

• Up to now, it was not clear whether new symmetric functions coming from integra-
bility are eigenfunctions of some difference operators acting on their variables.1 The 

1 Note, however, that these functions (usually taking the form Fλ(z1, . . . , zN )) are eigenfunctions of vertex 
models’ transfer matrices acting on their labels λ (which are tuples of integers λ1 ≥ . . . ≥ λN encoding an 
arrow configuration). The variables (z1, . . . , zN ) are tuples of generic complex numbers, and the functions 
are symmetric in the zi’s thanks to the Yang-Baxter equation.
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Fig. 1. An hierarchy of symmetric functions satisfying Cauchy type summation identities which can be uti-
lized to define random fields of Young diagrams. Arrows mean degenerations. Throughout the introduction 
and most of the text it is convenient to replace the parameter t by q in spin Hall-Littlewood functions.

presence of such operators is both a key structural feature of the theory of Macdonald 
polynomials, and an extremely useful tool for applications in probability. We present 
difference operators acting diagonally on the sHL functions and on the sqW functions 
which can be used to extract observables (q-moments of the first row/column) of the 
corresponding measures.

• Based on Cauchy identities for sHL/sqW functions, we construct Yang-Baxter fields 
of random Young diagrams associated with these functions. This allows to relate 
known stochastic vertex models (stochastic six vertex model [12], stochastic higher 
spin vertex model [29], [18]) to sHL and sqW functions. In more detail, we match 
the (joint) distribution of the height function in each of these vertex models and 
(joint) distribution of the lengths of the first row/column of Young diagrams from the 
corresponding random field. The (joint) distribution of the full diagrams is expressed 
through the (skew) sHL/sqW functions in the same manner as in a Schur/Macdonald 
process.

• A novel feature of this matching is that we cover a more general class of two-sided 
stationary initial conditions in stochastic vertex models. These initial conditions de-
pend on two extra parameters (one can think that they encode the particle densities 
on the left and on the right), and include the step as well as the stationary translation 
invariant ones (the latter form a one-parameter subfamily).

• We define a new integrable stochastic vertex model with vertex weights expressed 
through the terminating q-hypergeometric series 4φ3. These weights come from the 
R matrix entering the Yang-Baxter equation for the sqW functions. The 4φ3 model 
generalizes the q-Hahn PushTASEP recently introduced in [27].

• For the three stochastic vertex models mentioned above, with the general two-sided 
stationary initial data, we produce Fredholm determinantal expressions for the q-
Laplace transform of the height function at a single point.

Let us now describe our results in more detail.
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1.2. Difference operators

The sHL functions Fλ(u1, . . . , un) are rational functions of n variables parametrized 
by Young diagrams λ = λ1 ≥ λ2 ≥ · · · ≥ λ�(λ) > 0, λi ∈ Z. They can be defined by the 
following formula:

Fλ(u1, . . . , un) := (1 − q)n

(q; q)n−�(λ)

∑
σ∈Sn

σ

{ ∏
1≤i<j≤n

ui − quj

ui − uj

n∏
i=1

(
ui − s

1 − sui

)λi �(λ)∏
i=1

ui

ui − s

}
,

where (q; q)n−�(λ) is the q-Pochhammer symbol (cf. Section 1.5), Sn is the permutation 
group of n elements, and σ acts on the indices of the variables ui, but not λi (if i > �(λ)
we have λi = 0, by agreement). These functions depend on two parameters q and s. 
The functions Fλ(u1, . . . , un), up to a certain modification, were introduced in [7]; the 
modification first appeared in [33]. In case s = 0 these functions become standard Hall-
Littlewood functions [40, Chapter III], and for general s many of their properties are very 
similar to the ones of the standard Hall-Littlewood functions (in particular, Cauchy iden-
tity, symmetrization formula, interpretation as a partition function of suitably weighted 
semistandard Young tableaux).

However, some important properties were missing; perhaps, the most important one 
is the presence of difference operators acting diagonally on Fλ(u1, . . . , un). We prove that 
such operators exist. Define the (Hall-Littlewood versions of) the Macdonald operators 
by

Dr :=
∑

I⊂{1,...,n}
|I|=r

( ∏
i∈I

j∈{1,...,n}\I

qui − uj

ui − uj

)
T0,I , r = 1, 2, . . . , n,

where T0,I is the operator setting all ui, i ∈ I, to zero. Note that the operators Dr do 
not depend on s and coincide with the standard Macdonald operators. We prove the 
following result.

Theorem 1.1 (Theorem 8.2 in the text). For all Young diagrams λ and n ∈ Z≥1 we have

Dr Fλ(u1, . . . , un) = er(1, q, . . . , qn−�(λ)−1) Fλ(u1, . . . , un),

where er(x1, . . . , xk) =
∑

1≤i1<...<ir≤k xi1 . . . xir is the r-th elementary symmetric poly-
nomial.

Let us now turn to the sqW functions F∗
λ(ξ1, . . . , ξm). The shortest way to define them 

is via the Cauchy identity

∑
F∗
λ(ξ1, . . . , ξm) Fλ′(u1, . . . , un) =

m∏ n∏ 1 + ξiuj

1 − ujs
, (1.1)
λ i=1 j=1
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where λ′ stands for the conjugation of a Young diagram. (Note that the left-hand side 
of (1.1) depends on an additional quantization parameter q which enters both F∗

λ and 
Fλ′ .) This is indeed a definition of the F∗

λ’s, as they can be extracted as coefficients of 
the expansion thanks to the orthogonality relation for the sHL functions [13] (which we 
recall in Proposition 8.6). When s = 0, F∗

λ becomes the usual q-Whittaker polynomial 
(i.e., Macdonald polynomial [40, Chapter VI] with t = 0).

The functions F∗
λ(ξ1, . . . , ξm) were introduced in [21]. They showed that for general s

the family {F∗
λ(ξ1, . . . , ξm)}λ satisfies natural properties (Cauchy identities and represen-

tations as partition functions). The question about the existence of difference operators 
acting diagonally on F∗

λ was open. We obtain one such difference operator. Define the 
operator acting on rational functions in (θ1, . . . , θl) as follows:

E :=
l∑

j=1

(
1 + s

θj

)l(∏
i�=j

θj
θj − θi

)
Tq−1,θj + (−s)l

θ1 · · · θl
Id.

Here Id is the identity operator, and Tq−1,θj acts by multiplying θj by 1/q.

Theorem 1.2 (Theorem 8.7 in the text). We have E F∗
λ(θ1, . . . , θl) = q−λ1F∗

λ(θ1, . . . , θl)
for all Young diagrams λ and all l ∈ Z≥1.

Note that in the classical theory, as well as in the case of sHL functions, we have 
many eigenoperators of all orders, rather than just one. The existence of higher order 
eigenoperators for the sqW functions remains open. However, already the presence of 
one operator brings a lot from both algebraic combinatorial and probabilistic points of 
view. In particular, first row/column observables of measures based on sqW functions 
can be extracted and analyzed via the already standard technique introduced in [9] for 
Macdonald measures.

Remark 1.3. We originally arrived at eigenoperators for the sqW and sHL functions 
through q-moments of the stochastic higher spin six vertex model computed before 
[29], [18]. Namely, we used the matching via the Yang-Baxter field (see below in Sec-
tion 1.3) to recognize that these q-moments are at the same time q-moments of the 
measures on Young diagrams expressed through the sHL and sqW functions. The dif-
ference operators arise by reversing the q-moment computations starting from known 
contour integrals. However, our proofs of the eigenrelations presented in the paper are 
more direct, and use only the necessary minimum of the properties of the sHL and the 
sqW functions.

1.3. Yang-Baxter fields and matching to stochastic vertex models

The usefulness of symmetric functions in probabilistic questions is greatly emphasized 
by the frameworks of Schur and Macdonald processes. This approach stems from the 
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Fig. 2. Stochastic vertex weights Lu,θ(i1, j1; i2, j2) for the higher spin model.

combination of two general ideas. First, asymptotic behavior of random Young diagrams 
with probabilistic weights coming from a symmetric function summation identity is often 
accessible via exact computations with symmetric functions. Second, such Young dia-
grams turn out to be related to many natural probabilistic models. In order to quantify 
this relation, one needs to utilize certain combinatorial structures behind the symmetric 
functions.

First examples of such usage involved RSK (Robinson-Schensted-Knuth) correspon-
dence to establish a relation between Schur functions and models of longest increasing 
subsequences/last passage percolation/TASEP [3], [38], [44], [43]. A bit later, a simpler 
construction not based on RSK was suggested in [15]. In the present paper we employ 
the third type of construction introduced in [24] — the Yang-Baxter fields. (A more de-
tailed historical overview of all these constructions is given in Section 2.6.) We construct 
three Yang-Baxter fields based on three types of Cauchy identities for the sHL and sqW 
functions. Let us formulate a sample result in detail.

Fix q ∈ [0, 1), s ∈ (−1, 0), and inhomogeneity parameters {θx}x∈Z≥0 , {uy}y∈Z≥0 , 
satisfying θx ∈ [−s, −s−1], uy ∈ [0, 1). Informally, the stochastic higher spin vertex 
model [29], [18] is a random collection of paths on edges of Z≥0 × Z≥0 such that each 
vertex (x, y) has one of four possible types from Fig. 2 and contributes the weight shown 
there with θ = θx and u = uy. We also need to prescribe (possibly random) boundary 
conditions bvi ∈ {0, 1}, bhj ∈ Z≥0, which parametrize the number of arrows coming into 
the quadrant from the left and from below, respectively.

In more detail, the stochastic higher spin six vertex model is the (unique) probability 
measure on the set of up-right directed paths on Z≥0×Z≥0 (with multiple vertical paths 
allowed per edge, but at most one horizontal path per edge) satisfying:

• Each vertex (0, y) at the vertical boundary {(0, y′) : y′ ≥ 1} emanates a path initially 
pointing to the right if bvy = 1;

• Each vertex (x, 0) at the horizontal boundary {(x′, 0) : x′ ≥ 1} emanates bhx paths 
initially pointing upward;

• For each (x, y), conditioned to the path configuration at all vertices (x′, y′) such that 
x′+y′ < x +y, the probability of a vertex configuration (i1, j1; i2, j2) at (x, y) is given 
by Luy,θx(i1, j1; i2, j2). Moreover, the random choices made at diagonally adjacent 
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vertices . . . , (x − 1, y + 1), (x, y), (x + 1, y − 1), . . . are independent under the same 
condition.

Take the step boundary conditions bvi ≡ 1, bhj ≡ 0. Let hHS(x, y) be the height function, 
which is defined as the number of paths which go through or to the right of the point 
(x, y). We are interested in the distribution of hHS(x, y).

On the symmetric function side, let us consider a random Young diagram λ(x,y) with

Prob(λ(x,y) = ν) =
∏

1≤i≤x
1≤j≤y

1 − ujs

1 + ujθi
Fν(u1, . . . , uy)F∗

ν′(θ1, . . . , θx). (1.2)

Cauchy identity (1.1) implies that the sum of the above probabilities over all ν is equal 
to 1, as it should be. The next result is a particular case of Theorem 7.18 in the text:

Theorem 1.4. For any fixed (x, y) in the quadrant, the random variables y−�(λ(x,y)) and 
hHS(x + 1, y) have the same distribution.

Our Theorem 7.18 contains a more general statement. First, it provides a matching 
of the whole two-dimensional array {hHS(x + 1, y)} to an array of scalar observables of 
a Yang-Baxter field of Young diagrams {λ(x,y)} which we construct. In particular, joint 
distributions of hHS(x + 1, y), when (x, y) follow a down-right path, can be accessed 
through a suitable analogue of a Schur or Macdonald process. Second, Theorem 7.18
includes more general boundary conditions for the vertex model, at a cost of suitably 
modifying the symmetric functions in the right-hand side of (1.2). Namely, we allow bvi ∈
{0, 1} to be independent Bernoulli random variables, and bhi ∈ Z≥0 to be independent q-
negative binomial random variables (cf. Section 1.5 for the latter). We call such boundary 
conditions of the field of Young diagrams (two-sided) scaled geometric, they match with 
two-sided stationary boundary conditions in stochastic vertex models.

The matching we just described in Theorem 1.4 arises in the setting of the Cauchy 
identity (1.1) involving one sHL and one sqW function. We consider two other Cauchy 
identities, one with two sHL functions, and another with two sqW functions. The vertex 
models and the corresponding matchings are described in Section 7.2 and Section 7.4. In 
all cases we prove analogues of Theorem 1.4 (and the more general Theorem 7.18). 
The matchings between stochastic vertex models with two-sided stationary bound-
ary conditions and symmetric functions have not been known before in any of the 
cases.

In the sHL/sHL case, on the vertex model side we obtain the stochastic six vertex 
model [36], [12] and essentially recover (a new degeneration of) the matching of [24]. 
We observe a curious property that the stochastic six vertex model is independent of 
the parameter s, while this parameter enters the sHL/sHL Yang-Baxter field. This in-
dependence of s might be explained by Theorem 1.1: the eigenoperators for the spin 
Hall-Littlewood polynomials do not depend on s either.
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The extension of the sHL/sHL field matching to the stochastic six vertex model to 
the two-sided stationary boundary conditions is new. In the sqW/sqW situation the 
Yang-Baxter field produces a new integrable stochastic vertex model with vertex weights 
expressed through the terminating q-hypergeometric series 4φ3. This model generalizes
the q-Hahn PushTASEP [27]. We match the height function of this model to a field of 
random Young diagrams whose distributions are expressed through a product of two 
sqW functions.

1.4. Fredholm determinants for observables

The difference operators D1 and E diagonal in the sHL or sqW functions, respectively, 
allow to express (in a nested contour integral form) the q-moments of the height function 
in each of the three vertex models with step boundary conditions. It is known (e.g., 
see [14]) that such q-moment formulas can be organized into generating series leading 
to Fredholm determinantal formulas for the q-Laplace transform E 

(
1/(ζqH(x,y); q)∞

)
,

where H(x, y) is the height function in either of the three models. This approach works 
well both for the stochastic six vertex and stochastic higher spin six vertex models with 
step boundary conditions.

However, for the 4φ3 vertex model only finitely many of the q-moments exist, and 
thus the generating series cannot be used. Moreover, for the more general two-sided sta-
tionary boundary conditions, explicit q-moments are not known and also may not be 
finite. We overcome both these issues at the same time by considering an analytic con-
tinuation based on the fusion procedure for vertex models [39] (see [29] for a stochastic 
interpretation of fusion). We start with the Fredholm determinant for the (inhomo-
geneous) stochastic six vertex model with parameters (vx, uy), where (x, y) ∈ Z2

≥0. 
Then we replace each ui and vj by a finite geometric sequence ui, qui, . . . , qJi−1ui and 
vj , qvj , . . . , qIj−1vj . It turns out that the resulting measure depends on the parameters 
(vx, qIx , uy, qJy ) in an analytic way. Then, taking certain specializations of these pa-
rameters, we can get to both the sqW functions and the two-sided stationary boundary 
conditions in the vertex models. The fusion and analytic continuation from sHL functions 
to the sqW ones was first performed in [21].

The Fredholm determinantal formula we obtain in the sqW/sqW setting in particular 
establishes the Fredholm determinant for the q-Hahn PushTASEP which was conjectured 
in [27].

Analytic continuations leading to Fredholm determinants for stationary stochastic 
particle systems were performed in [11] (q-Whittaker measures and random polymers) 
and [1] (stochastic six vertex model). In the first reference, the continuation significantly 
used the structure of the algebra of symmetric functions. Our analytic continuation 
based on fusion is more similar to the approach taken in the second reference, but due 
to connections with sHL and sqW symmetric functions, the argument is more straight-
forward.
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1.5. Notation

Throughout the paper we use the q-Pochhammer symbols

(a; q)n =

⎧⎪⎪⎨⎪⎪⎩
1, n = 0;∏n

i=1(1 − aqi−1), n ≥ 1;∏−1
i=n(1 − aqi)−1, n ≤ −1,

and (a; q)∞ =
∞∏
i=1

(1 − aqi−1). (1.3)

We also use the notation

k+1φk

(
q−n; a1, . . . , ak

b1, . . . , bk

∣∣∣ q, z) =
k∏

i=1
(bi; q)n · k+1φk

(
q−n; a1, . . . , ak

b1, . . . , bk

∣∣∣ q, z)

=
n∑

j=0
zj

(q−n; q)j
(q; q)j

k∏
i=1

(ai; q)j(qjbi; q)n−j

(1.4)

for the regularized terminating q-hypergeometric series.
We say that a random variable X has the q-negative binomial distribution with pa-

rameters (r, p), or X ∼ q-NB(r, p), if

Prob{X = k} = pk
(r; q)k
(q; q)k

(p; q)∞
(pr; q)∞

. (1.5)

In case r = 0 we say that X is a q-Poisson random variable of parameter p, or X ∼
q-Poi(p) (sometimes this distribution is also called q-geometric). Finally, the Bernoulli
random variable X ∼ Ber(p), X ∈ {0, 1}, has Prob{X = 1} = p and Prob{X = 0} =
1 − p.

1.6. Outline

In Section 2 we outline a general formalism for constructing random fields from sym-
metric (rational) functions. In Section 3 we recall the spin Hall-Littlewood and spin 
q-Whittaker symmetric functions introduced in [7] and [21], respectively. In Section 4
we consider the general form of the skew Cauchy equation which follows from the fused 
Yang-Baxter equation, and in Section 5 consider yet another family of its specializations 
which we refer to as “scaled geometric”. In Section 6 we apply bijectivization to the Yang-
Baxter equations obtaining local stochastic moves of Yang-Baxter type. In Section 7 we 
discuss the Yang-Baxter fields thus arising together with their scalar marginals (projec-
tions). In Section 8 we define difference operators acting diagonally on our symmetric 
functions, and study their properties. In Section 9 we write down Fredholm determi-
nantal observables for stochastic particle systems arising from our Yang-Baxter fields. 
Finally, in Appendix A we list all instances of the Yang-Baxter equation employed in 
the paper, and discuss the nonnegativity of terms entering these equations.
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2. Random fields from skew Cauchy identities

In this section we describe an abstract formalism of random fields which is applied to 
several concrete situations in the rest of the paper.

2.1. Skew Cauchy structures

The fields we consider in this paper are collections of random Young diagrams indexed 
by points of the two-dimensional quadrant Z2

≥0. A Young diagram (= partition) is a 
sequence of integers λ = (λ1 ≥ . . . ≥ λ�(λ) > 0). The quantity �(λ) is called the length of 
the Young diagram λ. Denote by Y the set of all Young diagrams including the empty 
one λ = ∅ (by agreement, �(∅) = 0). It is convenient to be able to add zeros at the end of 
a Young diagram λ, and to not distinguish the sequences (λ1, . . . , λ�) and (λ1, . . . , λ�, 0).

Assume that for every pair of Young diagrams λ, μ and any k ∈ Z≥1 we are given 
two functions Fλ/μ(u1, . . . , uk) and Gλ/μ(u1, . . . , uk) (which may also depend on some 
external parameters). This data is called a skew Cauchy structure if the functions satisfy 
the following properties:

1. The functions are rational in the ui’s and are symmetric with respect to permutations 
of u1, . . . , uk.

2. Define relations ≺k and ≺̇k on Y × Y such that

Fλ/μ(u1, . . . , uk) �= 0 iff μ ≺k λ; Gλ/μ(u1, . . . , uk) �= 0 iff μ ≺̇k λ. (2.1)

Moreover, for each λ the sets {μ : μ ≺k λ} and {ρ : ρ ≺̇k λ} are finite. By agreement, 
we extend these relations to k = 0 and set Fλ/μ(∅) = Gλ/μ(∅) = 1λ=μ.2

3. (Branching rules) For each 1 ≤ m ≤ k − 1 we have

Fλ/μ(u1, . . . , uk) =
∑
κ

Fλ/κ(u1, . . . , um)Fκ/μ(um+1, . . . , uk), (2.2)

2 Throughout the paper 1A denotes the indicator of A.
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Fig. 3. An illustration of relations between the four diagrams λ, μ, κ, and ν in the skew Cauchy identity 
(2.3). The variable u should be thought of corresponding to the vertical direction, and v corresponds to the 
horizontal one. Here we are using the shorthand notation ≺ = ≺1 and ≺̇ = ≺̇1.

and the same branching rule for Gλ/μ (obtained by replacing each F above by G) 
holds, too. Note that the sum over κ above is finite.

4. (Skew Cauchy identity) There exists a rational function Π(u; v) and a subset Adm ⊆
C2 such that for all (u, v) ∈ Adm one has (see Fig. 3 for the illustration)∑

ν

Fν/μ(u)Gν/λ(v) = Π(u; v)
∑
κ

Fλ/κ(u)Gμ/κ(v). (2.3)

Note that the sum over κ in the right-hand side is finite while the sum over ν in the 
left-hand side might be infinite. The set Adm corresponds to pairs (u, v) for which the 
infinite sum converges.

5. (Nonnegativity) There exist two sets P, Ṗ ⊆ C such that

Fλ/μ(u1, . . . , uk) ≥ 0, ui ∈ P for all i; Gλ/μ(v1, . . . , vk) ≥ 0, vj ∈ Ṗ for all j.

Remark 2.1. The functions Fλ/μ and Gλ/μ are rational thus might be undefined for 
special values of the variables ui or the external parameters. Therefore, all statements in 
this section should be understood in the sense of generic variables and parameters (i.e., 
outside vanishing sets of some algebraic expressions).

The branching rules (2.2) imply that for any μ, λ the function Fλ/μ(u1, . . . , uk) van-
ishes unless there exists a sequence of Young diagrams {κ(i)} with

μ ≺1 κ(1) ≺1 κ(2) ≺1 . . . ≺1 κ(k−1) ≺1 λ.

If Fλ/μ(u) �= 0 for all pairs μ ≺1 λ, then we can replace the relation ≺k by the existence 
of a sequence κ(i) as above, and (2.1) will continue to hold. A similar remark is valid for 
≺̇k, too.

Note also that the skew Cauchy identity for single variables (2.3) together with (2.2)
implies the skew Cauchy identity for any number of variables:∑

ν

Fν/μ(u1, . . . , un)Gν/λ(v1, . . . , vm)

=
n∏ m∏

Π(ui; vj)
∑

Fλ/κ(u1, . . . , un)Gμ/κ(v1, . . . , vm),
(2.4)
i=1 j=1 κ
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where (ui, vj) ∈ Adm for all i, j.

Example 2.2. The prototypical example of a skew Cauchy structure is given by the Schur 
symmetric polynomials [40, Chapter I]:

Fλ/μ(u1, . . . , uk) = Gλ/μ(u1, . . . , uk) = sλ/μ(u1, . . . , uk),

where sλ/μ is the skew Schur polynomial. The relations μ ≺1 λ and μ ≺̇1 λ are the same 
and mean interlacing:

μ ≺ λ ⇔ λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ . . . .

The factor in the right-hand side of the skew Cauchy identity is Π(u; v) = 1
1 − uv

, and the 

convergence in the left-hand side holds with Adm = {(u, v) : |uv| < 1}. The nonnegativity 
sets are P = Ṗ = R≥0, and the fact that sλ/μ(u1, . . . , uk) ≥ 0 for ui ≥ 0 follows from the 
combinatorial formula for the skew Schur polynomials representing them as generating 
functions of semistandard Young tableaux of the skew shape λ/μ.

This Schur skew Cauchy structure will serve as a running example throughout this 
section. In the rest of the paper we consider other skew Cauchy structures associated 
with spin Hall-Littlewood and spin q-Whittaker functions.

2.2. Gibbs measures

Through the branching rules, each family of functions Fλ/μ and Gλ/μ leads to a version 
of a Gibbs property. This property also depends on a choice of parameters u1, u2, . . . ∈ P
or v1, v2, . . . ∈ Ṗ, respectively, which we assume fixed.

Definition 2.3 (Gibbs measures). A probability measure on a (finite or infinite) sequence 
of Young diagrams

λ(0) ≺1 λ(1) ≺1 . . . ≺1 λ(n) ≺1 . . .

is called F-Gibbs (with parameters ui) if for all m, n with 0 ≤ m < n −1, the conditional 
distribution of λ(m+1), . . . , λ(n−1) given τ = λ(m) and ρ = λ(n) has the form

1
Z

Fλ(m+1)/τ (um+1)Fλ(m+2)/λ(m+1)(um+2) . . .Fρ/λ(n−1)(un),

and, in particular, is independent of λ(i) with i < m or i > n. The normalizing constant 
has the form Z = Fρ/τ (um+1, . . . , un) by (2.2). Note that the set of sequences λ(m) ≺1
λ(m+1) ≺1 . . . ≺1 λ(n) with fixed λ(m) and λ(n) is finite, so there are no convergence 
issues in defining Z.

The G-Gibbs property is defined in a similar way.
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Example 2.4. In the Schur case with ui ≡ u for all i, the Gibbs property reduces to the 
one with uniform conditional probabilities. That is, a measure on an interlacing sequence 
of diagrams ∅ ≺ λ(1) ≺ λ(2) ≺ . . . is (uniform) Gibbs if, conditioned on any λ(n) = ρ, 
the distribution of λ(1), . . . , λ(n−1) is uniform among all sequences of Young diagrams 
satisfying the interlacing constraints.

2.3. Random fields associated to a skew Cauchy structure

Fix a skew Cauchy structure (F, G) and parameters

u1, u2, . . . ; v1, v2, . . . , such that (ux, vy) ∈ Adm, ux ∈ P, vy ∈ Ṗ for all x, y. (2.5)

A random field corresponding to this data is a family of random Young diagrams 
λ = {λ(x,y)} indexed by points of the quadrant (x, y) ∈ Z2

≥0 with a certain spatial 
dependence structure determined by the functions Fν/μ and Gν/μ. We begin by describ-
ing the appropriate class of boundary conditions.

Definition 2.5 (Gibbs boundary conditions). A random two-sided sequence of Young di-
agrams

τ =
(
. . . �1 τ (0,3) �1 τ (0,2) �1 τ (0,1) �1 τ (0,0) ≺̇1 τ

(1,0) ≺̇1 τ
(2,0) ≺̇1 τ

(3,0) ≺̇1 . . .
)

(2.6)

is called an (F, G)-Gibbs boundary condition (or a Gibbs boundary condition, for short) if 
the sequences {τ (0,y)}y≥0 and {τ (x,0)}x≥0 are F-Gibbs and G-Gibbs, respectively (in the 
sense of Definition 2.3, with parameters (2.5)), and, moreover, the sequences {τ (0,y)}y≥1
and {τ (x,0)}x≥1 are conditionally independent given τ (0,0).

For a Gibbs boundary condition τ denote

Z
(x,y)
boundary :=

∑
τ(0,0)

Fτ(0,y)/τ(0,0)(u1, . . . , uy)Gτ(x,0)/τ (0,0)(v1, . . . , vx), (x, y) ∈ Z2
≥0.

(2.7)
This quantity is random and depends on τ (x,0) and τ (0,y).

We will mostly deal with the following particular case of Gibbs boundary conditions:

Definition 2.6 (Step-type boundary conditions). A Gibbs boundary condition τ is called 
step-type in the vertical (resp., horizontal) direction if the F-Gibbs distribution of the 
sequence {τ (0,y)}y≥0 (resp., the G-Gibbs distribution of {τ (x,0)}x≥0) is supported on a 
single sequence. That is, the boundary diagrams are nonrandom but the Gibbs property 
still holds.

A step-type boundary condition τ is the one which is step-type in both horizontal 
and vertical directions. For such boundary conditions the quantity Z(x,y)

boundary (2.7) is not 
random and is readily written down (e.g., in some examples τ (0,y) = τ (x,0) = τ (0,0) = ∅). 
See Section 2.6 below for the origin of the term “step”.
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For (x, y) ∈ Z2
≥0 denote the northwest and the southeast quadrants by

NW(x,y) := {(m,n) ∈ Z2
≥0 : m ≤ x, n ≥ y},

SE (x,y) := {(m,n) ∈ Z2
≥0 : m ≥ x, n ≤ y}.

We are now in a position to formulate the main definition of the section:

Definition 2.7 (Random fields). A family of random Young diagrams λ = {λ(x,y) : (x, y) ∈
Z2

≥0} is called a random field associated with the skew Cauchy structure (F, G) and 
parameters (2.5) with a Gibbs boundary condition τ if:

1. The diagrams satisfy λ(x,y) ≺1 λ(x,y+1) and λ(x,y) ≺̇1 λ
(x+1,y) for all (x, y) ∈ Z2

≥0.
2. The diagrams at the boundary of the quadrant Z2

≥0 agree with τ : λ(x,0) = τ (x,0), 
λ(0,y) = τ (0,y) for all x, y ≥ 0.

3. For all (x, y) ∈ Z2
≥0, let us use the shorthand notation

κ = λ(x,y), μ = λ(x+1,y), λ = λ(x,y+1), ν = λ(x+1,y+1) (2.8)

(which matches Fig. 3). We require that

Prob
(
κ | λ(m,n) : (m,n) ∈ NW(x,y+1) ∪ SE (x+1,y)

)
= Prob (κ | λ, μ) =

Fλ/κ(uy+1)Gμ/κ(vx+1)
Z

(x,y)
�

,

Prob
(
ν | λ(m,n) : (m,n) ∈ NW(x,y+1) ∪ SE (x+1,y)

)
= Prob (ν | λ, μ) =

Fν/μ(uy+1)Gν/λ(vx+1)
Z

(x,y)
�

,

(2.9)

where Z(x,y)
� and Z(x,y)

� are the normalizing constants. The skew Cauchy identity (2.3)
implies that Z(x,y)

� = Π(uy+1; vx+1) Z(x,y)
� .

See Fig. 4 for an illustration. Observe that the restrictions on the Young diagrams in 
Condition 1. follow from Condition 3.. Note also that a random field is not determined 
uniquely by the above conditions. We discuss this in Section 2.4 below.

Definition 2.8. A collection {(xi, yi)}Li=1 ⊂ Z2
≥0, where L ≥ 1, is called a down-right path

if x1 = 0, yL = 0, and the difference between consecutive vertices (xi+1, yi+1) − (xi, yi)
is either (0, −1) or (1, 0) for all i.

Proposition 2.9. Let λ be a field. Then the joint distribution of the Young diagrams along 
each down-right path {(xi, yi)}Li=1 conditioned on τ (0,y1) and τ (xL,0) has the form
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Fig. 4. A random field of Young diagrams {λ(x,y)} with boundary conditions τ , and an example of a down-
right path.

1
Zpath

∏
i : yi+1=yi−1

F
λ(xi,yi)/λ(xi+1,yi+1)(uyi

)
∏

i : xi+1=xi+1
G

λ(xi+1,yi+1)/λ(xi,yi)(vxi+1).

(2.10)
The normalizing constant has the form

Zpath = Z
(xL,y1)
boundary

∏
(x, y) below the path

Π(uy; vx).

Proof. This follows by induction on flipping the down-right path using elementary steps 
�→� (i.e., by replacing the down-right corners by the right-down ones). The induction 
base is the path which first makes only down steps to (0, 0) and then only right steps. 
For this path the statement follows from the Gibbs property of the boundary condition 
(Definition 2.5).

The inductive step uses (2.9). Let us fix some � corner (x, y) in the path and use 
the notation of (2.9). Conditioned on λ, μ, the Young diagram κ is independent of the 
diagram along the rest of the path. Using the induction assumption and (2.9) to replace 
the two factors corresponding to (λ, κ, μ) in (2.10) by the ones corresponding to (λ, ν, μ), 
we obtain the desired joint distribution along the modified down-right path. �

For the special choice of the path which first makes only right steps and then only 
down steps, we obtain with the help of the branching (2.2):

Corollary 2.10. For any x, y ≥ 1 we have

Prob(λ(x,y) | τ (0,y), τ (x,0)) =
Fλ(x,y)/τ(x,0)(u1, . . . , uy)Gλ(x,y)/τ (0,y)(v1, . . . , vx)

Z(x,y) . (2.11)

The normalizing constant has the form
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Z(x,y) = Z
(x,y)
boundary

x∏
i=1

y∏
j=1

Π(uy; vx).

Note that for the step-type boundary conditions τ there is no need to condition on 
the boundary values τ (0,y) and τ (x,0) in Proposition 2.9 and Corollary 2.10. For general 
Gibbs boundary conditions we have the following Gibbs preservation property:

Proposition 2.11. For any (x, y) ∈ Z2
≥0, the two-sided sequence

. . . �1 λ(x,y+2) �1 λ(x,y+1) �1 λ(x,y) ≺̇1 λ
(x+1,y) ≺̇1 λ

(x+2,y) ≺̇1 . . .

is an (F, G)-Gibbs boundary condition in the sense of Definition 2.5.

Proof. Immediately follows from Proposition 2.9. �
Example 2.12. In the Schur case the distributions of Proposition 2.9 and Corollary 2.10
become the Schur processes and the Schur measures introduced in [49] and [48], re-
spectively (see also [20]). Early examples of random fields in this case were based on 
Robinson-Schensted-Knuth correspondences. Other approaches were suggested more re-
cently in, e.g., [15], [55], [17]. See Section 2.6 for more historical discussion.

2.4. Transition probabilities as bijectivizations of the skew Cauchy identity

Let us fix a skew Cauchy structure (F, G), parameters (2.5), and a Gibbs boundary 
condition τ . Definition 2.5 does not characterize uniquely a random field λ correspond-
ing to this data. Namely, consider any quadruple of neighboring Young diagrams (2.8)
(related as in Fig. 3) corresponding to (x, y) ∈ Z2

≥0. Given λ, μ, condition (2.9) charac-
terizes the marginal distributions of κ and ν separately. One readily sees that picking 
any joint distribution of (κ, ν) given λ, μ with required marginals κ and ν produces a 
valid random field λ (and this choice can be made independently at every location (x, y)
in the quadrant). Therefore, one has to employ additional considerations to pick random 
fields with interesting properties, for example, possessing scalar Markovian marginals 
(see Section 2.5 below).

It is convenient to encode the choice of the joint distribution of (κ, ν) given λ and μ
in an equivalent form of conditional probabilities. This leads to the following definition:

Definition 2.13. Let u, v ∈ C be such that (u, v) ∈ Adm, u ∈ P, v ∈ Ṗ. The functions

Ufwd
u,v (κ → ν | λ, μ), Ubwd

u,v (ν → κ | λ, μ)

on quadruples of diagrams as in Fig. 3 are called, respectively, the forward and the 
backward transition probabilities if:
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1. The functions are nonnegative and sum to one over the second argument:∑
ν

Ufwd
u,v (κ → ν | λ, μ) = 1 for all triples λ �1 κ ≺̇1 μ,∑

κ

Ubwd
u,v (ν → κ | λ, μ) = 1 for all triples λ ≺̇1 ν �1 μ.

(2.12)

We will interpret Ufwd(κ → ν | λ, μ) as a conditional distribution of ν given λ �1
κ ≺̇1 μ, and Ubwd as the opposite conditional distribution.

2. The functions satisfy the reversibility condition

Ufwd
u,v (κ → ν | λ, μ) · Π(u; v)Fλ/κ(u)Gμ/κ(v) = Ubwd

u,v (ν → κ | λ, μ) · Fν/μ(u)Gν/λ(v).
(2.13)

Summing both sides of (2.13) over κ and ν produces the skew Cauchy identity (2.3). 
Therefore, choosing transition probabilities Ufwd

u,v and Ubwd
u,v corresponds to a refinement 

(“bijectivization”) of the skew Cauchy identity (for a general discussion of bijectivization, 
see Section 6.1 below). In the following sections we build bijectivizations of various 
concrete skew Cauchy identities out of bijectivizations of the Yang-Baxter equations.

Remark 2.14. Summing (2.13) over κ, we get

Π(u; v)
∑
κ

Ufwd
u,v (κ → ν | λ, μ) · Fλ/κ(u)Gμ/κ(v) = Fν/μ(u)Gν/λ(v) (2.14)

This identity was used in [17] and [42] as a starting point to construct random fields 
associated with q-Whittaker functions. The advantage of (2.13) compared with (2.14) is 
that the former is more symmetric and does not involve summation.

Remark 2.15 (Borodin–Ferrari random fields). The existence of at least one random field 
corresponding to a skew Cauchy structure (F, G) is evident from the above discussion. 
An explicit basic construction of a field was suggested in [15] based on an idea of [31]. 
Namely, if Ufwd(κ → ν | λ, μ) is independent of κ, then by (2.14) it must have the form

Ufwd
u,v (κ → ν | λ, μ) =

Fν/μ(u)Gν/λ(v)
Π(u; v)

∑
κ̂
Fλ/κ̂(u)Gμ/κ̂(v)

if there exists κ̂ such that λ �1 κ̂ ≺̇1 μ. Though this construction of a random field 
is rather simple and works in full generality for an arbitrary skew Cauchy structure, 
it does not produce all known examples of fields with scalar Markovian marginals. See 
Section 2.6 below for more discussion.

Using just the forward transition probabilities, start with arbitrary fixed (not neces-
sarily Gibbs) boundary values λ(x,0) = τ (x,0) and λ(0,y) = τ (0,y), x, y ≥ 0, and define a 
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family of random Young diagrams {λ(x,y)} indexed by the quadrant as follows. By induc-
tion on x + y = n, assume that the Young diagrams with x + y ≤ n − 1 are determined. 
Then, independently for each (x, y) with x +y = n and x, y ≥ 1 sample λ(x,y) having the 
distribution Ufwd

uy,vx(λ(x−1,y−1) → λ(x,y) | λ(x,y+1), λ(x+1,y)), where λ(x−1,y−1), λ(x,y+1)

and λ(x+1,y) are already determined. The next proposition immediately follows from the 
definitions:

Proposition 2.16. If the boundary condition τ in the above construction is Gibbs, then 
the resulting collection of random Young diagrams {λ(x,y)}, (x, y) ∈ Z≥0 forms a random 
field in the sense of Definition 2.7.

Therefore, random fields associated with a skew Cauchy structure (F, G) correspond 
to forward transition probabilities, and vice versa. Moreover, the probabilities Ufwd

u,v allow 
to construct a joint distribution on Young diagrams {λ(x,y)} indexed by points of the 
quadrant Z2

≥0 starting from arbitrary boundary values. However, the Gibbs property on 
the boundary is needed for Proposition 2.9 describing joint distributions of the Young 
diagrams along down-right paths. We will not consider non-Gibbs boundary conditions 
in the present paper.

2.5. Scalar marginals

Let λ be a random field in the sense of Definition 2.7 and h : Y → Z be a function. 
When the scalar random variables {h(λ(x,y))} indexed by (x, y) ∈ Z2

≥0 evolve (in the 
sense of forward steps) independently of the rest of λ, we call h(λ) a scalar (Markovian) 
marginal of a field λ.

In detail, this independence means the following. For a finitely supported function F
on Z we can write for any field λ:

∑
ν∈Y

F (h(ν)) Ufwd
u,v (κ → ν | λ, μ) =

∑
n∈Z

F (n)
( ∑

ν : h(ν)=n

Ufwd
u,v (κ → ν | λ, μ)

)
. (2.15)

We say that the random field λ is h-adapted if the quantity in the parentheses above

U[h]
u,v(k → n | �,m) :=

∑
ν : h(ν)=n

Ufwd
u,v (κ → ν | λ, μ) (2.16)

depends on λ, κ, μ only through � = h(λ), k = h(κ), and m = h(μ). The function U[h]
u,v

is nonnegative and 
∑

n∈Z U[h]
u,v(k → n | �, m) = 1 for all �, k, m such that there exists 

at least one triple λ �1 κ ≺̇1 μ. In words, to sample ν knowing λ, κ, μ we first look at 
�, k, m and sample n = h(ν) independently of any other information about the diagrams 
λ, κ, μ, and then sample the rest of the diagram ν.
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For a h-adapted field λ, the joint distribution of the scalar quantities h(λ(x,y)), (x, y) ∈
Z2

≥0 (forming the scalar marginal of λ corresponding to h), can be described using (2.16)
as forward transition probabilities:

Prob
(
h(λ(x+1,y+1)) = n

∣∣∣ h(λ(x,y+1)) = �, h(λ(x,y)) = k, h(λ(x+1,y)) = m,
)

= U[h]
uy+1,vx+1

(k → n | �,m).

Note that while for a scalar marginal h the forward transition probabilities factorize as 
in (2.15)–(2.16), the backward ones do not have to factorize in the same way.

Remark 2.17. One can take an arbitrary set instead of Z as the target of h as this is 
essentially the index set of equivalence classes of Young diagrams. In the rest of the 
paper we mostly focus on integer-valued scalar Markovian marginals, but also mention 
their higher-dimensional (multilayer) extensions obtained by refining these equivalence 
classes.

Scalar marginals in the Schur case (our running example) are discussed in the next 
Section 2.6.

2.6. Existing constructions of random fields

This subsection is a brief review of known random fields associated with skew Cauchy 
structures corresponding to various families of symmetric functions (see Fig. 1 for the 
hierarchy of symmetric functions we mention below).

Constructing probability measures on Young diagrams related to the Schur symmetric 
functions by means of Markov dynamics on Young tableaux goes back at least to [54]. The 
first such mechanism employed in many well-known developments in Integrable Proba-
bility starting from [3] and [38] is the Robinson-Schensted-Knuth (RSK) correspondence. 
In particular, the RSK gives rise to a random field of Young diagrams associated with 
Schur functions whose scalar marginal field is identified with the Totally Asymmetric 
Simple Exclusion Process (TASEP).3 The distributions in TASEP started from a special 
initial configuration called “step” (when the particles occupy the negative half-line while 
the positive half-line is empty) are then related to the Schur measures and processes 
introduced in [48], [49]. The corresponding field of random Young diagrams in this case 
has step-type Gibbs boundary condition in the sense of our Definition 2.6. Further ap-
plications of RSK and its tropical version to particle systems, last passage percolation 

3 To make a precise identification with the standard continuous-time TASEP one has to perform a Poisson-
like limit transition which makes one of the field’s discrete coordinates Z≥0 into continuous R≥0. If one 
makes both coordinates continuous, then the field’s scalar marginal can be linked to the distribution of 
the length of the longest increasing subsequence of a random permutation. Besides certain simplification of 
stochastic mechanisms, such continuous limits do not introduce any significant changes into the structure 
of the fields. In the present paper we focus only on the fully discrete picture.
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models, and random polymers were developed in [44], [43], [4], [25], [45], [28], [47], and 
related works.

Another mechanism of constructing random fields associated with Schur polynomials 
was suggested in [15], see also [6]. (We outlined this construction in Remark 2.15.) This 
mechanism was later employed in [9] to discover the (continuous-time) q-deformation of 
the TASEP as a scalar marginal in a field associated with the q-Whittaker functions. 
The integrable structure of the q-TASEP is based on the q-difference operators diagonal 
in the q-Whittaker polynomials (these are the t = 0 Macdonald difference operators [40, 
Chapter VI.3]). It soon became apparent, however, that Borodin–Ferrari random fields 
cannot produce all known integrable stochastic particle systems on the line as their 
Markovian marginals. Early examples of stochastic particle systems not coming out of 
Borodin–Ferrari fields include the discrete-time q-TASEPs suggested in [10].

This issue motivated the search for other constructions of random fields, and resulted 
in discovery of q-Whittaker and Hall-Littlewood randomizations of the RSK correspon-
dence [46], [17], [23], [42], [22]. On the q-Whittaker side, this brought new q-TASEPs and 
q-PushTASEPs whose distributions are expressed through the q-Whittaker measures and 
processes. The Hall-Littlewood side brought the integrable structure of Hall-Littlewood 
measures and processes to the stochastic six vertex model and the ASEP (i.e., TASEP 
with left and right jumps allowed).

In parallel to these developments a new extension of the q-TASEP called the q-Hahn 
TASEP was invented [51], [26]. Further investigation of this process has led to the sys-
tematic development of the spin Hall-Littlewood (sHL) symmetric rational functions and 
the associated stochastic vertex models [13], [7], [29], [16], [18]. In particular, the Yang-
Baxter equation for the higher spin six vertex model implies the skew Cauchy identity 
for the sHL functions. Recently, the spin q-Whittaker (sqW) symmetric polynomials 
were introduced in [21] as the dual complement (which for s = 0 reduces to the q ↔ t

Macdonald involution) of the sHL ones.
These new skew Cauchy structures called for extending the random field constructions 

which would bring interesting scalar marginals. In [24] this was performed in the sHL 
setting based on a new idea of bijectivization of the Yang-Baxter equation (we recall 
it in Section 6 below). This idea allowed to bypass technical difficulties associated with 
randomizing the RSKs and, on the other hand, by design has produced a scalar marginal 
of the sHL Yang-Baxter field which is a new dynamical extension of the stochastic six 
vertex model.4 In this paper we complete the picture by constructing Yang-Baxter fields 
associated with two other skew Cauchy structures corresponding to the sqW/sHL and 
the sqW/sqW skew Cauchy identities (see Section 7), and find that their scalar marginals 
are related to the stochastic higher spin six vertex model of [29], [18] and to the q-Hahn 
PushTASEP recently introduced in [27]. In Section 8 we employ the former connection 
to discover new difference operators acting diagonally on sqW or stable sHL functions.

4 Similar stochastic vertex models from Yang-Baxter equations are developed in [2], but without connect-
ing them to random fields or symmetric functions.
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Fig. 5. Left: Configuration |λ〉 of vertical arrows corresponding to the Young diagram λ = (4, 4, 2, 1, 1, 1). 
Right: Interlacing of λ with μ = (4, 2, 2, 1, 1, 1).

Remark 2.18. One can also define the notion of a random field of Young diagrams 
associated with Macdonald or Jack symmetric functions since they, too, satisfy skew 
Cauchy identities. However, due to the more complicated “nonlocal” structure of the 
Jack and Macdonald Pieri rules compared to the q-Whittaker or Hall-Littlewood ones,5
it seems unlikely that there exist Jack or Macdonald random fields with scalar Markovian 
marginals. In this paper we do not focus on this question.

3. Spin Hall-Littlewood and spin q-Whittaker functions

In this section we review the main properties of the stable spin Hall-Littlewood and 
spin q-Whittaker symmetric functions [7], [21] which lead to skew Cauchy structures. 
These functions are defined as partition functions of certain ensembles of lattice paths 
realized through a vertex model formalism. We fix the main “quantization” parameter 
q ∈ (0, 1). In contrast with Fig. 1, throughout the text we use q to denote the quanti-
zation parameter in both spin Hall-Littlewood and spin q-Whittaker functions, which is 
convenient when considering Yang-Baxter fields based on both families.

3.1. Young diagrams as arrow configurations

We represent Young diagrams λ = (λ1 ≥ . . . ≥ λ�(λ) > 0) as configurations of vertical 
arrows on Z≥0. Let λ be written in the multiplicative notation as λ = 1l12l2 . . ., where li
is the number of parts of λ which are equal to i. By definition, the arrow configuration 
corresponding to λ, denoted by |λ〉, contains li vertical arrows at location i. The number 
of vertical arrows at 0 is assumed infinite which reflects the fact that one can append 
Young diagrams by zeros without changing them. See Fig. 5, left, for an illustration.

3.2. Stable spin Hall-Littlewood functions

The first collection of vertex weights we work with is given in Fig. 6. Along with q, 
these weights depend on two quantities u, s ∈ C, which are called the spectral and the 
spin parameters, respectively. The weights wu,s satisfy the Yang-Baxter equation, see 
Appendix A.

5 The Pieri coefficients of the q-Whittaker and Hall-Littlewood functions involve products of only nearest 
neighbor terms (properly understood), while in the Jack and Macdonald cases the products are over all 
pairs of indices.
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Fig. 6. In the top row we see all acceptable configurations of arrows entering and exiting a vertex; below we 
reported the corresponding vertex weights wu,s(i1, j1; i2, j2).

For vertices at the left boundary we set

wu,s

( ∞
∞

)
= wu,s(∞,∅;∞, 1) = u, wu,s

( ∞
∞

)
= wu,s(∞,∅;∞, 0) = 1.

(3.1)
Both in Fig. 6 and in (3.1), we attribute weight zero to all configurations which are not 
listed. In particular, the following arrow conservation property holds:

wu,s(i1, j1; i2, j2) = 0 unless i1 + j1 = i2 + j2. (3.2)

Definition 3.1 (Interlacing). Fix μ, λ ∈ Y . We say that μ and λ interlace (notation μ ≺ λ) 
if there exists a configuration of finitely many horizontal arrows between |μ〉 and |λ〉 as in 
Fig. 5, right, such that the arrow conservation property holds at each vertex.6 In detail, 
μ ≺ λ if either of the two hold:

�(λ) = �(μ) and μ�(μ) ≤ λ�(λ) ≤ . . . ≤ λ2 ≤ μ1 ≤ λ1,

�(λ) = �(μ) + 1 and λ�(λ) ≤ μ�(μ) ≤ λ�(λ)−1 ≤ . . . ≤ λ2 ≤ μ1 ≤ λ1.
(3.3)

Note that for each λ ∈ Y , the number of μ such that μ ≺ λ is finite.

Definition 3.2. For μ, λ ∈ Y with μ ≺ λ, a stable spin Hall-Littlewood function in one 
variable, denoted by Fλ/μ(u), is defined as the total weight (= product of individual 
vertex weights) of the unique configuration of arrows between |μ〉 and |λ〉 as in Fig. 5, 
right. Here the individual vertex weights are the wu,s’s from Fig. 6, and the left boundary 
weights are (3.1). If μ ⊀ λ, we set Fλ/μ(u) = 0.

In the sequel we will mostly omit the word “stable” (cf. Section 3.3 on connections to 
the non-stable functions which were originally defined in [7]), and will also abbreviate 
the name to simply the sHL functions.

Define the functions with multiple variables inductively via the branching rule (cf. 
(2.2)):

6 If such a horizontal arrow configuration exists, then it is unique. The restriction that there are only 
finitely many horizontal arrows ensures that the configuration on the far right is empty.



A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865 23
Fig. 7. Examples of configurations of up-right and down-right paths used in the definitions of Fλ/μ and F∗
ν/κ , 

respectively.

Fλ/μ(u1, . . . , uk) =
∑
ν

Fλ/ν(uk) Fν/μ(u1, . . . , uk−1). (3.4)

That is, Fλ/μ(u1, . . . , uk) is a partition function of ensembles of up-right paths as in 
Fig. 7, left, with height k, spectral parameters u1, . . . , uk corresponding to horizontal 
slices, and boundary conditions |μ〉, 0∞, |λ〉 and empty at the bottom, left, up, and 
right, respectively. The fact that the paths are directed up-right corresponds to the arrow 
conservation property (3.2). Note that Fλ/μ(u1, . . . , uk) vanishes unless 0 ≤ �(λ) −�(μ) ≤
k, but this condition is not sufficient.

The Yang-Baxter equation implies that Fλ/μ(u1, . . . , uk) is symmetric with respect 
to permutations of the ui’s, see, e.g., [7, Theorem 3.6]. These functions also satisfy the 
stability property

Fλ/μ(u1, . . . , uk, 0) = Fλ/μ(u1, . . . , uk). (3.5)

For μ = ∅, the stable spin Hall-Littlewood functions admit an explicit symmetrization 
formula [21, (45)] which we recall and use in Section 8. When s = 0, the stable spin 
Hall-Littlewood functions become the usual Hall-Littlewood symmetric polynomials [40, 
Chapter III].

3.3. Remark. Relations to non-stable sHL functions

The spin Hall-Littlewood functions were originally introduced in [7] in their non-
stable version which we denote by Fnon-st

λ/μ . The stable modification appeared in [33] and 
[21]. The non-stable sHL functions differ by the boundary condition on the left: a new 
horizontal arrow enters at each horizontal slice and each vertical edge on the leftmost 
column hosts only finitely many arrows.

In detail, the definition of Fnon-st
λ/μ depends on the number of zero parts in λ =

0l01l12l2 . . . and μ = 0m01m12m2 . . ., and Fnon-st
λ/μ (u) vanishes unless l0 + l1 + . . . =

1 + m0 + m1 + . . .. When the latter condition holds, we define the single-variable func-
tion Fnon-st

λ/μ (u) as the weight of the unique configuration as in Definition 3.2, but now 
the horizontal arrow must enter at the leftmost boundary, and the vertex weight at the 
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zeroth column is wu,s(m0, 1; l0, m0 + 1 − l0). The multivariable version is defined using 
the branching rule exactly as in (3.4).

There are two possible ways one could specialize the non-stable sHL functions to 
obtain our Fλ/μ. The first is to send both l0 and m0, the numbers of zeros in λ and μ, 
to infinity. By looking at the weight of the leftmost vertices we see that

wu,s(m0, 1; l0, j) −−−−−−→
m0,l0→∞

uj

1 − su
, j ∈ {0, 1},

and therefore we obtain

Fλ/μ(u1, . . . , uk) =
k∏

i=1
(1 − sui) × lim

m0,l0→∞
Fnon-st
λ∪0l0/μ∪0m0 (u1, . . . , uk). (3.6)

Here λ ∪0l0 means adding l0 zeros to the Young diagram λ (which had no zeros originally), 
and similarly for μ ∪ 0m0 .

Another way is to consider the inhomogeneous vertex model as in [18] with the spin 
parameter sn, n ∈ Z≥0, depending on the horizontal coordinate n in Fig. 7. Taking 
Fnon-st
λ/μ and setting s0 = 0 and sn = s, n > 0, from Fig. 6 we see that

wu,0(i1, 1; i2, 0) = 1 − qi2 and wu,0(i1, 1; i2, 1) = u.

Therefore, we obtain

Fλ/μ(u1, . . . , uk) = 1
(q; q)k−�(λ)+�(μ)

Fnon-st
λ∪0k−�(λ)+�(μ)/μ(u1, . . . , uk)

∣∣∣
s0=0

, (3.7)

where we assume that μ, λ had no zeros originally. Equality (3.7) is particularly use-
ful when adapting the results about the non-stable sHL functions (like symmetrization 
formulas or integral representations [7], [18]) to the stable case.

3.4. Dual stable spin Hall-Littlewood functions

Let us introduce the dual weights to wu,s from Fig. 6 as follows:

w∗
v,s(i1, j1; i2, j2) = (s2; q)i1(q; q)i2

(q; q)i1(s2; q)i2
wv,s(i2, j1; i1, j2). (3.8)

The arrow conservation law (3.2) implies that w∗
v,s(i1, j1; i2, j2) vanishes unless i2 + j1 =

i1+j2, and as a result the corresponding vertex model produces configurations of directed 
down-right paths (see Fig. 7, right). The explicit form of the weights w∗

v,s is given in 
Fig. 8. The weights w∗

v,s at the left boundary are given by the same formulas as in 
(3.1).
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Fig. 8. In the top row we see all acceptable configurations of paths entering and exiting a vertex; below we 
reported the corresponding vertex weights w∗

v,s(i1, j1; i2, j2).

The weights w∗
v,s can be obtained from wu,s by substituting u with 1/v, swapping the 

values of both horizontal edge indices j1 and j2 (that is if j1 = 0, then we change its value 
1 and vice versa, and the same for j2), and multiplying the result by (v−s)/(1 −vs). This 
swapping construction of the dual weights was instrumental in deriving Cauchy identi-
ties for the sHL functions from the Yang-Baxter equation [7] (a bijectivization of this 
argument appeared in [24]). In the present paper we employ a more direct approach with 
down-right paths which is better suited for the generalization to spin q-Whittaker func-
tions. The Yang-Baxter equation connecting wu,s and w∗

v,s is recorded in Appendix A.

Definition 3.3. Fix κ, ν ∈ Y with κ ≺ ν and place the arrow configuration |ν〉 under |κ〉. 
Then there exists a unique configuration of horizontal arrows between |κ〉 and |ν〉. By 
definition, a dual stable sHL function in one variable, denoted by F∗

ν/κ(v), is the total 
weight of this horizontal arrow configuration, where the individual vertex weights are 
the w∗

v,s’s from Fig. 8, and the left boundary weights are the same as in (3.1). If κ ⊀ ν, 
we set F∗

ν/κ(v) = 0.

The multivariable generalization F∗
ν/κ(v1, . . . , vk) is defined via the branching rule 

exactly as in (3.4). It is the partition function of ensembles of down-right paths as in 
Fig. 7, right, of height k, spectral parameters v1, . . . , vk corresponding to horizontal slices, 
and boundary conditions |κ〉, 0∞, |ν〉, and empty at the bottom, left, top, and right, 
respectively.

The relation (3.8) between w∗
v,s and wu,s implies that

c(λ)
c(μ) Fλ/μ(u1, . . . , uk) = F∗

λ/μ(u1, . . . , uk), (3.9)

where the factor c is

c(μ) =
∏
i≥1

(s2; q)mi

(q; q)mi

, for μ = 1m12m2 . . . .

The symmetry of F∗
λ/μ(v1, . . . , vk) in the v′is follows from the symmetry of Fλ/μ. The 

dual sHL function also satisfies the same stability property (3.5) as the non-dual one.
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3.5. The sHL/sHL skew Cauchy structure

One of the main consequences of the Yang-Baxter equation (either Proposition A.1
or Proposition A.2) is the skew Cauchy identity for the sHL functions:

Theorem 3.4 ([7], [18], [21, Section 7.4]). For any two Young diagrams λ, μ and generic 
parameters u, v ∈ C (cf. Remark 2.1) such that 

∣∣(u − s)(v − s)
∣∣ < ∣∣(1 − su)(1 − sv)

∣∣, we 
have ∑

ν

F∗
ν/λ(v) Fν/μ(u) = 1 − quv

1 − uv

∑
κ

Fλ/κ(u) F∗
μ/κ(v). (3.10)

We recall a “bijective” proof of Theorem 3.4 in Section 7.2 below which follows the 
approach of [24]. This identity (together with the branching rules for the sHL functions) 
leads to the first of the skew Cauchy structures we consider in the paper:

Definition 3.5. The families of functions

Fλ/μ(u1, . . . , uk) = Fλ/μ(u1, . . . , uk), Gλ/μ(v1, . . . , vk) = F∗
λ/μ(v1, . . . , vk)

form a skew Cauchy structure in the sense of Section 2.1 with the following identifications:

(i) The relations μ ≺k λ and μ ≺̇k λ are the same and mean the existence of a sequence 
of Young diagrams μ ≺ κ(1) ≺ . . . ≺ κ(k−1) ≺ λ, where ≺ is the interlacing relation 
(3.3).

(ii) The skew Cauchy identity holds with

Adm =
{
(u, v) :

∣∣(u− s)(v − s)
∣∣ < ∣∣(1 − su)(1 − sv)

∣∣} , Π(u; v) = 1 − quv

1 − uv
.

(3.11)
(iii) Let us choose the external parameters q ∈ (0, 1), s ∈ (−1, 0), and take P = Ṗ = [0, 1]. 

Then the probability weights based on Fλ/μ(u1, . . . , uk) and F∗
λ/μ(v1, . . . , vk) with 

ui, vj ∈ [0, 1] are nonnegative due to the nonnegativity of all the vertex weights in 
Figs. 6 and 8.

We call this the sHL/sHL skew Cauchy structure.

Remark 3.6. When u, v ∈ [0, 1) and s ∈ (−1, 0), one can check that (u, v) ∈ Adm.

3.6. Spin q-Whittaker polynomials

Along with the sHL functions we will work with the spin q-Whittaker (sqW) polyno-
mials introduced in [21] which we recall here. We start by defining the vertex weights 
Wξ,s as
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Wξ,s(i1, j1; i2, j2) = 1i1+j1=i2+j2 1i1≥j2 ξ
j2

(−s/ξ; q)j2(−sξ; q)i1−j2(q; q)i2
(q; q)j2(q; q)i1−j2(s2; q)i2

, (3.12)

where i1, j1, i2, j2 ∈ Z≥0. Note that in contrast with wu,s and w∗
v,s used in the definition 

of the sHL functions, here the number of horizontal arrows j1, j2 can be arbitrary and 
not just zero or one.

The dual version of the weight Wξ,s is given by

W ∗
θ,s(i1, j1; i2, j2) = (s2; q)i1(q; q)i2

(q; q)i1(s2; q)i2
Wθ,s(i2, j1; i1, j2), (3.13)

which is the same relation as between w and w∗ (3.8). The weights W ∗
θ,s vanish unless i2+

j1 = i1 +j2, therefore the dual vertex model will have down-right paths. The dependence 
of both Wξ,s and W ∗

θ,s on their respective spectral parameters ξ, θ is polynomial.
As explained in Appendix A, there exists a close relation between the weights W

and the weights w: the former can be obtained from the latter through a procedure 
called fusion. The fusion consists in collapsing multiple w-weighted rows of vertices with 
spectral parameters forming a geometric progression with ratio q Fusion originated in 
[39] and was employed in [7], [29], [18], [21] in connection with stochastic vertex models. 
In particular, the weights Wξ,s and W ∗

θ,s satisfy the Yang-Baxter equation listed in 
Appendix A.

Define the left boundary weights for j ∈ Z≥0 by

Wξ,s

( ∞
∞

j

)
= W ∗

ξ,s

( ∞
∞

j

)
= ξj

(−s/ξ; q)j
(q; q)j

. (3.14)

Definition 3.7 (Column interlacing). Fix μ, λ ∈ Y . We write μ ≺′ λ and say that μ and λ
column-interlace if there exists a configuration of finitely many horizontal arrows between 
|μ〉 and |λ〉 (located one under another as in Fig. 5) such that at each vertex (i1, j1; i2, j2)
the arrow conservation property i1+j1 = i2 +j2 holds, and, moreover, j2 ≤ i1. Note that 
now we allow arbitrarily many horizontal arrows per edge. (If such a horizontal arrow 
configuration exists, then it is unique.) One can check that μ ≺′ λ if and only if μ′ ≺ λ′, 
where μ′ and λ′ stand for transposed Young diagrams:

λ′
j := # {i : λi ≥ j} .

Definition 3.8. For μ, λ ∈ Y with μ ≺′ λ, a spin q-Whittaker polynomial in one variable, 
denoted by Fλ′/μ′(ξ), is defined as the total weight of the unique configuration of arrows 
between |μ〉 and |λ〉. Here the individual vertex weights are Wξ,s (3.12), (3.14). If μ ⊀′ λ, 
we set Fλ′/μ′(ξ) = 0.

We will abbreviate the name and call Fλ′/μ′ simply the (skew) sqW polynomial. Note 
that it is indexed by the transposed Young diagrams for consistency with the s = 0
situation when Fλ′/μ′ turns into the more common skew q-Whittaker polynomial which 
is a t = 0 degeneration of the corresponding Macdonald polynomial [40], [9].
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The dual sqW polynomials F∗
ν/κ(θ) are defined in a similar manner, up to placing 

|ν〉 under |κ〉, and using the dual vertex weights W ∗
θ,s (3.13), (3.14). We have (cf. (3.9))

c(ν)
c(κ) Fν′/κ′(ξ1, . . . , ξk) = F∗

ν′/κ′(ξ1, . . . , ξk). (3.15)

The multivariable polynomials Fλ/μ(ξ1, . . . , ξk) and F∗
ν/κ(θ1, . . . , θk) are defined via 

the branching rules exactly as in (3.4). One can view them as partition functions of path 
ensembles similarly to the ones in Fig. 7, but with multiple horizontal arrows allowed per 
edge. The Yang-Baxter equation implies that Fλ/μ(ξ1, . . . , ξk) and F∗

ν/κ(θ1, . . . , θk) are 
symmetric in their respective variables. They also satisfy the following stability property:

Fλ/μ(ξ1, . . . , ξk−1,−s) = Fλ/μ(ξ1, . . . , ξk−1)

(and similarly for F∗
ν/κ), which follows from the vanishing of the vertex weight W−s,s. 

Note that here we are substituting (−s) for one of the variables in contrast with the sHL 
functions where we substituted 0 (3.5).

3.7. The sHL/sqW skew Cauchy structure

The Yang-Baxter equation for the weights (w∗
v,s, Wξ,s), see Proposition A.6, implies 

the following “dual” skew Cauchy identity for the sHL and sqW functions:

Theorem 3.9 ([21, Section 7.3]). For any two Young diagrams λ, μ, and generic ξ, u ∈ C

(cf. Remark 2.1; in particular, u �= s−1) we have

∑
ν

Fν′/λ′(ξ) F∗
ν/μ(u) = 1 + uξ

1 − us

∑
κ

Fμ′/κ′(ξ) F∗
λ/κ(u);

∑
ν

F∗
ν′/λ′(ξ) Fν/μ(u) = 1 + uξ

1 − us

∑
κ

F∗
μ′/κ′(ξ) Fλ/κ(u).

(3.16)

Note that the sums over ν and κ in both sides are actually finite, so there are no con-
vergence issues. The above two identities are equivalent: One can multiply the first one 
by c(μ)/c(λ) and redistribute the factors to get the second one.

We give a “bijective” proof of Theorem 3.9 in Section 7.3 below. This leads to the 
following definition:

Definition 3.10. The families of functions Fλ/μ(u1, . . . uk) = F∗
λ/μ(u1, . . . , uk) and 

Gλ/μ(ξ1, . . . , ξk) = Fλ′/μ′(ξ1, . . . , ξk) form a skew Cauchy structure in the sense of Sec-
tion 2.1 with the following identifications:
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(i) The relations ≺k, ≺̇k on Y × Y are

μ ≺k λ ⇔ ∃κ(i) ∈ Y : μ ≺ κ(1) ≺ . . . ≺ κ(k−1) ≺ λ;

μ ≺̇k λ ⇔ ∃ ρ(j) ∈ Y : μ ≺′ ρ(1) ≺′ . . . ≺′ ρ(k−1) ≺′ λ,

where ≺ and ≺′ are the usual and the column interlacing relations (Definitions 3.1
and 3.7).

(ii) The skew Cauchy identity holds with Adm =
{
(u, ξ) ∈ C2 : u �= s−1} and

Π(u; ξ) = 1 + uξ

1 − su
. (3.17)

(iii) The external parameters of the functions are q ∈ (0, 1) and s ∈ (−1, 0), and the 
nonnegativity sets for the spectral parameters are P = [0, 1], Ṗ = [−s, −s−1]. Then 
the probability weights based on F∗

λ/μ(u1, . . . , uk) and Fλ′/μ′(ξ1, . . . , ξk) are non-
negative for ui ∈ P, ξj ∈ Ṗ due to the nonnegativity of the vertex weights in Fig. 8
and (3.12).

We call this the sHL/sqW skew Cauchy structure.

Remark 3.11. Definition 3.10 is based on the first of the skew Cauchy identities (3.16). 
One readily sees that taking the second of these identities leads to the same notion 
of a random field associated with the other skew Cauchy structure. In other words, 
one can understand skew Cauchy structures up to “gauge transformations” of the form 
(Fλ/μ, Gν/κ) �→

( c(λ)
c(μ) Fλ/μ, 

c(κ)
c(ν) Gν/κ

)
, where c(·) is nowhere vanishing. The same re-

mark applies to the two other skew Cauchy structures — it does not matter which of 
the two families of functions carries the “∗”.

3.8. The sqW/sqW skew Cauchy structure

The spin q-Whittaker polynomials also satisfy the following skew Cauchy identity 
which follows from the Yang-Baxter equation (A.13):

Theorem 3.12 ([21, Section 7.1]). For any two Young diagrams λ, μ and parameters 
ξ, θ ∈ C with |ξθ| < 1 we have

∑
ν

Fν/λ(ξ)F∗
ν/μ(θ) = (−sξ; q)∞(−sθ; q)∞

(s2; q)∞(ξθ; q)∞

∑
κ

Fμ/κ(ξ)F∗
λ/κ(θ). (3.18)

We give a “bijective” proof of Theorem 3.12 in Section 7.4 below. This identity moti-
vates the definition of the third skew Cauchy structure we consider in the present paper:
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Definition 3.13. The families of functions

Fλ/μ(θ1, . . . , θk) = F∗
λ/μ(θ1, . . . , θk), Gλ/μ(ξ1, . . . , ξk) = Fλ/μ(ξ1, . . . , ξk)

form a skew Cauchy structure in the sense of Section 2.1 under the following identifica-
tions:

(i) The relations μ ≺k λ and μ ≺̇k λ are the same and mean the existence of κ(i) such 
that μ ≺ κ(1) ≺ . . . ≺ κ(k−1) ≺ λ, where ≺ is the interlacing relation (3.3).

(ii) The skew Cauchy identity holds with Adm =
{
(θ, ξ) ∈ C2 : |ξθ| < 1

}
and

Π(θ; ξ) = (−sξ; q)∞(−sθ; q)∞
(s2; q)∞(ξθ; q)∞

. (3.19)

Both Adm and Π are symmetric in ξ and θ so the order is not essential. We write 
(θ, ξ) to match with the notation of Section 2.1.

(iii) The external parameters are q ∈ (0, 1) and s ∈ (−1, 0), and P = Ṗ = [−s, −s−1]. 
Indeed, F∗

λ/μ(θ1, . . . , θk) and Fλ/μ(ξ1, . . . , ξk) evaluated at ξi, θj ∈ [−s, −s−1] are 
nonnegative due to the nonnegativity of the vertex weights (3.12), (3.13).

We call this the sqW/sqW skew Cauchy structure.

4. Fusion and analytic continuation

4.1. A common generalization of skew Cauchy identities

The skew Cauchy identities from Section 3 admit a common generalization which can 
be viewed as an analytic continuation. In [7], [18], principal specializations of non-stable 
spin Hall-Littlewood functions were considered. They are obtained by setting spectral 
parameters to finite geometric progressions of ratio q. In our context, define

F
(J1,...Jn)
λ/μ (u1, . . . , un) = Fλ/μ(u1, qu1, . . . , q

J1−1u1, . . . , un, qun, . . . , q
Jn−1un) (4.1)

G
(I1,...Im)
λ/μ (v1, . . . , vm) = F∗

λ/μ(v1, qv1, . . . , q
I1−1v1, . . . , vm, qvm, . . . , qIm−1vm). (4.2)

It is a consequence of the fusion procedure dating back to [39] that we can view 
F

(J1,...Jn)
λ/μ (u1, . . . , un) as a partition function in a “smaller” vertex model obtained by 

attaching together n (instead of J1 + . . . + Jn) rows with fused weights w(Jk)
uk,s, where 

k = 1, . . . , n and

w(J)
u,s (i1, j1; i2, j2) = 1i1+j1=i2+j2

(−1)i1+j2q
1
2 i1(i1−1+2j1)sj2−i1ui1(u/s; q)j1−i2(q; q)j1
(q; q)i1(q; q)j2(su; q)j1+i1
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× 4φ3

(
q−i1 ; q−i2 , suqJ , qs/u

s2, q1+j2−i1 , q1−i2−j2+J

∣∣∣ q, q) , (4.3)

where 4φ3 is the regularized q-hypergeometric series (1.4).

Remark 4.1. Note that [21, (31)] gives a slightly different formula for w(J). However, 
these two expressions are the same, and the discrepancy in the multiplicative prefactor 
is compensated by the fact that the 4φ3 is not symmetric in the first two arguments.

Analogously, G(I1,...Im)
λ/μ (v1, . . . , vm) are partition functions of a vertex model with 

fused weights w∗,(Ik)
vk,s , where

w∗,(I)
v,s (i1, j1; i2, j2) = (s2; q)i1(q; q)i2

(q; q)i1(s2; q)i2
w(I)

v,s(i2, j1; i1; j2). (4.4)

As usual, at the leftmost column of these lattices we place infinitely many vertical paths. 
More details on the fused weights can be found in Appendix A.2.

The weights w(J), w∗,(I) degenerate both to w, w∗ and W, W ∗, see Fig. 10 below for 
exact details. Thus, (4.1), (4.2) interpolate between the spin Hall-Littlewood functions 
and the spin q-Whittaker functions. These functions satisfy the following general skew 
Cauchy identity which we state for an appropriate “analytic” range of parameters:

Theorem 4.2. Fix m, n ∈ Z≥0. Take q ∈ (0, 1), and let s �= 0, ui, qJi , vj , qIj be complex 
parameters satisfying

|s|, |uk|, |vl|, |qJkuk|, |qIlvl|,
∣∣∣∣ qiuk − s

1 − qisuk

∣∣∣∣ , ∣∣∣∣ qivl − s

1 − qisvl

∣∣∣∣ < δ for all k, l, i, (4.5)

for sufficiently small δ > 0 which might depend on m, n, but not on the other parameters 
of the functions.7 Then we have∑
ν

F
(J1,...Jn)
ν/μ (u1, . . . , un)G(I1,...Im)

ν/λ (v1, . . . , vm)

=
n∏

k=1

m∏
l=1

(ukvlq
Il ; q)∞(ukvlq

Jk ; q)∞
(ukvl; q)∞(ukvlqIl+Jk ; q)∞

∑
κ

F
(J1,...,Jn)
λ/κ (u1, . . . , un)G(I1,...,Im)

μ/κ (v1, . . . , vm).

(4.6)

Remark 4.3. This identity immediately degenerates to the skew Cauchy identities (3.10), 
(3.16), and (3.18) after specializing the parameters uk, vl and qJk , qIl as in Fig. 10 below.

7 Here and below in this section one can think of qJk and qIl as separate symbols independent of q, because 
the fused weights w(J) and w∗,(I) depend on qJ and qI in a rational way. When J a positive integer, qJ
is equal to the J-th power of q, but we’re free to assign an arbitrary value to qJ , for J not necessarily a 
positive integer (and same for qI).
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The proof of Theorem 4.2 requires an absolute convergence result for spin Hall-
Littlewood functions with principal specializations:

Proposition 4.4. Fix n ∈ Z≥1. Let q ∈ (0, 1). Take s �= 0, ui, qJi to be complex parameters 
satisfying

|s|, |uk|, |qJkuk|,
∣∣∣∣ qiuk − s

1 − qisuk

∣∣∣∣ < δ for all k, i, (4.7)

for some δ = δn > 0 (which might depend on n). Then for all Young diagrams μ we have

∑
λ : μ⊆λ

∣∣∣F(J1,...Jn)
λ/μ (u1, . . . , un)

∣∣∣ < ∞. (4.8)

The proof of Proposition 4.4 will be given later in Section 4.2. First we use its result 
to justify the general Cauchy identity (4.6):

Proof of Theorem 4.2 modulo Proposition 4.4. By Theorem 3.4, identity (4.6) holds in 
case J1, . . . , Jn, I1, . . . , Im are positive integers. Functions F(J1,...,Jn)

λ/μ , G(I1,...,Im)
λ/μ are finite 

sums of finite products of weights w(Jk)
uk,s, w

∗,(Il)
vl,s which are rational functions of qJk , qIl . 

Therefore, F(J1,...,Jn)
λ/μ , G(I1,...,Im)

λ/μ admit an extension to generic complex numbers qJk , qIl . 
This implies that the right-hand side of (4.6) extends to qJk , qIl in a complex region, 
too, since the sum over κ is finite (it ranges over κ ⊆ μ, λ).

The summation in the left-hand side of (4.6) has infinitely many terms as the only 
condition on ν is that μ, λ ⊆ ν. Therefore, to show that it can be extended to parameters 
qJk , qIl in a complex region we need a result of absolute convergence of the sum over 
ν. Under assumptions (4.5), this is a consequence of Proposition 4.4. Therefore, the 
left-hand side of (4.6) can be extended, too.

The equality between the two sides of (4.6) in a wider region (4.5) follows because 
these expressions agree for infinitely many values of Jk, Il, namely, positive integers: if 
|uk| < δ, then |ukq

Jk | < δ for all Jk ∈ Z≥1. This completes the proof. �
Despite the fact that the general skew Cauchy identity (Theorem 4.2) offers a unified 

description of all skew Cauchy structures we study, throughout the text we still con-
sider possible degenerations separately. There are several reasons for this. First, the spin 
Hall-Littlewood and the spin q-Whittaker functions are more basic from an algebraic 
standpoint (see, e.g., Section 8 where we describe difference operators diagonalized by 
these functions). Second, when u, qJ , v, qI are general parameters, it is difficult to give a 
probabilistic interpretation of the random fields — the positivity of the measure obtained 
by multiplying F and G is in general not guaranteed.
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4.2. Absolute summability

We now turn to the proof of the absolute summability result of Proposition 4.4. 
This proof requires explicit expressions for the fused weights which can be found in 
Appendix A. We begin with a number of preliminary estimates, and assume that q ∈
(0, 1) throughout the subsection.

Lemma 4.5. Consider the fused weights w(J)
u,s(i1, j1; i2, j2) defined in (4.3), with γ = qJ ∈

C and i1, j1, i2, j2 ∈ Z≥0. Let s �= 0 and δ = max{|s|, |u|, |γu|} < 1. Then∣∣∣w(J)
u,s (i1, j1; i2, j2)

∣∣∣ ≤ (min{i1, j2} + 1)Cδj2 , (4.9)

where C is a positive constant independent of the vertex configuration (i1, j1; i2, j2).

Proof. Expand w(J) combining (4.3) and (1.4) as

(−1)i1+j2q
1
2 i1(i1−1+2j1)sj2−i1ui1(u/s; q)j1−i2(q; q)j1

(q; q)i1(q; q)j2(su; q)j1+i1

×
i1∑

k=0

qk

(q; q)k
(q−i1 ; q)k(q−i2 ; q)k(suγ; q)k(qs/u; q)k

× (qks2; q)i1−k(q1+j2−i1+k; q)i1−k(γq1−i2−j2+k; q)i1−k.

(4.10)

First, the factor

(−1)i1+j2(q; q)j1(suγ; q)k(qks2; q)i1−k

(q; q)i1(q; q)j2(su; q)j1+i1(q; q)k

is bounded in absolute value by a constant independent of i1, j1, i2, j2. The q-
Pochhammer symbol (q1+j2−i1+k; q)i1−k vanishes unless k ≥ i1 − j2 and its contribution 
is bounded in absolute value by 1. The remaining factors are

q
1
2 i1(i1−1+2j1)sj2−i1ui1(u/s; q)j1−i2q

k(q−i1 ; q)k(q−i2 ; q)k(qs/u; q)k(γq1−i2−j2+k; q)i1−k.

Rewrite

qi1j1(q−i2 ; q)k(γq1−i2−j2+k; q)i1−k =
k−1∏
l=0

(qj1 − q−i1+j2+l)
i1−k−1∏

l=0

(qj1 − γq−l), (4.11)

where we used the arrow conservation property, and

qi1(i1−1)/2+k(q−i1 ; q)k
i1−k−1∏

l=0

(qj1 − γq−l) = (−1)i1γi1−k(qi1−k+1; q)k(qj1/γ; q)i1−k.

(4.12)



34 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865
The factors (−1)i1(qi1−k+1; q)k are bounded in the absolute value. By substituting (4.11), 
(4.12) into (4.10), we see that it remains to address the term

sj2−i1ui1(u/s; q)j2−i1(qs/u; q)kγi1−k(qj1/γ; q)i1−k

k−1∏
l=0

(qj1 − qj2−i1+l). (4.13)

We consider two cases based on the sign of j2 − i1.

Case j2 ≥ i1. The factor 
∏k−1

l=0 (qj1 − qj2−i1+l) in (4.13) is bounded by a constant inde-
pendent of the vertex configuration. The remaining terms are

sj2−i1(u/s; q)j2−i1 · ui1(qs/u; q)k · γi1−k(qj1/γ; q)i1−k.

Distributing the factors s, u, and γ into the q-Pochhammer symbols, we can bound the 
above expression by const · δj2 , where j2 is the total number of terms in the product. 
Note that the estimate works uniformly for small s, u, γ, too.

Case i1 > j2. Rewriting the q-Pochhammer symbol with the negative index (cf. (1.3)) 
and using the fact that i1 − j2 ≤ k ≤ i1, we have

(4.13) = (−1)i1−j2uj2(qi1−j2+1s/u; q)k−i1+j2γ
i1−k(qj1/γ; q)i1−k q

(
i1−j2+1

2
)

×
k−1∏
l=0

(qj1 − qj2−i1+l).

The term (−1)i1−j2q(
i1−j2+1

2 )∏k−1
l=0 (qj1 − qj2−i1+l) is bounded. The contribution of the 

term

uj2(qi1−j2+1s/u; q)k−i1+j2γ
i1−k(qj1/γ; q)i1−k

is bounded by const · δj2 similarly to the previous case.

We see that (4.10) can be written as a sum of terms bounded by const · δj2 . Because 
the number of terms is

≤ min{i1, i2} + 1 − max{0, i1 − j2} ≤ min{i1, j2} + 1,

we get the desired bound. �
Lemma 4.6. Let

sup
n∈Z≥0

∣∣∣∣ qnu− s

1 − qnsu

∣∣∣∣ < δ < 1. (4.14)

Then
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|w(J)
u,s (0, j1; i2, j2)| ≤ C(i2) δj2 , (4.15)

where C(0) = 1 and C = supk{C(k)} < ∞.

Proof. This bound follows from (4.3): after setting i1 = 0, the q-hypergeometric series 
disappears, and we use the definition of δ to estimate the prefactor. �

For a Young diagram λ, let mi(λ) be the number of parts in λ which are equal to i.

Lemma 4.7. Let s �= 0, u, qJ be complex parameters such that

|s|, |u|, |qJu|,
∣∣∣∣ qiu− s

1 − qisu

∣∣∣∣ < δ, for all i, (4.16)

for some δ ∈ (0, 1). Then there exists C ≥ 1 such that for any two Young diagrams μ, λ
we have ∣∣∣F(J)

λ/μ(u)
∣∣∣ ≤ CM(λ,μ)

∏
i≥1

(mi(μ) + 1)δ|λ|−|μ|, (4.17)

where

M(λ, μ) = 1 + #{i : mi(μ) �= 0 or mi(λ) �= 0}. (4.18)

Proof. It suffices to assume that μ ⊆ λ (i.e., μi ≤ λi for all i), otherwise the skew 
function vanishes. We have

F
(J)
λ/μ(u) =

∑
j0,j1,···≥0

w(J)
u,s

( ∞
∞

j0

)∏
l≥1

w(J)
u,s (ml(μ), jl−1;ml(λ), jl), (4.19)

where the infinite sum has only one nonzero term due to arrow preservation. From (A.5)
we have for the leftmost vertex∣∣∣∣∣∣w(J)

u,s

( ∞
∞

j

)∣∣∣∣∣∣ ≤ Cδj . (4.20)

Lemmas 4.5 and 4.6 provide estimates for the remaining vertex weights: they are all 
bounded by Cδjl , except if both ml(μ) = ml(λ) = 0 when the bound is given by δjl . �
Lemma 4.8. Let 0 < δ < 1, C ≥ 1, 1 ≤ A < δ−1, and M(λ, μ) be as in Lemma 4.7. Then 
for any Young diagram μ we have∑

CM(ν,μ)δ|ν|−|μ|A�(ν)
∏

(mi(ν) + 1) ≤ C1A
�(μ)
1 , (4.21)
ν : μ⊆ν i≥1
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Fig. 9. The decomposition of the Young diagram ν as a free superposition of η (black dashed paths) and 
κ (blue solid paths) used in the proof of Lemma 4.8. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

where C1, A1 ≥ 1 are constants.

Proof. The sum over ν can be visualized as a sum over path configurations in a row of 
vertices as in Fig. 9. We distinguish the paths coming from the configuration μ (black 
dashed in Fig. 9) and when they originate at the leftmost vertex (blue solid in Fig. 9). 
Calling κ the Young diagram generated by the blue paths and η the Young diagram 
generated by the black paths we can write ν = κ ∪ η (this decomposition is not unique). 
The sum in the left-hand side of (4.21) is dominated by a sum where κ and η vary 
independently, and therefore we have

lhs (4.21) ≤
(∑

κ

CM(κ,∅)δ|κ|A�(κ)
∏
i≥1

(mi(κ) + 1)
)

×
( ∑

η : μ⊆η
�(η)=�(μ)

CM(η,μ)δ|η|−|μ|A�(μ)
∏
i≥1

(mi(η) + 1)
)
.

(4.22)

We estimate separately the two factors in (4.22), starting with the first one. Since �(κ) =∑
i mi(κ) and |κ| =

∑
i≥1 i mi(κ), the summation over κ can be rewritten as follows. 

Separate the term κ = ∅. In the remaining sum, first select κ1 ≥ 1 and its multiplicity 
r ≥ 1; then for each i = 1, . . . , κ1 − 1, select a multiplicity mi ≥ 0. Summing over all 
these possibilities, we have

C +
∑
κ1≥1

C
∑
r≥1

δrκ1C(r + 1)Ar
κ1−1∏
i=1

⎛⎝ ∑
mi≥0

C1mi>0(mi + 1)δimiAmi

⎞⎠ .

Simplifying the geometric summations and using the fact that Aδ < 1, we can reduce 
the above sum to

C + C
∑
κ1≥1

ACδκ1(2 −Aδκ1)
(1 −Aδκ1)2

κ1−1∏
i=1

(
1 − C

(
1 − 1

(1 −Aδi)2

))

For all i ≥ i0, where i0 depends on C, A, δ the i-th term in the product is less than δ−1

(because δ < 1 and the term goes to 1 as i → ∞). This implies that the above sum is 
convergent and thus is estimated from above by a constant.
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We now address the second factor in the right-hand side of (4.22). We can again 
bound the sum over η by a superposition of �(μ) noninteracting paths starting at μi. 
This implies that the sum over η in (4.22) is dominated by

�(μ)∏
i=1

∑
ki≥μi

CM(ki,μi)2Aδki−μi =
[
2C2A

(
1 + C

δ

1 − δ

)]�(μ)

.

This completes the proof. �
Proof of Proposition 4.4. We first expand F(J1,...Jn)

λ/μ (u1, . . . , un) in (4.8). Utilizing the 
branching rule and the triangle inequality, we can estimate

lhs (4.8) ≤
∑

λ1,...λn :
μ⊆λ1⊆···⊆λn

n∏
i=1

∣∣∣F(Ji)
λi/λi−1(ui)

∣∣∣ . (4.23)

In order to evaluate the previous nested summation we start from the most external 
term. For fixed λn−1 we have∑

λn : λn−1⊆λn

∣∣∣F(Jn)
λn/λn−1(un)

∣∣∣ ≤ ∏
i≥1

(mi(λn−1) + 1)
∑

λn : λn−1⊆λn

CM(λn,λn−1)δ
|λn|−|λn−1|
1 ,

where we used bound of Lemma 4.7 for some δ1 ∈ (0, 1). We can further estimate the 
sum over λn with the help of Lemma 4.8, and obtain the bound 

∏
i≥1(mi(λn−1) +

1)C1A
�(λn−1)
1 . Replacing δ1 by a smaller value 0 < δ2 < A−1

1 if needed and multiplying 
this bound by the next term F(Jn−1)

λn−1/λn−2(un−1) in (4.23), we can apply Lemma 4.7 and 
then sum over λn−1 with the help of Lemma 4.8. Iterating this procedure finitely many 
times, we get the desired statement with a sufficiently small δn > 0. �
5. Scaled geometric specializations

In this section we introduce a third specialization — the scaled geometric one — of the 
general fused functions from the previous section. This specialization allows to include 
into our analysis stochastic particle systems with more general initial configurations.

5.1. Definition of scaled geometric specializations

In Definitions 3.5, 3.10, 3.13 we provided examples of skew Cauchy structures where 
the positivity of the measure obtained by multiplying F and G can be established (under 
certain restrictions on parameters). We now introduce yet another specialization of (4.1), 
(4.2) which admits a meaningful probabilistic interpretation — it corresponds to two-
sided stationary initial conditions for stochastic particle systems on the line arising as 
marginals of our Yang-Baxter fields.
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Definition 5.1 ([18]). The scaled geometric specialization with parameter α of the spin 
Hall-Littlewood function is given by

F̃λ/μ(α) := lim
ε→0

Fλ/μ(−αε,−αεq, . . . ,−αεqJ−1)
∣∣∣
qJ=1/ε

. (5.1)

The dual analog of F̃ is given by the conjugation F̃∗
λ/μ(β) = c(λ)

c(μ) F̃λ/μ(β) as in (3.9). 
The skew functions in multiple variables F̃λ/μ(α1, . . . , αN ) are defined in a standard way 
using the branching rules as in (2.2), and similarly for F̃∗

λ/μ.

The functions F̃λ/μ, ̃F∗
λ/μ also admit a lattice construction with the vertex weights

w̃α,s := lim
ε→0

w
(J)
−αε,s

∣∣∣
qJ=1/ε

, w̃∗
β,s := lim

ε→0
w

∗,(I)
−βε,s

∣∣∣
qI=1/ε

.

The expressions for these weights are given in Appendix A.4. The functions F̃λ/μ, ̃F∗
λ/μ

vanish unless μ ⊆ λ (which means that μi ≤ λi for all i).
By adding the scaled geometric specialization to our symmetric functions, we can de-

fine mixed specializations Fλ/μ(u1, . . . , un; α̃1, . . . , α̃N ) and Fλ′/μ′(ξ1, . . . , ξn; α̃1, . . . , α̃N ). 
They are obtained through the branching rules as

Fλ/μ(u1, . . . , un; α̃1, . . . , α̃N ) =
∑
κ

F̃λ/κ(α1, . . . , αN ) Fκ/μ(u1, . . . , un),

Fλ′/μ′(ξ1, . . . , ξn; α̃1, . . . , α̃N ) =
∑
κ

F̃λ/κ(α1, . . . , αN )Fκ′/μ′(ξ1, . . . , ξn),

and similarly for the dual functions. By the Yang-Baxter equations (Appendix A.4), 
each of these functions is separately symmetric in the two sets of variables. We will 
also sometimes use the notation sHL(u), sqW(ξ), and sg(α) to denote the three types of 
specializations of the general symmetric functions (4.1)–(4.2).

5.2. Skew Cauchy structures with mixed specializations

The scaled geometric specializations allow to generalize the skew Cauchy identities 
considered in Section 3. Let us first define the corresponding parameter sets Adm for 
which the sums in the Cauchy identities converge.

Definition 5.2 (Admissible parameters). Let ρ be one of the specializations sHL(u),
sqW(ξ), sg(α) and ρ∗ be one of sHL(v), sqW(θ), sg(β). We define Adm(ρ, ρ∗) to be sym-
metric in ρ ↔ ρ∗ (with the corresponding renaming of the parameters), and:

1. If neither of ρ and ρ∗ is scaled geometric, then Adm(ρ, ρ∗) is given in Definitions 3.5, 
3.10 and 3.13 in the sHL/sHL, sHL/sqW, and sqW/sqW cases, respectively.
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2. In the remaining cases we have

Adm(sg(α); ρ∗) =

⎧⎪⎪⎨⎪⎪⎩
{(α, v) ∈ C2 : |s(s− v)| < |1 − sv|}, if ρ∗ = sHL(v);
{(α, θ) ∈ C2 : |αθ| < 1}, if ρ∗ = sqW(θ);
{(α, β) ∈ C2 : |αβ| < 1}, if ρ∗ = sg(β).

(5.2)

We call a specialization ρ compatible with sHL functions if ρ = sHL(u) or sg(α), and 
similarly ρ is compatible with sqW functions if ρ = sqW(ξ) or sg(α).

Theorem 5.3. Let the Fλ/μ be either Fλ/μ or Fλ′/μ′ and let ρ be a specialization compat-
ible with F. Analogously, let the function Gλ/μ be either F∗

λ/μ or F∗
λ′/μ′ , and let ρ∗ be 

compatible with G. Then for the parameters belonging to Adm(ρ, ρ∗) we have

∑
ν

Fν/μ(ρ)Gν/λ(ρ∗) = Π(ρ; ρ∗)
∑
κ

Fλ/κ(ρ)Gμ/κ(ρ∗). (5.3)

The right-hand side Π(ρ; ρ∗) = Π(ρ∗; ρ) in the sHL/sHL, sHL/sqW, and sqW/sqW cases 
was described above in Definitions 3.5, 3.10 and 3.13, respectively, and in the remaining 
cases it is given by (observe that (5.3) does not change if we switch ρ ↔ ρ∗):

Π(sg(α); ρ∗) =

⎧⎪⎪⎨⎪⎪⎩
1 + αv, if ρ∗ = sHL(v);
(−sα; q)∞/(αθ; q)∞, if ρ∗ = sqW(θ);
1/(αβ; q)∞, if ρ∗ = sg(β).

(5.4)

Proof. The skew Cauchy identity (5.3) is obtained by suitably specializing (4.6). The 
convergence conditions Adm(ρ, ρ∗) for the infinite sum in the left-hand side of (4.6) (the 
right-hand side is always finite) can be found in the existing literature [7], [18], [21]. 
Through the bijectivization which we discuss in Section 6 below, the convergence of the 
left-hand side of (4.6) is equivalent to the fact that the transition probabilities Ufwd do 
not assign any probability weight to Young diagrams ν with infinite first row ν1 or infinite 
first column ν′1. In Proposition 6.7 we revisit the origin of the conditions Adm(ρ, ρ∗) from 
this perspective. �

This theorem leads to the following additional skew Cauchy structures which we now 
describe in a unified way:

Definition 5.4. Let Fλ/μ be either Fλ/μ or Fλ′/μ′ , and specializations ρ1, ρ2, . . . be com-
patible with F. Also let Gλ/μ be either F∗

λ/μ or F∗
λ′/μ′ , and ρ∗1, ρ

∗
2, . . . be compatible with 

G. Then Fλ/μ(ρ1, . . . , ρk), Gλ/μ(ρ∗1, . . . , ρ∗k) form a skew Cauchy structure in the sense 
of Section 2.1 with the following identifications:
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(i) For any specialization ρ set

μ ≺ρ μ =

⎧⎪⎪⎨⎪⎪⎩
μ ≺ λ if ρ = sHL,
μ′ ≺ λ′ if ρ = sqW,

μ ⊆ λ if ρ = sg.
(5.5)

Then, μ ≺k λ means the existence of a sequence of Young diagrams

μ ≺ρ1 ν(1) ≺ρ2 · · · ≺ρk−1 ν(k−1) ≺ρk
λ,

and μ ≺̇k λ is defined in the same way with replacing each ρi by ρ∗i .
(ii) The skew Cauchy identity (5.3) holds for each choice of specializations, with the 

convergence conditions Adm(ρ; ρ∗) and the function Π(ρ; ρ∗) described above in this 
subsection.

(iii) The external parameters are q ∈ (0, 1) and s ∈ (−1, 0). The nonnegativity sets are 
PsHL = [0, 1], PsqW = [−s, −s−1], Psg = [0, −s−1], respectively, which follows from 
the nonnegativity of the corresponding vertex weights (about the scaled geometric 
weights, see Proposition A.9).

We employ this general mixed skew Cauchy structure in Section 7 below to connect 
symmetric functions with stochastic particle systems (more precisely, stochastic vertex 
models) having a variety of initial conditions.

6. Yang-Baxter fields through bijectivization

In this section we recall the notion of bijectivization of summation identities [24] and 
show how to use this procedure to build a random field of Young diagrams.8 Our main in-
gredient is the Yang-Baxter equation in its general form with four parameters u, v, qJ , qI . 
In Section 7 below we examine the most interesting degenerations corresponding to par-
ticular skew Cauchy structures from Section 3.

6.1. Bijectivization of summation identities

Consider two nonempty finite or countable sets A and B, and assume that to each 
one of their elements it is associated a nonzero weight9 w in such a way that∑

a∈A

w(a) =
∑
b∈B

w(b). (6.1)

8 As far as we know, dynamics coming from certain straightforward bijectivizations of the Yang-Baxter 
equation were used before by [35] in the context of percolation, and in [53] for simulations in our setting.
9 If for some a0 ∈ A we have w(a0) = 0, by replacing A with A \ {a0} we can continue to assume that all 

weights are nonzero, and analogously for B.
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Here and below in the countable case we assume that all infinite sums converge absolutely.

Definition 6.1 ([24]). A bijectivization of the summation identity (6.1) is a pair of families 
of transition weights (pfwd, pbwd) satisfying the properties:

1. The forward transition weights sum to one:∑
b∈B

pfwd(a, b) = 1 for all a ∈ A (6.2)

2. The backward transition weights sum to one:∑
a∈A

pbwd(b, a) = 1 for all b ∈ B (6.3)

3. The transition weights satisfy the reversibility condition

w(a)pfwd(a, b) = w(b)pbwd(b, a) for all a ∈ A, b ∈ B. (6.4)

If w(a), w(b) > 0 for all a ∈ A, b ∈ B, and the transition weights pfwd, pbwd are 
nonnegative, the bijectivization is called stochastic.

On one hand, bijectivizations may be viewed as refinements of the summation identity 
(6.1) since (6.2)–(6.4) imply∑

a∈A

w(a) =
∑

a∈A,b∈B

w(a)pfwd(a, b) =
∑

a∈A,b∈B

w(b)pbwd(b, a) =
∑
b∈B

w(b).

On the other hand, stochastic bijectivizations exactly correspond to couplings be-
tween the probability distributions PA(a) = w(a) 

(∑
a′∈A w(a′)

)−1 and PB(b) =
w(b) 

(∑
b′∈B w(b′)

)−1. Recall that a coupling is a probability distribution P (a, b) on 
A × B whose marginals on A and B are PA(a) and PB(b), respectively. The correspon-
dence is given by

P (a, b) = w(a)pfwd(a, b)∑
a′∈A w(a′) = w(b)pbwd(b, a)∑

b′∈B w(b′) ,

where the second equality follows from (6.4) and (6.1).

Remark 6.2. Forward and backward transition probabilities of a random field of Young 
diagrams (Definition 2.13) are a particular case of the above Definition 6.1 as they corre-
spond to bijectivizations of the identity (2.3). For the skew Cauchy structures described 
in Section 3, however, Cauchy identities follow from the more elementary Yang-Baxter 
equations, and we use the latter to construct bijectivizations as building blocks for tran-
sition probabilities of random fields of Young diagrams.
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When both |A| > 1 and |B| > 1, one can readily see that a bijectivization is not 
unique.

Example 6.3. Assume that the set A, in (6.1), consists of the singleton {a}. Then the 
bijectivization of the identity

w(a) =
∑
b∈B

w(b),

is unique and is given by

pfwd(a, b) = w(b)
w(a) , pbwd(b, a) = 1. (6.5)

Moreover, in case all weights are positive, (6.5) constitutes a stochastic bijectivization.

Example 6.3, despite its simplicity, constitutes the only explicit stochastic bijectiviza-
tion we will make use of throughout the rest of the paper. In any other case we only 
need the existence of a stochastic bijectivization:

Proposition 6.4. Assume that in (6.1) we have w(a), w(b) ≥ 0 for all a ∈ A and b ∈ B, 
and, moreover, the sums in both sides of (6.1) are positive. Then a stochastic bijectiviza-
tion (pfwd, pbwd) exists.

Recall that if some weights are zero, we exclude the corresponding elements from A
and B.

Proof of Proposition 6.4. As an example of a stochastic bijectivization we can take the 
one corresponding to the coupling which is the product measure, P = PA⊗PB . In other 
words, we can take pfwd(a, b) to be independent of a, and similarly for pbwd(b, a). Then 
(6.4) implies

pfwd(a, b) = w(b)∑
b′∈B w(b′) , pbwd(b, a) = w(a)∑

a′∈A w(a′) ,

and so a stochastic bijectivization exists. �
6.2. Bijectivization of the Yang-Baxter equation

Let us now consider bijectivizations of the general fused Yang-Baxter equation (re-
produced from Proposition A.3 in Appendix A)
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Fig. 10. Positive specializations of the Yang-Baxter equation (6.6) we consider are obtained by combining a 
specialization from left panel with a specialization from the right panel. The other parameters are q ∈ (0, 1)
and s ∈ (−1, 0), but when both specializations are sqW, we impose the additional restriction s ≥ −√

q.

∑
k1,k2,k3

R(I,J)
uv (i2, i1; k2, k1)w∗,(I)

v,s (i3, k1; k3, j1)w(J)
u,s (k3, k2; j3, j2)

=
∑

k1,k2,k3

w∗,(I)
v,s (k3, i1; j3, k1)w(J)

u,s (i3, i2; k3, k2)R(I,J)
uv (k2, k1; j2, j1),

(6.6)

where the weights w(J), w∗,(I) and R(I,J) are defined in (A.3), (A.6), (A.7), respectively.
Equation (6.6) implies all the other Yang-Baxter equations we use, by properly special-

izing the parameters u, qJ , v, qI . For certain degenerations of weights w(J)
u,s , w(I)

v,s, R(I,J)
uv we 

can establish their nonnegativity, and hence construct stochastic bijectivizations of (6.6)
using Proposition 6.4. The list of the positive specializations we employ is summarized in 
Fig. 10, while the proofs of their nonnegativity are given in Appendix A.5. For unified no-
tation here and in Sections 6.3 and 6.4 below we use the vertex weights R(I,J)

uv , w(J)
u,s , w

∗,(I)
v,s

assuming that they are nonnegative (under one of the parameter choices in Fig. 10).
Graphically, we can interpret each summand in the left and right hand sides of (6.6)

as a weight we attribute to arrangements of paths across configurations of three vertices 
with fixed occupation numbers i1, i2, i3, j1, j2, j3 at external edges. The global weight 
of 3-vertex configurations depends on R(I,J)

uv , w(J)
u,s , w

∗,(I)
v,s , and is assigned according to 

Fig. 11. In the same figure, pfwd and pbwd denote forward and backward transition 
weights of a bijectivization of (6.6).

For simplicity we do not include the external occupation numbers i1, i2, i3, j1, j2, j3 ∈
Z≥0 in the notation pfwd and pbwd. Let us extend the definition of pfwd, pbwd by setting

pfwd

(
i2

i1

i3

j1

j2

j3

k1

k2

k3 ,
i′1

i′2
i′3

j′
1

j′
2

j′
3

k′
1

k′
2

k′
3

)
= 0, (6.7)

whenever (i1, i2, i3, j1, j2, j3) �= (i′1, i′2, i′3, j′1, j′2, j′3), and analogously for pbwd. Thus, we 
will view pfwd as the probability of a Markov transition of pushing the cross through a 
column of two vertices in the right direction, and similarly pbwd corresponds to pushing 
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Fig. 11. A graphical representation of the Yang-Baxter Equation (6.6) and its bijectivization.

Fig. 12. Graphical representation of a transition between two-row path configurations.

the cross to the left. These transitions do not change the external occupation numbers 
(i1, i2, i3, j1, j2, j3), but pfwd changes fixed occupation numbers (k1, k2, k3) into random
(k′1, k′2, k′3), and similarly pbwd maps (k′1, k′2, k′3) into random (k1, k2, k3).

6.3. Dragging a cross through multiple columns. Yang-Baxter fields

We now want to bring our discussion a step forward and push the cross through mul-
tiple columns of vertices, from the leftmost one to the right (and vice versa), sequentially 
utilizing the transition probabilities pfwd and pbwd associated with the vertex weights 
w

(J)
u,s , w∗,(I)

v,s , and R(I,J)
uv which are nonnegative in one of the cases given in Fig. 10.

We consider the lattice composed of two infinite rows, that is, the vertices are indexed 
by the lattice Z≥0 × {1, 2}. The rows carry vertex weights w(J)

u,s and w∗,(I)
v,s (see Fig. 12

for an illustration). As boundary conditions for the paths flowing through the lattice we 
take:

• infinitely many paths flow in the vertical direction in the 0-th column;
• at the 0-th column no paths enter from the left into the vertex carrying the 

weight w∗,(I)
v,s , while J paths enter from the left into the vertex in the 0-th 

column carrying the weight w(J)
u,s ;

• paths do not stay horizontal forever, that is, at the far right the path config-
uration must be empty.

(6.8)

Remark 6.5. Under the sqW or scaled geometric specializations treating qJ as an inde-
pendent variable, the term “J paths” in (6.8) should be understood formally and all the 
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Fig. 13. As the cross moves to the right, it randomly updates values of vertical occupation numbers kh to 
nh (in Ufwd). Horizontal occupation numbers are updated accordingly.

vertex weights should undergo these specializations together (see Remark 7.5 below for 
a detailed explanation of this procedure). In the rest of the present section we continue 
to employ the unified notation for all the cases.

The numbers of vertical arrows in the path configurations in Fig. 12 are encoded 
by triples of Young diagrams λ, κ, μ (left) and λ, ν, μ (right), as the horizontal edges’ 
occupation numbers are then uniquely determined by the arrow preservation. In detail, 
we have

λ = 1l12l2 . . . , μ = 1m12m2 . . . , κ = 1k12k2 , . . . , ν = 1n12n2 . . . . (6.9)

Let us record the corresponding horizontal occupation numbers by sequences {ih, i′h}h≥0
(for λ, κ, μ) and {jh, j′h}h≥0 (for λ, ν, μ).

Definition 6.6 (Markov operators on Young diagrams). With the above notation, we 
define the Markov operators Ufwd and Ubwd as follows. For Ufwd, attach the cross vertex 

J

J
to the leftmost column in the configuration encoded by (λ, κ, μ), and drag the 

cross all the way to the right using the transition probabilities pfwd. An intermediate 
step is displayed in Fig. 13. The definition of Ubwd involves dragging the cross to the left 
using the transition probabilities pbwd, and starting from the empty cross vertex far to 
the right. In detail,

Ufwd(κ → ν | λ, μ) =
∞∏
h=0

pfwd

(
jh−1

j′
h−1

mh

ih

i′h

lh

ih−1

i′h−1

kh ,
j′
h−1

jh−1

mh

ih

i′h

lh

jh

j′
h

nh

)
; (6.10)

Ubwd(ν → κ | λ, μ) =
∞∏
h=0

pbwd

(
j′
h−1

jh−1

mh

ih

i′h

lh

jh

j′
h

kh ,
jh−1

j′
h−1

mh

ih

i′h

lh

ih−1

i′h−1

nh

)
, (6.11)

where j−1 = J , j′−1 = 0, and ih = i′h = 0 for all sufficiently large h. All terms pfwd and 
pbwd in the infinite products (6.10), (6.11) belong to [0, 1].
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Because the definition of Ufwd and Ubwd involves Yang-Baxter equations with infinitely 
many paths, we have to make sure that the corresponding infinite sums converge. Recall 
the sets Adm(ρ, ρ∗) from Definition 5.2 and the restrictions on parameters in Fig. 10
leading to positive specializations.

Proposition 6.7. For each of the 9 pairs of specializations (ρ, ρ∗) from Fig. 10 (when ρ and 
ρ∗ correspond to w(J)

u,s and w∗,(I)
v,s , respectively) when the parameters belong to Adm(ρ, ρ∗), 

one can choose bijectivizations pfwd and pbwd such that the Markov operators Ufwd and 
Ubwd are well-defined by the infinite products (6.10) and (6.11). That is,∑

ν

Ufwd(κ → ν | λ, μ) = 1,
∑
κ

Ubwd(ν → κ | λ, μ) = 1,

where the sums are taken over all path configurations as in Fig. 12 (with κ and ν encoding 
the left and right pictures, respectively) with the boundary conditions (6.8).

This implies in particular that the Markov operator Ufwd does not produce path 
configurations with infinitely long horizontal paths on the right or infinitely many vertical 
paths in any column except the leftmost one.

Proof of Proposition 6.7. Step 1. The backward transition probabilities Ubwd(ν → κ |
λ, μ) sum to one over κ because for fixed λ, ν, μ the number of possible configurations κ
is finite in all the cases considered in Sections 3.5, 3.7 and 3.8. Therefore, only finitely 
many factors in the products (6.11) differ from 1. As the individual pieces pbwd sum to 
one over all possible outcomes, we see that the backward operator Ubwd is well-defined.

Step 2. We will now show that there exists a bijectivization pfwd such that for all j ≥ 1
we have

pfwd

(
j

j

,
j

j
j

j
)

< 1. (6.12)

This condition ensures that all probability mass is concentrated on triples (λ, ν, μ) with 
boundary conditions (6.8), and no positive probability is assigned under Ufwd to config-
urations with infinitely long horizontal paths. Indeed, if there are j paths escaping to 
the right past max(μ1, λ1), then due to (6.12) after a random geometric number of cross 
draggings to the right there will remain j− 1 paths, and so on until the configuration of 
paths far to the right becomes empty.

The Yang-Baxter equation with the boundary conditions corresponding to (6.12) has 
the form

j∑
a=0

weight
(

j

j
a

a

a

)
=

j∑
b=0

weight
(

j

j
b

j − b

j − b
)
. (6.13)



A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865 47
It is possible to choose a bijectivization satisfying (6.12) if at least one term in the right-
hand side of (6.13) corresponding to some b > 0 does not vanish. These terms are given 
by

weight
(

j

j
b

j − b

j − b
)

= w(J)
u,s (0, j; b, j − b)w∗,(I)

v,s (b, j; 0, j − b)R(I,J)
uv (j − b, j − b; 0, 0).

We now consider the cases of Fig. 10 separately. In the cases involving the sHL special-
ization, the only allowed positive j is j = 1, and the positivity of the term corresponding 
to b = 1 can be checked by writing down all possible cases:

sHL/sHL : (1 − q)(1 − s2)
(1 − su)(1 − sv) ,

sHL/sqW : 1 − q

1 − su
, sqW/sHL : 1 − q

1 − sv
,

sHL/sg : (1 − q)(1 − s2)
1 − su

, sg/sHL : (1 − q)(1 − s2)
1 − sv

.

All these expressions are positive under the positivity conditions from Fig. 10.
Next, in the sqW/sqW, case, the number of paths j ≥ 1 can be arbitrary, but the 

product Wx,s(0, j; b, j − b)W ∗
y,s(b, j; 0, j − b) vanishes unless b = j, and for b = j it is 

positive. The same is true for the sqW/sg and sg/sqW cases. Finally, in the sg/sg case all 
factors of the form w̃α,s(0, j; b, j− b)w̃∗

β,s(b, j; 0, j− b)R(sg,sg)
α,β (j− b, j− b; 0, 0) are strictly 

positive.

Step 3. Now let us check that after dragging the cross through the leftmost column 
containing infinitely many vertical paths, the probability to get infinitely many horizontal 
paths is zero. Clearly, infinitely many horizontal paths might occur only if neither of the 
specializations ρ, ρ∗ is sHL. Overall, we need to show that

∑
j0,j′0

pfwd

(
J

∞
i0

i′0

∞
J

∞ ,
J

∞
i0

i′0

∞

j0

j′
0

∞

)
= 1. (6.14)

Considering the corresponding Yang-Baxter equation, we see that its left-hand side con-
verges thanks to Proposition A.5, because the weights of the other two vertices do 
not depend on the input from the left (cf. (3.14), (A.16)). The right-hand side of this 
Yang-Baxter equation contains terms of the form w∗,(I)

v,s (∞, 0; ∞, j′0) w
(J)
u,s (∞, J ; ∞, j0) ×

R
(I,J)
uv (j0, j′0; i′0, i0). In the sqW/sqW, sqW/sg, and sg/sg cases, the cross vertex weights 

(A.14), (A.19), and (A.20) are bounded for fixed i0, i′0. The contribution from the other 
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Fig. 14. Yang-Baxter field and forward and backward Markov transition operators Ufwd and Ubwd.

two vertices regulating the convergence of the right-hand side of the Yang-Baxter equa-
tion amounts to (ξθ)j0 , (ξβ)j0 , or (αβ)j0 , respectively. The conditions Adm(ρ, ρ∗) in 
these cases precisely mean that the products of spectral parameters are less than one, so 
the series converge. One then can choose a bijectivization such that (6.14) holds. This 
completes the proof. �

Definition 6.6 and Proposition 6.7 thus produce “natural” Markov operators10 Ufwd

and Ubwd associated with each of our skew Cauchy structures. Denote by Fλ/κ(ρ) and 
Gμ/κ(ρ∗) the partition functions of the one-row configurations in the top and the bottom 
rows, respectively, in Fig. 12, left. By their very construction through local bijectiviza-
tions, these Markov operators satisfy the reversibility condition for all λ, μ, κ, ν:

Ufwd(κ → ν | λ, μ) · Π(ρ; ρ∗)Fλ/κ(ρ)Gμ/κ(ρ∗) = Ubwd(ν → κ | λ, μ) · Fν/μ(ρ)Gν/λ(ρ∗).

Here Π(ρ; ρ∗) is defined in Theorem 5.3, which can be viewed as the properly special-

ized term 
(uvqI ; q)∞(uvqJ ; q)∞
(uv; q)∞(uvqI+J ; q)∞

from the right-hand side of the Cauchy equation (5.3). 

Moreover, this quantity is also identified with the weight of the cross vertex (J, 0; J, 0)
attached to the configuration in Fig. 12, left, before dragging the cross to the right (see 
Proposition A.5 for the last equality).

Thus, we have constructed Yang-Baxter random fields of Young diagrams, which are 
illustrated in Fig. 14. Before discussing concrete details in each of the different cases in 
Section 7 below, in the next Section 6.4 we look at scalar marginals of our random fields.

6.4. Marginals

We now apply the discussion of Section 2.5 to the Yang-Baxter fields constructed 
above. Due to the sequential left-to-right update rule in the definition of Ufwd, there is 
a number of marginals h to which our fields λ are adapted to.

10 These operators are not determined uniquely (except in their action in the 0-th column, cf. Section 6.4
below).
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Fig. 15. Evolution of the lengths of Young diagrams under U[0]. Moving around the vertex along dotted lines 
changes the length of a Young diagram by the occupation number of the edge we cross, cf. (6.16).

Fix h ≥ 2. For a Young diagram η = 1n12n2 . . . introduce the decomposition

η = (η[<h], η[≥h]), η[<h] = 1n1 . . . (h−1)nh−1 , η[≥h] = hnh(h+1)nh+1 . . . , (6.15)

where η[<h] and η[≥h] are two new Young diagrams.

Proposition 6.8. Let h be either of the following functions on the set of Young diagrams:

• h(η) = �(η);
• h(η) =

(
η[<h], �(η[≥h])

)
for some h ≥ 2.

Then each of the Yang-Baxter fields λ constructed in Section 6.3 is adapted to h in the 
sense of Section 2.5.

Proof. Let first h > 1. From the definition of Ufwd (6.10) we see that the random 
moves of the first h columns of vertices are independent of those taking place in columns 
to their right. Therefore, summing Ufwd(κ → ν | λ, μ) over ν with fixed ν[<h] and 
�(ν), we see that the result is independent of κ[≥h], ν[≥h], λ[≥h], μ[≥h]. The quantities 
�(κ[≥h]), �(ν[≥h]), �(λ[≥h]), �(μ[≥h]) encode the numbers of paths flowing through the hor-
izontal edges between columns h and h +1 (recall that λ and μ are fixed throughout the 
random update). This proves the statement for h(η) =

(
η[<h], �(η[≥h])

)
.

When h = 0, that is, when we consider the marginal move at the leftmost column, we 
only record the number of arrows entering the lattice (evolving in a marginally Markovian 
manner), which are simply the lengths of κ, ν, λ, μ. This establishes the remaining case 
h(η) = �(η). �

Let us denote the transition probabilities of the marginal processes afforded by Propo-
sition 6.8 by U[0] and U[<h], respectively.

We will mostly be interested in the simplest case U[0]. One readily sees that the action 
of the Markov operator U[0] is encoded as the evolution of the horizontal occupation 
numbers {i0, i′0} → {j0, j′0}, where

i0 = �(μ) − �(κ), i′0 = �(λ) − �(κ); j0 = �(ν) − �(μ), j′0 = �(ν) − �(λ) (6.16)
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(see Figs. 12 and 15 for an illustration). Therefore, let us use the notation U[0](i0, i′0; j0, j′0)
for these transition probabilities. We have

U[0](i0, i′0; j0, j′0) = pfwd

(
J

∞
i0

i′0

∞
J

∞ ,
J

∞
i0

i′0

∞

j0

j′
0

∞

)
.

This probability is determined uniquely because the right-hand side of the Yang-Baxter 
equation contains a single summand corresponding to the state (J, 0; J, 0) of the cross 
vertex (this is enforced by our arrow preservation conventions). Thus, by Example 6.3, 
this probability can be written as a ratio of weights of 3-vertex configurations as follows:

U[0](i0, i′0; j′0, j0) = w
∗,(I)
v,s (∞, 0;∞, j′0)w

(J)
u,s (∞, J ;∞, j0)R(I,J)

uv (j0, j′0; i′0, i0)
R

(I,J)
uv (J, 0; J, 0)w∗,(I)

v,s (∞, 0;∞, i0)w(J)
u,s (∞, J ;∞, i′0)

. (6.17)

This expression vanishes unless i0 + j0 = i′0 + j′0. The quantity R(I,J)
uv (J, 0; J, 0) in the 

denominator has an explicit form (A.10).
Formula (6.17) also appeared in the recent work [2] under the name of “stochasti-

cization” of the solution of a Yang-Baxter equation. In this paper we explicitly link 
stochasticizations to known stochastic vertex models (including the stochastic six vertex 
model [36], [12], the higher spin stochastic six vertex model [7], [29], [18], and a push-
ing system introduced recently in [27]), and show the existence of the corresponding full 
Yang-Baxter fields. The latter further connects observables of stochastic vertex models to 
probability distributions based on spin Hall-Littlewood and spin q-Whittaker functions.

The other marginals U[<h], h ≥ 2, lead to multilayer versions of stochastic vertex 
models. A multilayer version of the stochastic six vertex model was introduced recently 
in [22] (and another such system was constructed in [24] using Yang-Baxter fields). 
Multilayer systems are much less explicit and are not determined uniquely due to the 
non-uniqueness of Ufwd. They deserve their own study, and in the present paper we 
mostly focus on U[0].

7. Three Yang-Baxter fields

7.1. Preliminaries

In this section we present detailed descriptions of the Yang-Baxter fields associated 
with the skew Cauchy structures defined in Section 3 (with the step or scaled geometric 
boundary conditions). We also discuss the scalar marginals h(λ(x,y)) = �(λ(x,y)) of these 
Yang-Baxter fields. Let us first make two general remarks.

Remark 7.1. The definitions of the Yang-Baxter fields in this section involve non-unique 
local bijectivizations, and so these fields are not defined in a unique way. However, all 
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our statements hold for any such choice of a bijectivization. Moreover, the distributions 
of the scalar marginals �(λ(x,y)) do not depend on the choice of a bijectivization. Thus, 
for shortness we will use the term “the Yang-Baxter field” to refer to any random field 
of Young diagrams coming from bijectivizations of the Yang-Baxter equations.

Remark 7.2 (On stationary boundary conditions). The (two-sided) scaled geometric 
boundary conditions for our Yang-Baxter fields match (in scalar marginals viewed as 
stochastic particle systems on the line) to initial conditions composed of two half-
stationary pieces (of possibly different densities) glued together at the origin. For ex-
ample, for the stochastic six vertex model (as well as for ASEP and TASEP) on the line, 
the stationary initial data is the product Bernoulli one, and so the two-sided station-
ary initial condition is composed of two product Bernoulli configurations of arbitrary 
densities on the half-lines. When the densities match and the systems’ parameters are 
homogeneous (i.e., independent of x, y), this initial data is indeed stationary under the 
stochastic evolution on the line.

However, one can check that for the full Yang-Baxter fields, the scaled geometric 
boundary conditions do not contain a subfamily of boundary conditions remaining sta-
tionary under the evolution of the full Young diagrams. Therefore, we distinguish the 
terms “scaled geometric” and “two-sided stationary” boundary conditions — the former 
refers to full Yang-Baxter fields, and the latter — to stochastic particle systems arising 
as one-dimensional marginals.

7.2. The sHL/sHL Yang-Baxter field and the stochastic six vertex model

We first discuss the simplest case, the sHL/sHL skew Cauchy structure, and relate 
the corresponding field to the stochastic six vertex model of [36], [12]. The case of step 
boundary conditions essentially parallels [24] (without the dynamic modification of the 
six vertex model because here we work with the stable sHL functions instead of the 
non-stable ones). Formulas for observables and asymptotics in the six vertex model 
with two-sided stationary boundary conditions were studied in [1], but its connection to 
symmetric functions is new.

7.2.1. Step boundary conditions
The sHL/sHL case is obtained by setting I = J = 1 in Section 6, and the field 

depends on the parameters q ∈ (0, 1), s ∈ (−1, 0), and uy, vx ∈ [0, 1), x, y ∈ Z≥1. The 
Yang-Baxter equation corresponding to this skew Cauchy structure is now (A.2). The 
reversibility property of backward and forward operators takes the following form:

Proposition 7.3. For any four Young diagrams μ, κ, λ, ν we have

1 − quv Ufwd
sHL(u),sHL(v)(κ → ν | λ, μ) Fλ/κ(u) F∗

μ/κ(v)
1 − uv
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= Ubwd
sHL(u),sHL(v)(ν → κ | λ, μ) F∗

ν/λ(v) Fν/μ(u). (7.1)

Summing (7.1) over both κ and ν, we obtain the skew Cauchy identity for the stable sHL 
functions (Theorem 3.4).

Proof. The product Fλ/κ(u)F∗
μ/κ(v) is the weight of a configuration μ � κ ≺ λ in 

a vertex model obtained attaching a wu,s-weighted row of vertices on top of a w∗
v,s-

weighted row of vertices. The leftmost column is occupied by infinitely many paths. The 

factor (1 − quv)/(1 − uv) is the Ruv weight of a cross attached at the left of the 

lattice. Now we employ the definition of Ufwd
sHL(u),sHL(v) and drag the cross all the way to 

the right, replacing κ by the random ν. This procedure, along with the local reversibility 
condition of the bijectivization leaves us with the right-hand side of the desired identity 
(7.1). �

The step boundary conditions are λ(0,y) = λ(x,0) = 0∞ = ∅, and using the for-
ward transition operators Ufwd

sHL(uy),sHL(vx) as described in Section 2.4, we generate the 

sHL/sHL Yang-Baxter field λ = {λ(x,y) : x, y ∈ Z≥0}. Its distributions are related to 
the sHL functions:

Proposition 7.4. The single-point distributions in the sHL/sHL Yang-Baxter field with 
the step boundary conditions have the form

Prob
(
λ(x,y) = ν

)
=

∏
1≤i≤x
1≤j≤y

1 − ujvi
1 − qujvi

Fν(u1, . . . , uy) F∗
ν(v1, . . . , vx),

where ν is an arbitrary fixed Young diagram. Moreover, joint distributions in this field 
along down-right paths are expressed through products of skew sHL functions as in Propo-
sition 2.9.

7.2.2. Scaled geometric boundary conditions
Fix additional parameters α, β ∈ [0, −s−1], and consider specializations ρv

i , ρh
i , i =

−1, 0, 1, . . .:

ρv
−1 = sg(α), ρh

−1 = sg(β), ρv
y = sHL(uy), ρh

x = sHL(vx), x, y ≥ 0.

Let η be the Yang-Baxter field on the lattice Z≥−1 × Z≥−1 generated by the Markov 
transition operators Ufwd

ρv
y,ρ

h
x
.

Remark 7.5. In defining forward transition operators for scaled geometric (or later spin 
q-Whittaker) specializations by dragging the cross vertex (J, 0; J, 0) to the right (as 
explained in Section 6.3) we encounter the issue that the number of paths J should be 
specialized via qJ = 1/ε, ε → 0, and so the vertex (J, 0; J, 0) no longer makes direct 
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Fig. 16. The vertex weights Luv(i1, j1; i2, j2) in the stochastic six vertex model. This parametrization of the 
vertex weights follows, e.g., [22].

sense. However, by Proposition A.5 we explicitly know the weight of (J, 0; J, 0), which is 
equal to

R(I,J)
uv (J, 0; J, 0) = (uvqI ; q)∞(uvqJ ; q)∞

(uv; q)∞(uvqI+J ; q)∞
.

This expression can readily be taken to the scaled geometric or the spin q-Whittaker 
specialization (cf. Fig. 10 for explicit forms of the specializations). Therefore, in choosing 
the bijectivization of the Yang-Baxter equation in the leftmost column we can still appeal 
to Example 6.3, and conclude that the bijectivization is unique.

Restricting the field η to the nonnegative quadrant, denote λ = η|
Z≥0×Z≥0

. We call 
λ the sHL/sHL Yang-Baxter field with (α, β)-scaled geometric boundary conditions.

Proposition 7.6. The single-point distributions in the sHL/sHL Yang-Baxter field with 
the (α, β)-scaled geometric boundary conditions are given by

Prob{λ(x,y) = ν}

= (αβ; q)∞
y∏

j=1
(1 + ujβ)

x∏
i=1

(1 + viα)

∏
1≤i≤x
1≤j≤y

1 − ujvi
1 − qujvi

Fν(u1, . . . , uy; α̃)F∗
ν(v1, . . . , vx; β̃).

Joint distributions in this field along down-right paths are expressed through products of 
skew functions similarly to Proposition 2.9.

7.2.3. Stochastic six vertex model
We now turn to the scalar Markov marginal h(λ(x,y)) = �(λ(x,y)) of the sHL/sHL 

Yang-Baxter field, and match it to the stochastic six vertex model.

Definition 7.7 ([36], [12]). Fix q ∈ (0, 1) and uy, vx such that 0 < uyvx < 1 for all 
x, y ∈ Z≥1. Consider the stochastic vertex weights Luyvx given in Fig. 16. Let us also 
fix the boundary conditions Bh = {bh1 , bh2 , . . . } and Bv = {bv1, bv2, . . . }, where bhi , b

v
j ∈

{0, 1}. The (inhomogeneous) stochastic six vertex model with these boundary conditions 
is the (unique) probability measure on the set of up-right directed paths on the lattice 
Z≥0 × Z≥0 (with at most one path per vertical or horizontal edge) satisfying:
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Fig. 17. Left: the scalar marginal �(λ(x,y)) of the sHL/sHL Yang-Baxter field. Right: the corresponding 
realization of the stochastic six vertex model with the step boundary conditions. The height function h6V

is indicated, too.

• Each vertex (0, y) at the vertical boundary {(0, y′) : y′ ≥ 1} emanates a path initially 
pointing to the right if bvy = 1;

• Each vertex (x, 0) at the horizontal boundary {(x′, 0) : x′ ≥ 1} emanates a path 
initially pointing upward if bhx = 1;

• For each (x, y), conditioned to the path configuration at all vertices (x′, y′) such that 
x′+y′ < x +y, the probability of a vertex configuration (i1, j1; i2, j2) at (x, y) is given 
by Luyvx(i1, j1; i2, j2). Moreover, the random choices made at diagonally adjacent 
vertices . . . , (x − 1, y + 1), (x, y), (x + 1, y − 1), . . . are independent under the same 
condition.

In particular, the step boundary conditions correspond to

bhx = 0 and bvy = 1, for all x, y ≥ 1. (7.2)

Path configurations in the six vertex model with the step boundary conditions are 
conveniently encoded by a height function. Namely, let h6V(x, y) denote the number 
of paths which pass weakly to the right of the vertex (x, y). See Fig. 17, right, for 
an illustration. The next theorem is a version of [24, Proposition 7.3] adapted to our 
boundary conditions in the Yang-Baxter field.

Let λ = {λ(x,y)} be the sHL/sHL Yang-Baxter field with the step boundary condi-
tions, and h6V(x, y) be the six vertex height function with the step boundary conditions 
(7.2).

Theorem 7.8. The two random fields {y − �(λ(x,y)) : x, y ∈ Z≥0} and {h6V(x + 1, y) :
x, y ∈ Z≥0} are equal in distribution.

Proof. Recall that the Markov evolution of this scalar marginal �(λ(x,y)) corresponds to 
the quantities U[0](i0, i′0; j′0, j0) (6.17) with I = J = 1 and i0, i′0, j0, j

′
0 ∈ {0, 1} which can 

be readily written down using (3.1), (3.8), and Fig. 23. Comparing these quantities to 
the stochastic six vertex weights Luv in Fig. 16, while taking into account the relation 
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between i0, i′0, j0, j
′
0 and �(λ(x,y)) (6.16), and all the transformations in the statement, we 

see that U[0]
sHL(u),sHL(v)(i0, 1 − i′0; j′0, 1 − j0) = Luv(i0, i′0; j′0, j0) for all i0, i′0, j0, j′0 ∈ {0, 1}.

Let us consider one case of (i0, i′0; j0, j′0) = (0, 1; 1, 0) for illustration. From Fig. 16 we 
have Luv(0, 1; 1, 0) = uv(1−q)

1−quv . Then

U[0]
sHL(u),sHL(v)(0, 0; 1, 1) =

w∗
v,s(∞, 0;∞, 1)wu,s(∞, 1;∞, 1)R(1,1)

uv (1, 1; 0, 0)
R

(1,1)
uv (1, 0; 1, 0)w∗

v,s(∞, 0;∞, 0)wu,s(∞, 1;∞, 0)

=
v · u · 1−q

1−uv
1−quv
1−uv · 1 · 1

= uv(1 − q)
1 − quv

,

as desired. All other cases are analogous. �
Remark 7.9. While Theorem 7.8 essentially follows from [24], let us emphasize what is 
different here. Theorem 7.8 connects the ordinary stochastic six vertex model with stable 
spin Hall-Littlewood polynomials. On the other hand, previously the same stochastic 
six vertex model was matched to Hall-Littlewood processes and measures [8], [22], and 
the non-stable spin Hall-Littlewood polynomials gave rise to a dynamic version of the 
stochastic six vertex model [24]. Therefore, formally Theorem 7.8 is a new statement.

It might seem surprising that the stochastic six vertex model h6V is independent of s, 
while the field λ(x,y) depends on s. A posteriori this might be explained by the fact that 
the s-dependent stable spin Hall-Littlewood functions are eigenfunctions of the same first 
q = 0 Macdonald difference operator as their s = 0 versions, the classical Hall-Littlewood 
polynomials. About difference operators see Section 8 below.

Let us now turn to the marginal of the sHL/sHL field with the two-sided scaled 
geometric boundary conditions described in Section 7.2.2. First, consider the behavior 
of �(λ(x,y)) at the boundary:

Proposition 7.10. Consider the transition probabilities U[0] given in (6.17). Then we have

U[0]
sg(α),sHL(v)(0, i

′
0; j′0, j0) = 1i′0+j′0=j0

(vα)j′0
1 + vα

, (7.3)

U[0]
sHL(u),sg(β)(i0, 0; j′0, j0) = 1i0+j0=j′0

(uβ)j0
1 + uβ

, (7.4)

U[0]
sg(α),sg(β)(0, 0; j′0, j0) = 1j′0=j0

(αβ)j0
(q; q)j0

(αβ; q)∞. (7.5)

The cases (7.3), (7.4) correspond to the bottom and the left boundaries, respectively, 
and (7.5) arises in the bottom left corner. Observe that (7.5) defines the q-Poisson dis-
tribution (cf. Section 1.5).
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Proof of Proposition 7.10. This follows by combining (6.17) with the formulas for the 
boundary weights (3.1), (A.16) and the cross vertex weights (Fig. 26 and (A.20)). To 
specialize the factor corresponding to R(I,J)

u,v (J, 0; J, 0) one should use Remark 7.5. �
Now take the stochastic six vertex model with independent Bernoulli boundary con-

ditions (we call these the two-sided stationary or (α, β)-stationary boundary conditions):

bhx ∼ Ber
(

vxα

1 + vxα

)
and bvy ∼ Ber

(
1

1 + uyβ

)
. (7.6)

That is, given a realization of these random variables, we then consider the stochastic 
six vertex model with these boundary conditions according to Definition 7.7. While the 
random path configuration in this model is well-defined, it cannot be encoded by the 
height function h6V in the same way as for the step boundary conditions. Indeed, if 
α > 0, the number of paths to the right of any vertex (x, y) is almost surely infinite. Let 
us thus introduce the centered height function

H6V(x, y) = #{occupied horizontal edges} − #{occupied vertical edges}, (7.7)

where we count the edges along a directed up-right sequence of cells in the lattice, for 
example, moving (1

2 , 
1
2 ) → (x + 1

2 , 
1
2 ) → (x + 1

2 , y+ 1
2 ) along straight lines. In other words, 

H6V has the same gradient as h6V, but the constant is defined by H6V(0, 0) = 0. The 
next lemma is a straightforward observation:

Lemma 7.11. The centered height function H6V(x, y) well-defined and almost sure finite 
for all (x, y) ∈ Z≥0 × Z≥0. For α = β = 0 the boundary conditions (7.6) reduce to the 
step boundary conditions (7.2), and in this case we have H6V(x, y) = h6V(x + 1, y) for 
all x, y.

The centered height function with the two-sided Bernoulli boundary conditions (7.6)
can be identified with a marginal of the sHL/sHL Yang-Baxter field λ with scaled geo-
metric boundary conditions.

Theorem 7.12. Let M be the q-Poisson random variable with parameter αβ independent 
of the stochastic six vertex model with (α, β)-stationary boundary conditions. The two 
random fields {y − �(λ(x,y)) : x, y ∈ Z≥0} and {H6V(x, y) −M : x, y ∈ Z≥0} are equal 
in distribution.

Theorem 7.12 follows in essentially the same way as Theorem 7.8 by matching the 
value of vertex weights Luy,vx and probability laws of entries bhx, bvx with those given 
U[0] (on the boundary this follows from Proposition 7.10; in fact, the structure of the 
concrete formulas (7.3), (7.4) is essential for the independent boundary conditions). Let 
us present a slightly different argument that uses analytic continuation. This alternative 
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approach is useful in other situations (Sections 7.3 and 7.4) and also in Section 9 for 
computation of observables of models with two-sided stationary boundary conditions.

Proof of Theorem 7.12. Consider the sHL/sHL Yang-Baxter field with the usual step 
boundary conditions, and with shifted indices:

μ = {μ(x,y) : (x, y) ∈ Z≥−I0+1 × Z≥−J0+1}.

Here I0, J0 are positive integers. For μ we take the following specializations:

u0, qu0, . . . q
J0−1u0, u1, u2, . . . and v0, qv0, . . . q

I0−1v0, v1, v2, . . . . (7.8)

Call ν = μ|
Z≥0×Z≥0

the restriction of μ to the nonnegative quadrant. Then ν is a 
field of random Young diagrams associated to the sHL/sHL skew Cauchy structure with 
Gibbs boundary conditions (Definition 2.5). That is, for all x, y, the boundary Young 
diagrams ν(0,y), . . . , ν(0,0), . . . , ν(x,0) are distributed with law

1
Z

(x,y)
boundary

y∏
j=1

Fν(0,j)/ν(0,j−1)(uj)G(I0)
ν(0,y)(v0)

x∏
i=1

F∗
ν(i,0)/ν(i−1,0)(vi)F(J0)

ν(x,0)(u0), (7.9)

recalling the notation introduced in Section 4. The vertex weights in the definition of 
the principal specialization of the sHL functions Gν(0,y) and Fν(x,0) depend on the pa-
rameters u0, qJ0 , v0, qI0 in a rational way. Therefore, for any bounded complex-valued 
cylindric function f : ν �→ f(ν),11 the expected value Eν(f) is a holomorphic function 
of u0, qJ0 , v0, qI0 when these parameters are in a small neighborhood of zero.

Let λ be the sHL/sHL field with (α, β)-scaled geometric boundary conditions. The 
above argument shows that the probability of any event depending on a finite region in 
the field λ is equal to the scaled geometric degeneration

u0 = −εα, qJ0 = 1/ε, v0 = −εβ, qI0 = 1/ε, ε → 0,

of the probability of the same event in which the field λ is replaced by ν.
Consider now the stochastic six vertex model with the step boundary conditions on 

the shifted lattice Z≥−I0+1×Z≥−J0+1, which corresponds to the field μ (with parameters 
(7.8)). Refer to its height function by h6V(I0,J0). By Theorem 7.8, we have equality in 
distribution

h6V(I0,J0)(x, y) d= y + J0 − �(ν(x,y)) for all x, y ≥ 0 (7.10)

11 Here “cylindric” means that the function depends on ν only through the diagrams ν(xi,yi), where (xi, yi)
run over a finite set (and the set may depend on f).
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(here y + J0 is simply the shifted vertical coordinate, and ν(x,y) = μ(x,y) for x, y ≥ 0). 
Next, let H6V(I0,J0)(x, y) be the centered height function of the restriction of the above 
vertex model to the nonnegative quadrant Z2

≥0. Then

H6V(I0,J0)(x, y) = h6V(I0,J0)(x, y) − J0 + MI0,J0 for all x, y ≥ 0, (7.11)

where MI0,J0 is the random variable counting the number of paths originating from the 
segment {−I0 + 1} × [−J0 + 1, 0] and vertically crossing the segment [−I0 + 1, 0] × {0}. 
Combining (7.10) and (7.11), we find that

y − �(ν(x,y)) d= H6V(I0,J0)(x, y) −MI0,J0 for all x, y ≥ 0. (7.12)

The probability law of MI0,J0 is found from the sHL/sHL field μ which has step 
boundary conditions (hence we can use Theorem 7.8). On the other hand, the update in 
the initial (I0, J0) part of μ is restated as a single forward transition in the (I0, J0)-fused 
field (considered in Section 6 above). Therefore, the law of MI0,J0 is given by (6.17) with 
parameters u0, qJ0 , v0, qI0 :

Prob{MI0,J0 = k} = U[0]
u0,v0

(0, 0; k, k) for k = 0 . . . , I0. (7.13)

Under the scaled geometric specializations to both α and β, this distribution becomes 
q-Poi(αβ), cf. (7.5). Taking the scaled geometric specializations in (7.12), we obtain the 
desired matching between the centered height function H6V of the stochastic six vertex 
model with the (α, β)-stationary boundary conditions and the marginal of the field λ. �
7.3. The sHL/sqW Yang-Baxter field

Here we consider the Yang-Baxter field associated with the dual Cauchy identity be-
tween the sHL and the sqW functions. The marginal of the field is the stochastic higher 
spin six vertex model. We consider both step and two-sided stationary boundary condi-
tions in the vertex model. The model with the step boundary conditions was extensively 
studied starting from [29], [18]. Different formulas for observables in the two-sided sta-
tionary case leading to asymptotic results were obtained recently in [37] by a different 
method.

7.3.1. Step boundary conditions
The sHL/sqW field corresponds to setting v = s and qI = −θ/s in the notation 

of Section 6. The parameters are q ∈ (0, 1), s ∈ (−1, 0), u ∈ [0, 1), θ ∈ [−s, −s−1]. 
The Yang-Baxter equation governing the vertex weights is (A.12).12 The reversibility 

12 Equivalently, one could consider u = s, qJ = −ξ/s, and take (ξ, v) as the parameters. This leads to a 
straightforward rewriting of some of the formulas, but produces the same marginal process (cf. Remark 3.11). 
Therefore, we only consider one of the two dual cases.
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condition of the forward and backward transition operators is proven in the same way 
as Proposition 7.3, and is given as follows:

Proposition 7.13. For any four Young diagrams μ, κ, λ, ν we have

1 + uθ

1 − us
Ufwd

sHL(u),sqW(θ)(κ → ν | λ, μ) Fλ/κ(u)F∗
μ′/κ′(θ)

= Ubwd
sHL(u),sqW(θ)(ν → κ | λ, μ) F∗

ν′/λ′(θ)Fν/μ(u) (7.14)

Summing (7.14) over both κ and ν, we obtain the skew Cauchy identity of Theorem 3.9.

The sHL/sqW Yang-Baxter field λ = {λ(x,y)} depends on the parameters uy ∈ [0, 1), 
θx ∈ [−s, −s−1], x, y ∈ Z≥1, and is generated from the step boundary conditions λ(x,0) =
λ(0,y) = 0∞ = ∅ by applying the forward transition operators Ufwd

sHL(uy),sqW(θx).

Proposition 7.14. The single-point distributions in the sHL/sqW field with the step bound-
ary conditions have the form

Prob(λ(x,y) = ν) =
∏

1≤i≤x
1≤j≤y

1 − ujs

1 + ujθi
Fν(u1, . . . , uy)F∗

ν′(θ1, . . . , θx).

The joint distributions along down-right paths are expressed through the skew functions 
as in Proposition 2.9.

7.3.2. Scaled geometric boundary conditions
Take additional parameters α, β ∈ [0, −s−1], and consider specializations

ρv
−1 = sg(α), ρh

−1 = sg(β), ρv
y = sHL(uy), ρh

x = sqW(θx).

Let η be the Yang-Baxter field on the lattice Z≥−1 × Z≥−1 generated by the forward 
transition probabilities constructed using the specializations (dragging the cross vertex 
through the leftmost column should be understood as in Remark 7.5). Restricting this 
field to the nonnegative quadrant, λ = η|

Z≥0×Z≥0
, we get the sHL/sqW field with the 

two-sided scaled geometric (or (α, β)-scaled geometric) boundary conditions.

Proposition 7.15. For the field λ defined above we have

Prob{λ(x,y) = ν}

= (αβ; q)∞
y∏

j=1
(1 + ujβ)

x∏
i=1

(αθi; q)∞
(−sα; q)∞

∏
1≤i≤x
1≤j≤y

1 − ujs

1 + ujθi
Fν(u1, . . . , uy; α̃)F∗

ν′(θ1, . . . , θx; β̃).

Joint distributions in λ along down-right paths are expressed similarly to Proposition 2.9.
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Fig. 18. Stochastic vertex weights Lu,θ(i1, j1; i2, j2). This parametrization of the weights differs from the 
ones employed in [29] or [18], but all these parametrizations are related to each other via simple changes of 
variables.

7.3.3. Stochastic higher spin six vertex model
The Markovian marginal of the sHL/sqW field can be mapped to a known stochastic 

vertex model which we now recall. Let the vertex weights Luy,θx(i1, j1; i2, j2), i1, i2 ∈
Z≥0, j1, j2 ∈ {0, 1}, be given in Fig. 18. They are stochastic for our values of parameters 
in the sense that 

∑
i2,j2

Luy,θx(i1, j1; i2, j2) = 1 for all i1, j1.

Definition 7.16 ([29], [18]). The (inhomogeneous) stochastic higher spin six vertex model
with the boundary conditions Bh = {bh1 , bh2 , . . . } and Bv = {bv1, bv2, . . . }, bvi ∈ {0, 1}, 
bhj ∈ Z≥0, is the (unique) probability measure on the set of up-right directed paths on 
Z≥0 × Z≥0 (with multiple vertical paths allowed per edge, but at most one horizontal 
path per edge) satisfying:

• Each vertex (0, y) at the vertical boundary {(0, y′) : y′ ≥ 1} emanates a path initially 
pointing to the right if bvy = 1;

• Each vertex (x, 0) at the horizontal boundary {(x′, 0) : x′ ≥ 1} emanates bhx paths 
initially pointing upward;

• For each (x, y), conditioned to the path configuration at all vertices (x′, y′) such that 
x′+y′ < x +y, the probability of a vertex configuration (i1, j1; i2, j2) at (x, y) is given 
by Luy,θx(i1, j1; i2, j2). Moreover, the random choices made at diagonally adjacent 
vertices . . . , (x − 1, y + 1), (x, y), (x + 1, y − 1), . . . are independent under the same 
condition.

In particular, the step boundary conditions correspond to paths entering horizontally at 
each location and no paths entering through the bottom boundary (7.2), exactly as in 
the stochastic six vertex case considered in Section 7.2.

Similarly to the six vertex case, let us encode the configuration of paths by the centered 
height function HHS(x, y), see (7.7). That is, HHS(0, 0) = 0, and the stochastic higher 
spin six vertex model paths serve as level lines for HHS. For the step boundary conditions 
we have HHS(x, y) = hHS(x +1, y), where hHS(x, y) is the number of paths passing weakly 
to the right of the point (x, y) ∈ Z2

≥0.
The next proposition suggests the appropriate choice of the two-sided stationary 

boundary conditions for the stochastic higher spin six vertex model:
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Proposition 7.17. Consider the transition probabilities U[0] given in (6.17). Then

U[0]
sg(α),sqW(θ)(0, i

′
0; j′0, j0) = 1i′0+j′0=j0(αθ)j

′
0

(−s/θ; q)j′0
(q; q)j′0

(αθ; q)∞
(−sα; q)∞

. (7.15)

Proof. This follows by specializing (6.17) and using the expressions for the boundary 
weights W ∗, w̃ ((3.14) and (A.16), respectively), and the cross weights RsqW,sg

α,θ (A.19). 
The quantity R(I,J)

uv (J, 0; J, 0) should be specialized as described in Remark 7.5. �
Let us define the stochastic higher spin six vertex model with two-sided stationary (or 

(α, β)-stationary) boundary conditions by taking independent random variables on the 
boundary distributed as (recall the notation in Section 1.5)

bhx ∼ q-NB(−s/θx, αθx) and bvy ∼ Ber
(

1
1 + uxβ

)
. (7.16)

Let HHS(x, y) be the corresponding centered height function.
For α = β = 0 the boundary conditions (7.16) reduce to the step one. When β

depends on α in a certain way, the stationarity of the boundary conditions (7.16) under 
the homogeneous stochastic higher spin six vertex model was checked in a continuous-
time degeneration in [19, Appendix B.2], see also [37] for the full statement and further 
discussion.

The next result is the analogue of both Theorems 7.8 and 7.12 from the stochastic six 
vertex case. Let λ be the sHL/sqW Yang-Baxter field with the (α, β)-scaled geometric 
boundary conditions.

Theorem 7.18. Let M be the q-Poisson random variable with parameter αβ independent 
of the stochastic higher spin six vertex model with (α, β)-stationary boundary conditions. 
Then the two random fields 

{
y − �(λ(x,y)) : x, y ∈ Z≥0

}
and {HHS(x, y) −M : x, y ∈ Z≥0}

are equal in distribution.

Proof. To obtain the matching in the step case (note that when α or β is zero, M = 0
almost surely), it suffices to check that

U[0]
sHL(u),sqW(θ)(i0, 1 − i′0; j′0, 1 − j0) = Lu,θ(i0, i′0; j′0, j0)

for all i0, j′0 ∈ Z≥0 and i′0, j0 ∈ {0, 1}, where the left-hand side is the specialization of 
(6.17). This is a straightforward verification.

The matching result for the scaled geometric boundary conditions is obtained in the 
same way as in the proof of Theorem 7.12. Indeed, we can consider the field in Z≥−I0+1×
Z≥−J0+1 with the extra sHL specializations with the parameters u0, qu0, . . . , qJ0−1u0 and 
v0, qv0, . . . , qI0−1v0. The desired matching then follows from the expressions (7.4), (7.5), 
(7.15) for the corresponding specializations of U[0], and analytic continuation. �



62 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865
7.4. The sqW/sqW Yang-Baxter field

Let us now turn to the third and final Yang-Baxter field associated with the sqW/sqW 
skew Cauchy structure. The particle system we obtain as its marginal generalizes the 
q-Hahn PushTASEP introduced recently in [27].

7.4.1. Step boundary conditions
The sqW/sqW Yang-Baxter field depends on the parameters q ∈ (0, 1), s ∈ [−√

q, 0), 
θx, ξy ∈ [−s, −s−1]. The reversibility condition associated with the forward and backward 
transition probabilities takes the following form:

Proposition 7.19. For any four Young diagrams μ, κ, λ, ν we have

(−sξ; q)∞(−sθ; q)∞
(s2; q)∞(ξθ; q)∞

Ufwd
sqW(ξ),sqW(θ)(κ → ν | λ, μ)Fλ′/κ′(ξ)F∗

μ′/κ′(θ)

= Ubwd
sqW(ξ),sqW(θ)(ν → κ | λ, μ)F∗

ν′/λ′(θ)Fν′/μ′(ξ). (7.17)

Summing (7.17) over both κ and ν, we obtain the skew Cauchy identity of Theorem 3.12.

The sqW/sqW Yang-Baxter field with the step boundary conditions λ is, by definition, 
generated from the boundary conditions λ(x,0) = λ(0,y) = 0∞ = ∅ by applying the 
forward transition operators Ufwd

sqW(ξy),sqW(θx).

Proposition 7.20. The single-point distributions in the sqW/sqW field λ with the step 
boundary conditions have the form

Prob
(
λ(x,y) = ν

)
=

∏
1≤i≤x
1≤j≤y

(s2; q)∞(ξiθj ; q)∞
(−sξi; q)∞(−sθj ; q)∞

Fν′(ξ1, . . . , ξy)F∗
ν′(θ1, . . . , θx).

The joint distributions in λ along down-right paths are expressed through the skew sqW 
functions as in Proposition 2.9.

7.4.2. Scaled geometric boundary conditions
Let α, β ∈ [0, −s−1] be additional parameters. The sqW/sqW Yang-Baxter field with 

two-sided scaled geometric (or (α, β)-scaled geometric) boundary conditions is constructed 
exactly as in Sections 7.2.2 and 7.3.2 by adding scaled geometric specializations to both 
boundaries of the quadrant Z2

≥0.

Proposition 7.21. The single-point distributions in the sqW/sqW Yang-Baxter field λ
with (α, β)-scaled geometric boundary conditions are given by
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Prob
(
λ(x,y) = ν

)
= (αβ; q)∞

x∏
i=1

(αθi; q)∞
(−sα; q)∞

y∏
j=1

(βξj ; q)∞
(−sβ; q)∞

×
∏

1≤i≤x
1≤j≤y

(s2; q)∞(ξiθj ; q)∞
(−sξi; q)∞(−sθj ; q)∞

Fν′(ξ1, . . . , ξy; α̃)F∗
ν′(θ1, . . . , θx; β̃).

The joint distributions along down-right paths are expressed as in Proposition 2.9.

7.4.3. Stochastic vertex model with 4φ3 weights
The scalar marginal {�(λ(x,y))} of the sqW/sqW Yang-Baxter field gives rise to a 

new vertex model which is related to the q-Hahn PushTASEP from [27] (we discuss this 
connection in Section 7.4.4 below). To formulate the vertex model, let us first write down 
the quantities (6.17) under the two sqW specializations:

Lξ,θ(i1, j1; i2, j2) := U[0]
sqW(ξ),sqW(θ)(i1, j1; i2, j2)

= 1i1+j2=i2+j1

ξi2si1θi2−i1 qj1j2+
1
2 i1(i1−1) (−s/θ; q)i2(−s/ξ; q)j2

(−s/θ; q)i1(−s/ξ; q)j1(q; q)j2(−q/(sξ); q)j2−i2

× (s2qi1+j2 ; q)∞(θξ; q)∞
(−sξ; q)∞(−sθ; q)∞ 4φ3

(
q−j1 ; q−j2 ,−sθ,−q/(sξ)

−s/ξ, q1+i1−j1 ,−θq1−j2−i1/s

∣∣∣ q, q) ,

(7.18)

where i1, j1, i2, j2 ∈ Z≥0.

Lemma 7.22. Let q ∈ (0, 1), s ∈ [−√
q, 0), ξ, θ ∈ [−s, −s−1]. Then Lξ,θ(i1, j1; i2, j2) ≥ 0

for all i1, j1, i2, j2 ∈ Z≥0. Moreover, 
∑

i2,j2
Lξ,θ(i1, j1; i2, j2) = 1 for all i1, j1 ∈ Z≥0.

Proof. The nonnegativity follows from Appendix A.5 (in particular, from Proposi-
tion A.8). The fact that the weights sum to one is the consequence of the Yang-Baxter 
equation (A.13) in the leftmost column, where i3 = j3 = ∞, together with Proposi-
tion A.5. �

The weights Lξ,θ(i1, j1; i2, j2) give rise to a stochastic vertex model. Because the arrow 
preservation property for these weights reads i1+j2 = i2+j1, the paths in this stochastic 
vertex model are directed up-left.

Definition 7.23. Let ξy, θx ∈ [−s, −s−1], x, y ∈ Z≥1. The (inhomogeneous) 4φ3 stochastic 
vertex model with the boundary conditions {bh1 , bh2 , . . .} and {bv1, bv2, . . .}, bhi , bvj ∈ Z≥0, 
is the (unique) probability distribution on the set of up-left directed paths on Z≥0 ×
Z≥0 (with arbitrary nonnegative number of paths allowed per edge, see Fig. 19 for an 
illustration), satisfying:
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Fig. 19. A path configuration in the 4φ3 stochastic vertex model, and the corresponding height function. 
(The boundary configuration in the figure is not the step one. Unlike for the two previous vertex models, 
here the step boundary conditions would mean no paths crossing the boundary.)

• The number of paths entering at each location (x, 0) on the horizontal boundary is 
equal to bhx, x ∈ Z≥1;

• The number of paths exiting at each location (0, y) on the vertical boundary is equal 
to bvy, y ∈ Z≥1;

• For each (x, y), conditioned on the path configuration at all vertices (x′, y′) such that 
x′ + y′ < x + y, the probability of the configuration (i1, j1; i2, j2) at (x, y) is given 
by Lξy,θx(i1, j1; i2, j2). Moreover, the random choices made at diagonally adjacent 
vertices . . . , (x − 1, y + 1), (x, y), (x + 1, y − 1), . . . are independent under the same 
condition.

In particular, the step boundary conditions correspond to taking bhi = bvi = 0 for all 
i ∈ Z≥1.

Remark 7.24. The up-left direction of paths in the 4φ3 vertex model of Definition 7.23
should be contrasted with up-right paths in the stochastic vertex model (Section 7.2.3) 
and the stochastic higher spin six vertex model (Section 7.3.3). Note however that in 
the latter two models the number j of paths per horizontal edge is at most one, and so 
the operation j �→ 1 − j applied at each horizontal edge turns up-right paths into up-left 
ones. In the sqW/sqW setting the number of paths per horizontal edge can be arbitrary, 
so the model with the weights Lξ,θ cannot be mapped to a model with up-right directed 
paths.

For arbitrary boundary conditions, the configuration of the paths is encoded by the 
height function Hφ(x, y), x, y ∈ Z≥0, which counts the number of paths which between 
(0, 0) and (x, y) (including the paths that pass through (x, y), too). In other words, paths 
are the level lines of Hφ. An example is given in Fig. 19. Clearly, Hφ(x, y) is almost surely 
finite at each (x, y).

Proposition 7.17 expressing U[0]
sg(α),sqW(θ) on the bottom boundary of Z2

≥0 as the q-
negative binomial distribution q-NB(−s/θ, αθ) suggests the two-sided stationary bound-
ary conditions for the 4φ3 stochastic vertex model. Moreover, on the left boundary, by 
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the symmetry (A.9), U[0]
sqW(ξ),sg(β) leads to q-NB(−s/ξ, βξ). Therefore, we define the 

two-sided (or (α, β)) stationary boundary conditions by taking independent

bhx ∼ q-NB(−s/θx, αθx), bvy ∼ q-NB(−s/ξy, βξy).

The step boundary condition arises when α = β = 0, and thus bhx = bvy = 0 for all x, y
(note that this meaning of “step” here differs from the two previous stochastic vertex 
models).

Recall the q-Poisson distribution (Section 1.5). Let λ be the sqW/sqW Yang-Baxter 
field with (α, β)-scaled geometric boundary conditions.

Theorem 7.25. Let M be the q-Poisson random variable with parameter αβ which is inde-
pendent of the 4φ3 stochastic vertex model. Then the two random fields {�(λ(x,y)) : x, y ∈
Z≥0} and {Hφ(x, y) + M : x, y ∈ Z≥0} have the same distribution.

Proof. This is proven similarly to Theorems 7.12 and 7.18 using analytic continua-
tion. Namely, one starts with the Yang-Baxter field μ in Z≥−I0+1 × Z≥−J0+1, where 
the positive coordinates Z≥1 × Z≥1 carry the sqW specializations {ξy} and {θx}, 
and the extra nonpositive coordinates carry the sHL specializations with parameters 
u0, qu0, . . . , qJ0−1u0 and v0, qv0, . . . , qI0−1v0, respectively. The resulting field depends on 
u0, qJ0 , v0, qI0 in an analytic manner, and one can then take u0, qJ0 , v0, qI0 to the scaled 
geometric specializations.

Before the analytic continuation we know that �(μ(x,y)) is equal in distribution to the 
height function Hφ

I0,J0
(x, y), which is defined in the same way as Hφ, but in Z≥−I0+1 ×

Z≥−J0+1. The number of paths originating from the segment {−I0 + 1} × [−J0 + 1, 0]
and vertically crossing the segment [−I0 +1, 0] ×{0} becomes, after the scaled geometric 
specializations, the desired q-Poisson random variable M. Therefore, after the special-
izations Hφ

I0,J0
(x, y) turns into Hφ(x, y) + M for all x, y ∈ Z≥0. On the other hand, 

�(μ(x,y)) becomes �(λ(x,y)) for all x, y ∈ Z≥0. This completes the proof. �
7.4.4. Connection to PushTASEPs

Take arbitrary stochastic vertex weights L(x,y)(i1, j1; i2, j2), x, y ∈ Z≥1, i1, j1, i2, j2 ∈
Z≥0, which vanish unless i1 + j2 = i2 + j1, and construct from them a stochastic vertex 
model with up-left paths as in Definition 7.23. We also assume that boundary conditions 
bhx and bvy, x, y ∈ Z≥1, are fixed.13 Path configurations in this vertex model can be 
equivalently viewed as trajectories in a stochastic particle system on the line with a 
pushing mechanism.

13 If these boundary conditions are random, then they should be independent of the evolution of the 
stochastic vertex model. Therefore, we can first sample the boundary conditions and then proceed with the 
discussion conditioned on the values of bhx, bvy.
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Fig. 20. The height function in the vertex model (left) and the corresponding realization of the pushing 
dynamics (right).

Indeed, consider the discrete time dynamics y(t) on the space of configurations

{y = (y1 > y2 > . . .) : yi ∈ Z}

defined as follows (see Fig. 20 for an illustration):

1. At time t = 0 we have y1(0) = −1 and yk(0) − yk+1(0) − 1 = bhk, k ∈ Z≥1;
2. At each discrete time step t − 1 → t, t ∈ Z≥1, the first particle’s location is updated 

as y1(t) = y1(t − 1) − bvt (i.e., it jumps by bvt to the left);
3. At each discrete time step t −1 → t, t ∈ Z≥1, the locations of the subsequent particles 

are updated sequentially. For i = 2, 3, . . ., after the (i − 1)-st particle has moved such 
that yi−1(t) = yi−1(t − 1) − l, and if the gap was yi−1(t − 1) − yi(t − 1) − 1 = g, then 
the i-th particle jumps by L to the left with probability L(i,t)(g, l; g + L − l, L).

The fact that it must be L ≥ l − g in the update implies that the dynamics preserves 
the order of the particles. Namely, if the jump l of the (i − 1)-st particle is longer than 
the gap, then the i-th particle is pushed to the left. Therefore, the dynamics y(t) has a 
built-in pushing mechanism.

At each discrete time step the dynamics y(t) might perform an infinite number of 
jumps. However, due to the sequential update structure, the evolution of the first N par-
ticles y1 > . . . > yN is always well-defined, and thus one can define the whole dynamics 
y(t) via Kolmogorov’s extension theorem.

Particle systems with pushing mechanism have been studied for a long time. The first 
example is the PushTASEP (also known as the “long-range TASEP”, or as a degenerate 
particular case of the Toom’s interface model) [52], [30]. The PushTASEP admits many 
deformations, most recent of which is the q-Hahn PushTASEP introduced in [27] (see 
also section 3.2.1 in the latter paper for references to known intermediate degenerations). 
Recall that the q-Hahn PushTASEP depends on three parameters q ∈ (0, 1), μ ∈ (0, 1), 
and ν ∈ (−1, min(μ, √q)].

Proposition 7.26. For α = 0, β = 1, ξy = μ, θx = 1 for all x, y ∈ Z≥1, and s = −ν, the 
particle system corresponding to the 4φ3 stochastic vertex model (i.e., with L(i,t) = Lμ,1
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given by (7.18)) and (α, β)-stationary boundary conditions coincides with the q-Hahn 
PushTASEP from [27] with the step initial configuration yi(0) = −i, i ∈ Z≥1.

Proof. This is obtained in a straightforward way by matching the formulas from 
[27] expressing transition probabilities in the q-Hahn PushTASEP through the 4φ3 q-
hypergeometric functions with the expression (7.18). For α = 0, there are no vertex model 
paths entering through the bottom boundary. Then the boundary conditions on the left 
are random and independent with the distribution q-NB(−s/ξ, βξ) = q-NB(ν/μ, μ), 
which is exactly the jumping distribution of the q-Hahn PushTASEP first particle (de-
noted by ϕq,μ,ν(· | ∞) in [27]). �

We see that the 4φ3 stochastic vertex model from Section 7.4.3 in a particular case 
becomes the q-Hahn PushTASEP. Note also that to match the jumping distribution 
of the first particle we needed to employ the independent negative binomial boundary 
conditions on the left (vertical) boundary. (This effect is also present in the stochastic 
higher spin six vertex model, cf. [50].) The pushing particle system corresponding to 
the step boundary conditions in the 4φ3 stochastic vertex model is more general than 
the q-Hahn PushTASEP. Namely, the former can essentially be viewed as the q-Hahn 
PushTASEP conditioned on the event that the first particle y1 never jumps.

8. Difference operators

In this Section we prove that the (stable) spin Hall-Littlewood and the spin q-
Whittaker functions are eigenfunctions of certain (q-)difference operators acting on 
symmetric functions. In this section we denote the quantization parameter in the sHL 
functions by t instead of q because the sHL eigenoperators are the same as in the Mac-
donald case (recall that for s = 0, the sHL functions become the usual Hall-Littlewood 
symmetric polynomials, which are the q = 0 degenerations of the Macdonald symmetric 
polynomials).

8.1. Eigenrelations for the spin Hall-Littlewood functions

Consider the space of symmetric rational functions in u1, . . . , un. Let the operator 
Tq,ui

on this space be

Tq,ui
f(u1, . . . , un) = f(u1, . . . , ui−1, qui, ui+1, . . . un), (8.1)

that is, it acts by multiplying the variable ui by q. In this subsection we will use the q = 0
version, T0,ui

. Note that this operator acts only on rational functions whose denominators 
do not contain positive powers of ui.

Definition 8.1 (Hall-Littlewood difference operators). For 1 ≤ r ≤ n, let the r-th Hall-
Littlewood difference operator be
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Dr :=
∑

I⊂{1,...,n}
|I|=r

( ∏
i∈I

j∈{1,...,n}\I

tui − uj

ui − uj

)
T0,I , (8.2)

with T0,I =
∏

i∈I T0,ui
.

The Hall-Littlewood operators are the q = 0 cases of the Macdonald difference opera-
tors [40, Chapter VI.3] (the latter are obtained by taking Tq,ui

in (8.2) instead of T0,ui
). 

The operators Dr are diagonal in the Hall-Littlewood symmetric polynomials Fλ|s=0
14:

Dr Fλ(u1, . . . , un)|
s=0 = er(1, t, . . . , tn−�(λ)−1) Fλ(u1, . . . , un)|

s=0 , (8.3)

where the eigenvalues are given in terms of er(u1, . . . un), the r-th elementary symmetric 
polynomial:

er(z1, . . . , zN ) =
∑

1≤i1<···<ir≤N

zi1 · · · zir . (8.4)

In particular, er(z1, . . . , zN ) = 0 if r > N .
In the following Theorem we extend (8.3) to the spin Hall-Littlewood symmetric 

functions:

Theorem 8.2. For all Young diagrams λ and n ∈ Z≥1 we have

Dr Fλ(u1, . . . , un) = er(1, t, . . . , tn−�(λ)−1) Fλ(u1, . . . , un). (8.5)

Remark 8.3. Certain difference operators acting diagonally on the non-stable spin Hall-
Littlewood symmetric functions were considered in [32].

In order to prove Theorem 8.2 we make use of two preliminary lemmas. The first one 
is an explicit expression for the sHL function Fλ as a sum over the symmetric group Sn:

Lemma 8.4. For any Young diagram λ such that n ≥ �(λ), we have

Fλ(u1, . . . , un) = (1 − t)n

(t; t)n−�(λ)

∑
σ∈Sn

σ

{ ∏
1≤i<j≤n

ui − tuj

ui − uj

n∏
i=1

(
ui − s

1 − sui

)λi �(λ)∏
i=1

ui

ui − s

}
.

(8.6)
Here the symmetric group acts on the indices of the variables ui, but not on λi.

Proof. This is a corollary of [7, Theorem 5.1] which gives an analogous expression for the 
non-stable spin Hall-Littlewood function. The degeneration to the stable case is obtained 

14 We have Fλ(u1, . . . , un)|
s=0 = Qλ(u1, . . . , un; t) in the standard notation of [40, Chapter III].
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as in (3.7). Symmetrization formula (8.6) for the stable case appeared earlier in [33] and 
[21]. �
Lemma 8.5. We have

Dr

( ∑
σ∈Sn

σ

{ ∏
1≤i<j≤n

ui − tuj

ui − uj

})
= er(1, . . . , tn−1)

∑
σ∈Sn

σ

{ ∏
1≤i<j≤n

ui − tuj

ui − uj

}
. (8.7)

Proof. This is the λ = ∅ case of the known Hall-Littlewood relation (8.3). Notice that 
the symmetrized sum in fact does not depend on the variables u1, . . . , un:

∑
σ∈Sn

σ

{ ∏
1≤i<j≤n

ui − tuj

ui − uj

}
= (t; t)n

(1 − t)n ,

see [40, Chapter III.1, formula (1.4)]. �
Proof of Theorem 8.2. For a fixed Young diagram λ we define

A =
∏

1≤i<j≤n

ui − tuj

ui − uj
, B =

n∏
i=1

(
ui − s

1 − sui

)λi

, C =
�(λ)∏
i=1

ui

ui − s
.

With this notation, using (8.6), the left-hand side of (8.5) can be written as

cλ
∑

I⊂{1,...,n}
|I|=r

∏
i∈I

j∈{1,...,n}\I

tui − uj

ui − uj
T0,I

∑
σ∈Sn

σ {ABC} , (8.8)

where cλ = (1 − t)n/(t; t)n−�(λ). We first observe that

T0,Iσ{C} =
{
σ{C} if I ⊆ {σ�(λ)+1, . . . , σn},
0 otherwise.

Therefore, we can reduce the sum over the symmetric group in (8.8) to permutations 
σ such that I ⊆ σ({�(λ) + 1, . . . , n}). Moreover, we see that the claim of Theorem 8.2
follows for r > n − �(λ) since both sides of (8.5) vanish. Thus we will now assume that 
r ≤ n − �(λ).

For a given permutation σ define the ordered sets Vσ, Wσ as

Vσ = σ({1, . . . , �(λ)}) =
{
v1, . . . , v�(λ)

}
,

Wσ = σ({�(λ) + 1, . . . , n}) = {w1, . . . , wn−�(λ)} = I ∪K,

and rewrite (8.8) as
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cλ
∑

I⊂{1,...,n}
|I|=r

∑
σ∈Sn
I⊆Wσ

σ {BC}
∏
i∈I

j∈{1,...,n}\I

tui − uj

ui − uj
T0,Iσ {A} , (8.9)

where we used the fact that σ{BC} only depends on variables uj for j ∈ Vσ. We now 
focus on the remaining factors. For two disjoint or coinciding ordered sets S1, S2 denote 
P (S1, S2) :=

∏
i∈S1, j∈S2

ui−tuj

ui−uj
. When S1 = S2, the product is only over i < j. We have

∏
i∈I

j∈{1,...,n}\I

tui − uj

ui − uj
T0,Iσ {A} = P (Ic, I)P (Vσ, Vσ)P (Vσ,K)

× T0,I

(
P (I,K)P (I, I)P (Vσ, I)P (K, I)P (K,K)

)
= P (Vσ, Vσ)P (Vσ,Wσ)P (K, I)T0,I

(
P (I,K)P (I, I)P (K,K)

)
=

∏
1≤i<j≤�(λ)

uvi − tuvj

uvi − uvj

∏
i∈Vσ, j∈Wσ

ui − tuj

ui − uj

∏
i∈Wσ\I,j∈I

ui − tuj

ui − uj
T0,I

×
∏

1≤i<j≤n−�(λ)

uwi
− tuwj

uwi
− uwj

.

In the above calculation we used the fact that T0,I acts on P (S, I), S �= I, by turning 
it into one. The action T0,IP (I, I) does not make sense before the symmetrization (i.e., 
summation over σ), and so we do not apply T0,I to this expression just yet. In the last 
line, the first two products are independent of I and of the ordering of Wσ, and the last 
two products are independent of the ordering of Vσ. Therefore, we can rearrange the two 
summations in (8.9) as

cλ
∑

V⊆{1,...,n}
|V |=�(λ),W=V c

∑
τ∈S�(λ)

∏
v∈V
w∈W

uv − tuw

uv − uw
τ

{ ∏
1≤i<j≤�(λ)

uvi − tuvj

uvi − uvj

BC

}

×
∑
I⊂W
|I|=r

∏
i∈I

w∈W\I

tui − uw

ui − uw
T0,I

∑
σ∈Sn−�(λ)

σ

{ ∏
1≤i<j≤n−�(λ)

uwi
− tuwj

uwi
− uwj

}
.

(8.10)

The permutations τ, σ permute the variables uvi , uwj
, vi ∈ V , wj ∈ W , acting respec-

tively on indices i and j. We can now employ Lemma 8.5 to transform the second line 
of (8.10) into

er(1, t, . . . , tn−�(λ)−1)
∑

σ∈Sn−�(λ)

σ

{ ∏
1≤i<j≤n−�(λ)

uwi
− tuwj

uwi
− uwj

}
. (8.11)

Therefore,



A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865 71
lhs (8.5) = er(1, t, . . . , tn−�(λ)−1) cλ
∑

V⊆{1,...,n}
|V |=�(λ),W=V c

∑
τ∈S�(λ)

σ∈Sn−�(λ)

∏
v∈V
w∈W

uv − tuw

uv − uw

× σ

{ ∏
1≤i<j≤n−�(λ)

uwi
− tuwj

uwi
− uwj

}
τ

{ ∏
1≤i<j≤�(λ)

uvi − tuvj

uvi − uvj

BC

}
.

(8.12)

The summations in the right-hand side of this last expression (along with the factor cλ) 
are easily rearranged into the symmetrized sum (8.6) producing the spin Hall Littlewood 
function Fλ. �
8.2. Orthogonality

The spin Hall-Littlewood functions enjoy the following orthogonality:

Proposition 8.6. For any Young diagrams λ, μ, we have

(t; t)n−�(λ)

(1 − t)nn!

∮
γ

dz1

2πiz1
· · ·

∮
γ

dzn
2πizn

∏
1≤i�=j≤n

zi − zj
zi − tzj

Fλ(z1, . . . , zn)F∗
μ(1/z1, . . . , 1/zn)

= 1λ=μ, (8.13)

where γ is a positively oriented contour encircling 0, tks for all k ≥ 0, and the contour 
tγ (its image under the multiplication by t), but not the point s−1.

Proof. This is consequence of [18, Corollary 7.5], where an analogous result is stated 
for the non-stable spin Hall-Littlewood functions with inhomogeneous parameters (the 
corresponding homogeneous result goes back to [13]). The desired orthogonality relation 
(8.13) then follows with the help of the limit (3.7). �

The orthogonality property (8.13) resembles the orthogonality of the Hall-Littlewood 
polynomials with respect to the Macdonald’s torus scalar product [40, Chapter VI, (9.10)]
at q = 0. The general (q, t) scalar product is

〈f, g〉n := 1
(2πi)nn!

∫
Tn

f(z)g(z)
∏

1≤i�=j≤n

(zi/zj ; q)∞
(tzi/zj ; q)∞

n∏
i=1

dzi
zi

, (8.14)

where the integration is over the n-dimensional torus in Cn (i.e., over the positively ori-
ented unit circles). In the presence of the additional spin parameter s, the Hall-Littlewood 
orthogonality extends to (8.13).

The usual q-Whittaker polynomials are orthogonal with respect to (8.14) with t = 0. 
At present it is not clear how to extend this orthogonality property to the spin q-
Whittaker polynomials. This problem could be related to the following observation. 
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While all the q = 0 Macdonald difference operators are diagonal in the spin Hall-
Littlewood functions (as well as in the usual Hall-Littlewood polynomials), the situation 
on the spin q-Whittaker side is more complicated. In the next subsection we discuss an 
s-deformation of the first t = 0 Macdonald q-difference operator which acts diagonally 
on the spin q-Whittaker polynomials.

8.3. Eigenrelation for the spin q-Whittaker polynomials

Fix l ∈ Z≥1. Define the operator acting on rational functions in (θ1, . . . , θl):

E :=
l∑

j=1

(
1 + s

θj

)l(∏
i�=j

θj
θj − θi

)
Tq−1,θj + (−s)l

θ1 · · · θl
Id. (8.15)

Here Tq−1,θj are the shifts (8.1), and Id is the identity operator.

Theorem 8.7. For any Young diagram λ, we have

EFλ(θ1, . . . , θl) = q−λ1Fλ(θ1, . . . , θl). (8.16)

Remark 8.8. When s = 0, the operator E reduces to the first Macdonald operator with 
t = 0 and the parameter q−1 instead of q. Then (8.16) turns into the known eigenrelation 
for the usual q-Whittaker polynomials (cf. the operators D̃r

n with r = 1 in [9, Section 
2.2.3]). It is not clear whether there exist appropriate s-deformations of the higher t = 0
Macdonald difference operators which would be diagonal in the spin q-Whittaker poly-
nomials.

Theorem 8.7 follows from a “duality” relation for E in Lemma 8.9 below. Define

D̃ := q−n (Id + (q − 1)D1) , (8.17)

where D1 is the first Hall-Littlewood operator (8.2) with parameter t replaced by q.

Lemma 8.9. Consider the function

Π(u1, . . . , un; θ1, . . . , θl) =
n∏

i=1

l∏
j=1

1 + uiθj
1 − sui

. (8.18)

Then we have

EΠ = D̃Π, (8.19)

where the operator D̃ acts in u1, . . . , un, while E acts in θ1, . . . , θl.
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Proof. When E acts on a factorized function G(θ1, . . . , θl) = g(θ1) · · · g(θl), it admits the 
integral representation

EG(θ1, . . . , θl) = G(θ1, . . . , θl)
1

2πi

∮
γ0,θ

l∏
i=1

z + s

z − θi

g(q−1z)
g(z)

dz

z
. (8.20)

Here γ0,θ is a positively oriented contour (or a union of contours) encircling 0, θi for 
i = 1, . . . , l, and no other singularity of the integrand. Here the function g(z) should be 
such that we can choose a contour in whose neighborhood the expression g(q−1z)/g(z)
is holomorphic, and such that no singularities of g(q−1z)/g(z) fall inside γ0,θ.

Analogously, the action of D̃ on H(u1, . . . , un) = h(u1) · · ·h(un), where h(0) = 1, has 
the form

D̃H(u1, . . . , un) = H(u1, . . . , un) 1
2πi

∮
γ0,u

n∏
j=1

w − q−1uj

w − uj

1
h(w)

dw

w
. (8.21)

The contour γ0,u is positively oriented and contains 0, ui for i = 1, . . . , n and no other 
singularity of the integrand (again, under suitable assumptions on h(w)). Both integral 
expressions (8.20) and (8.21) follow by straightforward residue calculus.

Let now both operators E and D̃ act on the function Π (8.18) which has product form 
in both families of variables ui and θj . We assume that 1 +θjui �= 0 for all i, j (otherwise 
Π is identically zero). From (8.20) we have

EΠ(u1, . . . , un; θ1, . . . , θl)
Π(u1, . . . , un; θ1, . . . , θl)

= 1
2πi

∮
γ0,θ

l∏
i=1

z + s

z − θi

n∏
j=1

1 + q−1ujz

1 + ujz

dz

z
.

On the other hand, from (8.21) we have

D̃Π(u1, . . . , un; θ1, . . . , θl)
Π(u1, . . . , un; θ1, . . . , θl)

= 1
2πi

∮
γ0,u

n∏
j=1

w − q−1uj

w − uj

l∏
i=1

1 − sw

1 + θiw

dw

w
.

The previous two expressions are identical after a change of variables w = −1/z (note 
that the extra minus sign corresponds to changing the contour’s orientation). �
Proof of Theorem 8.7. First recall the Cauchy identity between the sHL and sqW func-
tions (Section 3.7):∑

λ

Fλ(u1, . . . , un)F∗
λ′(θ1, . . . , θl) = Π(u1, . . . , un; θ1, . . . , θl). (8.22)

Combining (8.19) with (8.22) and employing the eigenrelation of sHL functions given by 
Theorem 8.2, we obtain
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∑
μ

Fμ(u1, . . . , un)EF∗
μ′(θ1, . . . , θl) =

∑
μ

q−�(μ)Fμ(u1, . . . , un)F∗
μ′(θ1, . . . , θl). (8.23)

This implies the equality between single terms of the summations due to orthogonality 
of the sHL functions (Proposition 8.6). Because �(μ) = μ′

1, we get the desired eigenrela-
tion. �
9. Fredholm determinants for marginal processes

Here we derive Fredholm determinant expressions for the q-Laplace transform of the 
random variable −�(λ(x,y)), where λ = {λ(x,y)} is one of the Yang-Baxter fields described 
in Section 7. In the sHL/sHL case, these Fredholm formulas are known [12], [1]. In 
the sHL/sqW case, they are present in the literature for the step and step-stationary 
boundary conditions [29], [18], [19]. A Fredholm determinantal formula for the stochastic 
higher spin six vertex model appears also in the recent work [37], though here we establish 
a different formula for this case. In the sqW/sqW case, a similar Fredholm formula for the 
q-Hahn PushTASEP was recently conjectured in [27], and here we prove this conjecture.

In this section we return to calling the main quantization parameter by q throughout.

9.1. Six vertex model observables through difference operators

In this subsection we rederive known results about the q-moments of the six vertex 
model [12], [18] making use of the difference operators acting on spin Hall-Littlewood 
functions. Consider the inhomogeneous stochastic six vertex model with the step bound-
ary conditions and height function h6V. Recall that the model depends on the parameters 
vx and uy, x, y ∈ Z≥1, which we assume positive (cf. Section 7.2.3). Let u1, u2, . . . be 
spaced in such a way that

q sup
i
{ui} < inf

i
{ui}. (9.1)

Proposition 9.1. Under (9.1) we have

Estep(ql h6V(x+1,y)) = ql(l−1)/2
∮

γ[u|1]

· · ·
∮

γ[u|l]

∏
1≤A<B≤l

zA − zB
zA − qzB

×
l∏

k=1

{
y∏

i=1

qzk − ui

zk − ui

x∏
i=1

1 − zkvi
1 − qzkvi

dzk
2πizk

}
,

(9.2)

where the positively orientated contour γ[u|j] = γu ∪ rj−1C0 for zj is the union of a 
curve γu that encircles u1, . . . , uy and no other pole of the integrand, and the dilation 
rj−1C0 of an arbitrary small circle C0 around 0. Moreover, r > q−1, and the shifted 
contour qγu must lie completely to the left of γu and completely to the right of rl−1C0.
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Proof. This is an application of the eigenrelations from Theorem 8.2. Recall the operator 
D̃ (8.17) acting diagonally on the sHL functions as

D̃Fλ = q−�(λ)Fλ.

From Section 7.2 we have the identification h6V(x + 1, y) = y − �(λ(x,y)), where λ(x,y) is 
the sHL/sHL field. Therefore, we have

Estep(ql h6V(x+1,y)) = qly
D̃lΠ(u1, . . . , uy; v1, . . . , vx)
Π(u1, . . . , uy; v1, . . . , vx) ,

where

Π(u1, . . . , uy; v1, . . . , vx) =
y∏

i=1

x∏
j=1

1 − quivj
1 − uivj

.

The nested contour formula (9.2) follows by recursively applying integral expression 
(8.21) for the action of D̃ on factorized functions. �

Proposition 9.1 combined with well-known manipulations of summations of nested 
contour integrals like (9.2) (e.g., see [14, Section 3]) give rise to a Fredholm determinant15
expression for the one-point distribution of h6V.

Theorem 9.2. Consider the stochastic six vertex model with step boundary conditions. 
We have

Estep
(

1
(ζqh6V(x+1,y); q)∞

)
= det (Id + K)L2(C) , ζ ∈ C \R>0. (9.3)

The expression in the right-hand side of (9.3) is the Fredholm determinant of the kernel

K(w,w′) = 1
2i

∫
d+iR

(−ζ)r

sin(πr)
f(w)/f(qrw)
qrw − w′ dr, (9.4)

where d ∈ (0, 1), and

f(w) =
y∏

i=1
(w − ui)−1

x∏
i=1

(1 − viw).

The kernel K is defined on the Hilbert space L2(C), where C is a closed positively oriented 
curve encircling 0, u1, u2, . . . such that, for all r ∈ d +iR, C contains qrC but not q−rv−1

i

for i = 1, 2, . . . .

15 On Fredholm determinants in general see, e.g., [5].
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We present the main steps of the proof of the Fredholm determinantal formula, and 
refer to [9] or [14] for detailed explanations.

Idea of proof of Theorem 9.2. Assume first (9.1) and |ζ| < 1/q, and consider the nested 
contour expression (9.2). We can deform all contours, one by one, to be the same C
around 0, u1, u2, . . . , and such that C contains its image under multiplication by q. This 
contour shift will cross poles zA = qzB , A < B, and one can rewrite (9.2) as

(q; q)l
∑
λ�l

1
m1!m2! · · ·

∫
C

· · ·
∫
C

�(λ)
det
i,j=1

(
1

wi − qλjwj

) �(λ)∏
k=1

f(wk)/f(qλkwk)
dzk
2πi ,

where the sum is taken over all partitions λ of l, and mi = mi(λ) are the multiplicities 
of the parts i in λ. Summing over l, we have

∑
l≥0

ζl

(q; q)l
Estep(ql h6V(x+1,y)) = Estep

(
1

(ζqh6V(x+1,y); q)∞

)
,

where we used the absolute summability of the left-hand side (since 0 < ql h
6V

< 1 and 
we assumed |ζ| < 1/q) to exchange the summation with the expectation sign and the 
q-binomial theorem. The result we obtain is the Fredholm determinant of the kernel

∑
n≥0

ζn

w′ − qnw
f(w)/f(qnw) = 1

2i

∫
d+iR

(−ζ)r

sin(πr)
f(w)/f(qrw)
qrw − w′ .

Once we reach (9.3), we can relax conditions on ui’s and ζ since both sides are analytic 
functions of their parameters. Formula (9.3) holds for any choice of ui, vj ∈ (0, 1) and 
ζ ∈ C\qZ≥0 (in particular, we can always find d in (9.4) such that C satisfies the required 
properties). �

In the next theorem we perform fusion of the sHL parameters. Recall the principal 
specializations F(J0,...,Jy)(u0, . . . , uy), G(I0,...,Ix)(v0, . . . , vx) defined in (4.1), (4.2). Param-
eters ul, Jl, vk, Ik are complex numbers satisfying (4.5) which we reproduce here:

|s|, |uk|, |vl|, |qJkuk|, |qIlvl|,
∣∣∣∣ qiuk − s

1 − qisuk

∣∣∣∣ , ∣∣∣∣ qivl − s

1 − qisvl

∣∣∣∣ < δ

for all 0 ≤ k ≤ y, 0 ≤ l ≤ x, i ≥ 0,
(9.5)

for sufficiently small δ > 0 which might depend on x, y, but not on the other parameters.
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Theorem 9.3. With the above notation, we have for all ζ ∈ C \R>0:

∏
0≤k≤y
0≤j≤x

(ukvl; q)∞(ukvlq
Il+Jk ; q)∞

(ukvlqIl ; q)∞(ukvlqJk ; q)∞

×
∑
λ

F
(J0,...,Jy)
λ (u0, . . . , uy)G(I0,...,Ix)

λ (v0, . . . , vx)
(ζq−�(λ); q)∞

= det (Id + K)L2(C) .

(9.6)

The kernel K is defined as

K(w,w′) = 1
2i

∫
d+iR

(
−ζ

)r
sin(πr)

f(w)/f(qrw)
qrw − w′ dr,

where d ∈ (0, 1) and

f(w) =
y∏

k=0

(qJkuk/w; q)∞
(uk/w; q)∞

x∏
l=0

(vlw; q)∞
(qIlvlw; q)∞

.

The contour C is a closed positively oriented curve encircling 0, qkui for k, i ≥ 0 and 
such that, for all r ∈ d + iR, C contains qrC and qr+kqJlul for all k, l ≥ 0, but leaves 
outside 1/(qr+kvl) and 1/(qkqIlvl) for all k, l ≥ 0.

Proof. Considering principal specializations in Theorem 9.2, we see that (9.6) holds for 
any J0, . . . Jy, I0, . . . , Ix positive integers. Indeed, this follows from the computation for 
I, J ∈ Z≥1:

qrw − u

w − u

qrw − qu

w − qu
. . .

qrw − uqJ−1

w − uqJ−1
1 − vw

1 − qrvw

1 − qvw

1 − qrqvw
. . .

1 − qI−1vw

1 − qrqI−1vw

= qrJ
(uqJ/w; q)∞
(u/w; q)∞

(q−ru/w; q)∞
(q−ruqJ/w; q)∞

(vw; q)∞
(vqIw; q)∞

(vqIwqr; q)∞
(vwqr; q)∞

.

(9.7)

The factor qrJ (leading to qr(J0+...+Jy) in the kernel) disappears after replacing ζ by 
ζq−J0−...−Jy . This change of variable accounts for the fact that in the left-hand side of 
(9.6) we take the q-Laplace transform of q−�(λ) as opposed to the height function in 
Theorem 9.2.

By the absolute convergence result of Proposition 4.4 and the boundedness of 
1/(ζq−�(λ); q)∞, the left-hand side of (9.6) is an analytic function of qJk , qIl under the 
bounds (9.5). In order to establish the analyticity of the Fredholm determinant we first 
observe that, due to the compactness of C and of the image of r → qr for r ∈ d + iR, 
there exists a constant M1 independent of Jk or Il such that
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sup
w,w′∈C,
r∈d+iR

∣∣∣∣f(w)/f(qrw)
qrw − w′

∣∣∣∣ < M1.

This implies that |K(w, w′)| < M2 integrating over r due to the exponential decay of 
1/ sin πr for large |r|. We can thus estimate the Fredholm determinant of K with

∑
l≥0

1
l!

∫
C

· · ·
∫
C

∣∣∣∣ l

det
i,j=1

(K(wi, wj))
∣∣∣∣ dw1 · · · dwl ≤

∑
l≥0

ll/2M l
3

l! ,

where we used the Hadamard inequality to bound the determinant of K(wi, wj), and 
M3 = M2�(C). This shows that the right-hand side of (9.6) is an absolutely convergent 
sum of analytic functions and hence it is analytic. This completes the proof. �
Remark 9.4. Fredholm determinantal expression (9.6) degenerates to a number of known 
results. In particular, considering the specialization u0 = −αε, v0 = −βε qJ0 = qI0 = 1/ε, 
ε → 0, and J1 = . . . = Jy = I1 = . . . = Ix = 1, we recover the expression for the q-
Laplace transform of the height function of the six vertex model with two-sided stationary 
bound conditions from [1, Proposition 4.1] (in the latter one has to set μ = 0). The latter 
formula is obtained by a more involved analytic continuation in qJ0 than in the proof of 
Theorem 9.3.

9.2. Higher spin six vertex model observables

The eigenrelations for the sqW or sHL functions give rise to moment formulas for the 
stochastic higher spin six vertex model. Consider the model with step-Bernoulli boundary 
conditions α = 0, β �= 0 (see Section 7.3). Assume that the parameters β, θ1, θ2, . . . are 
spaced in such a way that

q inf {(−1/θi)i≥1 ∪ (−1/β)} > sup {(−1/θi)i≥1 ∪ (−1/β)} . (9.8)

Let hHS(x, y) be the height function of this model, i.e., the number of paths in the vertex 
model which are weakly to the right of the point (x, y).

Following the same approach as in the proof of Proposition 9.1 (applying either D̃ or E
from Section 8 to the sum of the corresponding Cauchy identity), we obtain a q-moment 
formula which was first written down in [29]:

Proposition 9.5. We have

E
(
ql h

HS(x+1,y)
)

= (−1)lql(l−1)/2
∮

Γ[θ,β|1]

· · ·
∮

Γ[θ,β|l]

∏
1≤A<B≤l

zA − zB
zA − qzB

×
l∏{

y∏ qzk − ui

zk − ui

x∏ 1 − zks

1 + zkθi

1
1 + βzk

dzk
2πizk

}
,

(9.9)
k=1 i=1 i=1
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where the positively oriented contour Γ[θ, β|j] is around −1/β, −1/θ1, · · · − 1/θx, 
qΓ[θ, β|j + 1], and no other pole of the integrand.

The observable with both α, β nonzero (i.e., with the two-sided stationary boundary 
conditions) admits the following Fredholm determinantal expression:

Theorem 9.6. Consider the higher spin six vertex model with two-sided stationary bound-
ary conditions with parameters α, β. Let HHS be the centered height function of this model 
(cf. Section 7.3), and let M ∼ q-Poi(αβ) be independent of the vertex model. Then we 
have

E

(
1

(ζqHHS(x,y)−M; q)∞

)
= det(Id + K)L2(C). (9.10)

The kernel K is defined by

K(w,w′) = 1
2i

∫
d+iR

(−ζ)r

sin(πr)
f (w)/f (qrw)
qrw − w′ dr, (9.11)

where d ∈ (0, 1) and

f (w) = (−α/w; q)∞
(−βw; q)∞

y∏
l=1

1
w − ul

x∏
l=1

(sw; q)∞
(−θlw; q)∞

. (9.12)

Here C is a closed complex contour encircling 0, u1, u2, . . . and such that for all r ∈ d +iR, 
C contains −qr+kα for all k ≥ 0, but leaves outside 1/(qr+ks) and −1/(qkβ), 1/(qkθl)
for all k, l ≥ 0.

Proof. We use an analytic continuation argument staring from identity (9.6). Consid-
ering specializations sg(α) for u0, qJ0 and sg(β), sqW(θ1), sqW(θ2), . . . , respectively for 
v0, qJ0 , v1, qJ1 , v2, qJ2 , . . . , we can prove expression (9.10) for values α, ul, β, θl is a small 
neighborhood of the origin. Once (9.10) is established for parameters in an open set, 
we can perform an analytic continuation, always keeping them in a region where they 
define a probability measure. This is possible since both sides of (9.10) can be written 
as absolutely convergent series of holomorphic functions in α, ul, β, θl. �

Using the integral expression for the q-moments (9.9) we can obtain an alternative 
expression for the Fredholm determinant:

Theorem 9.7. Assume conditions (9.8). Let C̃ be a closed positively oriented contour en-
circling −1/β, −1/θ1, −1/θ2, . . . and which does not contain any point of the interior of 
q C̃. Then the Fredholm determinantal formula (9.10) holds when replacing C with C̃.
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Proof. The α = 0 case of this Theorem can be shown following the steps outlined in 
the proof of Theorem 9.2 (which in turn goes along the lines of [9], [14]). When α > 0 a 
q-moment expansion of the q-Laplace transform is not possible since the l-th q-moment 
becomes infinite for l large enough. In order to include the case where α > 0, we first 
produce a result analogous to that of Theorem 9.3 and subsequently we use analytic 
continuation.

We start by restating the result for α = 0 as

y∏
k=1

1
1 + ukβ

∏
1≤k≤y
1≤j≤x

1 − uks

1 + ukθj

∑
λ

Fλ(u1, . . . , uy)F∗
λ′(θ1, . . . , θx; β̃)

(ζqy−�(λ); q)∞

= det
(
Id + K

∣∣
α=0

)
L2(C̃) ,

(9.13)

where we used y − �(λ(x,y)) d= hHS(x + 1, y), and the summation in the left hand side of 
(9.13) makes sense for ui, θi, β, s in a complex neighborhood of the origin (under (9.8)). 
We can consider principal specializations of the sHL function and write the more general 
identity

y∏
k=0

(−ukq
Jkβ; q)∞

(−ukβ; q)∞

∏
0≤k≤y
1≤j≤x

(uks; q)∞(−θjukq
Jk ; q)∞

(ukqJks; q)∞(−θjuk; q)∞

×
∑
λ

F
(J0,...,Jy)
λ (u0, . . . , uy)F∗

λ′(θ1, . . . , θx; β̃)
(ζqJ0+···+Jy−�(λ); q)∞

= det
(
Id + K̃

)
L2(C̃),

(9.14)

which again holds for ui, qJiui, β, θi close to the origin. Here K̃ is given by (9.11) up to 
replacing ζ by ζqJ0+···+Jy−y, and f by

f̃ (w) = 1
(−βw; q)∞

y∏
l=0

(qJlul/w; q)∞
(ul/w; q)∞

x∏
l=1

(sw; q)∞
(−θlw; q)∞

.

(here we used computation (9.7)). We can now replace ζ by ζq−J0 in both sides of (9.14), 
and specialize parameters ul, qJlul as sg(α), sHL(u1), . . . sHL(uy) to deduce the claim of 
the theorem for α, ul, β, θl, s in a neighborhood of the origin. Indeed, under this special-
ization we take J1 = . . . = Jy = 1, and so in the left-hand side we obtain the observable 
(ζqy−�(λ); q)−1

∞ , and in the right-hand side the extra power qry is absorbed by going back 
from f̃ (w) to f (w) (9.12). The analytic restrictions on the parameters α, β, ul, θk, s can 
be further relaxed since both the q-Laplace transform and the Fredholm determinant 
are well defined and analytic when the parameters correspond to a probability measure 
and, moreover, satisfy (9.8). �
Remark 9.8. Another Fredholm determinantal formula for the stochastic higher spin six 
vertex model with two-sided stationary boundary conditions was obtained recently in 
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[37]. While this formula differs from ours, one should in principle be able to transform 
one to the other. We do not focus on this in the present work.

9.3. 4φ3 stochastic vertex model observables

By using the fact that the 4φ3 vertex model is equivalent in distribution to a marginal 
of the sqW/sqW field we can obtain contour integral expressions for the q-moments of 
the height function Hφ (described in Section 7.4). Indeed, this is possible by employing 
the eigenoperator E. However, only finitely many of the q-moments exist, and this also 
involves certain bounds on the parameters. Consider the model with step-stationary 
boundary conditions α = 0, β �= 0. Assume that β, θ1, θ2, . . . satisfy (9.8).

Proposition 9.9. If l is such that ql > max1≤t≤y{βξt}, we have

Estep
(
q−lHφ(x,y)

)
= (−1)lql(l−1)/2

∮
Γ[θ,β|1]

· · ·
∮

Γ[θ,β|l]

∏
1≤A<B≤l

zA − zB
zA − qzB

×
l∏

k=1

{
t∏

i=1

zk − s/q

zk + ξi/q

x∏
i=1

1 − zks

1 + zkθi

1
1 + βzk

dzk
2πizk

}
,

(9.15)

where Γ[θ, β|j] is a positively oriented contour around −1/β, −1/θ1, · · ·−1/θx, qΓ[θ, β|j+
1], and no other pole of the integrand. In case ql ≤ max1≤t≤y{βξt} we have 

Estep
φVM

(
q−lHφ(x,y)

)
= ∞.

Despite the fact that the distribution of Hφ is not characterized by its q-moments 
since only finitely many of them exist, we can still write down Fredholm determinant 
expressions for the q-Laplace transform of Hφ.

Theorem 9.10. Consider the 4φ3 stochastic vertex model with two-sided stationary bound-
ary conditions with parameters (α, β). Let M ∼ q-Poi(αβ) be independent of the vertex 
model. We have

EφVM(α,β)
( 1
(ζq−Hφ(x,y)−M; q)∞

)
= det(Id + K)L2(C). (9.16)

The kernel K is defined by

K(w,w′) = 1
2i

∫
d+iR

(−ζ)r

sin(πr)
f (w)/f (qrw)
qrw − w′ dr, (9.17)

where d ∈ (0, 1) and

f (w) = (−α/w; q)∞
(−βw; q)∞

y∏ (−ξl/w; q)∞
(s/w; q)∞

x∏ (sw; q)∞
(−θlw; q)∞

. (9.18)

l=1 l=1



82 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865
Here C is a closed complex contour encircling 0, qks for k ≥ 0 and such that, for any 
r ∈ d + iR, C contains qrC and −qr+kξl, −qr+kα for all k, l ≥ 0, but leaves outside 
1/(qr+ks) and −1/(qkθl), 1/(qkβ) for all k, l ≥ 0.

Proof. Expression (9.16) is derived from the general summation identity (9.6) in the same 
way as Theorem 9.6. First we establish (9.16) for parameters α, β, s, ξl, θl is a small neigh-
borhood of the origin by considering specializations of u0, qJ0 , u1, qJ1 , . . . , v0, qI0 , v1, qI1

in (9.6). Subsequently we relax conditions on these parameters moving them away from 
the origin but keeping them in real intervals in such a way that they always define a 
probability measure. This is possible due to the analyticity of both sides of (9.16) in the 
parameters. �
Theorem 9.11. Assume (9.8) and let C̃ be a closed complex contour encircling −1/β,
−1/θ1, −1/θ2, . . . and that does not contain any point of the interior of q C̃. Then ex-
pression (9.16) holds with contour C replaced by C̃.

Proof. This alternative determinantal expression for the q-Laplace transform follows 
from Theorem 9.7 using the sqW specializations and subsequent analytic continua-
tion. �
Remark 9.12. Both Theorems 9.10 and 9.11 degenerate to Fredholm determinantal for-
mulas for the q-Hahn pushTASEP. In particular, expression given by Theorem 9.11 was 
conjectured in [27] (Conjecture 3.11) for step initial conditions. Therefore, we have es-
tablished this conjecture. Moreover, by sending all parameters to 1, one can also get the 
proof of [27, Conjecture 4.6] on the Laplace transform of the one-point observable in the 
beta polymer like model introduced in [27].

Appendix A. Yang-Baxter equations

Here we review the Yang-Baxter equations used throughout the paper.

A.1. Basic cases

All Yang-Baxter equations we use can be traced to the following basic one:

Proposition A.1. Consider the vertex weights w, r defined respectively in Fig. 6 and 
Fig. 21. Then we have∑

k1,k2,k3

ru/v(i2, i1; k2, k1)wv,s(i3, k1; k3, j1)wu,s(k3, k2; j3, j2)

=
∑

wv,s(k3, i1; j3, k1)wu,s(i3, i2; k3, k2) ru/v(k2, k1; j2, j1)
(A.1)
k1,k2,k3



A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865 83
Fig. 21. In the top row we see all acceptable configurations of paths entering and exiting a vertex; below we 
reported the corresponding vertex weights rz(i1, j1; i2, j2).

Fig. 22. A schematic representation of the Yang-Baxter equation (A.1).

Fig. 23. The cross vertex weights Rz(i1, j1; i2, j2).

for all i1, i2, j1, j2 ∈ {0, 1} and i3, j3 ∈ Z≥0. A visual representation of this equation is 
given in Fig. 22.

Proof of Proposition A.1. This is established by a straightforward verification. Equation 
(A.1) appeared in several other works, including [41], [7], [21]. �

As explained in Section 3.4, from vertex weights wu,s one can define the dual weights 
w∗

v,s by changing u to 1/v, swapping the value of horizontal occupation numbers 0 ↔ 1, 
and multiplying by (s −v)/(1 −sv) in order to assign weight 1 to the empty configuration. 
These manipulations clearly preserve the structure of the Yang-Baxter equation, provided 
that the same swapping of the occupation numbers is applied to the cross weight rz. This 
leads to the definition of the cross weight Rz, see Fig. 23, also normalized so that the 
empty configuration has weight 1.

Proposition A.2. Consider the vertex weights w, w∗ and R, defined respectively in Figs. 6
and 8, and Fig. 23. Then we have
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∑
k1,k2,k3

Ruv(i2, i1; k2, k1)w∗
v,s(i3, k1; k3, j1)wu,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

w∗
v,s(k3, i1; j3, k1)wu,s(i3, i2; k3, k2)Ruv(k2, k1; j2, j1)

(A.2)

for all i1, i2, j1, j2 ∈ {0, 1} and i3, j3 ∈ Z≥0.

A.2. Fusion

Through a fusion procedure we generalize vertex weights wu,s and allow configura-
tions with multiple paths crossing a vertex in the horizontal direction. This technique 
of generalizing solutions to the Yang-Baxter equation was originally introduced in [39]
and consists in collapsing together a series of vertically attached vertices with spectral 
parameters forming a geometric progression with ratio q. The fusion of vertex weights 
also admits a probabilistic interpretation [29], [18], [21].

Define the fused vertex weight

w(J)
u,s (i1, j1; i2, j2) = 1i1+j1=i2+j2

(−1)i1+j2q
1
2 i1(i1−1+2j1)sj2−i1ui1(u/s; q)j1−i2(q; q)j1

(q; q)i1(q; q)j2(su; q)j1+i1

× 4φ3

(
q−i1 ; q−i2 , suqJ , qs/u

s2, q1+j2−i1 , q1−i2−j2+J

∣∣∣ q, q) ,

(A.3)

where 4φ3 is the regularized q-hypergeometric series (1.4). Here J is originally a positive 
integer representing the number of vertices which were fused together. However, it is easy 
to see that w(J) depends on qJ in a rational way, thus qJ can be regarded as the fourth 
independent parameter in (A.3) (along with u, s, and q). Since the regularized series 4φ3
terminates, (A.3) depends on all these parameters in a rational way. Moreover, in case 
i1, i2 → ∞, the weight w loses its dependence of j1 and we have

lim
n→∞

w(J)
u,s (n, j1;n + j1 − j2, j2) = (−uqJ )j2 (q−J ; q)j2

(q; q)j2
(suqJ ; q)∞
(su; q)∞

. (A.4)

Just as in the J = 1 case, the fused boundary weight is obtained removing the normal-
ization factor from (A.4), and we define

w(J)
u,s

( ∞
∞ k

)
= (−uqJ )k (q−J ; q)k

(q; q)k
. (A.5)

This normalization is needed to assign weight 1 to the empty configuration of paths in 
the grid. The fused analog of the dual weights w is defined similarly to (3.8):

w∗,(I)
v,s (i1, j1; i2, j2) = (s2; q)i1(q; q)i2

2 w(I)
v,s(i2, j1; i1; j2). (A.6)
(q; q)i1(s ; q)i2
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These quantities also depend on v, s, q, and qI in a rational way.
What makes the fused weights remarkable is that they satisfy a general version of the 

Yang-Baxter equation (previously in Appendix A.1 the horizontal occupation numbers 
had to be either 0 or 1). In order to state this equation we need to consider the fusion 
of the cross weights Rz leading to

R(I,J)
z (i1, j1; i2, j2) := 1i2+j1=i1+j2

qi2i1+
1
2 j2(j2−1)+j2J(−z)j2(q; q)j1

(z; q)j1+i2(q; q)j2(q; q)i2(q1−J/z; q)i1−j1

× 4φ3

(
q−i2 ; q−i1 , zqI , q1−J/z

q−J , q1+j2−i2 , q1−i1−j2+I

∣∣∣ q, q) .

(A.7)

Proposition A.3. Consider the weights w(J), w∗,(I) and R(I,J) defined in (A.3), (A.6), 
(A.7). Then we have∑

k1,k2,k3

R(I,J)
uv (i2, i1; k2, k1)w∗,(I)

v,s (i3, k1; k3, j1)w(J)
u,s (k3, k2; j3, j2)

=
∑

k1,k2,k3

w∗,(I)
v,s (k3, i1; j3, k1)w(J)

u,s (i3, i2; k3, k2)R(I,J)
uv (k2, k1; j2, j1),

(A.8)

for all admissible values of i1, i2, j1, j2 (that is, i1, j1 ∈ {0, 1, . . . , I − 1} for I a positive 
integer, or i1, j1 ∈ Z≥0 if qI is generic, and similarly for i2, j2), and i3, j3 ∈ Z≥0. See 
Fig. 11 for an illustration.

Note that in (A.8) (and in all other Yang-Baxter equations in this Appendix) for fixed 
boundary occupation numbers i1, i2, i3, j1, j2, j3 the sums over k1, k2, k3 in both sides are 
finite due to arrow preservation, so there are no convergence issues when i3 and j3 are 
finite. For situations with infinitely many paths one has to impose certain restrictions 
on parameters, cf. Definition 5.2 and Proposition 6.7.

Remark A.4. The fused cross weights R(I,J) inherit symmetries of the unfused weight R
of Fig. 23. One of these is given by the identity

R(I,J)
z (i1, j1; i2, j2) = R(J,I)

z (j1, i1; j2, i2) (A.9)

for all i1, j1, i2, j2 ∈ Z≥0.

Proposition A.5. Consider the vertex weight R(I,J)
z defined in (A.7). Then we have

∑
k1,k2

R(I,J)
z (a2, a1; k1, k2) = R(I,J)

z (0, I; 0, I) = R(I,J)
z (J, 0; J, 0) = (zqI ; q)∞(zqJ ; q)∞

(z; q)∞(zqI+J ; q)∞
(A.10)

for all a1, a2 ∈ Z≥0.
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Proof. The second and the third equalities in (A.10) follow, after algebraic manipula-
tions, from the definition of the fused cross weight R(I,J)

z given in (A.7).
The first equality in (A.10) is a trivial check in the case when I = J = 1, using the 

definition of Rz of Fig. 23. It lifts to more general I, J as the fusion procedure does not 
affect the structure of the identity. �
A.3. Spin q-Whittaker specialization

The spin q-Whittaker specialization of the general fused weights (A.3), (A.6) is ob-
tained by setting u = s and qJ = −ξ/s (recall that one can regard qJ as a generic 
parameter). After this specialization the complicated expression w(J)

u,s(i1, j1; i2, j2) (A.3)
factorizes and becomes Wξ,s(i1, j1; i2, j2) given by (3.12). Analogously, the dual fused 
weight w∗,(I)

v,s (i1, j1; i2, j2) (A.6) turns into W ∗
θ,s(i1, j1; i2, j2) (3.13) after setting v = s

and qI = −θ/s.
The most general Yang Baxter equation (A.8) specializes to Yang-Baxter equations 

involving Wξ,s and W ∗
θ,s as long as the corresponding specializations are applied to the 

cross weight R(I,J)
uv , too. Let us record the resulting identities:

Proposition A.6. We have the following Yang-Baxter equations:∑
k1,k2,k3

Rξ,v,s(i2, i1; k2, k1)w∗
v,s(i3, k1; k3, j1)Wξ,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

w∗
v,s(k3, i1; j3, k1)Wξ,s(i3, i2; k3, k2)Rξ,v,s(k2, k1; j2, j1);

(A.11)

∑
k1,k2,k3

R∗
θ,u,s(i2, i1; k2, k1)W ∗

θ,s(i3, k1; k3, j1)wu,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

W ∗
θ,s(k3, i1; j3, k1)wu,s(i3, i2; k3, k2)R∗

θ,u,s(k2, k1; j2, j1);
(A.12)

∑
k1,k2,k3

Rξ,θ,s(i2, i1; k2, k1)W ∗
θ,s(i3, k1; k3, j1)Wξ,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

W ∗
θ,s(k3, i1; j3, k1)Wξ,s(i3, i2; k3, k2)Rξ,θ,s(k2, k1; j2, j1).

(A.13)

The cross vertex weights in (A.11) and (A.12) are given in Figs. 24 and 25, respectively. 
Unlike with these two cases, in the third identity (A.13) the cross vertex weights do not 
factorize (here i1, i2, j1, j2 ∈ Z≥0):

Rξ,θ,s(i1, j1; i2, j2) = 1i2+j1=i1+j2

qi2i1+
1
2 j2(j2−1)(sξ)j2(q; q)j1

(s2; q)j1+i2(q; q)j2(q; q)i2(−q/(sξ); q)i1−j1

× 4φ3

(
q−i2 ; q−i1 ,−sθ,−q/(sξ)

−s/ξ, q1+j2−i2 ,−θq1−i1−j2/s

∣∣∣ q, q) .

(A.14)
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Fig. 24. The cross vertex weights Rξ,v,s(i1, j1; i2, j2), j1, j2 ∈ {0, 1}, i1, i2 ∈ Z≥0.

Fig. 25. The cross vertex weights R∗
θ,u,s(i1, j1; i2, j2), i1, i2 ∈ {0, 1}, j1, j2 ∈ Z≥0.

A.4. Scaled geometric specialization

The scaled geometric specialization of the general fused weight w(J)
u,s is given by setting 

u = −εα, qJ = 1/ε and taking the limit ε → 0. Analogously we can specialize the dual 
weight w∗,(I)

v,s taking v = −βε, qI = 1/ε and again ε → 0. In this case the expressions
(A.3), (A.5) simplify:

w̃α,s(i1, j1; i2, j2) = 1i1+j1=i2+j2

(−α/s)i1(−s)j2(q; q)j1
(q; q)i1(q; q)j2

× 3φ2

(
q−i1 ; q−i2 ,−sα

s2, q1+j2−i1

∣∣∣ q,−sq1+i2+j2

α

)
,

(A.15)

and

w̃α,s

( ∞
∞ k

)
= αk

(q; q)k
. (A.16)

The dual weights w̃∗
β,s are defined in the usual way as in (3.8).

We also consider the scaled geometric specialization of the fused cross weight R(I,J), 
in this case in the parameters v, qI , defining

R
(sg,J)
u,β (i1, j1; i2, j2) = 1i2+j1=i1+j2

(−uqJβ)i2(q−J ; q)i2
(q; q)i2(q−J ; q)i1

× 3φ2

(
q−i1 ; q−i2 ,−uβ

q−J , q1+j2−i2

∣∣∣ q,−q1+i1+j2

uqJβ

)
.

(A.17)

The scaled geometric specialization of R(I,J) in the parameters u, qJ can be derived from 
(A.17) using the symmetry (A.9) and it is



88 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865
Fig. 26. The cross vertex weight R(sHL,sg)
α,v (i1, j1; i2, j2), j1, j2 ∈ {0, 1}, i1, i2 ∈ Z≥0.

R(I,sg)
α,v (i1, j1; i2, j2) = R(sg,I)

v,α (j1, i1; j2, i2). (A.18)

Further degenerations of R(I,sg)
α,v involve specializations of parameters v, qI in one of the 

three cases, sHL(v) (which is simply I = 1), sqW(θ), or sg(β). These cross vertex weights 
are given, respectively, in Fig. 26 and below:

R
(sqW,sg)
α,θ (i1, j1; i2, j2) = 1i2+j1=i1+j2

(αθ)j2(−s/θ; q)j2
(q; q)j2(−s/θ; q)j1

× 3φ2

(
q−j1 ; q−j2 ,−sα

−s/θ, q1+i1−j1

∣∣∣ q, q1+j1+i2

αθ

)
,

(A.19)

R
(sg,sg)
α,β (i1, j1; i2, j2) = 1i2+j1=i1+j2

(αβ)j2
(q; q)j2

2φ1

(
q−j1 ; q−j2

q1+i1−j1

∣∣∣ q, q1+j1+i2

αβ

)
. (A.20)

These cross vertex weights enter a number of Yang-Baxter equations which are spe-
cializations of the general fused one (A.8):

Proposition A.7. We have the following Yang-Baxter equations:

∑
k1,k2,k3

R(sHL,sg)
α,v (i2, i1; k2, k1)w∗

v,s(i3, k1; k3, j1) w̃α,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

w∗
v,s(k3, i1; j3, k1) w̃α,s(i3, i2; k3, k2)R(sHL,sg)

α,v (k2, k1; j2, j1);

(A.21)∑
k1,k2,k3

R
(sqW,sg)
α,θ (i2, i1; k2, k1)W ∗

θ,s(i3, k1; k3, j1) w̃α,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

W ∗
θ,s(k3, i1; j3, k1) w̃α,s(i3, i2; k3, k2)R(sqW,sg)

α,θ (k2, k1; j2, j1);

(A.22)∑
k1,k2,k3

R
(sg,sg)
α,β (i2, i1; k2, k1) w̃∗

β,s(i3, k1; k3, j1) w̃α,s(k3, k2; j3, j2)

=
∑

k1,k2,k3

w̃∗
β,s(k3, i1; j3, k1) w̃α,s(i3, i2; k3, k2)R(sg,sg)

α,β (k2, k1; j2, j1).
(A.23)
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Dual cases of (A.21), (A.22), (A.23) obtained swapping the specializations are easily 
derived making use of the symmetry of the cross weight (A.18).

In Section 3, Cauchy Identities for spin Hall-Littlewood and spin q-Whittaker func-
tions were stated as corollaries of the Yang-Baxter equations given in this appendix. In 
particular, the emergence of the prefactors in the right-hand sides of all the skew Cauchy 
identities can be traced to Proposition A.5.

A.5. Nonnegativity of terms in the Yang-Baxter equations

Here we list conditions which are sufficient for the nonnegativity of all terms in both 
sides of the Yang-Baxter equations described in the previous parts of this Appendix. We 
will not discuss which of these assumptions are necessary. If the terms are nonnegative, 
then by Proposition 6.4 a stochastic bijectivization of the Yang-Baxter equation exists. 
We assume that s ∈ (−1, 0) and q ∈ (0, 1) throughout the rest of the subsection.

First, the weights wu,s and w∗
v,s given in Fig. 6 and Fig. 8 are nonnegative for u, v ∈

[0, 1]. The cross vertex weights ru/v from Fig. 21 are nonnegative when in addition u < v. 
Thus,

All summands in both sides of the Yang-Baxter equation (A.1) contain-
ing the weights wu,s, wv,s, and ru/v are nonnegative if 0 ≤ u < v ≤ 1.

Next, the cross vertex weights Ruv from Fig. 23 are nonnegative when 0 ≤ uv < 1. 
Therefore,

All summands in both sides of the Yang-Baxter equation (A.2) con-
taining the weights wu,s, w∗

v,s, and Ruv are nonnegative if u, v ∈ [0, 1). 
This in fact implies that (u, v) ∈ Adm for the sHL/sHL skew Cauchy 
structure (Definition 3.5).

Let us now turn to the spin q-Whittaker weights. The weights Wξ,s and W ∗
θ,s are 

nonnegative when ξ, θ ∈ [−s, −s−1]. The weights Rξ,v,s and R∗
θ,u,s from Figs. 24 and 25

are nonnegative when u, v ∈ [0, 1) and ξ, θ ∈ [−s, −s−1]. Thus, we have

All summands in both sides of the Yang-Baxter equation (A.11) con-
taining the weights Wξ,s, w∗

v,s, and Rξ,v,s are nonnegative if v ∈ [0, 1)
and ξ ∈ [−s, −s−1]. Similarly, the summands in (A.12) are nonnegative 
for u ∈ [0, 1), θ ∈ [−s, −s−1].

Further, let us consider (A.13) containing Wξ,s, W ∗
θ,s, and the non-factorized weights 

Rξ,θ,s (A.14). Their nonnegativity is not as straightforward, and requires an additional 
restriction on the parameters s and q:
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Proposition A.8. For ξ, θ ∈ [−s, −s−1], q ∈ (0, 1) and s ∈ [−√
q, 0), we have

Rξ,θ,s(i1, j1; i2, j2) ≥ 0 for all i1, j1, i2, j2 ∈ Z≥0.

The proof of this proposition is similar to [27, Proposition 3.1], with an additional 
simplification in the second case due to a symmetry of Rξ,θ,s.

Proof of Proposition A.8. Throughout the proof we will assume that i2 + j1 = i1 + j2. 
We need to show that

sj2(−θq1−i1−j2/s; q)i2
(−q/(sξ); q)i1−j1

4φ3

(
q−i2 ,− q

sξ ,−sθ, q−i1

− θ
sq

1−i1−j2 ,− s
ξ , q

1+j2−i2

∣∣∣∣ q, q
)

≥ 0. (A.24)

Here we used (1.4) to get to the usual q-hypergeometric function, and also the fact that 
the remaining prefactor in Rξ,θ,s having the form

qi2i1+
1
2 j2(j2−1)ξj2(q; q)j1(−s/ξ; q)i2(q1+j2−i2 ; q)i2

(s2; q)j1+i2(q; q)j2(q; q)i2

is nonnegative under our parameter restrictions in a straightforward way.
We will use Watson’s transformation formula [34, (III.19)]

4φ3

(
q−n, a, b, c

d, e, f

∣∣∣∣ q, q
)

= (d/b; q)n(d/c; q)n
(d; q)n(d/(bc); q)n

× 8φ7

(
q−n, σ, qσ1/2,−qσ1/2, f

a ,
e
a , b, c

σ1/2,−σ1/2, e, f, efab ,
ef
ac ,

efqn

a

∣∣∣∣ q, efqnbc

)
,

(A.25)

where def = abcq1−n and σ = ef/aq.

Case 1. When i2 ≤ j2, we apply (A.25) to (A.24) with n = i2. The prefactor in (A.25)
combined with the one from (A.24) becomes

sj2

(−q/(sξ); q)i1−j1

(q1−i1−j2/s2; q)i2(−θq1−j2/s; q)i2
(q1−j2/s2; q)i2

.

We have

(q1−i1−j2/s2; q)i2
(q1−j2/s2; q)i2

=
i2∏

m=1

qm−j2q−i1 − s2

qm−j2 − s2 ≥ 0,

since m − j2 ≤ 0 in the product. We also have

sj2(−θq1−j2/s; q)i2
(−q/(sξ); q)i1−j1

= sj2
i2∏(

1 + θ

s
qk−j2

) j2−i2∏ (
1 + q1−m

sξ

)
≥ 0,
k=1 m=1
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since all factors above (including sj2) are nonpositive, and there is a total of 2j2 of them.
The q-hypergeometric function after applying (A.25) to (A.24) takes the form

8φ7

(
q−i2 , σ, qσ1/2,−qσ1/2,−sξqj2−i2 , s2

q ,−sθ, q−i1

σ1/2,−σ1/2,− s
ξ , q

1+j2−i2 ,− s
θ q

j2−i2 , s2qj1 , s2qj2

∣∣∣∣ q, qi1+j2+1

ξθ

)
,

with σ = s2qj2−i2−1 ∈ (0, 1) because s2 ≤ q. One readily sees that each summand 
in this (terminating) q-hypergeometric series is nonnegative. Indeed, the only negative 
signs may come from (q−i2 ; q)k, (q−i1 ; q)k, and (s2q−1; q)k. However, the product of the 
former two factors is always nonnegative, and (s2q−1; q)k ≥ 0 also due to our additional 
parameter restriction s2 ≤ q. This implies the nonnegativity of Rξ,θ,s(i1, j1; i2, j2) when 
i2 ≤ j2.

Case 2. When i2 > j2, the claim follows due to the symmetry of Rξ,θ,s. Namely, by 
means of Remark A.4, we have

Rξ,θ,s(i1, j1; i2, j2) = Rθ,ξ,s(j1, i1; j2, i2)

for all i1, j1, i2, j2 ∈ Z≥0. This completes the proof. �
Proposition A.8 implies that

All summands in both sides of the Yang-Baxter equation (A.13) con-
taining the weights Wξ,s, W ∗

θ,s, and Rξ,θ,s are nonnegative if ξ, θ ∈
[−s, −s−1], q ∈ (0, 1), and s ∈ [−√

q, 0).

Finally, we address the nonnegativity of terms of the Yang-Baxter equations involving 
scaled geometric specializations from Proposition A.7.

Proposition A.9. For α ∈ [0, −s−1], q ∈ (0, 1) and s ∈ (−1, 0) we have

w̃α,s(i1, j1; i2, j2) ≥ 0 for all i1, j1, i2, j2 ∈ Z≥0.

Proof. Under our assumptions the prefactor

(−α/s)i1(−s)j2(q; q)j1
(q; q)i1(q; q)j2

is nonnegative. To check the remaining term, we write down the generic summand of the 
terminating q-hypergeometric series as (cf. (1.4)):

(
−sq1+j2+i2

)k (q−i1 ; q)k (q−i2 ; q)k(−sα; q)k(s2qk; q)i1−k(q1+j2−i1+k; q)i1−k,

α (q; q)k
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where k = 0, . . . , i1. The leading monomial term, along with (s2qk; q)i1−k and (q; q)k
are always nonnegative. The q-Pochhammer symbols of q−i1 and q−i2 either vanish, 
or they both carry a sign (−1)k, so that their contribution is nonnegative too. Next, 
(q1+j2−i1+k; q)i1−k is either nonnegative if 1 +j2−i1+k > 0, or vanishes if 1 +j2−i1+k ≤ 0
(in the latter case, the last term of the product has power j2 ≥ 0, which means that
product passes through 1 − q0 = 0). Finally, (−sα; q)k ≥ 0 because α ≤ −s−1. �

Proposition A.9 and the explicit form of R(sHL,sg)
α,v (Fig. 26) implies that

All summands in both sides of the Yang-Baxter equation (A.21) con-
taining the weights w̃α,s, w∗

v,s, and R(sHL,sg)
α,v are nonnegative if α ∈

[0, −s−1], v ∈ [0, 1).

In order to demonstrate the nonnegativity of (A.22) we consider the corresponding cross 
vertex weight:

Proposition A.10. For α ∈ [0, −s−1] and θ ∈ [−s, −s−1], we have

R
(sqW,sg)
α,θ (i1, j1; i2, j2) ≥ 0 for all i1, j1, i2, j2 ∈ Z≥0.

Proof. Assume first that θ > −s. In (A.19), the factors outside 3φ2 are nonnegative. In 
the expansion of 3φ2 using (1.4), one readily sees that all terms are nonnegative similarly 
to the proof of Proposition A.9 above (here we use the fact that −sα and −s/θ are less 
than 1 because of our assumptions).

We can now take the limit θ → −s and show that the weight R(sqW,sg) survives this 
transition. To do so, expand 3φ2 using (1.4), and collect terms containing −s/θ:

(−s/θ; q)j2(−qks/θ; q)j1−k

(−s/θ; q)j1
= (−qks/θ; q)j2−k,

with k = 0, . . . , min(j1, j2). The last expression is nonsingular at θ = −s, and is nonneg-
ative. �

Therefore,

All summands in both sides of the Yang-Baxter equation (A.22) con-
taining w̃α,s, W ∗

θ,s, and R(sqW,sg)
α,θ are nonnegative if α ∈ [0, −s−1], 

θ ∈ [−s, −s−1].

We come now to the last Yang-Baxter equation we stated (A.23), in which one readily 
sees (similarly to Propositions A.9 and A.10 above) that R(sg,sg)

α,β is nonnegative when 
0 ≤ α, β ≤ −s−1. Therefore,

All summands in both sides of the Yang-Baxter equation (A.23) con-
taining w̃ , w̃∗ , and R(sg,sg) are nonnegative if α, β ∈ [0, −s−1].
α,s β,s α,β
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