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1. Introduction
1.1. Overview

The interplay between symmetric functions and probability blossomed in the last
twenty years. In particular, the framework of Schur processes [48], [49] and Macdonald
processes [9] has lead to a significant progress in understanding a number of interesting
stochastic models from the so-called Kardar-Parisi-Zhang universality class. More re-
cently much attention was directed at the role of quantum integrability (in the form of the
Yang-Baxter equation/Bethe ansatz) in the theory of symmetric functions, with further
applications to probability. It was discovered that combinatorial properties (most promi-
nently, the Cauchy identity and symmetrization formulas) of many interesting families of
symmetric functions can be traced back to integrability (e.g., see [7], [56]). Employing this
point of view and starting with more general solutions to Yang-Baxter equation, [7] and
[21] defined two families of symmetric functions: the spin Hall-Littlewood (sHL) ratio-
nal symmetric functions and the spin ¢-Whittaker (sqW) symmetric polynomials, which
are one-parameter generalizations, respectively, of the classical Hall-Littlewood and ¢-
Whittaker symmetric functions, and obey similar combinatorial relations. See Fig. 1 for
the scheme of various symmetric functions and degenerations between them.

The goal of the present paper is to further study structural properties of the sHL
and sqW functions and connect them to known and new stochastic models. Here is a
summary of our results.

e Up to now, it was not clear whether new symmetric functions coming from integra-
bility are eigenfunctions of some difference operators acting on their variables.! The

L Note, however, that these functions (usually taking the form F\(z1, ..., zn)) are eigenfunctions of vertex
models’ transfer matrices acting on their labels A (which are tuples of integers A1 > ... > Ay encoding an
arrow configuration). The variables (z1,...,zN) are tuples of generic complex numbers, and the functions
are symmetric in the z;’s thanks to the Yang-Baxter equation.
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Fig. 1. An hierarchy of symmetric functions satisfying Cauchy type summation identities which can be uti-
lized to define random fields of Young diagrams. Arrows mean degenerations. Throughout the introduction
and most of the text it is convenient to replace the parameter ¢ by ¢ in spin Hall-Littlewood functions.

presence of such operators is both a key structural feature of the theory of Macdonald
polynomials, and an extremely useful tool for applications in probability. We present
difference operators acting diagonally on the sHL functions and on the sqW functions
which can be used to extract observables (¢g-moments of the first row/column) of the
corresponding measures.

o Based on Cauchy identities for sHL/sqW functions, we construct Yang-Bazxter fields
of random Young diagrams associated with these functions. This allows to relate
known stochastic vertex models (stochastic six vertex model [12], stochastic higher
spin vertex model [29], [18]) to sHL and sqW functions. In more detail, we match
the (joint) distribution of the height function in each of these vertex models and
(joint) distribution of the lengths of the first row/column of Young diagrams from the
corresponding random field. The (joint) distribution of the full diagrams is expressed
through the (skew) sHL/sqW functions in the same manner as in a Schur/Macdonald
process.

e A novel feature of this matching is that we cover a more general class of two-sided
stationary initial conditions in stochastic vertex models. These initial conditions de-
pend on two extra parameters (one can think that they encode the particle densities
on the left and on the right), and include the step as well as the stationary translation
invariant ones (the latter form a one-parameter subfamily).

e We define a new integrable stochastic vertex model with vertex weights expressed
through the terminating ¢-hypergeometric series 4¢3. These weights come from the
R matrix entering the Yang-Baxter equation for the sqW functions. The 4¢3 model
generalizes the ¢-Hahn PushTASEP recently introduced in [27].

o For the three stochastic vertex models mentioned above, with the general two-sided
stationary initial data, we produce Fredholm determinantal expressions for the g¢-
Laplace transform of the height function at a single point.

Let us now describe our results in more detail.
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1.2. Difference operators

The sHL functions Fy(ug,...,u,) are rational functions of n variables parametrized
by Young diagrams A = Ay > Ay > -+ > Ayn) > 0, A; € Z. They can be defined by the
following formula:

P, o) = A9 3 a{ I1 _q;L]H(l_Su)Aiaf[)uiuis}’

(@ @)n—e0n) ce6, ‘i<icj<n ¢ i=1 i=1

where (¢; q)n—¢(n) is the g-Pochhammer symbol (cf. Section 1.5), &,, is the permutation
group of n elements, and o acts on the indices of the variables u;, but not A; (if ¢ > £(\)
we have \; = 0, by agreement). These functions depend on two parameters ¢ and s.
The functions Fy(u1,...,uy), up to a certain modification, were introduced in [7]; the
modification first appeared in [33]. In case s = 0 these functions become standard Hall-
Littlewood functions [40, Chapter III], and for general s many of their properties are very
similar to the ones of the standard Hall-Littlewood functions (in particular, Cauchy iden-
tity, symmetrization formula, interpretation as a partition function of suitably weighted
semistandard Young tableaux).

However, some important properties were missing; perhaps, the most important one
is the presence of difference operators acting diagonally on Fy(u1, ..., u,). We prove that
such operators exist. Define the (Hall-Littlewood versions of) the Macdonald operators
by

0,= 3 ( 11 %)TOJ, r=1,2,...,n
i j

Ic{1,...,n} i€l
[I|l=r  J€{1,..n}\I

where Tp ; is the operator setting all u;, ¢ € I, to zero. Note that the operators ®, do
not depend on s and coincide with the standard Macdonald operators. We prove the
following result.

Theorem 1.1 (Theorem 8.2 in the text). For all Young diagrams A and n € Z>1 we have

97" F)\(UI’ A )un) = 67"(1’Q7 i '7qnie()\)71) F)\(u:l? R ’un)’

where e,(T1, ..., Tk) = Y 1<j o ci <k Tiy - - - Ti, 5 the v-th elementary symmetric poly-
nomial.

Let us now turn to the sqW functions F3 (&1, . . ., &m). The shortest way to define them
is via the Cauchy identity

m n

SOF (€ ) () = [ ] -, (1.1)
A

1—wu;s
1=17=1 3 S
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where )\’ stands for the conjugation of a Young diagram. (Note that the left-hand side
of (1.1) depends on an additional quantization parameter ¢ which enters both F} and
Fy.) This is indeed a definition of the F}’s, as they can be extracted as coefficients of
the expansion thanks to the orthogonality relation for the sHL functions [13] (which we
recall in Proposition 8.6). When s = 0, F} becomes the usual g-Whittaker polynomial
(i.e., Macdonald polynomial [40, Chapter VI] with ¢ = 0).

The functions F} (&1, ..., &) were introduced in [21]. They showed that for general s
the family {F} (&1, ..., &m )} satisfies natural properties (Cauchy identities and represen-
tations as partition functions). The question about the existence of difference operators
acting diagonally on [Fy was open. We obtain one such difference operator. Define the
operator acting on rational functions in (61, ...,0;) as follows:

l

1
s 0,
¢ = <1+—> ( 5
Z 0, oy 0, —0;

(=)'
4 )Tq1’6j+91"'91 I1d.
Jj=1

Here Id is the identity operator, and Ty-1 4, acts by multiplying 6; by 1/g.

Theorem 1.2 (Theorem 8.7 in the text). We have €F;(6,...,0,) = ¢ MF5(01,...,0))
for all Young diagrams X\ and alll € Z>;.

Note that in the classical theory, as well as in the case of sHL functions, we have
many eigenoperators of all orders, rather than just one. The existence of higher order
eigenoperators for the sqW functions remains open. However, already the presence of
one operator brings a lot from both algebraic combinatorial and probabilistic points of
view. In particular, first row/column observables of measures based on sqW functions
can be extracted and analyzed via the already standard technique introduced in [9] for
Macdonald measures.

Remark 1.3. We originally arrived at eigenoperators for the sqW and sHL functions
through ¢-moments of the stochastic higher spin six vertex model computed before
[29], [18]. Namely, we used the matching via the Yang-Baxter field (see below in Sec-
tion 1.3) to recognize that these g-moments are at the same time g-moments of the
measures on Young diagrams expressed through the sHL and sqW functions. The dif-
ference operators arise by reversing the g-moment computations starting from known
contour integrals. However, our proofs of the eigenrelations presented in the paper are
more direct, and use only the necessary minimum of the properties of the sHL and the
sqW functions.

1.3. Yang-Baaxter fields and matching to stochastic verter models

The usefulness of symmetric functions in probabilistic questions is greatly emphasized
by the frameworks of Schur and Macdonald processes. This approach stems from the
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Fig. 2. Stochastic vertex weights L 0 (%1, j1; t2, j2) for the higher spin model.

combination of two general ideas. First, asymptotic behavior of random Young diagrams
with probabilistic weights coming from a symmetric function summation identity is often
accessible via exact computations with symmetric functions. Second, such Young dia-
grams turn out to be related to many natural probabilistic models. In order to quantify
this relation, one needs to utilize certain combinatorial structures behind the symmetric
functions.

First examples of such usage involved RSK (Robinson-Schensted-Knuth) correspon-
dence to establish a relation between Schur functions and models of longest increasing
subsequences/last passage percolation/TASEP [3], [38], [44], [43]. A bit later, a simpler
construction not based on RSK was suggested in [15]. In the present paper we employ
the third type of construction introduced in [24] — the Yang-Bazter fields. (A more de-
tailed historical overview of all these constructions is given in Section 2.6.) We construct
three Yang-Baxter fields based on three types of Cauchy identities for the sHL and sqW
functions. Let us formulate a sample result in detail.

Fix ¢ € [0,1), s € (—1,0), and inhomogeneity parameters {0;},cz-,, {Uy}tyez-,>
satisfying 0, € [—s,—s7!], u, € [0,1). Informally, the stochastic higher spin vertex
model [29], [18] is a random collection of paths on edges of Z>o X Z>¢ such that each
vertex (x,y) has one of four possible types from Fig. 2 and contributes the weight shown
there with § = 6, and u = u,. We also need to prescribe (possibly random) boundary
conditions by € {0,1}, b? € Z>0, which parametrize the number of arrows coming into
the quadrant from the left and from below, respectively.

In more detail, the stochastic higher spin six vertex model is the (unique) probability
measure on the set of up-right directed paths on Z>¢ X Z>( (with multiple vertical paths
allowed per edge, but at most one horizontal path per edge) satisfying:

o Each vertex (0,y) at the vertical boundary {(0,4’) : ¥/ > 1} emanates a path initially
pointing to the right if by = 1;

o« Each vertex (z,0) at the horizontal boundary {(z/,0) : 2’ > 1} emanates b paths
initially pointing upward;

 For each (z,y), conditioned to the path configuration at all vertices (2’,y’) such that
z' +y' < x+y, the probability of a vertex configuration (i1, j1;i2, j2) at (z,y) is given
by Lu, 0, (1,713 42, jo). Moreover, the random choices made at diagonally adjacent
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vertices ..., (z — 1,y + 1), (z,y), (x + 1,y — 1), ... are independent under the same
condition.

Take the step boundary conditions b] = 1, b? = 0. Let h™5 (2, y) be the height function,
which is defined as the number of paths which go through or to the right of the point
(z,y). We are interested in the distribution of h15(z, y).

On the symmetric function side, let us consider a random Young diagram A(*¥) with

1—u;s
ProbA" =v) = [ ——% Fu(ur,...,uy)F(01,...,0.). (1.2)
1<i<a 1 +uj9i
1<j<y

Cauchy identity (1.1) implies that the sum of the above probabilities over all v is equal
to 1, as it should be. The next result is a particular case of Theorem 7.18 in the text:

Theorem 1.4. For any fized (x,y) in the quadrant, the random variables y —((A*¥)) and
pHS (x + 1,y) have the same distribution.

Our Theorem 7.18 contains a more general statement. First, it provides a matching
of the whole two-dimensional array {h™5(z + 1,y)} to an array of scalar observables of
a Yang-Baxter field of Young diagrams {)\(w’y)} which we construct. In particular, joint
distributions of h™5(z + 1,y), when (z,y) follow a down-right path, can be accessed
through a suitable analogue of a Schur or Macdonald process. Second, Theorem 7.18
includes more general boundary conditions for the vertex model, at a cost of suitably
modifying the symmetric functions in the right-hand side of (1.2). Namely, we allow b} €
{0,1} to be independent Bernoulli random variables, and b € Z>q to be independent g-
negative binomial random variables (cf. Section 1.5 for the latter). We call such boundary
conditions of the field of Young diagrams (two-sided) scaled geometric, they match with
two-sided stationary boundary conditions in stochastic vertex models.

The matching we just described in Theorem 1.4 arises in the setting of the Cauchy
identity (1.1) involving one sHL and one sqW function. We consider two other Cauchy
identities, one with two sHL functions, and another with two sqW functions. The vertex
models and the corresponding matchings are described in Section 7.2 and Section 7.4. In
all cases we prove analogues of Theorem 1.4 (and the more general Theorem 7.18).
The matchings between stochastic vertex models with two-sided stationary bound-
ary conditions and symmetric functions have not been known before in any of the
cases.

In the sHL/sHL case, on the vertex model side we obtain the stochastic six vertex
model [36], [12] and essentially recover (a new degeneration of) the matching of [24].
We observe a curious property that the stochastic six vertex model is independent of
the parameter s, while this parameter enters the sHL /sHL Yang-Baxter field. This in-
dependence of s might be explained by Theorem 1.1: the eigenoperators for the spin
Hall-Littlewood polynomials do not depend on s either.
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The extension of the sHL/sHL field matching to the stochastic six vertex model to
the two-sided stationary boundary conditions is new. In the sqW/sqW situation the
Yang-Baxter field produces a new integrable stochastic vertex model with vertex weights
expressed through the terminating ¢-hypergeometric series 4¢3. This model generalizes
the g-Hahn PushTASEP [27]. We match the height function of this model to a field of
random Young diagrams whose distributions are expressed through a product of two
sqW functions.

1.4. Fredholm determinants for observables

The difference operators ©; and & diagonal in the sHL or sqW functions, respectively,
allow to express (in a nested contour integral form) the g-moments of the height function
in each of the three vertex models with step boundary conditions. It is known (e.g.,
see [14]) that such g-moment formulas can be organized into generating series leading
to Fredholm determinantal formulas for the g-Laplace transform E (1 / (CqH(‘”’y); q)oo)7
where H(z,y) is the height function in either of the three models. This approach works
well both for the stochastic six vertex and stochastic higher spin six vertex models with
step boundary conditions.

However, for the 4¢3 vertex model only finitely many of the g-moments exist, and
thus the generating series cannot be used. Moreover, for the more general two-sided sta-
tionary boundary conditions, explicit ¢g-moments are not known and also may not be
finite. We overcome both these issues at the same time by considering an analytic con-
tinuation based on the fusion procedure for vertex models [39] (see [29] for a stochastic
interpretation of fusion). We start with the Fredholm determinant for the (inhomo-
geneous) stochastic six vertex model with parameters (vy,u,), where (z,y) € Z2%,.

—ly, and

Then we replace each u; and v; by a finite geometric sequence u;, qu;, . . ., q’
Vi, qUj, . .. ,qli_lvj. It turns out that the resulting measure depends on the parameters
(U$7q1w7uy,qu) in an analytic way. Then, taking certain specializations of these pa-
rameters, we can get to both the sqW functions and the two-sided stationary boundary
conditions in the vertex models. The fusion and analytic continuation from sHL functions
to the sqW ones was first performed in [21].

The Fredholm determinantal formula we obtain in the sqW/sqW setting in particular
establishes the Fredholm determinant for the g-Hahn PushTASEP which was conjectured
in [27].

Analytic continuations leading to Fredholm determinants for stationary stochastic
particle systems were performed in [11] (¢-Whittaker measures and random polymers)
and [1] (stochastic six vertex model). In the first reference, the continuation significantly
used the structure of the algebra of symmetric functions. Our analytic continuation
based on fusion is more similar to the approach taken in the second reference, but due
to connections with sHL and sqW symmetric functions, the argument is more straight-
forward.
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1.5. Notation

Throughout the paper we use the g-Pochhammer symbols

1, n =0; s
(@;@)n = S ITim (T —ag™™t), n>1; and  (4:0)00 = [[(A1 —ag'™"). (1.3)
12, (1—ag)™!, n<-1, =t

We also use the notation

k

- q_n;ala"'aak‘ q_n;ala"wak‘

2| = ba . ) 2

k+1¢’“< b1, .. by q) il;[l(lq)" k+1¢’“< br,... bp |1
n k

= ZJM a: )il b )
- JZ::O (¢:9); g( $30)5(q?bi; Q)n—j

for the regularized terminating g-hypergeometric series.
We say that a random variable X has the ¢-negative binomial distribution with pa-
rameters (r,p), or X ~ ¢-NB(r,p), if

(s @)k (P5 @)oo
Prob{X = k} = pF 2 /0 1.5
{ I (5 @)k (5 @)oo (1.5)
In case r = 0 we say that X is a ¢-Poisson random variable of parameter p, or X ~
g-Poi(p) (sometimes this distribution is also called g-geometric). Finally, the Bernoulli
random variable X ~ Ber(p), X € {0,1}, has Prob{X = 1} = p and Prob{X = 0} =
1—p.

1.6. Outline

In Section 2 we outline a general formalism for constructing random fields from sym-
metric (rational) functions. In Section 3 we recall the spin Hall-Littlewood and spin
g-Whittaker symmetric functions introduced in [7] and [21], respectively. In Section 4
we consider the general form of the skew Cauchy equation which follows from the fused
Yang-Baxter equation, and in Section 5 consider yet another family of its specializations
which we refer to as “scaled geometric”. In Section 6 we apply bijectivization to the Yang-
Baxter equations obtaining local stochastic moves of Yang-Baxter type. In Section 7 we
discuss the Yang-Baxter fields thus arising together with their scalar marginals (projec-
tions). In Section 8 we define difference operators acting diagonally on our symmetric
functions, and study their properties. In Section 9 we write down Fredholm determi-
nantal observables for stochastic particle systems arising from our Yang-Baxter fields.
Finally, in Appendix A we list all instances of the Yang-Baxter equation employed in
the paper, and discuss the nonnegativity of terms entering these equations.
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2. Random fields from skew Cauchy identities

In this section we describe an abstract formalism of random fields which is applied to
several concrete situations in the rest of the paper.

2.1. Skew Cauchy structures

The fields we consider in this paper are collections of random Young diagrams indexed
by points of the two-dimensional quadrant ZQ>0. A Young diagram (= partition) is a
sequence of integers A = (A1 > ... > Ay > O)._The quantity £(A) is called the length of
the Young diagram A. Denote by Y the set of all Young diagrams including the empty
one A = & (by agreement, ¢(&) = 0). It is convenient to be able to add zeros at the end of
a Young diagram A, and to not distinguish the sequences (A1, ..., ¢) and (A1,...,Ag, 0).

Assume that for every pair of Young diagrams A, p and any k € Z>; we are given
two functions )/, (u1,...,ux) and Sy, (u1, ..., ux) (which may also depend on some
external parameters). This data is called a skew Cauchy structure if the functions satisfy
the following properties:

1. The functions are rational in the u;’s and are symmetric with respect to permutations
of uy,..., ug.
2. Define relations <j, and <3 on Y x Y such that

Soyuur, k) #0 i g < X Sy, ... up) #0 iff g < A (2.1)
Moreover, for each A the sets {u: u <x A} and {p: p < A} are finite. By agreement,

we extend these relations to k = 0 and set §y,,(2) = 6/,(9) = 1r=,.”
3. (Branching rules) For each 1 <m < k — 1 we have

S/, oue) =Y Faseun o U)oy (U k), (2.2)

2 Throughout the paper 1,4 denotes the indicator of A.
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A XV
(u) ¥ Y
% X M
()
Fig. 3. An illustration of relations between the four diagrams A, pu, >z, and v in the skew Cauchy identity

(2.3). The variable u should be thought of corresponding to the vertical direction, and v corresponds to the
horizontal one. Here we are using the shorthand notation < = <; and < = <.

and the same branching rule for &/, (obtained by replacing each § above by &)
holds, too. Note that the sum over s above is finite.

4. (Skew Cauchy identity) There exists a rational function II(u;v) and a subset Adm C
C? such that for all (u,v) € Adm one has (see Fig. 3 for the illustration)

Z Su/u(w)B, 5 (v) = H(u;v) Z /e (W) 5 (V). (2.3)

Note that the sum over s in the right-hand side is finite while the sum over v in the
left-hand side might be infinite. The set Adm corresponds to pairs (u, v) for which the
infinite sum converges.

5. (Nonnegativity) There exist two sets P, P C C such that

Sajulur, ... up) >0, w; € P for all 4 Gy/p(vL, ... vk) >0, vjepforallj.

Remark 2.1. The functions §y,, and &)/, are rational thus might be undefined for
special values of the variables u; or the external parameters. Therefore, all statements in
this section should be understood in the sense of generic variables and parameters (i.e.,
outside vanishing sets of some algebraic expressions).

The branching rules (2.2) imply that for any u, A the function §y/,(u1,. .., ux) van-
ishes unless there exists a sequence of Young diagrams {3V} with

(k—1)

n <1 %(1) <1 %(2) <1...<1 > <1 A

If §x/u(w) # 0 for all pairs p <1 A, then we can replace the relation <, by the existence
of a sequence () as above, and (2.1) will continue to hold. A similar remark is valid for
=<, too.

Note also that the skew Cauchy identity for single variables (2.3) together with (2.2)
implies the skew Cauchy identity for any number of variables:

ZSU/,U.(UM cee 7un)®v/)\(vl7 e 7’Um)

= HHH(ui;Uj)ZSA/”(W’""u")qs#/”(vl""’Um)’
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where (u;,v;) € Adm for all 4, j.

Example 2.2. The prototypical example of a skew Cauchy structure is given by the Schur
symmetric polynomials [40, Chapter IJ:

Sajp(us, .. up) = Gy (u, ..o up) = sxp(ur, .., ug),

where sy, is the skew Schur polynomial. The relations 4 <1 A and p <1 A are the same
and mean interlacing:

<A < M2 2> g > ...

1
The factor in the right-hand side of the skew Cauchy identity is II(u; v) = T’ and the

convergence in the left-hand side holds with Adm = {(u,v): |uv| < 1}. The nonnegativity
setsare P =P = R>g, and the fact that sy, (u1, ... ,ug) > 0 for u; > 0 follows from the
combinatorial formula for the skew Schur polynomials representing them as generating
functions of semistandard Young tableaux of the skew shape \/pu.

This Schur skew Cauchy structure will serve as a running example throughout this
section. In the rest of the paper we consider other skew Cauchy structures associated
with spin Hall-Littlewood and spin ¢-Whittaker functions.

2.2. Gibbs measures

Through the branching rules, each family of functions §,, and &, leads to a version
of a Gibbs property. This property also depends on a choice of parameters uy, ug,... € P
or v1,vs, ... € P, respectively, which we assume fixed.

Definition 2.3 (Gibbs measures). A probability measure on a (finite or infinite) sequence
of Young diagrams

AO < AD << A<

is called §-Gibbs (with parameters u;) if for all m,n with 0 < m < n —1, the conditional
distribution of A1 . A= given 7 = A" and p = A(® has the form

1
E S)\(erl)/T (Um—i-l)S)\(er?)/,\(erl) (u77l+2) cee gp/)\(nfl) (Un)v

and, in particular, is independent of A() with i < m or i > n. The normalizing constant
has the form Z = §,/7 (um+1,...,un) by (2.2). Note that the set of sequences Am) <4
AmAD < 0 <0 A with fixed A(™) and A(™) is finite, so there are no convergence
issues in defining Z.

The &-Gibbs property is defined in a similar way.
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Example 2.4. In the Schur case with u; = u for all i, the Gibbs property reduces to the
one with uniform conditional probabilities. That is, a measure on an interlacing sequence
of diagrams @ < A(Y < A < .. is (uniform) Gibbs if, conditioned on any A(™ = p,
the distribution of A, ..., A(»=1 is uniform among all sequences of Young diagrams
satisfying the interlacing constraints.

2.83. Random fields associated to a skew Cauchy structure
Fix a skew Cauchy structure (§,®) and parameters
U1, Ug,...; V1,V2,..., suchthat (ug,v,)€ Adm, u, €P, v, € P for all z,y. (2.5)

A random field corresponding to this data is a family of random Young diagrams
A = {A\@¥} indexed by points of the quadrant (x,y) € Z%, with a certain spatial

dependence structure determined by the functions §,,, and ®,,,. We begin by describ-

v/
ing the appropriate class of boundary conditions.

Definition 2.5 (Gibbs boundary conditions). A random two-sided sequence of Young di-
agrams

(0,2) (0,1)

T = ( o1 7(0’3) 1T 1T 1 7'(0’0) '.<1 7'(170) -.<1 T(27O) -.<1 T(3’0) -<1 .. ) (26)

is called an (§, ®)-Gibbs boundary condition (or a Gibbs boundary condition, for short) if
the sequences {7®¥)}, 5 and {7(*9} 54 are F-Gibbs and &-Gibbs, respectively (in the
sense of Definition 2.3, with parameters (2.5)), and, moreover, the sequences {T(O’y)}y21
and {7(®91 <, are conditionally independent given 7(*:0).

For a Gibbs boundary condition 7 denote

Zk(;ghygdary = Z S'T(o,y)/r(o,o) (’Ltl, ey 'Uzy)@.r(a:,())/T(O,O) (Ul, e ,Um), (.’[, y) S Z220'
7(0,0)
(2.7)
This quantity is random and depends on 7(#:0) and 7%,
We will mostly deal with the following particular case of Gibbs boundary conditions:

Definition 2.6 (Step-type boundary conditions). A Gibbs boundary condition 7 is called
step-type in the wvertical (resp., horizontal) direction if the F-Gibbs distribution of the
sequence {7(®¥)}, > (resp., the &-Gibbs distribution of {7(*9},5) is supported on a
single sequence. That is, the boundary diagrams are nonrandom but the Gibbs property
still holds.

A step-type boundary condition T is the one which is step-type in both horizontal
and vertical directions. For such boundary conditions the quantity Zémof’rzdary (2.7) is not
random and is readily written down (e.g., in some examples 7(0Y) = 7(.0) — 7(0,0) — ).
See Section 2.6 below for the origin of the term “step”.
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For (z,y) € Z220 denote the northwest and the southeast quadrants by

NWey) = {(m,n) € Z%5: m <z, n >y},

SE (4.y) = {(m,n) € Z25: m >z, n < y}.
We are now in a position to formulate the main definition of the section:

Definition 2.7 (Random fields). A family of random Young diagrams A = {\®¥): (z,y) €
ZQZO} is called a random field associated with the skew Cauchy structure (§,®) and
parameters (2.5) with a Gibbs boundary condition 7 if:

1. The diagrams satisfy A(®¥) <; A@v+D) and \@&v) <5 A\@HLY) for all (x,y) € Z2,,.

2. The diagrams at the boundary of the quadrant Z2, agree with 7 A0 = _T(“”O),
A0 = 709 for all z,y > 0. -

3. For all (z,y) € Z2,, let us use the shorthand notation

= )\(wvy)’ W= )\(:H-l,y)’ A\ = )\(1711-"-1)’ v = \E+Ly+1) (2.8)
(which matches Fig. 3). We require that
Prob(% | ). (m,n) € NW(x,y-i-l) USE (x+17y))

> G, /5 (Va
:Prob(%|)\7u):3/\/ (y11)8 450 (Vg 1)

)

ZETJ/)
(mm) (2.9)
Prob(v | A"™™: (m,n) € NW(, 1) USE (441,4))

v/u &,/ (vy
=Prob(v| A\ p) = Su/y (“erzl()xvy)/A(v +1)7

where fo’y) and ng’y) are the normalizing constants. The skew Cauchy identity (2.3)

implies that Z{™Y) = Tty 115 Vet 1) A2

See Fig. 4 for an illustration. Observe that the restrictions on the Young diagrams in
Condition 1. follow from Condition 3.. Note also that a random field is not determined
uniquely by the above conditions. We discuss this in Section 2.4 below.

Definition 2.8. A collection {(z;, yi)}iLzl C Z%,, where L > 1, is called a down-right path
if 1 =0, yr = 0, and the difference between consecutive vertices (21, ¥i+1) — (24, Yi)
is either (0, —1) or (1,0) for all 4.

Proposition 2.9. Let A be a field. Then the joint distribution of the Young diagrams along
each down-right path {(mi,yi)}le conditioned on 7OV and 79 has the form
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O [ XD Ey@D D @D

70,0 | -(1,0) 57(2,0) 57(3,0) 57(4,0) 57(5,0)

N A NN NN B
U1 U2 U3 V4 U5

Fig. 4. A random field of Young diagrams {/\(w’y)} with boundary conditions 7, and an example of a down-
right path.

1
Z H gA(liwyi)/)\(ziJrl’yiJrl) (uy,) H Qj,\(zri+1vyi+1>/)\<zlnyi) (Vair)-

path 1 Yip1=Yi—1 i xip1=x;+1
(2.10)
The normalizing constant has the form

_ rr(zr,y1) | I .
Zpath - Zboundary H(“yv UE)'
(z,y) below the path

Proof. This follows by induction on flipping the down-right path using elementary steps
L—" (i.e., by replacing the down-right corners by the right-down ones). The induction
base is the path which first makes only down steps to (0,0) and then only right steps.
For this path the statement follows from the Gibbs property of the boundary condition
(Definition 2.5).

The inductive step uses (2.9). Let us fix some L corner (z,y) in the path and use
the notation of (2.9). Conditioned on A, u, the Young diagram s is independent of the
diagram along the rest of the path. Using the induction assumption and (2.9) to replace
the two factors corresponding to (A, s, 1) in (2.10) by the ones corresponding to (A, v, i),
we obtain the desired joint distribution along the modified down-right path. O

For the special choice of the path which first makes only right steps and then only
down steps, we obtain with the help of the branching (2.2):

Corollary 2.10. For any x,y > 1 we have

B Trew /@0 (Uly -y Uy ) B r@w) /700 (V15 - o5 Vz)

Prob(A@¥) | 7(0:9) 7(.0)) )

(2.11)

The normalizing constant has the form
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r Y
Z(T7y) = Zlgifrzdary H H H(uy7 Uw)'

i=1j=1

Note that for the step-type boundary conditions 7 there is no need to condition on
the boundary values 7(%% and 7(#:9) in Proposition 2.9 and Corollary 2.10. For general
Gibbs boundary conditions we have the following Gibbs preservation property:

Proposition 2.11. For any (z,y) € Zzzo, the two-sided sequence

1 AEVFD o A@ED) @) 2 \@HLy) o)A@ o
is an (§, ®)-Gibbs boundary condition in the sense of Definition 2.5.
Proof. Immediately follows from Proposition 2.9. 0O

Example 2.12. In the Schur case the distributions of Proposition 2.9 and Corollary 2.10
become the Schur processes and the Schur measures introduced in [49] and [48], re-
spectively (see also [20]). Early examples of random fields in this case were based on
Robinson-Schensted-Knuth correspondences. Other approaches were suggested more re-
cently in, e.g., [15], [55], [17]. See Section 2.6 for more historical discussion.

2.4. Transition probabilities as bijectivizations of the skew Cauchy identity

Let us fix a skew Cauchy structure (§,®), parameters (2.5), and a Gibbs boundary
condition 7. Definition 2.5 does not characterize uniquely a random field A correspond-
ing to this data. Namely, consider any quadruple of neighboring Young diagrams (2.8)
(related as in Fig. 3) corresponding to (z,y) € Z2,. Given A, p1, condition (2.9) charac-
terizes the marginal distributions of s and v sepzirately. One readily sees that picking
any joint distribution of (3¢,v) given A, u with required marginals s and v produces a
valid random field A (and this choice can be made independently at every location (z,y)
in the quadrant). Therefore, one has to employ additional considerations to pick random
fields with interesting properties, for example, possessing scalar Markovian marginals
(see Section 2.5 below).

It is convenient to encode the choice of the joint distribution of (3¢,v) given A and pu
in an equivalent form of conditional probabilities. This leads to the following definition:

Definition 2.13. Let u,v € C be such that (u,v) € Adm, u € P, v € P. The functions

UM Ge—s v A p),  UDN(w— 5| A\ p)

,U

on quadruples of diagrams as in Fig. 3 are called, respectively, the forward and the
backward transition probabilities if:
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1. The functions are nonnegative and sum to one over the second argument:

Z Ude (e—=v|Xp) =1 for all triples A 1 » <1 p,
(2.12)
Z Ugﬁ)d(l/ — x| Ap) =1 for all triples A <1 v =1 p.

»

We will interpret U™4(sc — v | A\, 1) as a conditional distribution of v given A =

U bwd

<1, and as the opposite conditional distribution.

2. The functions satisfy the reversibility condition

UL (e = v | A 1) - T(u;0)F e (@) B e (0) = U (v = 52 | Ay 1) - B () By (0).
(2.13)

Summing both sides of (2.13) over s and v produces the skew Cauchy identity (2.3).
Therefore, choosing transition probabilities Ufuwg and UB"Z)d corresponds to a refinement
(“bijectivization”) of the skew Cauchy identity (for a general discussion of bijectivization,
see Section 6.1 below). In the following sections we build bijectivizations of various

concrete skew Cauchy identities out of bijectivizations of the Yang-Baxter equations.

Remark 2.14. Summing (2.13) over s, we get
U v Z UZWS % -V | /\Hu) : S)\/%(u)®u/%(v) = Su/u(u)ﬁu/)\(v) (214)

This identity was used in [17] and [42] as a starting point to construct random fields
associated with g-Whittaker functions. The advantage of (2.13) compared with (2.14) is
that the former is more symmetric and does not involve summation.

Remark 2.15 (Borodin—Ferrari random fields). The existence of at least one random field
corresponding to a skew Cauchy structure (§, ®) is evident from the above discussion.
An explicit basic construction of a field was suggested in [15] based on an idea of [31].
Namely, if U™ (5c — v | A, ) is independent of s, then by (2.14) it must have the form

gy/p(u)ﬁy/)\(v)
T(u;0) 325 8x/5 ()G (v)

if there exists % such that A =1 % <7 p. Though this construction of a random field

UMd(se » v | A\ p) =

is rather simple and works in full generality for an arbitrary skew Cauchy structure,
it does not produce all known examples of fields with scalar Markovian marginals. See
Section 2.6 below for more discussion.

Using just the forward transition probabilities, start with arbitrary fixed (not neces-
sarily Gibbs) boundary values N@:0) = 7(@0) and \O¥) = 7(09) 2 4 > 0, and define a
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family of random Young diagrams {\(*#)} indexed by the quadrant as follows. By induc-
tion on x 4+ y = n, assume that the Young diagrams with z +y < n — 1 are determined.
Then, independently for each (z,y) with z +y = n and z,y > 1 sample A(®¥) having the
distribution Ud, (A@=hv=1 — Aww) | A#vth) AE+1v) - where A@=1y=1) Aley+l)
and \#+19) are already determined. The next proposition immediately follows from the
definitions:

Proposition 2.16. If the boundary condition T in the above construction is Gibbs, then
the resulting collection of random Young diagrams {\@¥}, (x,y) € Zx¢ forms a random
field in the sense of Definition 2.7.

Therefore, random fields associated with a skew Cauchy structure (§, ®) correspond

Ude allow

to forward transition probabilities, and vice versa. Moreover, the probabilities
to construct a joint distribution on Young diagrams {)\(x’y)} indexed by points of the
quadrant Zz>0 starting from arbitrary boundary values. However, the Gibbs property on
the bounda;y is needed for Proposition 2.9 describing joint distributions of the Young
diagrams along down-right paths. We will not consider non-Gibbs boundary conditions

in the present paper.
2.5. Scalar marginals

Let A be a random field in the sense of Definition 2.7 and h: Y — Z be a function.
When the scalar random variables {h(A(*¥))} indexed by (x,y) € Z2%, evolve (in the
sense of forward steps) independently of the rest of A, we call h(X) a scalar (Markovian)
marginal of a field A.

In detail, this independence means the following. For a finitely supported function F
on Z we can write for any field A:

S O Fh@)UNdGe—v | A\ p) = ZF(n)( > Ude(%%VH\u)) (2.15)

veY nez v: h(v)=n

We say that the random field A is h-adapted if the quantity in the parentheses above

Ug‘}v(k —n|lm):= Z Ude(% = v|Amp) (2.16)

v: h(v)=n

depends on A, s, i only through £ = h(X), k¥ = h(sr), and m = h(u). The function Ui[r,]v
is nonnegative and ) - U[ ] v(k — n | £,m) =1 for all £,k,m such that there exists
at least one triple A\ =1 s <1 . In words, to sample v knowing A, s, u we first look at
¢, k,m and sample n = h(v) independently of any other information about the diagrams
A, 5, i, and then sample the rest of the diagram v.
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For a h-adapted field A, the joint distribution of the scalar quantities h(A(®¥)), (z,y) €
Z%o (forming the scalar marginal of A corresponding to h), can be described using (2.16)
as forward transition probabilities:

Prob (h(ASH19D) = | RS0 = £, h(AED) = i, A1) = m, )

h
= U1[i11+1,vm+1(k —=n|l,m).
Note that while for a scalar marginal h the forward transition probabilities factorize as
in (2.15)—(2.16), the backward ones do not have to factorize in the same way.

Remark 2.17. One can take an arbitrary set instead of Z as the target of h as this is
essentially the index set of equivalence classes of Young diagrams. In the rest of the
paper we mostly focus on integer-valued scalar Markovian marginals, but also mention
their higher-dimensional (multilayer) extensions obtained by refining these equivalence
classes.

Scalar marginals in the Schur case (our running example) are discussed in the next
Section 2.6.

2.6. Ezisting constructions of random fields

This subsection is a brief review of known random fields associated with skew Cauchy
structures corresponding to various families of symmetric functions (see Fig. 1 for the
hierarchy of symmetric functions we mention below).

Constructing probability measures on Young diagrams related to the Schur symmetric
functions by means of Markov dynamics on Young tableaux goes back at least to [54]. The
first such mechanism employed in many well-known developments in Integrable Proba-
bility starting from [3] and [38] is the Robinson-Schensted-Knuth (RSK) correspondence.
In particular, the RSK gives rise to a random field of Young diagrams associated with
Schur functions whose scalar marginal field is identified with the Totally Asymmetric
Simple Exclusion Process (TASEP).? The distributions in TASEP started from a special
initial configuration called “step” (when the particles occupy the negative half-line while
the positive half-line is empty) are then related to the Schur measures and processes
introduced in [48], [49]. The corresponding field of random Young diagrams in this case
has step-type Gibbs boundary condition in the sense of our Definition 2.6. Further ap-
plications of RSK and its tropical version to particle systems, last passage percolation

3 To make a precise identification with the standard continuous-time TASEP one has to perform a Poisson-
like limit transition which makes one of the field’s discrete coordinates Z~q into continuous R~q. If one
makes both coordinates continuous, then the field’s scalar marginal can be linked to the distribution of
the length of the longest increasing subsequence of a random permutation. Besides certain simplification of
stochastic mechanisms, such continuous limits do not introduce any significant changes into the structure
of the fields. In the present paper we focus only on the fully discrete picture.
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models, and random polymers were developed in [44], [43], [4], [25], [45], [28], [47], and
related works.

Another mechanism of constructing random fields associated with Schur polynomials
was suggested in [15], see also [6]. (We outlined this construction in Remark 2.15.) This
mechanism was later employed in [9] to discover the (continuous-time) g-deformation of
the TASEP as a scalar marginal in a field associated with the ¢-Whittaker functions.
The integrable structure of the ¢-TASEP is based on the ¢-difference operators diagonal
in the ¢-Whittaker polynomials (these are the t = 0 Macdonald difference operators [40,
Chapter V1.3]). It soon became apparent, however, that Borodin—Ferrari random fields
cannot produce all known integrable stochastic particle systems on the line as their
Markovian marginals. Early examples of stochastic particle systems not coming out of
Borodin—Ferrari fields include the discrete-time ¢-TASEPs suggested in [10].

This issue motivated the search for other constructions of random fields, and resulted
in discovery of g-Whittaker and Hall-Littlewood randomizations of the RSK correspon-
dence [46], [17], [23], [42], [22]. On the ¢-Whittaker side, this brought new ¢-TASEPs and
¢-PushTASEPs whose distributions are expressed through the ¢-Whittaker measures and
processes. The Hall-Littlewood side brought the integrable structure of Hall-Littlewood
measures and processes to the stochastic six vertex model and the ASEP (i.e., TASEP
with left and right jumps allowed).

In parallel to these developments a new extension of the g-TASEP called the ¢-Hahn
TASEP was invented [51], [26]. Further investigation of this process has led to the sys-
tematic development of the spin Hall-Littlewood (sHL) symmetric rational functions and
the associated stochastic vertex models [13], [7], [29], [16], [18]. In particular, the Yang-
Baxter equation for the higher spin six vertex model implies the skew Cauchy identity
for the sHL functions. Recently, the spin ¢-Whittaker (sqW) symmetric polynomials
were introduced in [21] as the dual complement (which for s = 0 reduces to the ¢ <> ¢
Macdonald involution) of the sHL ones.

These new skew Cauchy structures called for extending the random field constructions
which would bring interesting scalar marginals. In [24] this was performed in the sHL
setting based on a new idea of bijectivization of the Yang-Baxter equation (we recall
it in Section 6 below). This idea allowed to bypass technical difficulties associated with
randomizing the RSKs and, on the other hand, by design has produced a scalar marginal
of the sHL. Yang-Baxter field which is a new dynamical extension of the stochastic six
vertex model.* In this paper we complete the picture by constructing Yang-Baxter fields
associated with two other skew Cauchy structures corresponding to the sqW/sHL and
the sqW /sqW skew Cauchy identities (see Section 7), and find that their scalar marginals
are related to the stochastic higher spin six vertex model of [29], [18] and to the ¢-Hahn
PushTASEP recently introduced in [27]. In Section 8 we employ the former connection
to discover new difference operators acting diagonally on sqW or stable sHL functions.

4 Similar stochastic vertex models from Yang-Baxter equations are developed in [2], but without connect-
ing them to random fields or symmetric functions.
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1 2 3 4 5

1w
Fig. 5. Left: Configuration |\) of vertical arrows corresponding to the Young diagram A = (4,4,2,1,1,1).
Right: Interlacing of X\ with p = (4,2,2,1,1,1).

Remark 2.18. One can also define the notion of a random field of Young diagrams
associated with Macdonald or Jack symmetric functions since they, too, satisfy skew
Cauchy identities. However, due to the more complicated “nonlocal” structure of the
Jack and Macdonald Pieri rules compared to the g-Whittaker or Hall-Littlewood ones,”
it seems unlikely that there exist Jack or Macdonald random fields with scalar Markovian
marginals. In this paper we do not focus on this question.

3. Spin Hall-Littlewood and spin g-Whittaker functions

In this section we review the main properties of the stable spin Hall-Littlewood and
spin ¢-Whittaker symmetric functions [7], [21] which lead to skew Cauchy structures.
These functions are defined as partition functions of certain ensembles of lattice paths
realized through a vertex model formalism. We fix the main “quantization” parameter
q € (0,1). In contrast with Fig. 1, throughout the text we use ¢ to denote the quanti-
zation parameter in both spin Hall-Littlewood and spin ¢-Whittaker functions, which is
convenient when considering Yang-Baxter fields based on both families.

3.1. Young diagrams as arrow configurations

We represent Young diagrams A = (A1 > ... > Ay > 0) as configurations of vertical
arrows on Z>g. Let A be written in the multiplicative notation as A = 142" . where ;
is the number of parts of A which are equal to i. By definition, the arrow configuration
corresponding to A, denoted by |A), contains [; vertical arrows at location ¢. The number
of vertical arrows at 0 is assumed infinite which reflects the fact that one can append
Young diagrams by zeros without changing them. See Fig. 5, left, for an illustration.

3.2. Stable spin Hall-Littlewood functions

The first collection of vertex weights we work with is given in Fig. 6. Along with ¢,
these weights depend on two quantities u,s € C, which are called the spectral and the
spin parameters, respectively. The weights w, s satisfy the Yang-Baxter equation, see
Appendix A.

5 The Pieri coefficients of the g-Whittaker and Hall-Littlewood functions involve products of only nearest
neighbor terms (properly understood), while in the Jack and Macdonald cases the products are over all
pairs of indices.
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g Y g+1

‘H | m

\H I [ I

g+1 g g

e | | A2 | v |

Fig. 6. In the top row we see all acceptable configurations of arrows entering and exiting a vertex; below we
reported the corresponding vertex weights w., (%1, j1; %2, j2)-

For vertices at the left boundary we set

00 00
wu7s< ) = wy, s(00,T;00,1) = u, w%s( . ) = Wy, s(00, F;00,0) = 1.
00 00

(3.1)
Both in Fig. 6 and in (3.1), we attribute weight zero to all configurations which are not

listed. In particular, the following arrow conservation property holds:
W5 (i1, J15 92, J2) =0 unless 43 + j1 = iz + jo. (3.2)

Definition 3.1 (Interlacing). Fix u, A € Y. We say that u and X interlace (notation p < A)
if there exists a configuration of finitely many horizontal arrows between |u) and |\) as in
Fig. 5, right, such that the arrow conservation property holds at each vertex.® In detail,
< A if either of the two hold:

6()\) = é(u) and ,ug(u) S )\g()\) S e S )\2 S M1 S )\1, (3 3)
LA) = L(p) + 1 and Ay < pe(uy < Aepy—1 <o < Ao <pp <A .

Note that for each A € Y, the number of p such that p < A is finite.

Definition 3.2. For p, A € Y with g < A, a stable spin Hall-Littlewood function in one
variable, denoted by Fy/,(u), is defined as the total weight (= product of individual
vertex weights) of the unique configuration of arrows between |u) and |A) as in Fig. 5,
right. Here the individual vertex weights are the w, ;s from Fig. 6, and the left boundary
weights are (3.1). If 1 A A, we set Fy/,(u) = 0.

In the sequel we will mostly omit the word “stable” (cf. Section 3.3 on connections to
the non-stable functions which were originally defined in [7]), and will also abbreviate
the name to simply the sHL functions.

Define the functions with multiple variables inductively via the branching rule (cf.

(2.2)):

6 If such a horizontal arrow configuration exists, then it is unique. The restriction that there are only
finitely many horizontal arrows ensures that the configuration on the far right is empty.
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o0 |A) 00 |5)
Ug o e ._J“ V1
Uus . . Vg |[——r~t
Uy . V3 . .
us . N . o e .
Uy [ a—o—B e e V5 .
Uy . . Vg . ._]
n n
1 2 ... "u> 1 2 ... |V>

N
v/

Fig. 7. Examples of configurations of up-right and down-right paths used in the definitions of Fy,,, and F
respectively.

Fa/u(vn,uw) =Y Fay(ur) Fuyp(un, o upy). (3.4)
That is, Fy/,(u1,...,ux) is a partition function of ensembles of up-right paths as in
Fig. 7, left, with height k, spectral parameters uq,...,u; corresponding to horizontal

slices, and boundary conditions |u), 0°°, |A) and empty at the bottom, left, up, and
right, respectively. The fact that the paths are directed up-right corresponds to the arrow
conservation property (3.2). Note that Fy/, (w1, ..., ux) vanishes unless 0 < £(\) —£(u) <
k, but this condition is not sufficient.

The Yang-Baxter equation implies that Fy/,(u1,...,us) is symmetric with respect
to permutations of the wu;’s, see, e.g., [7, Theorem 3.6]. These functions also satisfy the
stability property

FA/H(ul,...,uk,O):F,\/H(ul,...,uk). (35)

For p = @, the stable spin Hall-Littlewood functions admit an explicit symmetrization
formula [21, (45)] which we recall and use in Section 8. When s = 0, the stable spin
Hall-Littlewood functions become the usual Hall-Littlewood symmetric polynomials [40,
Chapter III].

3.83. Remark. Relations to non-stable sHL functions

The spin Hall-Littlewood functions were originally introduced in [7] in their non-
stable version which we denote by FR?Z‘“. The stable modification appeared in [33] and
[21]. The non-stable sHL functions differ by the boundary condition on the left: a new
horizontal arrow enters at each horizontal slice and each vertical edge on the leftmost
column hosts only finitely many arrows.

In detail, the definition of F’/{‘}Z‘St depends on the number of zero parts in A =

0e1h12f .. and p = 0m01™27™ ... and FR9%*(u) vanishes unless lo + Iy + ... =
1+ mg+ m1 +.... When the latter condition holds, we define the single-variable func-

tion Fﬁ%‘“(u) as the weight of the unique configuration as in Definition 3.2, but now

the horizontal arrow must enter at the leftmost boundary, and the vertex weight at the
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zeroth column is wy s(mo, 151y, mo + 1 — lp). The multivariable version is defined using
the branching rule exactly as in (3.4).

There are two possible ways one could specialize the non-stable sHL functions to
obtain our Fy/,. The first is to send both Iy and mg, the numbers of zeros in A and p,
to infinity. By looking at the weight of the leftmost vertices we see that

. u’ .
wu,s(mOal;ZOa]) ol 300 1— su’ J € {Oal},
and therefore we obtain
k
Fasu(u, . oug) = [J(1 = sui) x molli;gw A puomo (1 -+ k). (3.6)
i=1 ’

Here AUO% means adding Iy zeros to the Young diagram A (which had no zeros originally),
and similarly for p U Q™o.

Another way is to consider the inhomogeneous vertex model as in [18] with the spin
parameter s,, n € Zx>q, depending on the horizontal coordinate n in Fig. 7. Taking

Fr/{oﬁ‘“ and setting sp = 0 and s, = s, n > 0, from Fig. 6 we see that

W0(i1, 1;42,0) = 1 — ¢* and  wy (i1, 1;i2,1) = u.
Therefore, we obtain

1
F Uy oo Up) = — non-st w7 U1y U R 3.7
A/u( ) (q;q)kif(/\)H(#) AUOE—£()+£(n) /, ( ) 560 (3.7)

where we assume that u, A had no zeros originally. Equality (3.7) is particularly use-
ful when adapting the results about the non-stable sHL functions (like symmetrization
formulas or integral representations [7], [18]) to the stable case.

3.4. Dual stable spin Hall-Littlewood functions
Let us introduce the dual weights to w, s from Fig. 6 as follows:

(5% 9)i, (45 Q)i

Wy, (i2, 1301, j2)- 3.8
(4:9)i, (%59, (i, jri . Jo) (38)

wy, (i1, 1342, j2) =

The arrow conservation law (3.2) implies that w; (i1, j1; 2, j2) vanishes unless iz +j; =

i1+ j2, and as a result the corresponding vertex model produces configurations of directed

*
v,8

down-right paths (see Fig. 7, right). The explicit form of the weights w . is given in

Fig. 8. The weights wy ; at the left boundary are given by the same formulas as in
(3.1).
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g9 g g+1

I | \H |

I I \H |

g g+1 g
G | e | L |oe | 0ot

Fig. 8. In the top row we see all acceptable configurations of paths entering and exiting a vertex; below we
reported the corresponding vertex weights w, (i1, ji;i2,j2)-

The weights w}, ; can be obtained from w, s by substituting u with 1 /v, swapping the
values of both horizontal edge indices j; and j5 (that is if j; = 0, then we change its value
1 and vice versa, and the same for j;), and multiplying the result by (v—s)/(1—ws). This
swapping construction of the dual weights was instrumental in deriving Cauchy identi-
ties for the sHL functions from the Yang-Baxter equation [7] (a bijectivization of this
argument appeared in [24]). In the present paper we employ a more direct approach with
down-right paths which is better suited for the generalization to spin ¢-Whittaker func-
tions. The Yang-Baxter equation connecting wy, s and wy, ; is recorded in Appendix A.

Definition 3.3. Fix sr,v € Y with s < v and place the arrow configuration |v) under |s).
Then there exists a unique configuration of horizontal arrows between |») and |v). By
definition, a dual stable sHL function in one variable, denoted by Fj‘//%(v), is the total
weight of this horizontal arrow configuration, where the individual vertex weights are
the wy ’s from Fig. 8, and the left boundary weights are the same as in (3.1). If 2 A v,
we set Fl’i/%(v) =0.

The multivariable generalization F /%(vl, ...,U;) is defined via the branching rule
exactly as in (3.4). It is the partition function of ensembles of down-right paths as in
Fig. 7, right, of height k, spectral parameters vy, . .., vi corresponding to horizontal slices,
and boundary conditions |»), 0%, |v), and empty at the bottom, left, top, and right,
respectively.

The relation (3.8) between wj , and w, s implies that

c(N)

() Pl o) =By (), (3.9)

where the factor c is

(5% @)m,
e() =[] EDm op = ymigma
2-21 (qv(I)ml

The symmetry of F;‘\/H(vl, ..., vx) in the vjs follows from the symmetry of F,,,. The
dual sHL function also satisfies the same stability property (3.5) as the non-dual one.
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3.5. The sHL/sHL skew Cauchy structure

One of the main consequences of the Yang-Baxter equation (either Proposition A.l
or Proposition A.2) is the skew Cauchy identity for the sHL functions:

Theorem 3.4 ([7], [18], [21, Section 7.4]). For any two Young diagrams X, ju and generic
parameters u,v € C (cf. Remark 2.1) such that |(u — s)(v — s)| < [(1 — su)(1 — sv)|, we
have

— quv
ZF»/A Fuju(u) = ZFA/% Fluyse (V) (3.10)

1—wuv

We recall a “bijective” proof of Theorem 3.4 in Section 7.2 below which follows the
approach of [24]. This identity (together with the branching rules for the sHL functions)
leads to the first of the skew Cauchy structures we consider in the paper:

Definition 3.5. The families of functions

Sasp(ur, o ug) = Fyyp(ur, .. ug), Gy/u(ve, .. vp) = Ff\/u(vl, Ce s Vk)

form a skew Cauchy structure in the sense of Section 2.1 with the following identifications:

(i) The relations p < A and g <j A are the same and mean the existence of a sequence
of Young diagrams p < 21 < ... < (=1 < X\ where < is the interlacing relation
(3.3).

(if) The skew Cauchy identity holds with

Adm = {(u,v): |(u—s)(v — )| < |1 —su)(1 —sv)|},  T(u;v) = 11—_q5:'
(3.11)

(iii) Let us choose the external parameters ¢ € (0,1), s € (—1,0), and take P = P = [0, 1].
Then the probability weights based on Fy/,(u1,...,ux) and F’;\/H(vl, ..., Ug) with
ui, vj € [0,1] are nonnegative due to the nonnegativity of all the vertex weights in
Figs. 6 and 8.

We call this the sHL/sHL skew Cauchy structure.
Remark 3.6. When u,v € [0,1) and s € (—1,0), one can check that (u,v) € Adm.
3.6. Spin q-Whittaker polynomials
Along with the sHL functions we will work with the spin ¢-Whittaker (sqW) polyno-

mials introduced in [21] which we recall here. We start by defining the vertex weights
We s as
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(78/& q)jz (785; Q)il_jz (q; Q)i2
(459) 2 (4 @iy - (5% Q)i

We (i, 13 d2, J2) = Liy 1 ji=intjo Liy>js £ ;o (312)
where i1, j1,12,j2 € Z>o. Note that in contrast with w, s and wjj,s used in the definition
of the sHL functions, here the number of horizontal arrows ji, jo can be arbitrary and
not just zero or one.

The dual version of the weight W¢ , is given by

5% 0)i (¢; ) o
( q)l (q q)12 W@,S(l27j1;7/17j2)7 (313)

Wy (i1, J13 02, J2) = ———F5——
b ) (730)ir (5% )i

which is the same relation as between w and w* (3.8). The weights Wy _ vanish unless i+
j1 =11+ 72, therefore the dual vertex model will have down-right paths. The dependence
of both W¢ , and Wy s on their respective spectral parameters ¢, 0 is polynomial.

As explained in Appendix A, there exists a close relation between the weights W
and the weights w: the former can be obtained from the latter through a procedure
called fusion. The fusion consists in collapsing multiple w-weighted rows of vertices with
spectral parameters forming a geometric progression with ratio ¢ Fusion originated in
[39] and was employed in [7], [29], [18], [21] in connection with stochastic vertex models.
In particular, the weights W, and Wy _ satisfy the Yang-Baxter equation listed in
Appendix A. '

Define the left boundary weights for j € Z>¢ by

Wm( = ):Wg‘,s< zzj )Z&jw. (3.14)

00 (4:9);

Definition 3.7 (Column interlacing). Fix p, A € Y. We write <’ X\ and say that p and A
column-interlace if there exists a configuration of finitely many horizontal arrows between
|y and |A) (located one under another as in Fig. 5) such that at each vertex (i1, j1; 2, j2)
the arrow conservation property i1+ j1 = i2+ jo holds, and, moreover, jo < ¢;. Note that
now we allow arbitrarily many horizontal arrows per edge. (If such a horizontal arrow
configuration exists, then it is unique.) One can check that p <"\ if and only if ©/ < N,
where ' and X stand for transposed Young diagrams:

Np=#{i N > g}

Definition 3.8. For u, A € Y with u <’ A\, a spin q- Whittaker polynomial in one variable,
denoted by Fy/,/(€), is defined as the total weight of the unique configuration of arrows
between |p) and |A). Here the individual vertex weights are We ¢ (3.12), (3.14). If pp A" A,
we set [Fy /,/(§) = 0.

We will abbreviate the name and call Fy/,,, simply the (skew) sqW polynomial. Note
that it is indexed by the transposed Young diagrams for consistency with the s = 0
situation when Fy/,,» turns into the more common skew g-Whittaker polynomial which
is a t = 0 degeneration of the corresponding Macdonald polynomial [40], [9].
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The dual sqW polynomials IFV/%(G) are defined in a similar manner, up to placing
[v) under |»), and using the dual vertex weights Wy . (3.13), (3.14). We have (cf. (3.9))

% Forpoer (€1, &6) = Fp (&1, k) (3.15)

The multivariable polynomials Fy,,(1,. .., &) and IFV/%(Hl, ..., 0k) are defined via
the branching rules exactly as in (3.4). One can view them as partition functions of path
ensembles similarly to the ones in Fig. 7, but with multiple horizontal arrows allowed per
edge. The Yang-Baxter equation implies that Fy,,(¢1,...,&) and ]Fj/%(ﬂl, ..., 0k) are
symmetric in their respective variables. They also satisfy the following stability property:

Fasul€rs- s 8k—1,—5) = Fx/pu(&1,- -, 6k—1)

(and similarly for I /%), which follows from the vanishing of the vertex weight W_g .
Note that here we are substituting (—s) for one of the variables in contrast with the sHL
functions where we substituted 0 (3.5).

3.7. The sHL/sqW skew Cauchy structure

The Yang-Baxter equation for the weights (w} ., We ), see Proposition A.6, implies

’US7

the following “dual” skew Cauchy identity for the sHL and sqW functions:

Theorem 3.9 (/21, Section 7.3]). For any two Young diagrams A, pi, and generic &, u € C
(cf. Remark 2.1; in particular, u # s~1) we have

1
S E (O 0 = T R Ol

(3.16)
ZF://,\,(Q Fuju(u) = 1+U§ZFM 1130 (&) Py ().

1—us

Note that the sums over v and s in both sides are actually finite, so there are no con-
vergence issues. The above two identities are equivalent: One can multiply the first one
by c(u)/c(N) and redistribute the factors to get the second one.

We give a “bijective” proof of Theorem 3.9 in Section 7.3 below. This leads to the
following definition:

Definition 3.10. The families of functions §y/,(u1,...ux) = F’)‘\/H(uh...,uk) and
Gx/ul€ry o5 &) = Fajpr (&1, .., &) form a skew Cauchy structure in the sense of Sec-
tion 2.1 with the following identifications:
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(i) The relations <, < on'Y x Y are

(k=1)

< A e TV eY:ip<x® <. < <\

H=<r A & Hp(j)eY;M<' p(l) DY p(k—l) <A,
where < and <’ are the usual and the column interlacing relations (Definitions 3.1

and 3.7).
(ii) The skew Cauchy identity holds with Adm = {(u,£) € C?: u # s~'} and

1+ ué
1—su’

(us€) = (3.17)

(iii) The external parameters of the functions are ¢ € (0,1) and s € (—1,0), and the
nonnegativity sets for the spectral parameters are P = [0,1], P = [=s, —s~!]. Then
the probability weights based on Ff\/u(ul, <o ug) and Fyrype (&1, ..., &) are non-
negative for u; € P, §; € P due to the nonnegativity of the vertex weights in Fig. 8
and (3.12).

We call this the sHL/sqW skew Cauchy structure.

Remark 3.11. Definition 3.10 is based on the first of the skew Cauchy identities (3.16).
One readily sees that taking the second of these identities leads to the same notion
of a random field associated with the other skew Cauchy structure. In other words,
one can understand skew Cauchy structures up to “gauge transformations” of the form
T/ Guyse) = (% T/ % ®,,..), where c() is nowhere vanishing. The same re-
mark applies to the two other skew Cauchy structures — it does not matter which of

“ kM

the two families of functions carries the
3.8. The sqW/sqW skew Cauchy structure

The spin ¢g-Whittaker polynomials also satisfy the following skew Cauchy identity
which follows from the Yang-Baxter equation (A.13):

Theorem 3.12 (/21, Section 7.1]). For any two Young diagrams A, u and parameters
&,0 € C with |£0] < 1 we have

ZFV//\ u/u (0) = ( (2?3? Ef;i e Z Fpuya( )FA/%(Q) (3.18)

We give a “bijective” proof of Theorem 3.12 in Section 7.4 below. This identity moti-
vates the definition of the third skew Cauchy structure we consider in the present paper:
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Definition 3.13. The families of functions

%’)\//L(917 . 761’6) = ]F;\k/#(elv .- '7916)7 6)\/u(51) s 751@) = ]F)\//l,(glv e 7516)

form a skew Cauchy structure in the sense of Section 2.1 under the following identifica-
tions:

(i) The relations 1 <x A and g <y A are the same and mean the existence of »(?) such
that < 2 < ... < 3*=1) < X\ where < is the interlacing relation (3.3).
(ii) The skew Cauchy identity holds with Adm = {(6,&) € C?: |¢6] < 1} and

(=585 @)oo (—50; @)oo
(5% @)oo (€05 @)oo

I(6;¢) = (3.19)
Both Adm and II are symmetric in £ and 8 so the order is not essential. We write
(0, &) to match with the notation of Section 2.1.

(iii) The external parameters are ¢ € (0,1) and s € (—1,0), and P = P = [—s, —s71].
Indeed, F5,, (61,...,0k) and Fy/,(&1,.. ., &) evaluated at &, 0; € [—s,—s71] are
nonnegative due to the nonnegativity of the vertex weights (3.12), (3.13).

We call this the sqW/sqW skew Cauchy structure.
4. Fusion and analytic continuation
4.1. A common generalization of skew Cauchy identities
The skew Cauchy identities from Section 3 admit a common generalization which can
be viewed as an analytic continuation. In [7], [18], principal specializations of non-stable

spin Hall-Littlewood functions were considered. They are obtained by setting spectral
parameters to finite geometric progressions of ratio ¢. In our context, define

J7 - no

8)\/1# (ulv"'7un) = F/\/;L(ulaqula-"7qu lula"'aunaquna"'an lun) (41)
I * — _

05&/1# )(vl,...,vm) = F)\/H(vl,qvl,...,qh Lot Uiy QUi - T T ). (4.2)

It is a consequence of the fusion procedure dating back to [39] that we can view

8/\‘?” (ul, ...,Up) as a partition function in a “smaller” vertex model obtained by

attaching together n (instead of Jy + ... + J,,) rows with fused weights w&ikg, where

k=1,...,n and

—1)iH2 g 20 gl =ty (u /51 q) 5, iy (g3 9),
(45 90)i, (65 0) 2 (U5 Q) jy 44,

IVl N
wv&,g(zl’jlvz?,‘h) - 1i1+j1:i2+j2
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— [ a"ia " suq? gs/u 13
X403 | gt glmia—iatd |94 (4.3)

) )

where 45 is the regularized ¢g-hypergeometric series (1.4).

Remark 4.1. Note that [21, (31)] gives a slightly different formula for w(’/). However,
these two expressions are the same, and the discrepancy in the multiplicative prefactor
is compensated by the fact that the 45 is not symmetric in the first two arguments.

Analogously, QSE\I/I’ "‘)(vl, ...,Up) are partition functions of a vertex model with
fused weights wv,ﬁs’“), where
o Qi (G Dis 1
wi (i, ji3i2, j2) = (’; wil)(ia, j13113 ja).- (4.4)
o (@i (s%59)i, °

As usual, at the leftmost column of these lattices we place infinitely many vertical paths.
More details on the fused weights can be found in Appendix A.2.

The weights w(’),| w*() degenerate both to w,w* and W, W*, see Fig. 10 below for
exact details. Thus, (4.1), (4.2) interpolate between the spin Hall-Littlewood functions
and the spin ¢-Whittaker functions. These functions satisfy the following general skew
Cauchy identity which we state for an appropriate “analytic” range of parameters:

Theorem 4.2. Fiz m,n € Z>¢. Take g € (0,1), and let s # 0,ui,q‘]i,vj,q[f be complex
parameters satisfying

quy — s
11— gtsuy |’

<46 for all k1,1, (4.5)

qv; — s
1—qgisy

for sufficiently small § > 0 which might depend on m,n, but not on the other parameters
of the functions.” Then we have

Zg,(j;lpj (ulv"'7”71)61(/[/1):.”[7“)(“17'"7vm)

n m J
(upvig’ q oo (URVIG7%5 @) oo (J1 (I, dm)
kl:[ul:[l (urv15 @)oo (urv1gT1H%5 q) 0o ZS,\/% wsu )6;»/% (V1 -+, Vm)-

(4.6)

Remark 4.3. This identity immediately degenerates to the skew Cauchy identities (3.10),
(3.16), and (3.18) after specializing the parameters ug,v; and ¢’*, ¢" as in Fig. 10 below.

7 Here and below in this section one can think of g7* and ¢” as separate symbols independent of ¢, because
the fused weights w and w* D depend on ¢’ and ¢! in a rational way. When J a positive integer, q”
is equal to the J-th power of g, but we’re free to assign an arbitrary value to qJ7 for J not necessarily a
positive integer (and same for qI).
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The proof of Theorem 4.2 requires an absolute convergence result for spin Hall-
Littlewood functions with principal specializations:

Proposition 4.4. Fizn € Z>1. Let g € (0,1). Take s # 0,u;, ¢’ to be complex parameters
satisfying

qluy —

<9d for all k.1, (4.7)
— q'suy,

1, e, L, \

for some 6 = &, > 0 (which might depend on n). Then for all Young diagrams p we have

‘S/\‘h (ul7 coUp)| < ool (4.8)

A puCA

The proof of Proposition 4.4 will be given later in Section 4.2. First we use its result
to justify the general Cauchy identity (4.6):

Proof of Theorem 4.2 modulo Proposition 4.4. By Theorem 3.4, identity (4.6) holds in

case Ji,...,Jn, I1,. .., I, are positive integers. Functions S Jl’ oA ) 65)\1/1/; ~In) are finite

sums of finite products of Welghts w&i’ﬁ,w;(ﬁ) which are ratlonal functions of ¢”*, ¢!t

Therefore, S Jl’ 2Tn) QS(II’ +Im) 3 dmit an extension to generic complex numbers ¢’*, ¢'t.
This implies that the rlght hand side of (4.6) extends to ¢”*,¢!* in a complex region,
too, since the sum over s is finite (it ranges over s C p, A).

The summation in the left-hand side of (4.6) has infinitely many terms as the only
condition on v is that u, A C v. Therefore, to show that it can be extended to parameters
g’
v. Under assumptions (4.5), this is a consequence of Proposition 4.4. Therefore, the
left-hand side of (4.6) can be extended, too.

The equality between the two sides of (4.6) in a wider region (4.5) follows because

,q" in a complex region we need a result of absolute convergence of the sum over

these expressions agree for infinitely many values of Jy, I}, namely, positive integers: if
lug| < &, then |ugq’*| < 6 for all Ji, € Z>1. This completes the proof. 0O

Despite the fact that the general skew Cauchy identity (Theorem 4.2) offers a unified
description of all skew Cauchy structures we study, throughout the text we still con-
sider possible degenerations separately. There are several reasons for this. First, the spin
Hall-Littlewood and the spin ¢-Whittaker functions are more basic from an algebraic
standpoint (see, e.g., Section 8 where we describe difference operators diagonalized by
these functions). Second, when u, g7, v, ¢’ are general parameters, it is difficult to give a
probabilistic interpretation of the random fields — the positivity of the measure obtained
by multiplying § and & is in general not guaranteed.
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4.2. Absolute summability

We now turn to the proof of the absolute summability result of Proposition 4.4.
This proof requires explicit expressions for the fused weights which can be found in
Appendix A. We begin with a number of preliminary estimates, and assume that q €
(0,1) throughout the subsection.

Lemma 4.5. Consider the fused weights wq(fé) (i1, j1; 12, j2) defined in (4.3), with v = q’ €

C and i1, j1,1i2,j2 € Z>o. Let s # 0 and § = max{|s|, |u|,|yu|} < 1. Then

w’) (i1, 1309, j2)| < (minfiy, jo} + 1) C872, (4.9)

,S
where C is a positive constant independent of the vertex configuration (i1, j1; 12, jo2).
Proof. Expand w(”) combining (4.3) and (1.4) as

(—1)iti2gein(n=1420) i =iyt (u/s; q);, i, (¢ 9);,
(@5 9)ir (@5 9) 4> (5% Q) jy 44y

i1 X
. v %CI)k(q_iZ;q)k(suw;q)k(qs/u;q)k (4.10)

14jo—i1+k. 1—ig—ja+k

% (¢"s% q)i,—k(q 1 0)i—k(7q $q)iy—k-

First, the factor

(=1)"172(q; ¢)j, (suy; Qr (975 @iy —k
(@5 9)iy (45 ) jo (55 @) 5y +iy (@5 Q)

is bounded in absolute value by a constant independent of 4i,j1,42,7j2. The g¢-
Pochhammer symbol (ql“'jz_““‘k; q)i,—r vanishes unless k > i1 — jo and its contribution
is bounded in absolute value by 1. The remaining factors are

g2 (=120 g2 =ty (y /s q) 5, d™ (a7 k(a5 (g8 /s @)k (va 2R ) .

Rewrite
k—1 i1—k—1
(g k(e TR ) e = [[ (@ ) I @ —eh), (A1)
1=0 1=0

where we used the arrow conservation property, and

Zl k—1
g R T @ =) = (DT TS w7 @i e

(4.12)
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The factors (—1) (¢"*~¥*1; q);, are bounded in the absolute value. By substituting (4.11),
(4.12) into (4.10), we see that it remains to address the term

k—1
727U (w/55.9) 55—, (05w Ky F (@ v Qi [[ (@ = 270, (4.13)
=0

We consider two cases based on the sign of jo —41.

Case js > i7. The factor H;:Ol (¢7+ — ¢72~"H!Y) in (4.13) is bounded by a constant inde-
pendent of the vertex configuration. The remaining terms are

727 (w/55.q) o iy - (g8/w @) 7T )i -
Distributing the factors s, u, and 7 into the ¢-Pochhammer symbols, we can bound the
above expression by const - 672, where jo is the total number of terms in the product.
Note that the estimate works uniformly for small s, u, "y, too.

Case i1 > jo. Rewriting the ¢-Pochhammer symbol with the negative index (cf. (1.3))
and using the fact that iy — jo < k <141, we have

: i1—J2, 92 ( ,i1—J2+1 i1—k( J1 (i17j2+1)
(4.13) = (1)1 2q92 (g 8/ Qk—ir 1327 (@Y Din -k @ 2
k—1
% (qjl _ qu—il-i-l)_

1=0
The term (—l)il‘jQq(il_?H) "o (g — ¢~ is bounded. The contribution of the
term

w (¢ s fus iy 107 (@ @)k

is bounded by const - §72 similarly to the previous case.
We see that (4.10) can be written as a sum of terms bounded by const - §72. Because
the number of terms is
< min{iy, i} + 1 — max{0,41 — jo} < min{iy,jo} + 1,

we get the desired bound. 0O

Lemma 4.6. Let

n

q"u
1—q"su

— S
sup
nEZzo

' <d<1 (4.14)

Then
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w200, 1 iz, )| < Clin) 67, (4.15)
where C'(0) =1 and C = sup,{C(k)} < o0.

Proof. This bound follows from (4.3): after setting é; = 0, the ¢g-hypergeometric series
disappears, and we use the definition of § to estimate the prefactor. O

For a Young diagram A, let m;(A) be the number of parts in A which are equal to .
Lemma 4.7. Let s # 0,u,q”’ be complex parameters such that

qu
_qZS’U,

<0, for all ¢, (4.16)

for some 6 € (0,1). Then there exists C > 1 such that for any two Young diagrams p, A

we have
0] < 0¥ om0+ 157, 1
where
M, p) = 1+ 9#{i: mi(u) # 0 or mi(A) # 0}. (4.18)

Proof. It suffices to assume that u C X (i.e., p; < A; for all ¢), otherwise the skew
function vanishes. We have

= 3 wl( =i ) Tlul20modoima. (419
Josj1, =0 >1

where the infinite sum has only one nonzero term due to arrow preservation. From (A.5)
we have for the leftmost vertex

0 .
w;{,?( = > <O, (4.20)

oo

Lemmas 4.5 and 4.6 provide estimates for the remaining vertex weights: they are all
bounded by C§7, except if both m;(u) = m;(A) = 0 when the bound is given by §/t. O

Lemma4.8. Let 0 <6< 1,0 >1,1< A<, and M(\ p) be as in Lemma J.7. Then
for any Young diagram p we have

S eMEmg I 440 T (ma(v) + 1) < €y AL, (4.21)

v: uCr i>1
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Fig. 9. The decomposition of the Young diagram v as a free superposition of n (black dashed paths) and
s (blue solid paths) used in the proof of Lemma 4.8. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

where Cq, A1 > 1 are constants.

Proof. The sum over v can be visualized as a sum over path configurations in a row of
vertices as in Fig. 9. We distinguish the paths coming from the configuration p (black
dashed in Fig. 9) and when they originate at the leftmost vertex (blue solid in Fig. 9).
Calling s the Young diagram generated by the blue paths and 7 the Young diagram
generated by the black paths we can write v = s Un (this decomposition is not unique).
The sum in the left-hand side of (4.21) is dominated by a sum where » and 7 vary
independently, and therefore we have

lhs (4.21) <(Z CM(% Z)(Sl%lAé(%) H + 1))

% iz (4.22)
o ( Z CMsp) slnl=lul 4€(1) H(mz<77) + 1)> :

n: pCn i>1

£(n)=£(n) B

We estimate separately the two factors in (4.22), starting with the first one. Since £(5) =
>, mi(x) and || = > ,5, im;(s2), the summation over s can be rewritten as follows.
Separate the term » = @. In the remaining sum, first select s; > 1 and its multiplicity
r > 1; then for each i = 1,...,31 — 1, select a multiplicity m; > 0. Summing over all
these possibilities, we have

1 —1
C+ Yy e+ nAT [ | DD ctmeo(ms + 1) A™
121 r>1 i=1 m; >0

Simplifying the geometric summations and using the fact that Aé < 1, we can reduce
the above sum to

ACM 2—A5"1 iy 1
cro S e (1o (- =)

wx12>1 =1

For all i > iy, where iy depends on C, A, § the i-th term in the product is less than 6!
(because § < 1 and the term goes to 1 as ¢ — 00). This implies that the above sum is
convergent and thus is estimated from above by a constant.
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We now address the second factor in the right-hand side of (4.22). We can again
bound the sum over 7 by a superposition of £(x) noninteracting paths starting at p;.
This implies that the sum over 7 in (4.22) is dominated by

() 5 am
I1 > cMtamigash—m < [2C2A <1+cﬁ)] :
=1 k;>p; a

This completes the proof. 0O

Proof of Proposition 4.4. We first expand SE\‘%'”J’”)(ul, vy Up) in (4.8). Utilizing the
branching rule and the triangle inequality, we can estimate

lhs (48) < Z H‘&/\ i/ni-1 uz
i=1

71 .

(4.23)
u@ CoCA

In order to evaluate the previous nested summation we start from the most external
term. For fixed A" ~! we have

n yn— n|_|yn—1
S [ | < TTomn w1y 30 oMOnATER

An AT LC AR i>1 An: An—1CAn

where we used bound of Lemma 4.7 for some §; € (0,1). We can further estimate the
sum over )\” with the help of Lemma 4.8, and obtain the bound H121(mi()\”_1) +

1)C1A; AT Replacing 01 by a smaller value 0 < d; < A7' if needed and multiplying
this bound by the next term 3/\”" 11/)/\n »(up—1) in (4.23), we can apply Lemma 4.7 and
then sum over A»~! with the help of Lemma, 4.8. Iterating this procedure finitely many

times, we get the desired statement with a sufficiently small 6,, > 0. O
5. Scaled geometric specializations

In this section we introduce a third specialization — the scaled geometric one — of the
general fused functions from the previous section. This specialization allows to include
into our analysis stochastic particle systems with more general initial configurations.

5.1. Definition of scaled geometric specializations

In Definitions 3.5, 3.10, 3.13 we provided examples of skew Cauchy structures where
the positivity of the measure obtained by multiplying § and & can be established (under
certain restrictions on parameters). We now introduce yet another specialization of (4.1),
(4.2) which admits a meaningful probabilistic interpretation — it corresponds to two-
sided stationary initial conditions for stochastic particle systems on the line arising as
marginals of our Yang-Baxter fields.
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Definition 5.1 (/18]). The scaled geometric specialization with parameter a of the spin
Hall-Littlewood function is given by

FA/H(a) = 21_1}(1) FA/#(—ae,—aeq,...,—aqu_l) (5.1)

g/=1/¢
The dual analog of F is given by the conjugation Ff\/u(ﬂ) = %F,\/M(ﬂ) as in (3.9).
The skew functions in multiple variables F,\ /ulaa, ..., an) are defined in a standard way
using the branching rules as in (2.2), and similarly for F} Iu

The functions F A E;‘\ Ju also admit a lattice construction with the vertex weights

@Z,s = lim w*)

~ . J
We. s i= lim w ') “Be.s .
’ e—s e—0 lgl=1/e

0 Tlgr=1/¢’
The expressions for these weights are given in Appendix A.4. The functions FA m F; Ju
vanish unless p1 C A (which means that p; < A; for all 7).

By adding the scaled geometric specialization to our symmetric functions, we can de-
fine mized specializations Fy (w1, ..., un; 01, ..., an) and Fy /0 (&1, ..., &ns 0, .., QN).
They are obtained through the branching rules as

Fap(us, ... up;an,...,an) = ZFA/%(al,...,aN) Fop(u, ... un),

IF,\,/#/(&,...,gn;&l,...,&N) = ZFA/%(al,...,aN)IF%//#/(fl,...,fn%

and similarly for the dual functions. By the Yang-Baxter equations (Appendix A.4),
each of these functions is separately symmetric in the two sets of variables. We will
also sometimes use the notation sHL(u),sqW (), and sg(«) to denote the three types of
specializations of the general symmetric functions (4.1)—(4.2).

5.2. Skew Cauchy structures with mized specializations

The scaled geometric specializations allow to generalize the skew Cauchy identities
considered in Section 3. Let us first define the corresponding parameter sets Adm for
which the sums in the Cauchy identities converge.

Definition 5.2 (Admissible parameters). Let p be one of the specializations sHL(u),
sqW (&), sg(a) and p* be one of sHL(v),sqW (8), sg(5). We define Adm(p, p*) to be sym-
metric in p ¢ p* (with the corresponding renaming of the parameters), and:

1. If neither of p and p* is scaled geometric, then Adm(p, p*) is given in Definitions 3.5,
3.10 and 3.13 in the sHL/sHL, sHL/sqW, and sqW/sqW cases, respectively.
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2. In the remaining cases we have

{(a,v) € C%: |s(s —v)| < |1 — sv|}, if p* = sHL(v);
Adm(sg(a); p*) = S {(a,0) € C2 : |af] < 1}, if p* = sqW(6);
{(a. ) € C?: |ap| < 1}, if p* = sg(B).
(5.2)

We call a specialization p compatible with sHL functions if p = sHL(u) or sg(«), and
similarly p is compatible with sqW functions if p = sqW(§) or sg(a).

Theorem 5.3. Let the §»,, be either Fy,, or Fy 0 and let p be a specialization compat-
ible with §. Analogously, let the function &)/, be either Fi/u or F;’/u" and let p* be
compatible with &. Then for the parameters belonging to Adm(p, p*) we have

ZSV//J u/)\ Zg)\/u [L/%( ) (53)

The right-hand side I1(p; p*) = (p*; p) in the sHL/sHL, sHL/sqW, and sqW/sqW cases
was described above in Definitions 3.5, 3.10 and 3.13, respectively, and in the remaining

cases it is given by (observe that (5.3) does not change if we switch p <> p*):

1+ awv, if p* = sHL(v);
M(sg(a); p*) = § (=503 @)oo/ (A0; @) o> if p* = sqW(0); (5.4)
1/(af;q)oos if p* = sg(B).

Proof. The skew Cauchy identity (5.3) is obtained by suitably specializing (4.6). The
convergence conditions Adm(p, p*) for the infinite sum in the left-hand side of (4.6) (the
right-hand side is always finite) can be found in the existing literature [7], [18], [21].
Through the bijectivization which we discuss in Section 6 below, the convergence of the
left-hand side of (4.6) is equivalent to the fact that the transition probabilities U™ do
not assign any probability weight to Young diagrams v with infinite first row v or infinite
first column v/. In Proposition 6.7 we revisit the origin of the conditions Adm(p, p*) from
this perspective. 0O

This theorem leads to the following additional skew Cauchy structures which we now
describe in a unified way:

Definition 5.4. Let §y/, be either Fy,, or Fy//,/, and specializations p1, p2,... be com-
patible with §. Also let &/, be either F’;\/H or ]F;://u” and p7, p5, ... be compatible with
&. Then Fy/u(p1,---50k)s Bx/u(pi, ..., pi) form a skew Cauchy structure in the sense
of Section 2.1 with the following identifications:
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(i) For any specialization p set

W= A if p =sHL,
w=<pp=1<u <N if p =sqW, (5.5)
©wCA if p =sg.

Then, pu < A means the existence of a sequence of Young diagrams
K =py l/(l) =p2 " Spr_a V(k_l) =pr A,

and g <y A is defined in the same way with replacing each p; by p?.

(if) The skew Cauchy identity (5.3) holds for each choice of specializations, with the
convergence conditions Adm(p; p*) and the function II(p; p*) described above in this
subsection.

(iii) The external parameters are g € (0,1) and s € (—1,0). The nonnegativity sets are
Psur, = [0,1], Psqw = [—s, —s7!], Psg = [0, —s™!], respectively, which follows from
the nonnegativity of the corresponding vertex weights (about the scaled geometric
weights, see Proposition A.9).

We employ this general mized skew Cauchy structure in Section 7 below to connect
symmetric functions with stochastic particle systems (more precisely, stochastic vertex
models) having a variety of initial conditions.

6. Yang-Baxter fields through bijectivization

In this section we recall the notion of bijectivization of summation identities [24] and
show how to use this procedure to build a random field of Young diagrams.® Our main in-
gredient is the Yang-Baxter equation in its general form with four parameters u, v, q¢”, ¢’.
In Section 7 below we examine the most interesting degenerations corresponding to par-
ticular skew Cauchy structures from Section 3.

6.1. Bijectivization of summation identities

Consider two nonempty finite or countable sets A and B, and assume that to each
one of their elements it is associated a nonzero weight” w in such a way that

> wia) =Y wib). (6.1)

acA beB

8 As far as we know, dynamics coming from certain straightforward bijectivizations of the Yang-Baxter
equation were used before by [35] in the context of percolation, and in [53] for simulations in our setting.

9 If for some ag € A we have w(ag) = 0, by replacing A with A\ {ao} we can continue to assume that all
weights are nonzero, and analogously for B.
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Here and below in the countable case we assume that all infinite sums converge absolutely.

Definition 6.1 (/24]). A bijectivization of the summation identity (6.1) is a pair of families

fwd7 pbwd)

of transition weights (p satisfying the properties:

1. The forward transition weights sum to one:

Z p™d(a,b) =1 forallae A (6.2)
beB

2. The backward transition weights sum to one:

> p™i(ba)=1 forallbeB (6.3)
a€A

3. The transition weights satisfy the reversibility condition
w(a) p™(a,b) = w(b) p"¥4(b, a) forallae A, b e B. (6.4)

If w(a),w(b) > 0 for all @ € A, b € B, and the transition weights p™, p"¥4 are
nonnegative, the bijectivization is called stochastic.

On one hand, bijectivizations may be viewed as refinements of the summation identity
(6.1) since (6.2)—(6.4) imply

dowla)= Y, w@p™(a,b)= Y wOp™i(bae) =) w).

a€A acA,beB acAbeB beB

On the other hand, stochastic bijectivizations exactly correspond to couplings be-
tween the probability distributions P4(a) = w(a) (X, ca w(a’))f1 and Pg(b) =
w(b) (Xyen W(b/))_l. Recall that a coupling is a probability distribution P(a,b) on
A x B whose marginals on A and B are P4(a) and Pg(b), respectively. The correspon-
dence is given by

w(a)p™4(a,b) _ w(b)p"(b,a)

Plab) = @)~ Sy w)

where the second equality follows from (6.4) and (6.1).

Remark 6.2. Forward and backward transition probabilities of a random field of Young
diagrams (Definition 2.13) are a particular case of the above Definition 6.1 as they corre-
spond to bijectivizations of the identity (2.3). For the skew Cauchy structures described
in Section 3, however, Cauchy identities follow from the more elementary Yang-Baxter
equations, and we use the latter to construct bijectivizations as building blocks for tran-
sition probabilities of random fields of Young diagrams.
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When both |4] > 1 and |B| > 1, one can readily see that a bijectivization is not
unique.

Example 6.3. Assume that the set A, in (6.1), consists of the singleton {a}. Then the
bijectivization of the identity

w(a) =) w(b),

is unique and is given by

p™d(q,b) = :‘/’Eg p*™d(b,a) = 1. (6.5)

Moreover, in case all weights are positive, (6.5) constitutes a stochastic bijectivization.

Example 6.3, despite its simplicity, constitutes the only explicit stochastic bijectiviza-
tion we will make use of throughout the rest of the paper. In any other case we only
need the existence of a stochastic bijectivization:

Proposition 6.4. Assume that in (6.1) we have w(a),w(b) > 0 for alla € A and b € B,
and, moreover, the sums in both sides of (6.1) are positive. Then a stochastic bijectiviza-

fwd pbwd) epists.

tion (p
Recall that if some weights are zero, we exclude the corresponding elements from A
and B.

Proof of Proposition 6.4. As an example of a stochastic bijectivization we can take the
one corresponding to the coupling which is the product measure, P = P4 ® Pg. In other
words, we can take pf"9(a, b) to be independent of a, and similarly for p*¥4(b, a). Then
(6.4) implies

pfwd(a’b) _ %7 pbwd(b’a) _

w(a)

Yareaw(d)’

and so a stochastic bijectivization exists. 0O
6.2. Bijectivization of the Yang-Baxter equation

Let us now consider bijectivizations of the general fused Yang-Baxter equation (re-
produced from Proposition A.3 in Appendix A)
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positive (J) positive w*,(I)
specialization Wu,v specialization v,8
1 0,1),
SHL 3 S[;) )7 wu7s SHL ’l]} i [1 ) w:;7s
u=s, v=s,
J_ I_ _
sqW q’ = —5/5771 We s sqW a = 9/37_1 Wy,
e [—s,—s71] 0€[—s,—s1]
u = —ae, u = — e,
scaled q’ =1/, & scaled gl =1/e, &
geometric | €0, e geometric | € =0, Bs
a€f0,—s71] Be0,~s"]

Fig. 10. Positive specializations of the Yang-Baxter equation (6.6) we consider are obtained by combining a
specialization from left panel with a specialization from the right panel. The other parameters are g € (0, 1)
and s € (—1,0), but when both specializations are sqW, we impose the additional restriction s > —,/g.

Z R (i, ins ko k) w0 (i, ks ks, 1) wl7) (s, Keos s, jz)

k1,k2,ks

k1,kz2,k3

(6.6)
wzigl)(ksail;jsakl) 755)(13712,7% ko) R (Ko, K g2, 1),

where the weights w(/), w*() and RU-/) are defined in (A.3), (A.6), (A.7), respectively.
Equation (6.6) implies all the other Yang-Baxter equations we use, by properly special—
izing the parameters u, ¢’ , v, ¢'. For certain degenerations of weights wl([]S), wil), RET w
can establish their nonnegativity, and hence construct stochastic bijectivizations of (().b)
using Proposition 6.4. The list of the positive specializations we employ is summarized in
Fig. 10, while the proofs of their nonnegativity are given in Appendix A.5. For unified no-
tation here and in Sections 6.3 and 6.4 below we use the vertex weights R(I ) w,(L S), Wy ’(I)
assuming that they are nonnegative (under one of the parameter choices in Fig. 10).
Graphically, we can interpret each summand in the left and right hand sides of (6.6)
as a weight we attribute to arrangements of paths across configurations of three vertices
with fixed occupation numbers ihig,ig,jl,jg,jg at external edges. The global weight

J) o (T) (1)

of 3-vertex configurations depends on R ,Wus,Wy's , and is assigned according to

Fig. 11. In the same figure, p™4 and pP¥? denote forward and backward transition
weights of a bijectivization of (6.6).
For simplicity we do not include the external occupation numbers i1, i, i3, j1, j2, j3 €

and pPVd. Let us extend the definition of pf¥d, p?"d by setting

ky -7 74 ki
fwd 21 : J2 2 : Ja _
o) ( ke, K ] =0, (6.7)

Z>¢ in the notation pf*d

(2 s J1 K2 N Ji

whenever (i1, 12,3, j1,j2, j3) 7# (i,1,15, 41, 7%, 74), and analogously for p""d. Thus, we

fwd

will view p™“ as the probability of a Markov transition of pushing the cross through a

column of two vertices in the right direction, and similarly p"¥¢ corresponds to pushing
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3’@
Rfi, 7 / ' )
J3
) k2 ) fwd ) ki .
i1 J2 p 11 e J2
k3 ké
12 e g bwd 19 e Ji
kq p A
i3 i3
(I,J)
wi P w’) Ry

Fig. 11. A graphical representation of the Yang-Baxter Equation (6.6) and its bijectivization.

./ - . - /
) 1 2 Jo J1 J2
u}(J) 7 i Ufwd i i *,(I)
u,s 5 v,s
o] ky ko o] ni n2
-—
wy s e et ybewd S B e e 0
10 11 12 Jo J1 J2
oo mi me oo mi me

Fig. 12. Graphical representation of a transition between two-row path configurations.

the cross to the left. These transitions do not change the external occupation numbers
(ily i23 i3ajla j25 j3)7 but hWd
(K, kb, k), and similarly pP¥® maps (K}, kb, k) into random (ky, kg, k3).

changes fixed occupation numbers (k1, ko, k3) into random

6.3. Dragging a cross through multiple columns. Yang-Baxter fields

We now want to bring our discussion a step forward and push the cross through mul-
tiple columns of vertices, from the leftmost one to the right (and vice versa), sequentially
utilizing the transition probabilities pf¥d and pP"? associated with the vertex weights
wng) T §’ , and R(I N which are nonnegative in one of the cases given in Fig. 10.

We consider the lattice composed of two infinite rows, that is, the vertices are indexed

by the lattice Z>¢ x {1,2}. The rows carry vertex weights wl([]s) and wv’g) (

see Fig. 12
for an illustration). As boundary conditions for the paths flowing through the lattice we

take:

o infinitely many paths flow in the vertical direction in the 0-th column;

o at the 0-th column no paths enter from the left into the vertex carrying the
weight wv’g ), while .J paths enter from the left into the vertex in the 0-th
column carrying the weight wq(j]s) ; (6.8)

e paths do not stay horizontal forever, that is, at the far right the path config-

uration must be empty.

Remark 6.5. Under the sqW or scaled geometric specializations treating ¢7 as an inde-
pendent variable, the term “J paths” in (6.8) should be understood formally and all the
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0o I l2 I3 N
Jo J1 Js ) %3 1y
%) k1 ko ns3 n4
J
Jo J1 J2 22 13 14
[e's) mi ma ms3 my

Fig. 13. As the cross moves to the right, it randomly updates values of vertical occupation numbers kj, to
np, (in Ude). Horizontal occupation numbers are updated accordingly.

vertex weights should undergo these specializations together (see Remark 7.5 below for
a detailed explanation of this procedure). In the rest of the present section we continue
to employ the unified notation for all the cases.

The numbers of vertical arrows in the path configurations in Fig. 12 are encoded
by triples of Young diagrams A, s, u (left) and A, v, (right), as the horizontal edges’
occupation numbers are then uniquely determined by the arrow preservation. In detail,
we have

A=1hgl po=1momz =10k v=1m2" . (6.9)
Let us record the corresponding horizontal occupation numbers by sequences {ip, i} } >0
(for X, ¢, ) and {jn, jj, }n>0 (for A\, v, p).

Definition 6.6 (Markov operators on Young diagrams). With the above notation, we

U fwd Ubwd U fwd

define the Markov operators and as follows. For , attach the cross vertex

J
to the leftmost column in the configuration encoded by (), 5, 1), and drag the

cross all the way to the right using the transition probabilities pf¥d. An intermediate

step is displayed in Fig. 13. The definition of UP"4 involves dragging the cross to the left

b

using the transition probabilities pP¥9, and starting from the empty cross vertex far to

the right. In detail,

ih o Jh—1 e i

0 -/ “h-1 . v In "

Gh I A JSPR i,
Ude(%—>V|/\,,LL)=prWd< ‘hl o ' ’ h—1 e\ ‘; >; (610)
Jh—1 N

h=0

th—1 Jn
mp mp
ln ln
o . Th ) . Yh-1 )
J/ » 'L/ _]l » 'LI
de _ de h—1 h h—1 h
UPYS (v = s | A p) = I | p ; LD G S P (6.11)
h—1 - h h—1 - h
h=0 j i
mn Jh Th— N

where j_1 = J, j*; =0, and 4, = 4}, = 0 for all sufficiently large h. All terms pf* and
p""4 in the infinite products (6.10), (6.11) belong to [0, 1].
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Because the definition of U™ and UP"¢ involves Yang-Baxter equations with infinitely
many paths, we have to make sure that the corresponding infinite sums converge. Recall
the sets Adm(p, p*) from Definition 5.2 and the restrictions on parameters in Fig. 10
leading to positive specializations.

Proposition 6.7. For each of the 9 pairs of specializations (p, p*) from Fig. 10 (when p and
p* correspond to w,([ls) and w;jgl), respectively) when the parameters belong to Adm(p, p*),
one can choose bijectivizations p™? and pP¥? such that the Markov operators U™ and

UPvd are well-defined by the infinite products (6.10) and (6.11). That is,

SNUMGesv A =1, Y U™k Ap) =1,

v k3

where the sums are taken over all path configurations as in Fig. 12 (with > and v encoding
the left and right pictures, respectively) with the boundary conditions (6.8).

This implies in particular that the Markov operator U™ does not produce path
configurations with infinitely long horizontal paths on the right or infinitely many vertical
paths in any column except the leftmost one.

Proof of Proposition 6.7. Step 1. The backward transition probabilities UP"4 (v — ¢ |
A, i) sum to one over s because for fixed A, v, u the number of possible configurations s
is finite in all the cases considered in Sections 3.5, 3.7 and 3.8. Therefore, only finitely

bwd

many factors in the products (6.11) differ from 1. As the individual pieces p sum to

one over all possible outcomes, we see that the backward operator UP"? is well-defined.

Step 2. We will now show that there exists a bijectivization pf¥ such that for all j > 1

. o
pfwd<f - ) - ) <1 (6.12)
J ¢ J %

J

we have

This condition ensures that all probability mass is concentrated on triples (A, v, ) with
boundary conditions (6.8), and no positive probability is assigned under U™ to config-
urations with infinitely long horizontal paths. Indeed, if there are j paths escaping to
the right past max(u1, A1), then due to (6.12) after a random geometric number of cross
draggings to the right there will remain j — 1 paths, and so on until the configuration of
paths far to the right becomes empty.

The Yang-Baxter equation with the boundary conditions corresponding to (6.12) has
the form

a

J ) J A
ZW&)ight( ] a ) = ZWGight( ] b ) . (6.13)
a=0 ! a b=0 T
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It is possible to choose a bijectivization satisfying (6.12) if at least one term in the right-
hand side of (6.13) corresponding to some b > 0 does not vanish. These terms are given
by

. ]_b
w%M<7b -)=w%mmaywmmemw—m%ﬂ%—arwﬂm-
;o

j—1b

We now consider the cases of Fig. 10 separately. In the cases involving the sHL special-
ization, the only allowed positive j is j = 1, and the positivity of the term corresponding
to b =1 can be checked by writing down all possible cases:

_ 2
sHL /sHL w’
(1 —su)(1—sv)
1—¢q 1—g¢q
HL /sqW W /sHL
sHL/sq 1—su’ saW/s 1—sv’
1-— 1—s2 1-— 1— g2
i . 0005 i . (=005
1—su 1—sv

All these expressions are positive under the positivity conditions from Fig. 10.

Next, in the sqW/sqW, case, the number of paths j > 1 can be arbitrary, but the
product Wy 4(0, j;b,5 — o)Wy (b, ;0,5 — b) vanishes unless b = j, and for b = j it is
positive. The same is true for the sqW/sg and sg/sqW cases. Finally, in the sg/sg case all
factors of the form wq (0, j; b, j —b)w} (b, 550,75 — b)RS’gB’Sg) (j —b,7—15;0,0) are strictly
positive.

Step 3. Now let us check that after dragging the cross through the leftmost column
containing infinitely many vertical paths, the probability to get infinitely many horizontal
paths is zero. Clearly, infinitely many horizontal paths might occur only if neither of the

*

specializations p, p* is sHL. Overall, we need to show that

5 '

Zﬂw< /<", 'w-?>—L (6.14)
A J %) J =g

JosJo I IS

Considering the corresponding Yang-Baxter equation, we see that its left-hand side con-
verges thanks to Proposition A.5, because the weights of the other two vertices do
not depend on the input from the left (cf. (3.14), (A.16)). The right-hand side of this
Yang-Baxter equation contains terms of the form w;jgl)(oq 0; 00, j§) w,(jjs) (00, J;00,70) X
R(ugj‘])(jo,j(’); i, %0)- In the sqW /sqW, sqW /sg, and sg/sg cases, the cross vertex weights
(A.14), (A.19), and (A.20) are bounded for fixed g, i,. The contribution from the other



48 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865

%} .
A(1:3)
A v
%] . . . ufwd
AE2)  2\(2.2)
& . N .
AL 2(2,1) 28,1 ybwd
x
a %) %) %)
Fig. 14. Yang-Baxter field and forward and backward Markov transition operators ufvd and ubvd,

two vertices regulating the convergence of the right-hand side of the Yang-Baxter equa-
tion amounts to (£0)%°, (£8)%, or (afB)’°, respectively. The conditions Adm(p, p*) in
these cases precisely mean that the products of spectral parameters are less than one, so
the series converge. One then can choose a bijectivization such that (6.14) holds. This
completes the proof. O

Definition 6.6 and Proposition 6.7 thus produce “natural” Markov operators'’ Ufvd

and ybwd

associated with each of our skew Cauchy structures. Denote by §»/,.(p) and
®,,/5(p*) the partition functions of the one-row configurations in the top and the bottom
rows, respectively, in Fig. 12, left. By their very construction through local bijectiviza-

tions, these Markov operators satisfy the reversibility condition for all A, u, s, v:

U= v | A 1) - TH(p; p5)Fr e ()8 5 (p*) = UPY (1 = 32 | A, 1) - By (0) B a (07)-

Here II(p; p*) is defined in Theorem 5.3, which can be viewed as the properly special-
(uvg'; q) oo (uvg”; ¢)

(w5 @)oo (uvg™ 75 ¢) oo
Moreover, this quantity is also identified with the weight of the cross vertex (J,0;J,0)

ized term from the right-hand side of the Cauchy equation (5.3).

attached to the configuration in Fig. 12, left, before dragging the cross to the right (see
Proposition A.5 for the last equality).

Thus, we have constructed Yang-Baxter random fields of Young diagrams, which are
illustrated in Fig. 14. Before discussing concrete details in each of the different cases in
Section 7 below, in the next Section 6.4 we look at scalar marginals of our random fields.

6.4. Marginals
We now apply the discussion of Section 2.5 to the Yang-Baxter fields constructed

above. Due to the sequential left-to-right update rule in the definition of U™, there is
a number of marginals h to which our fields A are adapted to.

10 These operators are not determined uniquely (except in their action in the 0-th column, cf. Section 6.4
below).
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() L)
(<) 1 )

0

Fig. 15. Evolution of the lengths of Young diagrams under U}, Moving around the vertex along dotted lines
changes the length of a Young diagram by the occupation number of the edge we cross, cf. (6.16).

Fix h > 2. For a Young diagram n = 1™2"2 ... introduce the decomposition
n= (<t =Rl pl<hl — g (o 1ymeer 2R = e gy (6.15)
where nl<" and n/=" are two new Young diagrams.

Proposition 6.8. Let h be either of the following functions on the set of Young diagrams:

. (n) (n);
h(n) = (nI<M, e(n=")) for some h > 2.

Then each of the Yang-Bazter fields A constructed in Section 6.3 is adapted to h in the
sense of Section 2.5.

Proof. Let first A > 1. From the definition of U™ (6.10) we see that the random
moves of the first A columns of vertices are independent of those taking place in columns
to their right. Therefore, summing U™4(5c — v | A\, p) over v with fixed vI<" and
£(v), we see that the result is independent of w2 Y=l N\[ZR] 2R The quantities
052 e (2P g(AZM) £(ul2M) encode the numbers of paths flowing through the hor-
izontal edges between columns h and h+ 1 (recall that A and p are fixed throughout the
random update). This proves the statement for h(n) = (n[<", ¢(n=")).

When h = 0, that is, when we consider the marginal move at the leftmost column, we
only record the number of arrows entering the lattice (evolving in a marginally Markovian
manner), which are simply the lengths of s, v, A\, u. This establishes the remaining case

h(n) =£(n). O

Let us denote the transition probabilities of the marginal processes afforded by Propo-
sition 6.8 by Ul and U< respectively.

We will mostly be interested in the simplest case U, One readily sees that the action
of the Markov operator Ul is encoded as the evolution of the horizontal occupation
numbers {49, i} — {Jjo, jo}, where

0= 01) — £, i = 6N — L) o= L) — L), o= L) — L) (6.16)
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(see Figs. 12 and 15 for an illustration). Therefore, let us use the notation U'% (ig, i); jo, 55)
for these transition probabilities. We have

[ee] o

-/

J Jo .
0)/; . 1\ _ fwd T i ‘o
U[ ](20a7’05307]0) =P . 00 ) © SN . .
J 20 J — 20
0o Jo

This probability is determined uniquely because the right-hand side of the Yang-Baxter
equation contains a single summand corresponding to the state (J,0;.J,0) of the cross
vertex (this is enforced by our arrow preservation conventions). Thus, by Example 6.3,
this probability can be written as a ratio of weights of 3-vertex configurations as follows:

wi! (00,05 00, j5) W) (00, J; 00, jo) R (o, G iy io)

U (g, ify; G, jo) = :
020 R&{,’J)(J,O;J,O)w;ng)(oo,O;oo,io)wq(L{g)(oo,J;oo,i{))

(6.17)

This expression vanishes unless ig + jo = i + j{. The quantity R%’J)(J,O; J,0) in the
denominator has an explicit form (A.10).

Formula (6.17) also appeared in the recent work [2] under the name of “stochasti-
cization” of the solution of a Yang-Baxter equation. In this paper we explicitly link
stochasticizations to known stochastic vertex models (including the stochastic six vertex
model [36], [12], the higher spin stochastic six vertex model [7], [29], [18], and a push-
ing system introduced recently in [27]), and show the existence of the corresponding full
Yang-Baxter fields. The latter further connects observables of stochastic vertex models to
probability distributions based on spin Hall-Littlewood and spin ¢-Whittaker functions.

The other marginals UM, h > 2, lead to multilayer versions of stochastic vertex
models. A multilayer version of the stochastic six vertex model was introduced recently
in [22] (and another such system was constructed in [24] using Yang-Baxter fields).
Multilayer systems are much less explicit and are not determined uniquely due to the
non-uniqueness of U4, They deserve their own study, and in the present paper we
mostly focus on UL,

7. Three Yang-Baxter fields
7.1. Preliminaries

In this section we present detailed descriptions of the Yang-Baxter fields associated
with the skew Cauchy structures defined in Section 3 (with the step or scaled geometric
boundary conditions). We also discuss the scalar marginals h(A(®¥)) = ¢(A(®¥)) of these
Yang-Baxter fields. Let us first make two general remarks.

Remark 7.1. The definitions of the Yang-Baxter fields in this section involve non-unique
local bijectivizations, and so these fields are not defined in a unique way. However, all
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our statements hold for any such choice of a bijectivization. Moreover, the distributions
of the scalar marginals E(/\(‘”*y)) do not depend on the choice of a bijectivization. Thus,
for shortness we will use the term “the Yang-Baxter field” to refer to any random field
of Young diagrams coming from bijectivizations of the Yang-Baxter equations.

Remark 7.2 (On stationary boundary conditions). The (two-sided) scaled geometric
boundary conditions for our Yang-Baxter fields match (in scalar marginals viewed as
stochastic particle systems on the line) to initial conditions composed of two half-
stationary pieces (of possibly different densities) glued together at the origin. For ex-
ample, for the stochastic six vertex model (as well as for ASEP and TASEP) on the line,
the stationary initial data is the product Bernoulli one, and so the two-sided station-
ary initial condition is composed of two product Bernoulli configurations of arbitrary
densities on the half-lines. When the densities match and the systems’ parameters are
homogeneous (i.e., independent of x,y), this initial data is indeed stationary under the
stochastic evolution on the line.

However, one can check that for the full Yang-Baxter fields, the scaled geometric
boundary conditions do not contain a subfamily of boundary conditions remaining sta-
tionary under the evolution of the full Young diagrams. Therefore, we distinguish the
terms “scaled geometric” and “two-sided stationary” boundary conditions — the former
refers to full Yang-Baxter fields, and the latter — to stochastic particle systems arising
as one-dimensional marginals.

7.2. The sHL/sHL Yang-Baxter field and the stochastic siz vertex model

We first discuss the simplest case, the sHL/sHL skew Cauchy structure, and relate
the corresponding field to the stochastic six vertex model of [36], [12]. The case of step
boundary conditions essentially parallels [24] (without the dynamic modification of the
six vertex model because here we work with the stable sHL functions instead of the
non-stable ones). Formulas for observables and asymptotics in the six vertex model
with two-sided stationary boundary conditions were studied in [1], but its connection to
symmetric functions is new.

7.2.1. Step boundary conditions

The sHL/sHL case is obtained by setting I = J = 1 in Section 6, and the field
depends on the parameters ¢ € (0,1), s € (—1,0), and uy,v, € [0,1), 2,y € Z>;. The
Yang-Baxter equation corresponding to this skew Cauchy structure is now (A.2). The
reversibility property of backward and forward operators takes the following form:

Proposition 7.3. For any four Young diagrams p, 2, A\, v we have

1 —quv

1 — w0 U?ﬁ%(u),sHL(v)(% = V[ A ) Fays(u) FZ/%(U)
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= Uty stin ) (v = 22 | A ) Bl 5 (0) Fupp(w). (7.1)

Summing (7.1) over both 3¢ and v, we obtain the skew Cauchy identity for the stable sHL
functions (Theorem 3.4).

Proof. The product F,\/%(u)Fz/%(v) is the weight of a configuration p = > < A in
a vertex model obtained attaching a w,, s-weighted row of vertices on top of a wy .-
weighted row of vertices. The leftmost column is occupied by infinitely many paths. The

factor (1 — quv)/(1 — uv) is the Ry, weight of a cross /'/ attached at the left of the
lattice. Now we employ the definition of Ugﬁ‘i(u),sHL(v) and drag the cross all the way to
the right, replacing s by the random v. This procedure, along with the local reversibility
condition of the bijectivization leaves us with the right-hand side of the desired identity
(7.1). O

The step boundary conditions are A(%%) = A\#0) = 0> = & and using the for-

fwd
sHL(u, ),sHL(

sHL/sHL Yang-Bazter field X = {\@Y) : 2.y € Zs¢}. Tts distributions are related to
the sHL functions:

ward transition operators U vy 38 described in Section 2.4, we generate the

Proposition 7.4. The single-point distributions in the sHL/sHL Yang-Baxter field with
the step boundary conditions have the form

1— v,
Prob()\(’”’y) =v) = H # Fulur, ... uy) F (1, 00),
1<i<g — AUV
1<j<y

where v is an arbitrary fized Young diagram. Moreover, joint distributions in this field
along down-right paths are expressed through products of skew sHL functions as in Propo-

sition 2.9.

7.2.2. Scaled geometric boundary conditions
Fix additional parameters a, 8 € [0, —s~!], and consider specializations pY, p?, 1 =
-1,0,1,...:

pYy =sgla), p"y =sg(B),  py=sHL(uy), ph=sHL(v,), x,y>0.

Let 1 be the Yang-Baxter field on the lattice Z>_; X Z>_; generated by the Markov

fwd

transition operators Upv b
y P

Remark 7.5. In defining forward transition operators for scaled geometric (or later spin
g-Whittaker) specializations by dragging the cross vertex (J,0;.J,0) to the right (as
explained in Section 6.3) we encounter the issue that the number of paths J should be
specialized via ¢/ = 1/¢, € — 0, and so the vertex (J,0;.J,0) no longer makes direct
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Luv (i1, 15 i2, j2) g T=quv Tguo T—quv

| |
J1 —_— —_— . — _—
! | !
H 1 uv(l—q) ‘ 1—uv ‘ q(1—uv) ‘ 1—q ‘ 1

Fig. 16. The vertex weights Ly, (i1, j1; 42, j2) in the stochastic six vertex model. This parametrization of the
vertex weights follows, e.g., [22].

sense. However, by Proposition A.5 we explicitly know the weight of (J,0; J,0), which is
equal to

(uvg"; @)oo (uvg”; q) oo

RUD (7,05 7,0) =
( ) (uv; @) oo (uvg! 75 ¢) 0o

This expression can readily be taken to the scaled geometric or the spin ¢-Whittaker
specialization (cf. Fig. 10 for explicit forms of the specializations). Therefore, in choosing
the bijectivization of the Yang-Baxter equation in the leftmost column we can still appeal
to Example 6.3, and conclude that the bijectivization is unique.

Restricting the field 1 to the nonnegative quadrant, denote A = 7| ZogxZog" We call
A the sHL/sHL Yang-Baxzter field with («, 3)-scaled geometric boundary conditions.

Proposition 7.6. The single-point distributions in the sHL/sHL Yang-Baater field with
the (o, §)-scaled geometric boundary conditions are given by

Prob{)\(’”’y) =v}

5 e’} 1—wu, 7 ~\ % e
== (aﬁ,ql 17%Fy(ul,...,uy;a)FU(vl,...,vz;ﬁ).
111 +u;8) [T +wvia) 15i<e -~ 95
j=1 i=1 SISy

Joint distributions in this field along down-right paths are expressed through products of
skew functions similarly to Proposition 2.9.

7.2.8. Stochastic siz vertex model
We now turn to the scalar Markov marginal h(A(*¥)) = ¢(A@¥)) of the sHL/sHL
Yang-Baxter field, and match it to the stochastic six vertex model.

Definition 7.7 (/56], [12]). Fix ¢ € (0,1) and wu,, v, such that 0 < wyv, < 1 for all
%,y € Z>1. Consider the stochastic vertex weights L, ., given in Fig. 16. Let us also
fix the boundary conditions B" = {b},b5,...} and BY = {by,by,...}, where b}, by €

{0,1}. The (inhomogeneous) stochastic siz vertex model with these boundary conditions
is the (unique) probability measure on the set of up-right directed paths on the lattice

Z>o X Z>o (with at most one path per vertical or horizontal edge) satisfying:
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Yy y J
oy —
e et

2 e . . . . 2 .

0 1 1 2 2 2 1 1 0

1 . . . . . 1 — . . .
0 1 1 1 1 1 0 0 0

0 e . . . B 0 e . . . B
0 0 0 0 0 0 0 0 0
0 1 2 X 0 1 2 X

Fig. 17. Left: the scalar marginal £(A(*¥)) of the sHL/sHL Yang-Baxter field. Right: the corresponding
realization of the stochastic six vertex model with the step boundary conditions. The height function HV
is indicated, too.

o Each vertex (0,y) at the vertical boundary {(0,%’) : ¥’ > 1} emanates a path initially
pointing to the right if by = 1;

o Each vertex (z,0) at the horizontal boundary {(z/,0) : ' > 1} emanates a path
initially pointing upward if b = 1;

 For each (z,y), conditioned to the path configuration at all vertices (2/,y’) such that
a2’ +y' < x4y, the probability of a vertex configuration (i1, j1; iz, j2) at (z,y) is given
by Lu,v, (71,7152, j2). Moreover, the random choices made at diagonally adjacent
vertices ..., (x — 1L,y + 1), (z,y), (z + 1,y — 1), ... are independent under the same
condition.

In particular, the step boundary conditions correspond to

=0 and b =1

Y , for all z,y > 1. (7.2)

Path configurations in the six vertex model with the step boundary conditions are
conveniently encoded by a height function. Namely, let h®V(x,y) denote the number
of paths which pass weakly to the right of the vertex (x,y). See Fig. 17, right, for
an illustration. The next theorem is a version of [24, Proposition 7.3] adapted to our
boundary conditions in the Yang-Baxter field.

Let A = {A®%)1 be the sHL/sHL Yang-Baxter field with the step boundary condi-
tions, and h®V (x, ) be the six vertex height function with the step boundary conditions
(7.2).

Theorem 7.8. The two random fields {y — (A@Y) : z y € Z>o} and {h%V (z + 1,y) :
x,y € Z>o} are equal in distribution.

Proof. Recall that the Markov evolution of this scalar marginal £(A(*%)) corresponds to
the quantities U (i, ih; 55, jo) (6.17) with I = J = 1 and o, i, jo, jo € {0,1} which can
be readily written down using (3.1), (3.8), and Fig. 23. Comparing these quantities to
the stochastic six vertex weights L, in Fig. 16, while taking into account the relation
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between g, if, jo, jo and £(A(#¥)) (6.16), and all the transformations in the statement, we
0 ‘ g . g C
see that U£I~]IL(u),sHL(U) (ZO7 1- Z/O;Jév 1 7.70) = Luv(ZO7 ZE);.]&.]O) for all 20, 167]07.](/] € {07 1}

Let us consider one case of (ig, i(; jo, jy) = (0,1;1,0) for illustration. From Fig. 16 we
have Ly, (0,1;1,0) = =9 Thep

1—quv

0] wj,(00,0;00,1) wy,+(00, 100, 1) Ri (1,150, 0)
UsHL (u) sHL(v)(O’O; L1) = 5 ,
’ Ry 7 (1,0;1,0) wy (00,0500, 0) w,y,s (o0, 1; 00, 0)

_ v llfiuqv _ U’U(l B q)
= q= = — ,
ST T

as desired. All other cases are analogous. O

Remark 7.9. While Theorem 7.8 essentially follows from [24], let us emphasize what is
different here. Theorem 7.8 connects the ordinary stochastic six vertex model with stable
spin Hall-Littlewood polynomials. On the other hand, previously the same stochastic
six vertex model was matched to Hall-Littlewood processes and measures [8], [22], and
the non-stable spin Hall-Littlewood polynomials gave rise to a dynamic version of the
stochastic six vertex model [24]. Therefore, formally Theorem 7.8 is a new statement.

It might seem surprising that the stochastic six vertex model h%V is independent of s,
while the field A(*¥%) depends on s. A posteriori this might be explained by the fact that
the s-dependent stable spin Hall-Littlewood functions are eigenfunctions of the same first
q = 0 Macdonald difference operator as their s = 0 versions, the classical Hall-Littlewood
polynomials. About difference operators see Section 8 below.

Let us now turn to the marginal of the sHL/sHL field with the two-sided scaled
geometric boundary conditions described in Section 7.2.2. First, consider the behavior

of (A\®¥)) at the boundary:

Proposition 7.10. Consider the transition probabilities U0 given in (6.17). Then we have

(va)jf/l

[0] P
Usg(a),sHL(u)(O:ZSJ():JO) = 1i6+j6=joma (7.3)
Ut (u) se() (700 03 s Jo) = Lio+jo=js T ap’ (7.4)

0 o (ap)Po
Ul sa(s) (05 03 36 o) = Lig=jo r——(0B: 0)oc (7.5)

(@ 9)j0

The cases (7.3), (7.4) correspond to the bottom and the left boundaries, respectively,
and (7.5) arises in the bottom left corner. Observe that (7.5) defines the ¢-Poisson dis-
tribution (cf. Section 1.5).
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Proof of Proposition 7.10. This follows by combining (6.17) with the formulas for the
boundary weights (3.1), (A.16) and the cross vertex weights (Fig. 26 and (A.20)). To
specialize the factor corresponding to RQ(L{;,J)(J, 0; J,0) one should use Remark 7.5. O

Now take the stochastic six vertex model with independent Bernoulli boundary con-
ditions (we call these the two-sided stationary or («, 8)-stationary boundary conditions):

Vgl 1
b~ B z d b ~Ber[—). .
- er(l_’_%a) an ¥ er<1+uyﬁ) (7.6)

That is, given a realization of these random variables, we then consider the stochastic

six vertex model with these boundary conditions according to Definition 7.7. While the
random path configuration in this model is well-defined, it cannot be encoded by the
height function h%V in the same way as for the step boundary conditions. Indeed, if
a > 0, the number of paths to the right of any vertex (z,y) is almost surely infinite. Let

us thus introduce the centered height function
HOV (z,y) = #{occupied horizontal edges} — #{occupied vertical edges}, (7.7)

where we count the edges along a directed up-right sequence of cells in the lattice, for
example, moving (%, %) = (z+ %, %) — (z+ %, y+ %) along straight lines. In other words,
HOV has the same gradient as h®V, but the constant is defined by H®V(0,0) = 0. The

next lemma is a straightforward observation:

Lemma 7.11. The centered height function HSV (z,y) well-defined and almost sure finite
for all (z,y) € Z>¢ X Z>¢. For a = 3 = 0 the boundary conditions (7.6) reduce to the
step boundary conditions (7.2), and in this case we have H®V (z,y) = %V (z + 1,y) for
all z,y.

The centered height function with the two-sided Bernoulli boundary conditions (7.6)
can be identified with a marginal of the sHL/sHL Yang-Baxter field A with scaled geo-
metric boundary conditions.

Theorem 7.12. Let M be the q-Poisson random variable with parameter af independent
of the stochastic siz verter model with («, 8)-stationary boundary conditions. The two
random fields {y — (\®Y)) 2 2,y € Zso} and {H (z,y) — M : 2,y € Z>o} are equal
in distribution.

Theorem 7.12 follows in essentially the same way as Theorem 7.8 by matching the
value of vertex weights L., ., and probability laws of entries b}, b} with those given
Ul (on the boundary this follows from Proposition 7.10; in fact, the structure of the
concrete formulas (7.3), (7.4) is essential for the independent boundary conditions). Let

us present a slightly different argument that uses analytic continuation. This alternative
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approach is useful in other situations (Sections 7.3 and 7.4) and also in Section 9 for
computation of observables of models with two-sided stationary boundary conditions.

Proof of Theorem 7.12. Consider the sHL/sHL Yang-Baxter field with the usual step
boundary conditions, and with shifted indices:

n= {,u(w’y) H(#,y) € Zz—p41 X L jp41}-
Here Iy, Jy are positive integers. For p we take the following specializations:

J() IO

Ug, qUO, - - - q7° Tug, ug, ua, . . . and V0, qUo, - - . ¢ Loy, vy, v, . . . . (7.8)
Call v = pl,_ ., the restriction of p to the nonnegative quadrant. Then v is a
field of random Young diagrams associated to the sHL/sHL skew Cauchy structure with

Gibbs boundary conditions (Definition 2.5). That is, for all z,y, the boundary Young

diagrams v(©¥) . (00 p@0) are distributed with law
1 r (1o) - (Jo)
o0 H Fu©.) ju0.i-1) ()8, 6, (Vo) H F0 ji-10 (038,00 (o), (7.9)
boundary j=1 i=1

recalling the notation introduced in Section 4. The vertex weights in the definition of
the principal specialization of the sHL functions &,,0.,) and §,.0) depend on the pa-
rameters g, ¢’°, vp, ¢'° in a rational way. Therefore, for any bounded complex-valued
cylindric function f : v +— f(v),'! the expected value E,(f) is a holomorphic function
of ug, ¢7°, vg, g™ when these parameters are in a small neighborhood of zero.

Let A be the sHL/sHL field with («, 3)-scaled geometric boundary conditions. The
above argument shows that the probability of any event depending on a finite region in
the field A is equal to the scaled geometric degeneration

Up = —€q, qu = 1/67 Vo = _eﬂu qIO = 1/67 e — 0,

of the probability of the same event in which the field A is replaced by v.

Consider now the stochastic six vertex model with the step boundary conditions on
the shifted lattice Z>_j,4+1 X Z>_j,+1, which corresponds to the field p (with parameters
(7.8)). Refer to its height function by h¢Vo:/0) By Theorem 7.8, we have equality in
distribution

[8VUo:Jo) (2 ) 4 y+ Jo — L(®Y) for all z,y > 0 (7.10)

11 Here “cylindric” means that the function depends on v only through the diagrams v (%) where (z;, y;)
run over a finite set (and the set may depend on f).
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(here y + Jy is simply the shifted vertical coordinate, and v@Y) = (@Y for x,y > 0).
Next, let H6V0:J0) (1, 4) be the centered height function of the restriction of the above
vertex model to the nonnegative quadrant Zéo. Then

HGV(IO’JO)(x, y) = hGV(IO’JO)(x, y) — Jo + M, g, for all z,y > 0, (7.11)

where My, j, is the random variable counting the number of paths originating from the
segment {—Ip + 1} x [—Jo + 1,0] and vertically crossing the segment [—Iy + 1,0] x {0}.
Combining (7.10) and (7.11), we find that

y — L@V L HOVUosTo) () — My, g0 for all z,y > 0. (7.12)

The probability law of My, j, is found from the sHL/sHL field g which has step
boundary conditions (hence we can use Theorem 7.8). On the other hand, the update in
the initial (1o, Jo) part of p is restated as a single forward transition in the (I, Jy)-fused
field (considered in Section 6 above). Therefore, the law of M, j, is given by (6.17) with

parameters ug, q‘]", 0, qI":

Prob{My, s, =k} = U | (0,0;k,k)  fork=0...,1I. (7.13)
Under the scaled geometric specializations to both « and 3, this distribution becomes
g-Poi(af), cf. (7.5). Taking the scaled geometric specializations in (7.12), we obtain the
desired matching between the centered height function H%V of the stochastic six vertex
model with the («, 5)-stationary boundary conditions and the marginal of the field A. O

7.3. The sHL/sqW Yang-Baxter field

Here we consider the Yang-Baxter field associated with the dual Cauchy identity be-
tween the sHL and the sqW functions. The marginal of the field is the stochastic higher
spin six vertex model. We consider both step and two-sided stationary boundary condi-
tions in the vertex model. The model with the step boundary conditions was extensively
studied starting from [29], [18]. Different formulas for observables in the two-sided sta-
tionary case leading to asymptotic results were obtained recently in [37] by a different
method.

7.8.1. Step boundary conditions

The sHL/sqW field corresponds to setting v = s and ¢/ = —6/s in the notation
of Section 6. The parameters are ¢ € (0,1), s € (—1,0), u € [0,1), § € [—s,—s1].
The Yang-Baxter equation governing the vertex weights is (A.12).'? The reversibility

12 Equivalently, one could consider u = s, ¢/ = —¢/s, and take (£, v) as the parameters. This leads to a
straightforward rewriting of some of the formulas, but produces the same marginal process (cf. Remark 3.11).
Therefore, we only consider one of the two dual cases.
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condition of the forward and backward transition operators is proven in the same way
as Proposition 7.3, and is given as follows:

Proposition 7.13. For any four Young diagrams p, ¢, \,v we have

1+ub | gy .
UL () sqw (o) (32 = ¥ | A1) Fayse(W)F 0 (6)

= U?gg(u),qu(Q)(V — | A\ p) F;//,\/ (O)F, u(u) (7.14)

1—us

Summing (7.14) over both s and v, we obtain the skew Cauchy identity of Theorem 5.9.

The sHL/sqW Yang-Bazter field A = {\®%)} depends on the parameters uy € [0,1),
0, € [—s,—s Y, z,y € Z>1, and is generated from the step boundary conditions A@:0) —
AO0¥) = 0% = & by applying the forward transition operators Uivl—vli(u,,),squm)'

Proposition 7.14. The single-point distributions in the sHL/sqW field with the step bound-
ary conditions have the form

1—u;s
ProbA*™Y) =v) = [ —— 2 Fulur,. .., u)Fo(0r,...,0,).
1Zi<e LT U0
1<j<y

The joint distributions along down-right paths are expressed through the skew functions
as in Proposition 2.9.

7.8.2. Scaled geometric boundary conditions
Take additional parameters a, 3 € [0, —s~1], and consider specializations

p i =sgla),  p"y=sg(B),  py=sHL(u,),  ph=sqW(b,).

Let 17 be the Yang-Baxter field on the lattice Z>_1 x Z>_; generated by the forward
transition probabilities constructed using the specializations (dragging the cross vertex
through the leftmost column should be understood as in Remark 7.5). Restricting this
= 17|Z>0Xz>0, we get the sHL/sqW field with the
two-sided scaled geometric (or (o, 3)-scaled geometric) boundary conditions.

field to the nonnegative quadrant, A

Proposition 7.15. For the field A defined above we have
Prob{\(@¥) = v}

aBi)oo 11 (@0i30)00 1—uys O =
_ y( ) H((sa'q) I1 L (NSRRI M CIRRIOR
IT(1+u;B) i=1 PO 1 <i<a s
j=1

1<j<y

Joint distributions in XA along down-right paths are expressed similarly to Proposition 2.9.
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Fig. 18. Stochastic vertex weights L. (%1, j1; %2, j2). This parametrization of the weights differs from the
ones employed in [29] or [18], but all these parametrizations are related to each other via simple changes of
variables.

7.8.3. Stochastic higher spin siz vertex model

The Markovian marginal of the sHL/sqW field can be mapped to a known stochastic
vertex model which we now recall. Let the vertex weights Ly, g, (i1, j1; %2, J2), i1,%2 €
Z>9, j1,72 € {0,1}, be given in Fig. 18. They are stochastic for our values of parameters
in the sense that Zimz Loy, .0, (i1, 71312, jo) = 1 for all 4y, j;.

Definition 7.16 (/29], [18]). The (inhomogeneous) stochastic higher spin siz vertex model
with the boundary conditions B® = {b},b%,...} and BY = {by,by,...}, by € {0,1},
b;‘ € Z>y, is the (unique) probability measure on the set of up-right directed paths on
Z>¢ x Z>o (with multiple vertical paths allowed per edge, but at most one horizontal
path per edge) satisfying:

o Each vertex (0,y) at the vertical boundary {(0,%’) : ¥/ > 1} emanates a path initially
pointing to the right if b; = 1;

 Each vertex (z,0) at the horizontal boundary {(z’,0) : ' > 1} emanates b paths
initially pointing upward;

 For each (z,y), conditioned to the path configuration at all vertices (2/,y’) such that
a2’ +y' < x4y, the probability of a vertex configuration (i1, j1; i, j2) at (z,y) is given
by Lu, ., (1,715 42, j2). Moreover, the random choices made at diagonally adjacent
vertices ..., (x — L,y + 1), (z,y), (z + 1,y — 1), ... are independent under the same
condition.

In particular, the step boundary conditions correspond to paths entering horizontally at
each location and no paths entering through the bottom boundary (7.2), exactly as in
the stochastic six vertex case considered in Section 7.2.

Similarly to the six vertex case, let us encode the configuration of paths by the centered
height function H"5(x,y), see (7.7). That is, H15(0,0) = 0, and the stochastic higher
spin six vertex model paths serve as level lines for #"S. For the step boundary conditions
we have HS(z, y) = hF5(z+1,y), where hF5(z, y) is the number of paths passing weakly
to the right of the point (z,y) € Z2,,.

The next proposition suggests the appropriate choice of the two-sided stationary
boundary conditions for the stochastic higher spin six vertex model:



A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865 61

Proposition 7.17. Consider the transition probabilities Ul given in (6.17). Then

i (=8/0:0)5; (af;q)s
(G9)j; (—505q)0

0 . g
Ul saw (o) (0803 6 J0) = Ligsgy=jo () (7.15)

Proof. This follows by specializing (6.17) and using the expressions for the boundary
weights W*, w ((3.14) and (A.16), respectively), and the cross weights R(S;fzv’sg (A.19).

The quantity R,%’J)(J, 0; J,0) should be specialized as described in Remark 7.5. O

Let us define the stochastic higher spin six vertex model with two-sided stationary (or
(a, B)-stationary) boundary conditions by taking independent random variables on the
boundary distributed as (recall the notation in Section 1.5)

b2~ ¢-NB(—5/0,,00,) and b’ ~ Ber <1> : (7.16)

Let HMS(x,7) be the corresponding centered height function.

For a = B = 0 the boundary conditions (7.16) reduce to the step one. When (3
depends on « in a certain way, the stationarity of the boundary conditions (7.16) under
the homogeneous stochastic higher spin six vertex model was checked in a continuous-
time degeneration in [19, Appendix B.2], see also [37] for the full statement and further
discussion.

The next result is the analogue of both Theorems 7.8 and 7.12 from the stochastic six
vertex case. Let A be the sHL/sqW Yang-Baxter field with the («, 8)-scaled geometric
boundary conditions.

Theorem 7.18. Let M be the q-Poisson random variable with parameter af8 independent
of the stochastic higher spin six vertex model with (a, B)-stationary boundary conditions.
Then the two random fields {y — LAEYY: zy € Z>o} and {H" (z,y)—M: z,y € Z>o}
are equal in distribution.

Proof. To obtain the matching in the step case (note that when « or j is zero, M =0
almost surely), it suffices to check that
0 } g . Ly
Ug}]IL(u),qu(a) (207 1- Z(/)7J(/)7 1- .70) = Eu,@(l(h 267.7(/)7j0)

for all ig,j, € Z>o and 1if, jo € {0,1}, where the left-hand side is the specialization of
(6.17). This is a straightforward verification.

The matching result for the scaled geometric boundary conditions is obtained in the
same way as in the proof of Theorem 7.12. Indeed, we can consider the field in Z>_j,41

Jo—144 and

Z>_ jo+1 with the extra sHL specializations with the parameters ug, quog, . . ., ¢
V0, qV, - - - , ¢ tvg. The desired matching then follows from the expressions (7.4), (7.5),

(7.15) for the corresponding specializations of U, and analytic continuation. 0O
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7.4. The sqW/sqW Yang-Baxzter field

Let us now turn to the third and final Yang-Baxter field associated with the sqW /sqW
skew Cauchy structure. The particle system we obtain as its marginal generalizes the
g-Hahn PushTASEP introduced recently in [27].

7.4.1. Step boundary conditions

The sqW /sqW Yang-Baxter field depends on the parameters ¢ € (0,1), s € [-/q,0),
0:.&, € [—s, —st]. The reversibility condition associated with the forward and backward
transition probabilities takes the following form:

Proposition 7.19. For any four Young diagrams p, ¢, A, v we have

(_SfaQ)OO(_SGaq)OO fwd *
(3 0)oo (0 e V@@ 4 VI 1) B0 () B 6]

S;VV%(&SQW(G)(V = 2 | N ) F i (0)For o (€). (7.17)
Summing (7.17) over both s and v, we obtain the skew Cauchy identity of Theorem 3.12.

The sqW/sqW Yang-Bazter field with the step boundary conditions A is, by definition,
generated from the boundary conditions A(#:0) = X% = 0 = & by applying the
forward transition operators Uggs\/(fy),s W (0,)"

Proposition 7.20. The single-point distributions in the sqW/sqW field X with the step
boundary conditions have the form

PI‘Ob A(rvy):V = (87q)00(§1 VAl o0 Fyl(ga-.-,f F:/e,...79(lj.
( ) 1§1:£9c (75&;‘])00(*59]';(1)00 1 y) ( 1 )
1<j<y

The joint distributions in X along down-right paths are expressed through the skew sqW
functions as in Proposition 2.9.

7.4.2. Scaled geometric boundary conditions

Let a, 3 € [0, —s7!] be additional parameters. The sqW/sqW Yang-Bazter field with
two-sided scaled geometric (or (a, B)-scaled geometric) boundary conditions is constructed
exactly as in Sections 7.2.2 and 7.3.2 by adding scaled geometric specializations to both
boundaries of the quadrant Z2 .

Proposition 7.21. The single-point distributions in the sqW/sqW Yang-Bazter field A
with (o, B)-scaled geometric boundary conditions are given by
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x

(ab Y (B
Prob()\(m’y) = u) (af;q)so H s;:qq H o

iy 5,87
57/ j 4 ) ~ * 3
x H V’(€17"‘7£y;a)]Fy/(917'"791;5)'
1<i<w 85“ oo(=8053 @)oo
1<5<y

The joint distributions along down-right paths are expressed as in Proposition 2.9.

7.4.3. Stochastic vertex model with 4¢3 weights

The scalar marginal {£(A®¥)} of the sqW/sqW Yang-Baxter field gives rise to a
new vertex model which is related to the ¢-Hahn PushTASEP from [27] (we discuss this
connection in Section 7.4.4 below). To formulate the vertex model, let us first write down
the quantities (6.17) under the two sqW specializations:

]Lgyg(il,jl; ig,jg) = U£(<):1]W(£),qu(9) (ilajl; 7;27.7.2)
L fi2 st giz—ia qj1j2+%i1('i1—1) <_3/9; Q)ig (—s/f; q>j2
TR 0 ), (—5/€0) iy (039) 0 (—a/ (5€)5 @) ja—is

y (Squ1+j2;q)oo(9£;q)oo E q*jl q*jz —s0, —q/(s£
(=56 @)oo (—50; @)oo s/, g g /s

‘q q
(7.18)

where il,j1,i2,j2 S Zzo.

Lemma 7.22. Let g € (0,1), s € [—/q,0), &,0 € [—s,—s™!]. Then L¢ (i1, j1; 42, j2) > 0
for alliy, j1,ia, jo € Z>9. Moreover, >=, . Le (i1, j1;i2, j2) = 1 for all i, j1 € Z>o.

Proof. The nonnegativity follows from Appendix A.5 (in particular, from Proposi-
tion A.8). The fact that the weights sum to one is the consequence of the Yang-Baxter
equation (A.13) in the leftmost column, where i35 = j5 = 0o, together with Proposi-
tion A.5. O

The weights Le¢ g(i1, j1; 92, j2) give rise to a stochastic vertex model. Because the arrow
preservation property for these weights reads i1 + jo = i3+ j1, the paths in this stochastic
vertex model are directed up-left.

Definition 7.23. Let &,,0, € [—s,—s™!], z,y € Z>1. The (inhomogeneous) 4¢3 stochastic
vertex model with the boundary conditions {b}',5,...} and {b7,05,...}, bgﬂb}’ € Z>o,
is the (unique) probability distribution on the set of up-left directed paths on Z>¢ X
Z>¢ (with arbitrary nonnegative number of paths allowed per edge, see Fig. 19 for an

illustration), satisfying:
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Fig. 19. A path configuration in the 4¢3 stochastic vertex model, and the corresponding height function.
(The boundary configuration in the figure is not the step one. Unlike for the two previous vertex models,
here the step boundary conditions would mean no paths crossing the boundary.)

o The number of paths entering at each location (z,0) on the horizontal boundary is
equal to b, ¥ € Z>1;

o The number of paths exiting at each location (0,y) on the vertical boundary is equal
to by, y € Z>1;

o For each (z,y), conditioned on the path configuration at all vertices (2’,y’) such that
2’ + 1y < x4+ y, the probability of the configuration (i1, j1;i2,j2) at (x,y) is given
by Le, 0, (i1, j1; %2, j2). Moreover, the random choices made at diagonally adjacent
vertices ..., (x — L,y + 1), (z,y), (z + 1,y — 1), ... are independent under the same
condition.

In particular, the step boundary conditions correspond to taking bZ}-l = b/ = 0 for all
xS ZZL

Remark 7.24. The up-left direction of paths in the 4¢3 vertex model of Definition 7.23
should be contrasted with up-right paths in the stochastic vertex model (Section 7.2.3)
and the stochastic higher spin six vertex model (Section 7.3.3). Note however that in
the latter two models the number j of paths per horizontal edge is at most one, and so
the operation j — 1 — j applied at each horizontal edge turns up-right paths into up-left
ones. In the sqW/sqW setting the number of paths per horizontal edge can be arbitrary,
so the model with the weights IL¢ 9 cannot be mapped to a model with up-right directed
paths.

For arbitrary boundary conditions, the configuration of the paths is encoded by the
height function H?(z,vy), z,y € Z>¢, which counts the number of paths which between
(0,0) and (,y) (including the paths that pass through (,y), too). In other words, paths
are the level lines of H?. An example is given in Fig. 19. Clearly, H?(z, y) is almost surely
finite at each (z,y).

0

. . [0]
Proposition 7.17 expressing Usg(a),qu(e)

negative binomial distribution ¢-NB(—s/6, o) suggests the two-sided stationary bound-

on the bottom boundary of Zzzo as the ¢-

ary conditions for the 4¢3 stochastic vertex model. Moreover, on the left boundary, by
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the symmetry (A.9), Ug()l]W(ﬁ),sg(B) leads to ¢-NB(—s/¢, B€). Therefore, we define the

two-sided (or (a, 8)) stationary boundary conditions by taking independent

b ~ ¢-NB(—5/6,,ab,), by ~ ¢-NB(—s/&. BE,).

The step boundary condition arises when o = 8 = 0, and thus b = by = 0 for all z,y
(note that this meaning of “step” here differs from the two previous stochastic vertex
models).

Recall the g-Poisson distribution (Section 1.5). Let A be the sqW /sqW Yang-Baxter
field with («, 8)-scaled geometric boundary conditions.

Theorem 7.25. Let M be the q-Poisson random variable with parameter af which is inde-
pendent of the 4¢3 stochastic vertex model. Then the two random fields {{((\®¥)): x,y €
Zso} and {H?(z,y) + M: z,y € Z>o} have the same distribution.

Proof. This is proven similarly to Theorems 7.12 and 7.18 using analytic continua-
tion. Namely, one starts with the Yang-Baxter field p in Z>_j,4+1 X Z>_j, 41, where
the positive coordinates Z>1 x Zx1 carry the sqW specializations {,} and {6},
and the extra nonpositive coordinates carry the sHL specializations with parameters
Ug, qUg, - - ., g7 ! fo—1
10, q”°, vg, ¢’ in an analytic manner, and one can then take ug, ¢”°, vg, ¢/ to the scaled

ug and vg, qug, . .., q Vg, respectively. The resulting field depends on
geometric specializations.

Before the analytic continuation we know that ¢ (u(’c’y)) is equal in distribution to the
height function Hfm 7, (%,y), which is defined in the same way as H?, but in Z>_y,41 X
Z>_ jy+1. The number of paths originating from the segment {—Ip + 1} x [—Jy + 1, 0]
and vertically crossing the segment [—Iy+1,0] x {0} becomes, after the scaled geometric
specializations, the desired ¢-Poisson random variable M. Therefore, after the special-
izations ]H[?OJ0 (z,y) turns into H?(z,y) + M for all 2,y € Z>o. On the other hand,
£(u™¥)) becomes £(A\@¥) for all 2,y € Z>o. This completes the proof. O

7.4.4. Connection to PushTASEPs

Take arbitrary stochastic vertex weights £, . (i1, j1; 42, J2), T,y € Z>1, i1, 1,12, J2 €
Z >0, which vanish unless ¢; + jo = 92 + j1, and construct from them a stochastic vertex
model with up-left paths as in Definition 7.23. We also assume that boundary conditions
bl and by, x,y € Z>1, are fixed.!'® Path configurations in this vertex model can be
equivalently viewed as trajectories in a stochastic particle system on the line with a
pushing mechanism.

13 If these boundary conditions are random, then they should be independent of the evolution of the
stochastic vertex model. Therefore, we can first sample the boundary conditions and then proceed with the

discussion conditioned on the values of b];,, by -
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Fig. 20. The height function in the vertex model (left) and the corresponding realization of the pushing
dynamics (right).

Indeed, consider the discrete time dynamics y(¢) on the space of configurations

{y=W1>y2>...)y, €Z}

defined as follows (see Fig. 20 for an illustration):

1. At time ¢t = 0 we have y;(0) = —1 and yx(0) — yx+1(0) — 1 = b}, k € Z>q;

2. At each discrete time step t — 1 — ¢, £ € Z>1, the first particle’s location is updated
as y1(t) = y1(t — 1) — b} (i.e., it jumps by b} to the left);

3. At each discrete time step t —1 — ¢, t € Z>1, the locations of the subsequent particles
are updated sequentially. For i = 2,3, ..., after the (i — 1)-st particle has moved such
that y;—1(t) = y;—1(t — 1) — I, and if the gap was y;_1(t — 1) —y;(t — 1) — 1 = g, then
the i-th particle jumps by L to the left with probability £; ;y(g,l;9 + L — 1, L).

The fact that it must be L > [ — g in the update implies that the dynamics preserves
the order of the particles. Namely, if the jump [ of the (i — 1)-st particle is longer than
the gap, then the i-th particle is pushed to the left. Therefore, the dynamics y(¢) has a
built-in pushing mechanism.

At each discrete time step the dynamics y(¢) might perform an infinite number of
jumps. However, due to the sequential update structure, the evolution of the first N par-
ticles y1 > ... > yn is always well-defined, and thus one can define the whole dynamics
y(t) via Kolmogorov’s extension theorem.

Particle systems with pushing mechanism have been studied for a long time. The first
example is the PushTASEP (also known as the “long-range TASEP”, or as a degenerate
particular case of the Toom’s interface model) [52], [30]. The PushTASEP admits many
deformations, most recent of which is the ¢-Hahn PushTASEP introduced in [27] (see
also section 3.2.1 in the latter paper for references to known intermediate degenerations).
Recall that the g¢-Hahn PushTASEP depends on three parameters g € (0,1), p € (0,1),

and v € (=1, min(u, \/q)].

Proposition 7.26. For a =0, 8 =1,&, =, 0, =1 forall xz,y € Z>1, and s = —v, the
particle system corresponding to the 4¢3 stochastic vertex model (i.e., with £y = L1
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given by (7.18)) and (a, B)-stationary boundary conditions coincides with the q-Hahn
PushTASEP from [27] with the step initial configuration y;(0) = —i, i € Z>1.

Proof. This is obtained in a straightforward way by matching the formulas from
[27] expressing transition probabilities in the g-Hahn PushTASEP through the 4¢3 ¢-
hypergeometric functions with the expression (7.18). For o« = 0, there are no vertex model
paths entering through the bottom boundary. Then the boundary conditions on the left
are random and independent with the distribution ¢-NB(—s/¢, 58) = ¢-NB(v/p, p),
which is exactly the jumping distribution of the ¢-Hahn PushTASEP first particle (de-
noted by ¢q .. (- | 00) in [27]). O

We see that the 4¢3 stochastic vertex model from Section 7.4.3 in a particular case
becomes the g-Hahn PushTASEP. Note also that to match the jumping distribution
of the first particle we needed to employ the independent negative binomial boundary
conditions on the left (vertical) boundary. (This effect is also present in the stochastic
higher spin six vertex model, cf. [50].) The pushing particle system corresponding to
the step boundary conditions in the 4¢3 stochastic vertex model is more general than
the ¢-Hahn PushTASEP. Namely, the former can essentially be viewed as the ¢-Hahn
PushTASEP conditioned on the event that the first particle y; never jumps.

8. Difference operators

In this Section we prove that the (stable) spin Hall-Littlewood and the spin ¢-
Whittaker functions are eigenfunctions of certain (g-)difference operators acting on
symmetric functions. In this section we denote the quantization parameter in the sHL
functions by ¢ instead of ¢ because the sHL eigenoperators are the same as in the Mac-
donald case (recall that for s = 0, the sHL functions become the usual Hall-Littlewood
symmetric polynomials, which are the ¢ = 0 degenerations of the Macdonald symmetric
polynomials).

8.1. FEigenrelations for the spin Hall-Littlewood functions

Consider the space of symmetric rational functions in wuq,...,u,. Let the operator
Ty, on this space be

Toui f(ut, . sun) = flur, ..o, Uim1, QUi Uig1, - . - Up), (8.1)

that is, it acts by multiplying the variable u; by ¢. In this subsection we will use the ¢ = 0
version, 1y ,,,. Note that this operator acts only on rational functions whose denominators
do not contain positive powers of u;.

Definition 8.1 (Hall-Littlewood difference operators). For 1 < r < n, let the r-th Hall-
Littlewood difference operator be
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tu; — u;
D, = Z ( H H) To,1, (8.2)

Ic{1,...,n} ~ el
[I|=r  Jd€{l,...,n}\I

with TO’[ = Hie] TO,uy

The Hall-Littlewood operators are the ¢ = 0 cases of the Macdonald difference opera-
tors [40, Chapter VI.3] (the latter are obtained by taking T ., in (8.2) instead of Tp ,, ).
The operators D,. are diagonal in the Hall-Littlewood symmetric polynomials Fy| _, *:

D, Fa(ut, ..., un) =eq(1,t,... ,t"‘e(k)_l) Fa(ut,...,up)

oo o’ (8.3)

where the eigenvalues are given in terms of e,.(uq, ... u,), the r-th elementary symmetric
polynomial:

er(#1,...,2N) = Z Ziy o i (8.4)

1<y <-<ip <N
In particular, e, (z1,...,2y) =0if r > N.
In the following Theorem we extend (8.3) to the spin Hall-Littlewood symmetric
functions:
Theorem 8.2. For all Young diagrams A\ and n € Z>, we have

D, Fa(ug, .. un) = ep(1,t, .., " Y Ey(ug, ... uy). (8.5)

Remark 8.3. Certain difference operators acting diagonally on the non-stable spin Hall-
Littlewood symmetric functions were considered in [32].

In order to prove Theorem 8.2 we make use of two preliminary lemmas. The first one
is an explicit expression for the sHL function Fy as a sum over the symmetric group &,:

Lemma 8.4. For any Young diagram A such that n > €(\), we have

Fa R O Rl [(ECE s g
aur, . oo up —( g u; — uj Py 1— su; z,=1ui—5 '

t; t)n_é()\) ce€S, 1<i<j<n
Here the symmetric group acts on the indices of the variables u;, but not on \;.

Proof. This is a corollary of [7, Theorem 5.1] which gives an analogous expression for the
non-stable spin Hall-Littlewood function. The degeneration to the stable case is obtained

14 We have Fy(u1,... sun)|._y = @a(u1,...,uyp;t) in the standard notation of [40, Chapter III].
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as in (3.7). Symmetrization formula (8.6) for the stable case appeared earlier in [33] and
[21]. O
Lemma 8.5. We have
u; — tu; u; — tu;
9, Wim L\ o1, gt i mtuy | g
(Z A S=e}) et sof T 5=5 60
oES,, 1<i<j<n J ceS, 1<i<j<n J

Proof. This is the A = & case of the known Hall-Littlewood relation (8.3). Notice that
the symmetrized sum in fact does not depend on the variables uy, ..., uy,:

u —tu; | ()
2 11 z‘uj}_(lt)"’

O'{
- (7
ceS, 1<i<j<n

see [40, Chapter IIL.1, formula (1.4)]. O

Proof of Theorem 8.2. For a fixed Young diagram A we define

u; — tu; Xi ) Uu;
A= - 7 B= C = L
H wp —uj H(l—sm) ’ Hui—s
1<i<j<n i=1

With this notation, using (8.6), the left-hand side of (8.5) can be written as

> H i Bk’ /R 3" o {ABCY, (8.8)

Wi — Us
Ic{1,...,n} ¢ J €S,
|T|=r J€{1 ,,,,, n}\f

where cy = (1 — )" /(t;t),,—g(x). We first observe that

c if I C o)
TOJU{C}Z{U{ } if I C{ogn)+15---50n}

otherwise.

Therefore, we can reduce the sum over the symmetric group in (8.8) to permutations
o such that I C o({l(\) + ,n}). Moreover, we see that the claim of Theorem 8.2
follows for r > n — ¢(\) since both sides of (8.5) vanish. Thus we will now assume that
r<mn—~LN).

For a given permutation ¢ define the ordered sets V,, W, as

= ({, {1}1,.. ’Ug()\}

Vs
W ({K(A)—l—l,...,n}):{wh...,wn,z()\)}:IUK,

and rewrite (8.8) as
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o S S o{BC} H %TOJU{A}, (8.9)

1c{1 .} oES, ¢
\I|=r ~ICW, Jel

where we used the fact that o{BC} only depends on variables u; for j € V,. We now
focus on the remaining factors. For two disjoint or coinciding ordered sets S7, S2 denote

P(S1,52) = [Lics,. jes, ?:tzj When S; = S», the product is only over ¢ < j. We have

tu; — u;
H iy SJ Ty0 {A} = P(I°,1)P(V,,V,)P(V,, K)
J

U; —
]6{1 n}\[

x To.z (P(I, K)P(I,1)P(V,,I)P(K,I)P(K, K))

= P(V,, V) P(Vyy, Wo)P(K, I) To.1 (P(I, K)P(I,1)P(K, K))

S | G | Qe

Uy, Uy u u u u
1<i<i<e(n) U Vi eV, jeEW, T iew,\I,jel " J

y H Uy, — tuwj .
— Uy

U s .
1<i<j<n—£(\) U J

In the above calculation we used the fact that Ty ; acts on P(S,I), S # I, by turning
it into one. The action Ty rP(I, ) does not make sense before the symmetrization (i.e.,
summation over ¢), and so we do not apply Tp ; to this expression just yet. In the last
line, the first two products are independent of I and of the ordering of W, and the last
two products are independent of the ordering of V. Therefore, we can rearrange the two
summations in (8.9) as

o X Y I I e
Uy _uw . Uy; — Uy,
VC{1,...,n} TEG, UEV 1<i<i<L(N) ‘ 7
[V|=£(N), w=ve

<> 11 u__sw oY 0{ 11 Zqz_tuwf},

= Uqps
ICW el 0EG,_gn) 1<Ki<i<n—L(N\) i wi
[Il=r weW\I

(8.10)

The permutations 7,0 permute the variables w,,, u.,, v; € V, w; € W, acting respec-
tively on indices ¢ and j. We can now employ Lemma 8.5 to transform the second line
of (8.10) into

C— tUy
er(Lt,... 73 0{ I1 u} (8.11)
U, — U

0€6, oy 1<Ki<i<n—e()) " I

Therefore,
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v 3 w
Ihs (8.5) = ep(1,t,...,t" N1 ey > > I Py
Uy — Uy

VC{l,...,n} TES () vEV
[VI=L(\), W=V 0€&, 4 WEW

Uy, — LUy, Uy, — LUy,
X _— — B .
S el S B et
1<i<j<e(N)

1<i<j<n—e(A) ¢ Wi g

(8.12)

The summations in the right-hand side of this last expression (along with the factor c)
are easily rearranged into the symmetrized sum (8.6) producing the spin Hall Littlewood
function Fy. O

8.2. Orthogonality

The spin Hall-Littlewood functions enjoy the following orthogonality:

Proposition 8.6. For any Young diagrams A, i, we have

tt)n—e d dn ] *
(%) M)j’{ A1 ]{ I ZEE G ) FL( 2 2)

_ 1 ; : .
(1—t)"n! / 2mizg J 2mizy, \<idjen Zi tz;

= 1y_p, (8.13)

where v is a positively oriented contour encircling 0, t*s for all k > 0, and the contour
ty (its image under the multiplication by t), but not the point s=1.

Proof. This is consequence of [18, Corollary 7.5], where an analogous result is stated
for the non-stable spin Hall-Littlewood functions with inhomogeneous parameters (the
corresponding homogeneous result goes back to [13]). The desired orthogonality relation
(8.13) then follows with the help of the limit (3.7). O

The orthogonality property (8.13) resembles the orthogonality of the Hall-Littlewood
polynomials with respect to the Macdonald’s torus scalar product [40, Chapter VI, (9.10)]
at ¢ = 0. The general (g, t) scalar product is

1 — Zi Zj; 00 n le
(fsg)n = (2”1)”“!1! f(2)g(2) H wniv (8.14)

\<idjen (t7i/ 255 D)oo i Zi

where the integration is over the n-dimensional torus in C" (i.e., over the positively ori-
ented unit circles). In the presence of the additional spin parameter s, the Hall-Littlewood
orthogonality extends to (8.13).

The usual g-Whittaker polynomials are orthogonal with respect to (8.14) with ¢ = 0.
At present it is not clear how to extend this orthogonality property to the spin g¢-
Whittaker polynomials. This problem could be related to the following observation.
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While all the ¢ = 0 Macdonald difference operators are diagonal in the spin Hall-
Littlewood functions (as well as in the usual Hall-Littlewood polynomials), the situation
on the spin ¢-Whittaker side is more complicated. In the next subsection we discuss an
s-deformation of the first ¢ = 0 Macdonald g¢-difference operator which acts diagonally
on the spin g-Whittaker polynomials.

8.3. Eigenrelation for the spin q- Whittaker polynomials

Fix | € Z>1. Define the operator acting on rational functions in (61, ...,6;):

e Mt

Jj=1

Here T,-1 g, are the shifts (8.1), and Id is the identity operator.
Theorem 8.7. For any Young diagram X\, we have
EFx(by,...,0) = q MFr(61,...,0). (8.16)

Remark 8.8. When s = 0, the operator & reduces to the first Macdonald operator with
t = 0 and the parameter ¢~ instead of ¢. Then (8.16) turns into the known eigenrelation
for the usual g-Whittaker polynomials (cf. the operators b; with » = 1 in [9, Section
2.2.3]). It is not clear whether there exist appropriate s-deformations of the higher ¢ = 0
Macdonald difference operators which would be diagonal in the spin g-Whittaker poly-
nomials.

Theorem 8.7 follows from a “duality” relation for € in Lemma 8.9 below. Define
Di=q¢"(Id+(q—1)D1), (8.17)
where D, is the first Hall-Littlewood operator (8.2) with parameter ¢ replaced by g.

Lemma 8.9. Consider the function

n 1

M(ui, ... un: 01, ...,0 HHHW . (8.18)

1— su;
i=1j5=1

Then we have
€Il = DII, (8.19)

where the operator ® acts in uy,. .., u,, while & acts in 61, ...,0;.
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Proof. When ¢ acts on a factorized function G(61,...,0;) = g(01) - - - g(61), it admits the
integral representation

B z—l—sg 12)%
EC(Br, . 0) = G105 7{ H . (8.20)

z

Here 79,9 is a positively oriented contour (or a union of contours) encircling 0, 6, for
i =1,...,1, and no other singularity of the integrand. Here the function g(z) should be
such that we can choose a contour in whose neighborhood the expression g(¢~'z)/g(z)
is holomorphic, and such that no singularities of g(¢~'z)/g(z) fall inside 7o, g.

Analogously, the action of ® on H(uy,...,u,) = h(uy) - - - h(uy), where h(0) = 1, has
the form

-1
~ w—q u; 1 dw
DH(uy,...,up) = H(uy,...,u . 8.21
(uy tn) (uy 271'1 f H w— u; h(w) w (8:21)
The contour g ,, is positively oriented and contains 0, u; for ¢ = 1,...,n and no other

singularity of the integrand (again, under suitable assumptions on h(w)). Both integral
expressions (8.20) and (8.21) follow by straightforward residue calculus.

Let now both operators € and D act on the function I (8.18) which has product form
in both families of variables u; and ;. We assume that 1+6;u; # 0 for all 4, j (otherwise
IT is identically zero). From (8.20) we have

GH(ul,...,un;Hl,..., ?{Hz—i—s S l4q 1u]zdz
M(uy, .. un; 01, .., = 2ni z—0 L ltuz oz

On the other hand, from (8.21) we have

35H(u1,...,un;91,..., _ j{l—[ —q 1u]H1—swdw
M(ug, .oy tn; b1, w—u; o s 1+ 60w w
The previous two expressions are identical after a change of variables w = —1/z (note

that the extra minus sign corresponds to changing the contour’s orientation). O

Proof of Theorem 8.7. First recall the Cauchy identity between the sHL and sqW func-
tions (Section 3.7):

> P, un)F (01, 00) = (ug, w01, 0)). (8.22)

Combining (8.19) with (8.22) and employing the eigenrelation of sHL functions given by
Theorem 8.2, we obtain
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Z Fu(ur, ... un) €Fp(01,...,01) = Zq_e(”)F#(ul, cosun)F (01,00, (8.23)
1 1

This implies the equality between single terms of the summations due to orthogonality
of the sHL functions (Proposition 8.6). Because ¢(u) = u}, we get the desired eigenrela-
tion. 0O

9. Fredholm determinants for marginal processes

Here we derive Fredholm determinant expressions for the g-Laplace transform of the
random variable —¢(A(®*¥)), where X = {\(*%)} is one of the Yang-Baxter fields described
in Section 7. In the sHL/sHL case, these Fredholm formulas are known [12], [1]. In
the sHL/sqW case, they are present in the literature for the step and step-stationary
boundary conditions [29], [18], [19]. A Fredholm determinantal formula for the stochastic
higher spin six vertex model appears also in the recent work [37], though here we establish
a different formula for this case. In the sqW /sqW case, a similar Fredholm formula for the
g-Hahn PushTASEP was recently conjectured in [27], and here we prove this conjecture.

In this section we return to calling the main quantization parameter by ¢ throughout.

9.1. Siz vertex model observables through difference operators

In this subsection we rederive known results about the g-moments of the six vertex
model [12], [18] making use of the difference operators acting on spin Hall-Littlewood
functions. Consider the inhomogeneous stochastic six vertex model with the step bound-
ary conditions and height function h%V. Recall that the model depends on the parameters
vy and uy, 2,y € Z>1, which we assume positive (cf. Section 7.2.3). Let ui,us2,... be
spaced in such a way that

gsup{u;} < irilf{ui}. (9.1)

Proposition 9.1. Under (9.1) we have

[Estep (ql bﬁv(w-i'l,y)) — ql(l—l)/2 j{ L H M
%A —4zB
1] gy SASEE
(9.2)
! Y gz — i v 1 — ziv; dzy,
(2 K3
X . ’
kl;[l E 2 — U E 1 — qzgv; 2mizy,
where the positively orientated contour y[u|j] = ya Uri~1Cqy for zj 1is the union of a
curve vy that encircles uy, ..., uy, and no other pole of the integrand, and the dilation

rI=1Cy of an arbitrary small circle Cy around 0. Moreover, r > ¢~ ', and the shifted
contour qya must lie completely to the left of yu and completely to the right of r'=1Cj.
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Proof. This is an application of the eigenrelations from Theorem 8.2. Recall the operator
D (8.17) acting diagonally on the sHL functions as

DFy =g "VF,.

From Section 7.2 we have the identification hV (z 4 1,y) = y — £(A\®¥)), where A@¥) is
the sHL/sHL field. Therefore, we have

)

Estep (ql hGV(I+1,y)) — qu @lH(ul’ sy Uy U1, ,Uac)
I(ut, ... uy;01,. .., 0z)

where
qu’bvj
M(ur, ..., uy;v1,. .., Ug HH )
1 —u;v;
1=17=1

The nested contour formula (9.2) follows by recursively applying integral expression
(8.21) for the action of ® on factorized functions. 0O

Proposition 9.1 combined with well-known manipulations of summations of nested
contour integrals like (9.2) (e.g., see [14, Section 3]) give rise to a Fredholm determinant'®
expression for the one-point distribution of hoV.

Theorem 9.2. Consider the stochastic six vertex model with step boundary conditions.
We have

ste 1
[Estep <(<qb6v(z+lyy); q)m) =det (Id+ K)oy, ¢ €C\Rso. (9.3)

The expression in the right-hand side of (9.3) is the Fredholm determinant of the kernel

=L [ L0 e, o)

i sin(nr)  ¢"w — w’
d-+iR

where d € (0,1), and

x

(w — ;)™ H(l — v;w).

i=1 i=1

=
£
I
—.

The kernel K is defined on the Hilbert space L*(C), where C is a closed positively oriented
curve encircling 0, uy, ug, ... such that, for allr € d+iR, C contains ¢"C but not q_’"v;1

fori=1,2,....

15 On Fredholm determinants in general see, e.g., [5].
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We present the main steps of the proof of the Fredholm determinantal formula, and
refer to [9] or [14] for detailed explanations.

Idea of proof of Theorem 9.2. Assume first (9.1) and |[¢| < 1/g, and consider the nested
contour expression (9.2). We can deform all contours, one by one, to be the same C
around 0, uq,us, ..., and such that C contains its image under multiplication by ¢q. This
contour shift will cross poles z4 = gz, A < B, and one can rewrite (9.2) as

178y

. dzk
(a0 l m1'm2 / /getl( — m)j) Hf wi)/F(awr) 5

AF

where the sum is taken over all partitions A of I, and m; = m;(\) are the multiplicities
of the parts 7 in A. Summing over [, we have

¢ t 165V (z+1 1
Estep q h°Y (z+1,m)) — [Estep ;
g:) (a:9) ( ) (Cq"™ EH 1) g) oo

where we used the absolute summability of the left-hand side (since 0 < ¢'%*" < 1 and
we assumed [(] < 1/q) to exchange the summation with the expectation sign and the
g-binomial theorem. The result we obtain is the Fredholm determinant of the kernel

o oy L[ 2O fw)far)
st =5 [ e
d+iR

Once we reach (9.3), we can relax conditions on u;’s and ¢ since both sides are analytic
functions of their parameters. Formula (9.3) holds for any choice of u;,v; € (0,1) and
¢ € C\¢%>0 (in particular, we can always find d in (9.4) such that C satisfies the required
properties). O

In the next theorem we perform fusion of the sHL parameters. Recall the principal
specializations F/or7v) (ug, ..., uy,), U0 Ta) (vy, ... v,) defined in (4.1), (4.2). Param-
eters uy, Jj, vk, I, are complex numbers satisfying (4.5) which we reproduce here:

quk
— ¢'suy

forall 0 <k <y, 0<I<z, >0,

11— gisy

’ gy — s

(9.5)

for sufficiently small 6 > 0 which might depend on z,y, but not on the other parameters.
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Theorem 9.3. With the above notation, we have for all { € C \ Rsp:

H (wrv1; @)oo (Ukv1g" 7% @) oo
0<kh<y (wrvig"; @)oo (urv1975 )
0<j<z
(Jorondy) (o, 1s)
g (u0>°-~7uy)®>\ (U07-~-7vz)
: Z (Ca=* ;) = det (Id+ K) 12 (c) -

(9.6)

The kernel K is defined as

Kw,w) = 2 / (=) fw)/f@w)

sin(mr)  q"w — w’

d+iR

where d € (0,1) and

Y Iku w; vw

k0 i—o I’Ulw 7)o
The contour C is a closed positively oriented curve encircling 0,q*u; for k,i > 0 and
such that, for all v € d + iR, C contains q"C and ¢"t*q" u; for all k1 > 0, but leaves
outside 1/(q"t*v;) and 1/(q kqllvl) for all k,1 > 0.

Proof. Considering principal specializations in Theorem 9.2, we see that (9.6) holds for

any Jo,...Jy, lo,..., I, positive integers. Indeed, this follows from the computation for
I,J e Z215
qw—uq"w—qu gw—ug’ " 1—vw 1-qow 1— g~ low
w—u w—qu = w-—ug/"l 1—q¢grvwl—gquw 1-—q ¢ low ©.7)

_ o/ wid)ee (@TTu/wig)es (v059)se (vg'we"3q) oo
(u/wiq)se (q7"uq” /w; @)oo (Vq'W; q)oe (VWG"; ¢)oo

The factor ¢/ (leading to g"Jot+Ju) in the kernel) disappears after replacing ¢ by
Cg~7o~~Jv._ This change of variable accounts for the fact that in the left-hand side of
(9.6) we take the g-Laplace transform of ¢~‘®) as opposed to the height function in
Theorem 9.2.

By the absolute convergence result of Proposition 4.4 and the boundedness of
1/(Cq*™; q) oo, the left-hand side of (9.6) is an analytic function of ¢”*, ¢" under the
bounds (9.5). In order to establish the analyticity of the Fredholm determmant we first
observe that, due to the compactness of C' and of the image of r — ¢" for r € d + iR,
there exists a constant M; independent of Jy or I; such that
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M)y,

This implies that |K(w,w’)] < My integrating over r due to the exponential decay of
1/sinzr for large |r|. We can thus estimate the Fredholm determinant of K with

Xuf -/

>0

ll/2Ml
%e_t whw]))‘dwldwlgg N 3a
>0

where we used the Hadamard inequality to bound the determinant of K (w;,w;), and
M3 = M>¢(C). This shows that the right-hand side of (9.6) is an absolutely convergent
sum of analytic functions and hence it is analytic. This completes the proof. O

Remark 9.4. Fredholm determinantal expression (9.6) degenerates to a number of known
results. In particular, considering the specialization ug = —ae, vg = —Be ¢7° = ¢° = 1/e,
e =+ 0,and J; =...=Jy, =11 = ... = I, = 1, we recover the expression for the g¢-
Laplace transform of the height function of the six vertex model with two-sided stationary
bound conditions from [1, Proposition 4.1] (in the latter one has to set x4 = 0). The latter
formula is obtained by a more involved analytic continuation in ¢’° than in the proof of
Theorem 9.3.

9.2. Higher spin siz vertex model observables

The eigenrelations for the sqW or sHL functions give rise to moment formulas for the
stochastic higher spin six vertex model. Consider the model with step-Bernoulli boundary
conditions o = 0, 8 # 0 (see Section 7.3). Assume that the parameters 3,601,6s,... are
spaced in such a way that

qinf {(=1/6;)i>1 U (=1/B)} > sup {(=1/6;)i>1 U (=1/B)}. (9-8)

Let h%5(z,y) be the height function of this model, i.e., the number of paths in the vertex
model which are weakly to the right of the point (x,y).

Following the same approach as in the proof of Proposition 9.1 (applying either Dor ¢
from Section 8 to the sum of the corresponding Cauchy identity), we obtain a g-moment
formula which was first written down in [29]:

Proposition 9.5. We have

HS _ ZA — 2B
o (qzr) (x+1,y>) — (—1)lglt-D/2 ?{ 11 e
re.8)1]  re,p) FSA<BS

H qzE — U; H 1—zs 1 dzy,
Zk = Ui 1+ 20; 1 4+ Bz 2wizg

1=1

k=1

xﬁ{
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where the positively oriented contour T'[0,|j] is around —1/8,-1/601,--- — 1/6,,
ql'[0, 8|7 + 1], and no other pole of the integrand.

The observable with both «, 8 nonzero (i.e., with the two-sided stationary boundary
conditions) admits the following Fredholm determinantal expression:

Theorem 9.6. Consider the higher spin six vertex model with two-sided stationary bound-
ary conditions with parameters o, 3. Let HIS be the centered height function of this model
(cf. Section 7.3), and let M ~ g¢-Poi(af) be independent of the vertex model. Then we
have

1
E ((CqHHS(ac,y)—M. ) ) = det(Id + IC)L2(C)- (9.10)

The kernel IC is defined by

K = [ LU S, o1

2i sin(nr)  ¢"w —w’
d+iR

where d € (0,1) and

f(w) = e w—u H( ST (9.12)

ﬁWQOoll 91’11}(])

Here C is a closed complex contour encircling 0,uy, us, ... and such that for allT € d+iR,
C contains —q" *a for all k > 0, but leaves outside 1/(q"+*s) and —1/(q*B),1/(¢"6;)
for all k,1 > 0.

Proof. We use an analytic continuation argument staring from identity (9.6). Consid-
ering specializations sg(a) for ug, ¢’° and sg(3),sqW(6;),sqW (62), ..., respectively for
v0,q7°,v1,q7*,v9,q72, ..., we can prove expression (9.10) for values a,uy, 3, 0 is a small
neighborhood of the origin. Once (9.10) is established for parameters in an open set,
we can perform an analytic continuation, always keeping them in a region where they
define a probability measure. This is possible since both sides of (9.10) can be written

as absolutely convergent series of holomorphic functions in «,u;, 5,6;. O

Using the integral expression for the g-moments (9.9) we can obtain an alternative
expression for the Fredholm determinant:

Theorem 9.7. Assume conditions (9.8). Let C be a closed positively oriented contour en-
czrclmg —1/8,-1/61,—1/04,... and which does not contain any point of the interior of
qC. Then the Fredholm determinantal formula (9.10) holds when replacing C with C.
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Proof. The o« = 0 case of this Theorem can be shown following the steps outlined in
the proof of Theorem 9.2 (which in turn goes along the lines of [9], [14]). When « > 0 a
g-moment expansion of the g-Laplace transform is not possible since the [-th g-moment
becomes infinite for [ large enough. In order to include the case where o > 0, we first
produce a result analogous to that of Theorem 9.3 and subsequently we use analytic
continuation.

We start by restating the result for a« =0 as

ry[ ]. H — ULS ZF/\ ULy .- uy)F/\,(Ql,...,Hz;g)
y—L(N).
o LB g, 1wt (Ca=t:)es (9.13)

=det (Id+ K ’aZO)H@ ,

where we used y — £(A(*)) 4 HHS(x + 1,y), and the summation in the left hand side of
(9.13) makes sense for u;, 6;, 3, s in a complex neighborhood of the origin (under (9.8)).
We can consider principal specializations of the sHL function and write the more general
identity

ﬁ (—ukg™* B @)oo quJ’“57 )oo H (U s; @)oo (—0;urq”; @)oo
C(CurBi@)ee 0Zisy (Ukd7s; Q) (—0junr; @)
15558 (9.14)

(Joyerdy) *
S y(an"'au )IF /(ela"waw;ﬁ)
X E A ( v_A = det(Id + K)
A

k=0

CqlotHIu—tD; q) o L2(¢)’
which again holds for u;, ¢”iu;, 3, ; close to the origin. Here K is given by (9.11) up to
replacing ¢ by (g7 T +/v=¥ and f by

x

~ 2 (g Jw; Q)oo (5w @)oo
flw) = ﬂw 7)o H

o (w/wiq)es 25 (01w )0

(here we used computation (9.7)). We can now replace ¢ by (g~7° in both sides of (9.14),
and specialize parameters u;, ¢’1u; as sg(a), sHL(u1), . ..sHL(u,) to deduce the claim of
the theorem for o, u;, 3, 0;, s in a neighborhood of the origin. Indeed, under this special-

ization we take J; = ... = J, = 1, and so in the left-hand side we obtain the observable
(Cqv—* N )L, and in the right-hand side the extra power ¢"¥ is absorbed by going back
from f(w) to f(w) (9.12). The analytic restrictions on the parameters «, 3, u, 0y, s can

be further relaxed since both the ¢-Laplace transform and the Fredholm determinant
are well defined and analytic when the parameters correspond to a probability measure
and, moreover, satisfy (9.8). O

Remark 9.8. Another Fredholm determinantal formula for the stochastic higher spin six
vertex model with two-sided stationary boundary conditions was obtained recently in
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[37]. While this formula differs from ours, one should in principle be able to transform
one to the other. We do not focus on this in the present work.

9.8. 4¢3 stochastic vertex model observables

By using the fact that the 4¢3 vertex model is equivalent in distribution to a marginal
of the sqW/sqW field we can obtain contour integral expressions for the g-moments of
the height function H? (described in Section 7.4). Indeed, this is possible by employing
the eigenoperator €. However, only finitely many of the g-moments exist, and this also
involves certain bounds on the parameters. Consider the model with step-stationary
boundary conditions a = 0, 8 # 0. Assume that 3,01, 0, ... satisfy (9.8).

Proposition 9.9. If [ is such that ¢! > max;<i<,{B&}, we have
. _ o] _ ZA — ZB
[Estep (q 'H (w)) — (—1)lgl-D/2 j{ 1
1<A<p<) “A T 9*B
re.pl]  Tre.s[] = =
s/q ks 1 dzy,
x H {szJrﬁ/quJrzkH 1+,32k27T12’k}
where I'[0, B|7] is a positively oriented contour around —1/8,—1/601,---—1/0,, qT'[0, 5|j+
1], and no other pole of the integrand. In case ¢ < maxj<i<,{B&} we have

E?;\efpl)\/l (qilHd’(m’y)) = 0.

(9.15)

Despite the fact that the distribution of H? is not characterized by its g-moments
since only finitely many of them exist, we can still write down Fredholm determinant
expressions for the g-Laplace transform of H®.

Theorem 9.10. Consider the 4¢3 stochastic vertex model with two-sided stationary bound-
ary conditions with parameters («, B). Let M ~ g-Poi(af) be independent of the vertex
model. We have

1
Egvm(a,8) ( (CqH?(@y)—M

.q) ) = det(Id+K)L2(¢). (916)

The kernel K is defined by

K(w,w/):l/ (=Q)" T(w)/Tlq"w) - (9.17)

2i sin(7r) ¢"w —w’
d+iR
where d € (0,1) and
a/w Q)oo z fl/w q)oo - (sw;Q)oo
f(w) = . 9.18
) = (—=Bw; ) (s/w; q)oo 11 (—=0w; q)oo (5.18)

=1 =1
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Here € is a closed complex contour encircling 0,q"s for k > 0 and such that, for any
r € d+ iR, € contains ¢"C and —q"T*&, —q" *a for all k1 > 0, but leaves outside
1/(¢"**s) and —1/(¢"6;),1/(¢*B) for all k,1 > 0.

Proof. Expression (9.16) is derived from the general summation identity (9.6) in the same
way as Theorem 9.6. First we establish (9.16) for parameters «, 3, s, £, 0; is a small neigh-
To uy, g7, v, 70 01, g
in (9.6). Subsequently we relax conditions on these parameters moving them away from

borhood of the origin by considering specializations of ug, g

the origin but keeping them in real intervals in such a way that they always define a
probability measure. This is possible due to the analyticity of both sides of (9.16) in the
parameters. O

Theorem 9.11. Assume (9.8) and let ¢ be a closed complex contour encircling —1/p,
—1/61,—1/04,... and that does not contain any point of the interior of ¢€. Then ex-
pression (9.16) holds with contour € replaced by €.

Proof. This alternative determinantal expression for the g-Laplace transform follows
from Theorem 9.7 using the sqW specializations and subsequent analytic continua-
tion. 0O

Remark 9.12. Both Theorems 9.10 and 9.11 degenerate to Fredholm determinantal for-
mulas for the g-Hahn pushTASEP. In particular, expression given by Theorem 9.11 was
conjectured in [27] (Conjecture 3.11) for step initial conditions. Therefore, we have es-
tablished this conjecture. Moreover, by sending all parameters to 1, one can also get the
proof of [27, Conjecture 4.6] on the Laplace transform of the one-point observable in the
beta polymer like model introduced in [27].

Appendix A. Yang-Baxter equations
Here we review the Yang-Baxter equations used throughout the paper.
A.1. Basic cases

All Yang-Baxter equations we use can be traced to the following basic one:

Proposition A.1. Consider the vertex weights w,r defined respectively in Fig. 6 and
Fig. 21. Then we have

Z Tuso(i, 115 ko, k1) wo s (i3, ks ks, j1) wu,s (s, k2; 3, J2)
k1,k2,k3

(A1)
= Y wyslks,insga, k) was(is, do; ks, ko) 1o (o, ks 2, 1)
k1,k2,k3
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NN\ S N/
N /NN

z(1=q) d—z q(1==2) 1—q
Tz (7'1 ]1712“72) H 1 1—qz 1—qz 1—qz 1—qz 1

Fig. 21. In the top row we see all acceptable configurations of paths entering and exiting a vertex; below we
reported the corresponding vertex weights r, (i1, j1; 42, j2)-

Wy, s
Tuw/v .
J3
\V N |
5 J2
= k3 .
2 k J1 2 ko J1
i3 i3
Tu/v
Wy, s Wuy,s

)

Fig. 22. A schematic representation of the Yang-Baxter equation (A.1).

i1 J2

N I\
NN 2SS

1 ‘ (1—¢)z ‘ 1—gz ‘ 1—qz ‘

R (i1, ju; iz, j2)

1-z

|

Fig. 23. The cross vertex weights R (i1, j1; %2, j2).

for all 1,19, j1,j2 € {0,1} and i3,j3 € Z>o. A visual representation of this equation is
given in Fig. 22.

Proof of Proposition A.1. This is established by a straightforward verification. Equation
(A.1) appeared in several other works, including [41], [7], [21]. O

As explained in Section 3.4, from vertex weights w,, s one can define the dual weights

* ¢ by changing u to 1/v, swapping the value of horizontal occupation numbers 0 < 1,

and multiplying by (s—wv)/(1—sv) in order to assign weight 1 to the empty configuration.

These manipulations clearly preserve the structure of the Yang-Baxter equation, provided

that the same swapping of the occupation numbers is applied to the cross weight r,. This

leads to the definition of the cross weight R, see Fig. 23, also normalized so that the
empty configuration has weight 1.

Proposition A.2. Consider the vertex weights w,w* and R, defined respectively in Figs. 6
and 8, and Fig. 25. Then we have
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> Ruu(inyins by, k) w) (s, ki ks, j1) wu, s (ks, ks s, 52)
k1,k2,k3
(A.2)

= Z wz,s(k&il;j& kl) wu,s(iSa Z‘2; k37 k2) Ruv(k27 kl;j%jl)
k1,k2,ks

fO’I“ all il,ig,jl,jz c {0, ].} and i3,j3 c ZZO'
A.2. Fusion

Through a fusion procedure we generalize vertex weights w,, s and allow configura-
tions with multiple paths crossing a vertex in the horizontal direction. This technique
of generalizing solutions to the Yang-Baxter equation was originally introduced in [39]
and consists in collapsing together a series of vertically attached vertices with spectral
parameters forming a geometric progression with ratio q. The fusion of vertex weights
also admits a probabilistic interpretation [29], [18], [21].

Define the fused vertex weight

(=1 H2g2 T Rl (u)s3) 5, iy (45,4,

(Q; Q)h (q; Q)Jé (SU; Q)j1+i1

— [ g7 97", suq” qs/u
X 403 <52 gLt ql—iz—j2+J‘q’q )

D) (i i iy
w) (i1, 132, §2) = Liy4j1—iatia

(A.3)

where 46 is the regularized ¢-hypergeometric series (1.4). Here .J is originally a positive
integer representing the number of vertices which were fused together. However, it is easy
to see that w(’) depends on ¢” in a rational way, thus ¢’ can be regarded as the fourth
independent parameter in (A.3) (along with u, s, and q). Since the regularized series 4¢3
terminates, (A.3) depends on all these parameters in a rational way. Moreover, in case
11,192 — 00, the weight w loses its dependence of j; and we have

—J. ). J.
lim w(’)(n, j1;n 4 j1 — o, j2) = (—ugq”)?? (073 )ss (suq ’q)oo. A4
A, Wi (1 L) = R u e (44

Just as in the J = 1 case, the fused boundary weight is obtained removing the normal-
ization factor from (A.4), and we define

W [ S A Ut )
u’s< 00k> T (A-5)

This normalization is needed to assign weight 1 to the empty configuration of paths in
the grid. The fused analog of the dual weights w is defined similarly to (3.8):

(% Qi (G Dis (s i
TN 2.y Wy s\2,715015]2)- (A6
(q;q)il (32;Q)i2 ’ ( ) )

g

wZ;ﬁ”(il,jl; iz, j2) =
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These quantities also depend on v, s, ¢, and ¢’ in a rational way.

What makes the fused weights remarkable is that they satisfy a general version of the
Yang-Baxter equation (previously in Appendix A.l the horizontal occupation numbers
had to be either 0 or 1). In order to state this equation we need to consider the fusion
of the cross weights R, leading to
qi2i1+%j2(j2*1)+j2‘7(_2)j2 (q; q)jl
2Q) 1+ (€3 0) 2 (@ Qi (€77 /230,

%43 a4, 2¢" ¢ )2
193\ 7 gt gl-in—gotl (DD

Proposition A.3. Consider the weights w'),w*" and R defined in (A.3), (A.6),
(A.7). Then we have

Rff"]) (11, 715 %2, J2) = Lig4jy =i+ (

(A7)

Z R (i, ivs ko, k) wi (D (is, s ks, 1) wh?) (ks, ka; ja, j2)
k1,k2,k3

(A.8)
= Y wiD(ks,iv gs, ko) wl)(is, i3 ks, ka) R (Ko, ks ja, 1),
k1,k2,k3

for all admissible values of 41,12, j1, jo (that is, i1,751 € {0,1,...,I — 1} for I a positive
integer, or 1,51 € Z>q if q' is generic, and similarly for iy, j2), and is,j3 € Z>q. See
Fig. 11 for an illustration.

Note that in (A.8) (and in all other Yang-Baxter equations in this Appendix) for fixed
boundary occupation numbers 41, io, i3, j1, j2, J3 the sums over k1, k2, k3 in both sides are
finite due to arrow preservation, so there are no convergence issues when i3 and j3 are
finite. For situations with infinitely many paths one has to impose certain restrictions
on parameters, cf. Definition 5.2 and Proposition 6.7.

Remark A.4. The fused cross weights R(*/) inherit symmetries of the unfused weight R
of Fig. 23. One of these is given by the identity

R (in, jus iz, j2) = R (i3 g2, i2) (A.9)
for all 11,71, 12, J2 € ZZO'
Proposition A.5. Consider the vertex weight rRED defined in (A.7). Then we have

(24" @)oo (20”1 @) o
(%3@) 00 (24" @) o
(A.10)

> R (az, arski,ke) = RED(0,1,0,1) = RI(J,05.7,0) =
k1,k2

forall a1,a2 € Z>y.



86 A. Bufetov et al. / Advances in Mathematics 388 (2021) 107865

Proof. The second and the third equalities in (A.10) follow, after algebraic manipula-
tions, from the definition of the fused cross weight R given in (A.7).

The first equality in (A.10) is a trivial check in the case when I = J = 1, using the
definition of R, of Fig. 23. It lifts to more general I, J as the fusion procedure does not
affect the structure of the identity. O

A.3. Spin q-Whittaker specialization

The spin g-Whittaker specialization of the general fused weights (A.3), (A.6) is ob-
tained by setting u = s and ¢/ = —¢/s (recall that one can regard ¢’ as a generic
parameter). After this specialization the complicated expression wi([]g) (i1, J1; 92, 72) (A.3)
factorizes and becomes W¢ 4(i1,j1;%2, j2) given by (3.12). Analogously, the dual fused
weight wijg)(il,jl;i%jg) (A.6) turns into Wy (i1, j1;12,72) (3.13) after setting v = s
and ¢/ = —0/s. l

The most general Yang Baxter equation (A.8) specializes to Yang-Baxter equations
involving We s and Wy, as long as the corresponding specializations are applied to the

cross weight Rq(fv"]), too. Let us record the resulting identities:

Proposition A.6. We have the following Yang-Bazter equations:

Z Re v, (12,015 ko, k1) wy (i3, k1; ks, 51) We (K3, k2; 73, j2)

Fuoha hs (A.11)
= Y w} (ksyins js, k) We s (i, iz; ks, ko) Re v, (K2, k1 2, 1)
k1,k2,ks
Z R;,u,s(i%il;kZakl)W;,s(i37kl;kSajl)wu,s(k37k2;j37j2)
k1,k2,k3 (A 12)
= Z Wy (k3,015 Ja, k1) wa s (i3, 025 k3, k2) Ry, s (K2, k13 2, 31);
k1,k2,k3
Z Re 0,5 (12,013 k2, k1) Wy (i, k13 k3, 1) We s (ks, k2; Js, j2)
Faka ks (A.13)
= Z Wy s (k3 i1 Js, k1) We s (i3, d2; k3, k2) Re g s (K2, k1; ja, J1)-
k1,k2,ks

The cross vertex weights in (A.11) and (A.12) are given in Figs. 2/ and 25, respectively.
Unlike with these two cases, in the third identity (A.13) the cross vertex weights do not
factorize (here i1,1i2,j1,j2 € Z>0):

g2 *33202 1) (s€)2 (g; q) 5,
32; Q)j1+i2 (q; Q>j2 (q; Q)iz <_q/(85>; q)ilfjl

> 453 < qug;qul’ 750, 7Q/(5£) ’ q q> .

RE,G,s(il,jl;iQ,]é) = 1i2+j1:i1+j2 (
(A.14)

s/, q" 2, — g s
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g+1 \-. g—1 \. g9

i1

1— q sv Ev+q9sv 1—¢q? q9+v€
1—sv

Re,v,s (i1, J1; 12, j2) H

Fig. 24. The cross vertex weights Re¢ v, (%1, j1;%2,j2), j1,J2 € {0,1}, 1,92 € Z>g.

/ g-—1 B | g+1 / 9

1—g%su 1—¢? ub+q?su q7+ub
1—su

i1

J1 9.,» 9./ g'/
|

R9u5(217]13127j2) ‘ Sy T—su

Fig. 25. The cross vertex weights Ry ., (i1, 1592, j2), 1,92 € {0,1}, j1,j2 € Z>o0.

A.4. Scaled geometric specialization

The scaled geometric specialization of the general fused weight wq(j]g) is given by setting
u = —ea, ¢/ = 1/e and taking the limit ¢ — 0. Analogously we can specialize the dual
weight wﬁjgl) taking v = —B¢, ¢/ = 1/e and again € — 0. In this case the expressions

(A.3), (A.5) simplify:

(—a/s)" (=5)*(q; 0)y
(90 i (¢59) 55

" 5 q—il : q—iz7 —sa B Sq1+i2+j2
392 527q1+j2—'i1 4 a ’

Wa,s (i1, 71592, J2) = Liy4j1=ia+js
(A.15)

and

ww( zz k ) — (q;o‘;k. (A.16)

The dual weights wj  are defined in the usual way as in (3.8).
We also consider the scaled geometric specialization of the fused cross weight R+,
in this case in the parameters v, ¢!, defining

(—uq’B)2(q77; )i,
(@i (a5 9)i,

g, [TaT B gt
2 g gt 1T g )

sg,J) /- .. .
REL,% )(11,31;127%) = 1iyqji=ii+jo
(A.17)

The scaled geometric specialization of RU+/) in the parameters u, ¢’ can be derived from
(A.17) using the symmetry (A.9) and it is
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g\g'.g\

(i1, j1; 2, j2) ‘ 1 av 1—4¢9 ¢9 +va

i1

R(aHL bg)

J1 . g+1 \ g—1 \ g

Fig. 26. The cross vertex weight RSSL’Sg)(i17j1§i2,j2), Ji,jd2 € {0,1}, 1,42 € Z>o.

R&{f’g) (i1, J15 92, J2) = Rq(;s,ga’l) (J1,91; 2, i2)- (A.18)

Further degenerations of R,(f,’vsg)

three cases, sHL(v) (which is simply I = 1), sqW(#), or sg(3). These cross vertex weights

involve specializations of parameters v, ¢’ in one of the

are given, respectively, in Fig. 26 and below:

(af)i2 (75/9‘ Djo
=1, i
i1, 71502, J2) = Liytj,= 1“2 (4:9),(—=5/059) 5,

J1. q—J2 , —Sa
X 3¢2 (q 4 q

Rgiféwﬁg) (

q1+j1+i2 (A.19)
/0, ql"”1 AT Al ’

RS%Sg)(217]17227]2) 1i2+j1:i1+]2 (

aﬂ)]z <q J1. iq —J2
)j

1
q;q ]2 +i1—7J1

q1+j1+iz Ao
%7 . ( . 0)

These cross vertex weights enter a number of Yang-Baxter equations which are spe-
cializations of the general fused one (A.8):

Proposition A.7. We have the following Yang-Bazter equations:

Z RS (i, iy; kg, by ) w) (s, ks ks, 1) Wa,s (Ks, k2; 3, j2)
k1,k2,k3

= Z n o (k3,3 s, k1) Wa s (is, ig; ks, ko) RSN (ka, Ky ja, 1)
k1,k2,k3

(A.21)

Z R Sqw bg ’L27 Z17 k27 kl) W9 5(137 kla k37.71) We, 5(k37 k27.]3’,72)
k1,k2,k3

> We*,s(k&il;jiﬂakl)@a,s(i&i%k3akZ)RS,%W7sg)(k2akl;j2aj1);
k1,k2,k3
(A.22)

> RS,%Sg)(i2,i1;k2,k1)@f3,s(i3»k1;k3,j1)ﬁa,s(k:s,kz;j&h)
frke ks (A.23)

= Z wﬁ 5(k3721713?k1)wa 8(23’Z2ak37k2) (bg’bg (k27kla]2a]1)
k1,k2,k3
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Dual cases of (A.21), (A.22), (A.23) obtained swapping the specializations are easily
derived making use of the symmetry of the cross weight (A.18).

In Section 3, Cauchy Identities for spin Hall-Littlewood and spin ¢-Whittaker func-
tions were stated as corollaries of the Yang-Baxter equations given in this appendix. In
particular, the emergence of the prefactors in the right-hand sides of all the skew Cauchy
identities can be traced to Proposition A.5.

A.5. Nonnegativity of terms in the Yang-Baxter equations

Here we list conditions which are sufficient for the nonnegativity of all terms in both
sides of the Yang-Baxter equations described in the previous parts of this Appendix. We
will not discuss which of these assumptions are necessary. If the terms are nonnegative,
then by Proposition 6.4 a stochastic bijectivization of the Yang-Baxter equation exists.
We assume that s € (—1,0) and ¢ € (0, 1) throughout the rest of the subsection.

First, the weights w, s and wy ; given in Fig. 6 and Fig. 8 are nonnegative for u,v €
[0, 1]. The cross vertex weights 7, /,, from Fig. 21 are nonnegative when in addition u < v.
Thus,

All summands in both sides of the Yang-Baxter equation (A.1) contain-
ing the weights w,, s, w, s, and 7/, are nonnegative if 0 <u < v < 1.

Next, the cross vertex weights Ry, from Fig. 23 are nonnegative when 0 < wv < 1.
Therefore,

All summands in both sides of the Yang-Baxter equation (A.2) con-
taining the weights wy, s, wy ;, and Ry, are nonnegative if u,v € [0,1).
This in fact implies that (u,v) € Adm for the sHL/sHL skew Cauchy
structure (Definition 3.5).

Let us now turn to the spin ¢g-Whittaker weights. The weights We s and Wy . are
nonnegative when £, 0 € [—s, —s!]. The weights R¢ , s and Rj s from Figs. 24 and 25
are nonnegative when u,v € [0,1) and &, 6 € [—s, —s~!]. Thus, we have

All summands in both sides of the Yang-Baxter equation (A.11) con-

taining the weights We 5, w} , and R¢, s are nonnegative if v € [0, 1)

*
v,8)

and ¢ € [—s, —s~1]. Similarly, the summands in (A.12) are nonnegative
for u € [0,1),0 € [-s,—s71].

Further, let us consider (A.13) containing W s, Wy s, and the non-factorized weights
Re¢.g.s (A.14). Their nonnegativity is not as straightforward, and requires an additional
restriction on the parameters s and ¢:
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Proposition A.8. For £,0 € [—s,—s™ '], ¢ € (0,1) and s € [—,/q,0), we have
R&,Q,s(il,jl;iz,jZ) Z 0 fOT all i17j17i27.j2 S ZZO

The proof of this proposition is similar to [27, Proposition 3.1], with an additional
simplification in the second case due to a symmetry of R¢ g 5

Proof of Proposition A.8. Throughout the proof we will assume that is + j1 = i1 + Jjo
We need to show that

s72(=0q' """ /5;,q)i, "~ —s0,¢7"
193
(—q/(s8);9)i

6 1— s 1 3
Q>z17j1 ) “=J2 *gaq Hia—iz

q, q) > 0. (A.24)

Here we used (1.4) to get to the usual g-hypergeometric function, and also the fact that
the remaining prefactor in R¢ g s having the form

g2 123202 Db (g5 q)5, (—5/€: 0)ia (472725 9)s
(8% @)1+ (€ @) 2 (€ Q)i

is nonnegative under our parameter restrictions in a straightforward way.
We will use Watson’s transformation formula [34, (II1.19)]

g " a,bc _ (d/b;@)nld/c;q)n
108 < de, f "’q>  (dq)n(d/ (b))

(A.25)
q—n7 a, q01/27 _q01/27 57 % b7 c
X 8¢7 0_1/2 ef e

)
1/2 fa”
7_0-/7eaf7ab7Ea a

. efq"
b bC b

Case 1. When iz < jo, we apply (A.25) to (A.24) with n = i3. The prefactor in (A.25)
combined with the one from (A.24) becomes

where def = abeq' ™" and o = ef /aq.

572 (g1 =172 /52, q)i, (—0q 72 /57q)s,
(_Q/(S£>; Q)il—jl

(qt=92/5%;q)s,

We have

(ql i1— 72/8 7‘112 B qm 72 —i1 _ g2 -0
(q* 72 /s )i, H

m 32_52

i

since m — j2 < 0 in the product. We also have

72 (=097 /s:q)i, -

= 5j2 Q kj2) i < q1m>
Categ = (e G TL (%) 20

m=1 S§

)
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since all factors above (including s72) are nonpositive, and there is a total of 2j, of them.
The g-hypergeometric function after applying (A.25) to (A.24) takes the form

qi1+j2+1
q, €0 ,

with 0 = s2¢27%2~1 € (0,1) because s> < ¢. One readily sees that each summand

q°
1/2 1/2 s 1+j2—i S Jjo—1 2.7 2 7
a / y =0 / afgaq 2 237§qj2 235 qjlas qj2

(z) < q_iz , 0, q01/27 _q01/27 _Sé-qu_lév i _893 q_il
8P7

in this (terminating) g-hypergeometric series is nonnegative. Indeed, the only negative

1.

signs may come from (¢=%;q)x, (¢7";q)x, and (s2¢~1; q)x. However, the product of the

former two factors is always nonnegative, and (s2¢~!; ¢), > 0 also due to our additional
parameter restriction s? < ¢. This implies the nonnegativity of Re¢ g 5(i1, j1;i2, j2) when
ig < jo.

Case 2. When iy > jo, the claim follows due to the symmetry of R¢ g . Namely, by
means of Remark A.4, we have

Re,0,s(11, 71392, j2) = Ro e s (j1, 715 J2, 12)
for all i1, j1, 2, j2 € Z>p. This completes the proof. O
Proposition A.8 implies that

All summands in both sides of the Yang-Baxter equation (A.13) con-
taining the weights We,, Wy ., and R¢g s are nonnegative if £, 6 €
[~s,—s71], g€ (0,1), and s € [—v4,0).

Finally, we address the nonnegativity of terms of the Yang-Baxter equations involving
scaled geometric specializations from Proposition A.7.

Proposition A.9. For a € [0,—s71], ¢ € (0,1) and s € (—1,0) we have
Wa,s (i1, J1312,52) > 0 for all i1, j1,i2, jo € Z>o.
Proof. Under our assumptions the prefactor

(—a/s)" (=5)*(¢; 0)s,

(70)i, (¢ 9) 55

is nonnegative. To check the remaining term, we write down the generic summand of the
terminating ¢-hypergeometric series as (cf. (1.4)):

1+j2—ii+k.
(I 7q)i1*ka

(—sq””“z ) (7" 9k (=

= TR s )k (=505 0)1 (520" )iy -k (g
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where & = 0,...,i;. The leading monomial term, along with (s2¢*;q);,_x and (q;q)x
are always nonnegative. The ¢-Pochhammer symbols of ¢~% and ¢~ either vanish,
or they both carry a sign (—1)¥, so that their contribution is nonnegative too. Next,
(qiF72—iitk: g), 4 is either nonnegative if 1452 —i1+k > 0, or vanishes if 1+ja—i;+k < 0
(in the latter case, the last term of the product has power jo > 0, which means that
product passes through 1 — ¢° = 0). Finally, (—sa;q)r > 0 because a < —s~ 1. O
Proposition A.9 and the explicit form of RESEL’Sg) (Fig. 26) implies that

All summands in both sides of the Yang-Baxter equation (A.21) con-

taining the weights w,, s, wy 5, and RSEL’Sg) are nonnegative if a €
[0,—s71], v e [0,1).

In order to demonstrate the nonnegativity of (A.22) we consider the corresponding cross
vertex weight:

Proposition A.10. For a € [0,—s7'] and 0 € [—s, —s™], we have

RS,%W’Sg)(ihjuimjz) >0 Jor all i1, j1,12,j2 € Z>o.
Proof. Assume first that § > —s. In (A.19), the factors outside 3¢, are nonnegative. In
the expansion of 3¢, using (1.4), one readily sees that all terms are nonnegative similarly
to the proof of Proposition A.9 above (here we use the fact that —sa and —s/6 are less
than 1 because of our assumptions).

We can now take the limit # — —s and show that the weight R®9W:%2) survives this
transition. To do so, expand 3¢, using (1.4), and collect terms containing —s/6:

(—5/0;9),(—q"s/0;9), —k

= (—q"s/0;q)j,—,

(_8/9; q)j1
with £ = 0,...,min(j1, j2). The last expression is nonsingular at § = —s, and is nonneg-
ative. O
Therefore,

All summands in both sides of the Yang-Baxter equation (A.22) con-
taining wa,s, Wy, and RS%W’Sg) are nonnegative if a € [0,—s71],

€ [—s,—s71].

We come now to the last Yang-Baxter equation we stated (A.23), in which one readily

sees (similarly to Propositions A.9 and A.10 above) that RS%’Sg) is nonnegative when

0 < a, 8 < —s~!. Therefore,

All summands in both sides of the Yang-Baxter equation (A.23) con-

taining wa, s, W5 ,, and ngﬁ’sg) are nonnegative if a, 8 € [0, —s1].
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