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Fractional-order calculus point statistics obtained from the filtered direct numerical simulation (DNS) data for
Data-driven modeling passive scalar transport in homogeneous isotropic turbulence (HIT). Presence of long-
Kinetic-Boltzmann transport range correlations in true SGS scalar flux urges to go beyond the conventional local
closure modeling approaches that fail to predict the non-Gaussian statistical features of
turbulent transport in passive scalars. Here, we propose an appropriate statistical model for
microscopic SGS motions by taking into account the filtered Boltzmann transport equation
(FBTE) for passive scalar. In FBTE, we approximate the filtered equilibrium distribution
with an «-stable Lévy distribution that essentially incorporates a power-law behavior to
resemble the observed nonlocal statistics of SGS scalar flux. Generic ensemble-averaging
of such FBTE lets us formulate a continuum level closure model for the SGS scalar flux
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1. Introduction

Large-scale natural flows such as atmospheric ones, as well as a wide variety of engineering applications, are among
many systems that are substantially influenced by turbulence. Nonlinearity and stochastisity are two inherent elements of
fluid dynamics that when significantly triggered lead the flow into turbulent regime [1,2]. Turbulence is characterized by
persistent fluctuating field variables that are immensely non-Gaussian and have a multi-scale and ubiquitous influence on
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the fluid dynamics with a great impact on the quality of transport and mixing [3,4]. Moreover, notable emergence of the
extreme and anomalous events reflected in the statistical measurements of turbulent fields and quantities intensify the level
of complexity in turbulent flows [5,6]. Therefore, taking into account the effects of turbulence cannot be compromised in
predictions and design procedure for a fluid system affected by the turbulent regime. Although considerable advancements
in the modern computational architectures and high-performance computing (HPC) over the past decade have greatly fa-
cilitated the high-fidelity predictions of turbulent transport through direct numerical simulation (DNS), those efforts have
mostly remained in the area of canonical and fundamental turbulent transport. Nevertheless, large-eddy simulation (LES) of
turbulence has shown a promising path towards robust, accurate, and computationally affordable predictions of the turbu-
lent flow behavior in large-scale and real-world applications [7]. In fact, LES is considered as a reliable trade-off between
the DNS and the low-fidelity simulations with Reynolds-Averaged Navier-Stokes (RANS) models. The main idea in the LES
is that for sufficiently high-Reynolds flows that the statistics of turbulent fluctuations associated with small-scale motions
are isotropic and hence we expect a universal behavior, one can numerically resolve the large-scale motions while dealing
with the subgrid-scale (SGS) effects through proper closure modeling means that utilize resolved-scale variables. In practice,
there is a spatial filtering acting on the conservation equations of transport that represents the LES equations [8,9].

Traditionally, SGS modeling is categorized into two main branches: (i) functional modeling, and (ii) structural model-
ing [10]. Functional modeling requires a prior knowledge of the interactions between resolved-scale and subgrid-scale is
required so that one can represent the LES closure in terms of a mathematical function of resolved transport variables.
Functional models are usually representing the net transfer of turbulent kinetic energy from resolved scales to the subgrid
scales. The Smagorinsky model initially conceptualized in [11], and its variations are well-known examples of functional
SGS modeling. On the other hand, structural models seek to reconstruct the statics and structure of SGS stresses and fluxes
from the resolved-scale variables. For instance, scale-similarity models initially introduced by Bardina et al. [12] are among
well-known examples of structural models. Functional models usually are poorly correlated with the true SGS terms a priori
and by construction are incapable of reproducing backward transfer of energy (backscattering); however, in an LES setting
they have shown to be dissipative enough for solver stability. In contrast, structural models such as scale-similarity type
models have been found to be sufficiently correlated with the true SGS terms and fairly capable of following backscattering
phenomenon in an a priori sense. Nonetheless, their significant drawback is that in LES they are under-dissipative; hence,
the stable time-integration is intractable. As a practical remedy to the mentioned issues, further efforts have been devoted
to formulating a mixed representation of functional and structural models [13,14]. Recently, abundance of the high-fidelity
data for the SGS closures mainly available through filtered DNS data, and with the advent of modern machine learning
(ML) techniques and their application to fluid mechanics and in particular, turbulence modeling, [15-18] have resulted in a
wide variety of predictive data-driven SGS models. Among the numerous contributions in ML-based SGS modeling and LES,
interested readers are referred to the following notable works [19-22].

A vital point to credibly certify an SGS model for the LES is its capability to accurately encode the statistics of turbulent
transport and SGS dynamics [23,24]. Therefore, in the current work, our main focus is to develop a statistically consistent
LES closure model. Throughout this approach, we aim to ensures capturing the nonlocal interactions in the turbulent energy
dissipation [25,26], that are intensified in the SGS effects during LES [27].

Unlike the integer-order (standard) differential operators, fractional-order operators are fundamentally defined based on
heavy-tailed stochastic processes; therefore, they are inherently nonlocal operators and are suitable to incorporate long-
range interactions in a mathematical modeling [28,29]. Among the wide-range of applications employing the fractional-
order operators, modeling of visco-elasto-plastic materials for structural analysis [30], their nonlinear vibration analysis [31],
memory-dependent modeling of damage mechanics [32], and nonlocal elasticity modeling of solids [33] are listed among the
outstanding works reported in the literature. Due to the remarkable and diverse applications of the fractional-order Partial
Differential Equations (PDEs), development of high-order numerical methods [34-42] and data-driven numerical schemes
[43], as well as numerical studies on the stochastic fractional PDEs [44,45] have been an active area of research.

In the context of LES for turbulent flows, a recent study by Samiee et al. [27] introduced a nonlocal model for the
divergence of SGS stress tensor in terms of a fractional Laplacian acting on the resolved-scale velocity field. In order to
derive such a model, filtered Boltzmann transport equation was considered, where the filtered equilibrium distribution is
approximated with an «-stable Lévy distribution. Moreover, Di Leoni et al. [46] proposed a nonlocal eddy-viscosity SGS
model that employs a fractional gradient operator. Their modeling strategy is based upon the high-fidelity observations
of nonlocal two-point correlation between the SGS stress and strain-rate tensors (inspired by the derivation of filtered
Karman-Howarth equation), and proposing a proper nonlocal convolution kernel that yields the fractional gradient operator.
They sufficiently captured the nonlocal SGS effects through proper fractional orders for different turbulent flows including
the anisotropy and inhomogeneity effects. These studies demonstrated that the fractional-order operators are sophisticated
candidates for modeling of the SGS stresses in the LES of turbulent flows.

Of particular interest, we aim to study the nonlocal SGS modeling for the conserved passive scalars in turbulent flows
[47-49]; thus, we seek to model the SGS scalar flux arising as the closure term in the filtered scalar transport equation. Due
to promising potential of Boltzmann transport framework to investigate the sources of spatial nonlocality appearing in the
SGS dynamics [27], we manage to study the filtered version of the Boltzmann transport equation for the passive scalars in
turbulent flow. Using proper statistical assumptions at the kinetic level, we try to derive a continuum level closure model
in terms of fractional-order Laplacian of the resolved scalar concentration. Through a statistical data-driven procedure our
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model is being calibrated to its optimal form so that it is capable of capturing the nonlocal statistics embedded in the
ground-truth data.

The structure of the rest of this work is organized as follows: in section 2, we state the problem and show the governing
equations. In section 3, we motivate the necessity of our modeling strategy to address nonlocality using statistical measures
obtained from the filtered DNS data. In section 4, the mathematical framework of our SGS modeling that includes fractional
calculus and Boltzmann transport is described and derivation of the SGS model is presented. Afterwards, in section 5, a
two-stage data-driven calibration procedure is introduced to optimize the model performance. Finally, section 6 delivers an
a priori testing on the SGS dissipation of the resolved-scale scalar variance, and it is followed by the conclusions in section 7.

2. Governing equations

Considering flows governed by incompressible Navier-Stokes (NS) equations
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—+—(ViVi)=———+v
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+AVi, 1,j=1,2,3, (1)

subject to the continuity, V - V = 0, where the velocity and the pressure fields are denoted by V(x,t) = (V1, V3, V3)
and p(x,t) for x=x; and i = 1,2, 3, respectively. p specifies the density and v represents the kinematic viscosity for
a Newtonian fluid. In (1), A is a dynamic coefficient associated with the artificial forcing scheme to enforce statistical
stationary state on the kinetic energy to reach to a realistic and fully turbulent state. It is worth mentioning that all the
values in (1) are taken to be zero-mean values, therefore, V (x,t) corresponds to the turbulent fluctuations. In our study,
a passive scalar with an imposed mean gradient along the x; direction is considered to be transported with the described
turbulent flow. According to the Reynolds decomposition for the total concentration of the passive scalar, ®(x,t), one can
write that ® = (®) + ¢. Here, (-) is the ensemble-averaging operator, and ¢ denotes the fluctuating part of the passive
scalar concentration. More specifically, the imposed mean scalar gradient is taken to be uniform as V(®) = (0, 8, 0), where
B is a constant. Therefore, the turbulent scalar concentration obeys an advection-diffusion (AD) equation that is simplified
into the following form

09 ¢
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where D denotes the molecular diffusion coefficient of the passive scalar. Accordingly, the Schmidt number is defined as
Sc=v/D.

In the LES of turbulent transport, the fluid and passive scalar motions are resolved down to a prescribed length scale
namely as filter width, A, which linearly decomposes the velocity and scalar concentration fields into the filtered (resolved)
and the residual (unresolved) components. For instance, for the scalar concentration, ¢~> and pR =¢ —$ represent the filtered
and residual fields, respectively. The filtered fields are obtained by a convolution, 5 =G * ¢, where G = G(r) denotes the
generic spatial filtering kernel [1]. Applying such filtering operation on the governing equations returns the subsequent LES
equations. For example, the filtered AD equation is formulated as

a¢ ?¢  oqf
ot Ix;dx; X

L 3V)=-pVa4D i=1,2,3, (3)
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where qu denotes the residual or SGS scalar flux that is defined exactly as qu = q;V,- — 5\7,-. In the LES sense, the SGS scalar
flux needs to be closed (modeled) in terms of the resolved-scale (filtered) variables through proper and physically consistent
SGS modeling.

3. Why SGS dynamics is statistically nonlocal?

In an idealistic LES, one of the main elements reflecting the dynamics of turbulent transport is capturing the true filtered
(resolved-scale) turbulent intensity through robust SGS modeling that is physically and mathematically consistent. In fact,
such transport equation includes closure terms that directly link the correct time-evolution of turbulent intensity to the
nature of the SGS closure and its modeling. In the LES of scalar turbulence, multiplying both sides of the filtered AD
equation (3) by $ yields the time evolution of filtered turbulent intensity as
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Using the continuity equation and chain rule for differentiation,
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Applying the ensemble-averaging operator, (-), on (5), returns the transport equation for the filtered scalar variance ($ 5} In
this study, we are considering the case of homogeneous turbulent velocity and scalar fields; therefore, < - (- )) ax () =

Defining the filtered scalar gradient as G(x)= Va(x), time-evolution of the filtered scalar variance takes the following form

~—(¢)=-T +P- X +1I, (6)

T=(FViC), P=-p(gVs) ¥=D(CC) n=(a"C).

In (6), T denotes the turbulent transport of filtered scalar variance while P represents the production of resolved scalar
variance by the uniform mean scalar gradient, and ¥ is the resolved scalar variance dissipation due to the molecular diffu-
sion. Unlike these three terms, IT (representing the SGS production of resolved scalar variance) is the only contributing term
in (6) that contams the effects of the SGS scalar flux. Therefore, as pointed out earlier, understanding the true statistical
nature of gR -G lS essentlal for the SGS modeling and precise evaluation of the resolved scalar variance in the LES. This
examination of gR -G might be viewed both from single-point and two-point statistics as discussed in [23] in the context
of the LES for homogeneous isotropic turbulent flows. In a recent comprehensive study by Di Leoni et al., effects of the SGS
contribution in the evolution of the two-point velocity correlation was explored for the incompressible Navier-Stokes equa-
tions using filtered DNS data for HIT and turbulent channel flows at high-Reynolds numbers, and revealed the importance
of nonlocal effects in the SGS dynamics [46]. In the present study, we are also focused on the two-point statistics of the
SGS production of resolved scalar variance. This quantity is well represented in terms of the following normalized two-point
correlation function

(qR ) Ci(x+1))
[@F@® G ()

where r = (1,12, r3) denotes the spatial shift from the location x. Moreover probability distribution function (PDF) of the
SGS production of scalar variance normalized by its Ly-norm i.e., qf G/ lq® - G|\, is another measure to learn about the
statistical behavior of IT and have a more comprehensive insight into the SGS modeling.

c@R, Gy = (7)

3.1. High-fidelity database of the SGS scalar flux

In order to study the statistics of IT, we compute true values of the SGS scalar flux using the box filtering kernel with
isotropic filter width A as,

g = 5 T4/

0, r>A/2. ®

Applying this convolution kernel on a well-resolved DNS database of passive scalar with imposed mean gradient in synthetic
(forced) homogeneous isotropic turbulence. To perform the simulation, we employ an open-source parallel statistical-
computational platform for turbulent transport equipped with a Fourier pseudo-spectral spatial discretization of the NS and
AD equations, fourth-order Runge-Kutta (RK4) time-integration scheme, and an artificial forcing method (to keep the turbu-
lent kinetic energy at low wavenumbers constant) [50]. Our computational domain is a triply periodic cube of € = [0, 27713
that is discretized on a uniform Cartesian grid with N = 520% Fourier collocation points while a constant At =5 x 10~4
is utilized for the stable time-integration. In construction of this DNS database, the imposed mean scalar gradient is taken
as =1, and Sc =1 according to the section 2. Letting kpmgx be the maximum resolved wavenumber in our simulation
and 1 = (v3/&)!1/4 be the Kolmogorov length scale while & denotes the turbulent dissipation rate, we measure kmax 7 ~ 1.5;
therefore, one can ensure that the small-scales in the velocity and scalar fields are well-resolved [50]. Moreover, our records
indicate that the Taylor-scale Reynolds number is Re; = 240 (averaged over 25 large-eddy turnover times, Ty g, of resolving
the passive scalar field).

3.2. Statistical analysis of the SGS effects in filtered scalar intensity

By taking a large sample space over 10T of this stationary process (after resolving the passive scalar field for
15T ), we compute the PDF of the normalized SGS production of filtered scalar variance for four different filter widths,
A/n =8, 20, 41, 53. As a result, we observe that as A becomes larger the PDF exhibits broader tails as shown in Fig. 1(a).
Emergence of these heavy PDF tails implies that as we increase the filter width, long-range spatial interactions become
stronger and more pronounced [3]. Motivated by this observation, a two-point diagnosis of the SGS scalar production of the
filtered variance as defined in equation (7) would be another statistical measure shedding light on the long-range interac-
tions in addition to the filter width effects. Considering || as the direction along the imposed mean scalar gradlent and L
representing the directions perpendicular to the imposed mean gradient, we are interested in evaluating C(q‘I R G”) Here,
we take r = (r1,0,0) and r = (0,0,r3) and take the average of the resulting two-point correlation functions. Due to the
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Fig. 1. Statistics of true subgrid-scale contribution to the filtered scalar variance rate. (a) PDF of normalized SGS dissipation of filtered scalar variance,
—g® - G, computed over a sample space of 10 T of statically stationary turbulence. (b) Time-averaged two-point correlation function (7) between q"f and
Gy with r=ry|.
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Fig. 2. Comparison between the true values of two-point correlation function given in (7) and the ones obtained from the local eddy-diffusivity modeling
of the SGS scalar flux given in (9). The evaluations are performed at two filter widths of A/n =8, 53. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

statistically stationary turbulence, we perform such procedure for 20 data snapshots that are uniformly spaced over 10T
(on the same spatio-temporal data we used to compute the PDFs); hence, we obtain the time-averaged value of C(ql’f , GP.
Fig. 1(b) illustrates this two-point correlation function extending over a wide range of spatial shift, r = |r|, and evaluated
at four filter widths similar to the ones utilized in Fig. 1(a). This plot quantitatively and qualitatively reveals that as we
increase A, greater correlation values between the SGS scalar flux ql’f(x), and filtered scalar gradient 5” (x+r) are observed
at a fixed r. These spatial correlations are significant both in the dissipation and also inertial subranges. This confirms the
substantial nonlocal effects in the true SGS dynamics, which needs to be carefully addressed in the SGS modeling for LES.

A popular and fairly simple approach for modeling the SGS scalar flux is Eddy-Diffusivity Modeling (EDM). In EDM, the
main assumption is that the SGS scalar flux is proportional to the resolved scale scalar gradient as

q®(x) ~ —Dgp G(x), 9)

and Dgp is the proportionality coefficient. Obviously, EDM is a local modeling approach by its construction. Computing
C(ql’f , 5”) while ql’f is approximated with EDM, one can compare it with its true value as shown in Fig. 1(b). Fig. 2 illustrates
such comparison for two filter widths, A/n =8, 53, reveals that in both of the cases local EDM substantially fails to predict
the conspicuous long-range spatial correlations observed in the true two-point correlation values. This observation is closely
similar to the results reported in Di Leoni et al. [46] that showed local eddy-viscosity model is structurally incapable of
reproducing the two-point SGS dissipation for the HIT and turbulent channel flows. This concrete evidence urges to go
beyond the conventional means of SGS modeling for the scalar flux in order to address the matter of nonlocality with more
sophisticated mathematical modeling tools. Thus, a nonlocal construction for the EDM would be a fairly relevant remedy to
this problem.
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4. Boltzmann transport framework

In studying the turbulent transport and mixing, kinetic Boltzmann theory has shown a rich and promising ground based
upon principles of statistical mechanics, which by construction is well-suited for the stochastic description of turbulence
at microscopic level [51]. In the following, the fundamental sources of nonlocal closure and the SGS modeling for the
residual passive scalar flux are studied at the kinetic Boltzmann transport framework. Our objective is to derive a nonlocal
eddy-diffusivity SGS model at the continuum level.

4.1. BGK model and double distribution function

Considering classical kinetic theory of gases, we are concerned with the evolution of a single particle distribution func-
tion, f, that is governed by the Boltzmann Transport Equation (BTE),
ad
8—{+u-Vf=C(f). (10)

In (10), the probability distribution f = f(t, x, u) is defined such that there exists mass of fluid particles that are located
inside the infinitesimal volume element dx centered at x, velocity element du centered at u, and at time t. In the phase
space of particle, x, u, and t are considered as independent variables. The left-hand side of (10) represents the streaming
of the non-reacting particles that is balanced by the collision operator, C(f), on the right-hand side. As a widely common
model for the collision operator, Bhatnagar-Gross-Krook (BGK) approximation considers scattering of the fluid particle due
to collision with another particle. Therefore, the BGK model characterizes C(f) = Cpgk(f) with a single parameter, that is
called the relaxation time, T [52]. Therefore, the collision operator is written as
[ g

—

Cok (f) =— (11)

where the local equilibrium distribution function, f€ = f¢l(t, x, u) is given by the Maxwell distribution [53], and is param-
eterized by the locally conserved quantities (density p, particle speed u, and temperature T) as

U2
fe= P exp( @-V) ) (12)

- (2m i) 2¢2

In (12), cr = /kg T/m is the thermal speed at T in which kg is the Boltzmann constant, and m represents the molecular
air weight, while d denotes the spatial dimensions [54].

In order to study the passive scalar transport phenomena in this context, Double Distribution Function (DDF) method
has been a successful approach [55]. In the DDF, we consider one distribution function to address the conservation of mass
and momentum while another distribution function is taken to represent the conservation of energy. In the case of passive
scalar transport, the compressive work and heat dissipation are considered to be negligible in the incompressible limit
[56-58]. Therefore, the extra BTE that governs the energy distribution function, g = g(t, x, u), with the BGK collision model
is expressed as

9 _ ged
£+U'Vg:CBGI((g):_g £

13
at Tg (13)

In (13), 7 represents the relaxation time, which is the time-scale associated with the collisional relaxation to the local
energy equilibrium denoted by the Maxwell energy distribution,

V2
g4 ® exp( @-V) ) (14)

e 2¢2

Defining £ = (u — V)2/C% and F(L) =exp(—L/2), the Maxwell distribution in (14) (for the most general case where d = 3)

is reformulated as g¢ = ﬁ F(L).

Subsequently, continuum averaging yields the macroscopic flow variables for the incompressible flow, p = p(t, x), as
follows:

p:/f(t,x,u)du, (15)
]Rd
,oV(t,x):/uf(t,x,u)du, i=1,2,3, (16)
]Rd
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D(t,x) = /g(t,x, u)du, (17)
Rd
where ®(t, X) is the total passive scalar concentration field appearing in the AD equation.

Let us define L as the macroscopic characteristic length, Is as the microscopic characteristic length associated with
the smallest length-scale of the passive scalar, and [, as the mean-free path (the average distance traveled by a particle
between successive collisions). Considering ¥’ to be the location of particles before scattering while we characterize their
current location with %, one can assume that ¥ = x — §x, where §x = (t —t) u. Here we assume that during the time t —t’, u
approximately remains constant [27]. According to Chen et al. [59,60], the Boltzmann BGK kinetics with “constant” relaxation
time, equations (10) and (13), admit analytical solutions for f(t,x,u) and g(t,x, u) based upon their local equilibrium
distribution that is valid in a general flow where the distance from the wall is large compared to I;;. Focusing on equation
(13) and defining s = (t — t')/ 7, the exact solution to g(t, x, u) would be

o0 o0

g(t, x, u):/e_sgeq(t—sz'g, X—UsTg, u)ds:/e‘sggfls(ﬁ)ds, (18)
0 0

where gi%(L) = g%I(t — STg, X — USTg, U).
4.2. Filtered BTE, closure problem, and kinetic-Boltzmann modeling

Statistical description of LES is well-represented through incorporating a filtering procedure into the kinetic Boltzmann
transport. For the purpose of passive scalar transport, applying a spatially and temporally invariant filtering kernel, G = G(r),
onto the distribution function g(t, %, u) linearly decomposes that into the filtered, § = G * g, and the residual, g’ =g — g,
components. Therefore, filtering the equation (13) results in the following filtered BTE (FBTE) for the passive scalar:

F _ F-guL
—g—l—u-Vg:—ig £ ).
ot Tg
As it was elaborated by Girimaji [61], the nonlinear nature of the collision operator, Cgck(g), prohibits the filtering kernel
to commute with Cpgk(g); thus, it initiates a source of closure at the kinetic level in FBTE (19). Defining £ := (u — V)z/c%,

this closure problem is manifested in the following inequality,

(19)

D exp(—L/2) |, D exp(—L/2) _ o4
- . 20
@nyd @ryd g(L0) (20)

The identified closure requires proper means of modeling so that one can numerically solve the FBTE (19). A common
practice is to approximate this closure problem with a modified relaxation time approach that is described in detail in [62].
Despite the success of this approach in some applications, it is not physically consistent with the filtered turbulent transport
dynamics [61]. Nevertheless, here we manage to adjust this inconsistency by looking at the nonlocal effects arising from
filtering the Maxwell distribution function, g¢(£), and model them with proper mathematical tools. Considering the spatial
filtering kernel G(r) with the filter-width A, and applying it on the Maxwell equilibrium distribution as

gH(L) =

g°(L) = G % g (Lt u,x) = / G(r) g®(L(t,u,x—1))dr, (21)
Rg

where Ry =[-A/2, A/2]%.

Remark 1. The integral form of the convolution (21) implies that g¢(£) consists of a summation of the exponential func-
tions. Thus, filtering encodes a multi-exponential behavior into the filtered equilibrium distribution that is gets intensified
as the filter-width enlarges. Moreover, this multi-exponential structure of the filtered Maxwell distribution induces a heavy-
tailed form for the filtered distribution that essentially entails the non-Gaussian behavior and justifies the spatial nonlocality
[27]. This statistical rationale strongly indicates that modeling this closure problem with a Gaussian-type distribution is fun-
damentally insufficient. On the other hand, it is well-known that the statistical behavior of a multi-exponential distribution
could be sufficiently approximated with a power-law distribution [63,27].

Subsequently, by rewriting the right-hand side of the passive scalar FBTE (19) into the following form

1 /o — 1 ~ 1 —~—— ~
——(F-¢90) = —— E- D)+ — (D) - £D). (22)
g g g
closed unclosed
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the unclosed part is structurally multi-exponentially distributed and maybe approximated by a power-law distribution
model as we propose

— - . -
geU(L) — g (L) ~ g* (L) = 2 F(L), (23)
T

where F“(Z) denotes an «-stable Lévy distribution that is mathematically designed based on heavy-tailed stochastic pro-
cesses and replicate the power-law behavior [64,28].

Regarding the decomposition given in (22), and by applying the filtering kernel on the analytical solution to g(t,x, u)
that is given in (18), we obtain

o0 o0 o0
g, xu)= / e gidl(L)ds = / e~* gl (L) ds + / e’ (gi,"s(ﬁ) —gﬁf’s(Z)) ds, (24)
0 0 0

——

where g;qs(ﬁ) = geq(ﬁ(t —STg, X — USTg, u)), and the second integral represents the closure source. Therefore, employing
the power-law distribution model in (23) returns the following analytic form for g(t, X, u)

o0 o0
Ttk u) = f e~ g2(0) ds + / e g% (F) ds, (25)
0 0

wherein, gg’fs(Z) =g¥ (E(t — STg, X — USTg, U)).
4.3. Fractional-order model for the SGS scalar flux

Similar to the continuum averaging shown in (15) to (17), the macroscopic continuum variables associated with (3), are
obtained in terms of the filtered distribution functions, f and g, as

5=/§(t,x, u)du, (26)
Rd

Vi:l/u,-’f(r,x, wdu, i=1,2,3. (27)
)

Multiplying both sides of the passive scalar FBTE by a collisional invariant X = X’ (u) and then integrating over the kinetic
momentum would return

g 5 Z—g(0)
/X %8 Lu.vE du:/)( 1500 P (28)
ot Tg
R Rd
Here, choosing X =1 would result in recovering the filtered AD equation (3). According to the microscopic reversibility of

the particles that assumes the collisions occur elastically, the right-hand side of (28) equals zero [65]. Therefore, (28) reads
as

9 ~
W+V-/ugdu:0. (29)
Rd

Since we are working with spatial filtering kernels, G = G(r),

/u'g“du:/(u—r/)'gdu—i-/rlgdu. (30)
Rd Rd Rd
By plugging (30) into (29), we obtain that
3 o
StV (@V)=-v.q 31
where
qi = / (u,- — V;) gdu. (32)
Rd
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Using (25), we formulate g; as

o0 o0
qi=//e_s(ui— V,-)ggf’s(f)dsdu~|—f/e_s(ui - Vi)gg’fs(Z)dsdu. (33)
RY 0 RY 0

It is straightfgrward to show that the temporal shift can be removed from (33). Moreover, since (u; — V,-)g"’q(f) and
(uj — V) g°1(L) both represent odd functions of u;, thus,

[V g1 @ du= [ -V g @du=o. (34)
R¢ R¢
As a result, g; in (33) can be rewritten as
o0 o0
gi = //E‘S(u,- — V) (g5(L) — g°U(D)) dsdu +//9_S(Ui — Vi) (g2(L) — g%(D)) dsdu. (35)
Rd 0 R 0

In an LES setting, the first integral on the right-hand side of (35) represents the filtered scalar flux, ¢, while the second
integral aims to model the residual scalar flux, q~, associated with unresolved small scales of turbulent transport. In other
words, by assigning the Gaussian distribution g®(£) to g; and the isotropic a-stable Lévy distribution, g*(L), to qf, the
total passive scalar flux, q =q + q®, in (35) may be decomposed as
o
Gi= / / (Wi — Vi) (&65(L) — g°4(D)) e “duds, (36)
0 Rd
[ee]
f = [ [ -V (&8 @ - gD e uds 37)
0 Rd

In Appendix B, the details of derivation of § and gq® in terms of macroscopic transport variables including ® and V are
presented. As the result, the filtered passive scalar flux is obtained as

G=-DVo, (38)

and the divergence of residual scalar flux is derived as the fractional Laplacian of the filtered total scalar concentration,

V-qR=-Dy (—A)*d, aec(0,1], (39)

_ Caler 19

where Dy, : o (2o +2)T(2) is a model coefficient with the unit [L?*/T]. The filtered AD equation for the total

passive scalar concentration, developed from the filtered kinetic BTE with an «-stable Lévy distribution model, yields a
fractional-order SGS scalar flux model at the continuum level. The aforementioned filtered AD equation reads as

3d 8~ ~ ~

— 4+ —(PV))=DAD+ Dy (—A)* ®. 40

ot (B0) w(=4) (40)
Through a proper choice for the fractional Laplacian order «, the developed model optimally works in an LES setting.
Applying the Reynolds decomposition and considering the passive scalar with imposed uniform mean gradient, equation
(40) fully recovers the filtered transport equation (3) for the transport of the filtered scalar fluctuations, ¢.

In order to explicitly derive the modeled residual scalar flux in terms of the filtered transport fields, from the Fourier

definition of fractional Laplacian and the Riesz transform in given in Appendix A, one can verify that

Flea g =ig(-ige) g 7|9}, (41)
which leads to
(—8)"§ =V, (R;(~8)""2 3). (42)

Therefore, using (39) we may write
R a—1 7
V.q :v.(—DO,R(—A) z¢). (43)
Finally, from (43) one can find the explicit form of the modeled SGS flux as

9
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Table 1
Optimal fractional orders, and their corresponding single-point correlation
coefficients between true and modeled SGS scalar fluxes.

A/ Olopt o (qfre., gyroce)
8 0.40 035
20 035 0.40
41 036 0.44
53 037 045
R a-17
qi = —DaRi(=A)" "2 ¢ +c, (44)

where c is a real-valued constant.
5. Data-driven nonlocal SGS modeling

Deriving the structure of the residual scalar flux as a nonlocal SGS model, there are two levels of model calibration in
order to employ this SGS model in an LES. In fact, this model calibration problem could be viewed as a two-stage procedure
where its first part is dealing with estimation of the fractional order, «, and the other stage infers the proportionality
coefficient of the model, D,. Subsequently, we propose a two-stage a priori parameter identification strategy based upon
spatio-temporal data for the true R, obtained from filtering well-resolved DNS of scalar turbulence as described in section 3.

5.1. Capturing nonlocality with fractional modeling of the SGS scalar flux

This is the first stage of this data-driven model identification, which targets finding an optimal fractional order, oop¢. Our
ground-truth data comes from exact evaluation of the two-point correlation function, C (q"‘e , 5”) as described in section 3. In
fact, we aim to capture the spatial nonlocality we showed in the statistics of SGS production of filtered scalar variance (see
Fig. 1b). Since we employ the fluctuating part of q"‘e in computing the two-point correlation function, and from the definition

C(qll‘e , 5”) is normalized by <q"|z(x) 5” (x)>, finding ap¢ is essentially independent of the other model parameters appeared in

(44). Using the exact values of qf‘Q from filtered DNS, (7) returns the ground-truth two-point correlation function, C'™€ Using

the database described in section 3, while using the fractional model for SGS scalar return flux CM°%! a5 functions of spatial
shift, r. In our study, for a fixed filter width, the fractional order that minimizes the mismatch function ||CTrue — ¢Model)
simply determines ap; capturing the entire range of spatial nonlocality.

By changing 0 < « < 1, we evaluate CMd€! for four different filter widths, A/n =8, 20, 41, 53. Fig. 3, shows CT€ in
addition to the variations of CM°d€! with r/n as we change o. We observe that as o decreases, the nonlocal correlations
in CT'v® are better approximated over r with the fractional SGS model. According to the minimization of the mismatch
function we introduced, aop; for the four values of filter width is reported in Table 1. Moreover, given ogp for each filter

width, single-point correlation coefficient between the true and modeled values of the SGS scalar flux, @ <qﬁ“‘e, q’H"'“de'>,

is computed and acceptably good correlation values (in an a priori sense) are reported in Table 1. We need to emphasize
that the passive scalar transport occurs in a statistically homogeneous medium with a direction of large-scale anisotropy.
This source of anisotropy significantly impacts the intensity of nonlocal effects in the SGS dynamics so that the identified
fractional-order in the SGS model is found to be less than 0.5. A similar observation in the study by Di Leoni et al. showed
that presence of anisotropy effects in the turbulent channel flow (due to the non-zero mean velocity gradient along the
stream-wise direction) increases the nonlocality in the SGS dynamics in a way that it requires « < 0.5 to properly capture
that with the fractional gradient SGS model [46].

5.2. Sparse regression on the fractional-order model

After obtaining the ogpe for a choice of filter width, we can compute the explicit term X = R(—A)"‘Oﬂf*% $ noting the
linear mapping qR = —Dy X + ¢, in (44). Having access to the true values of SGS scalar flux on an extensive spatio-temporal
database (described in section 3) turns the second stage of our model calibration into a sparse linear regression procedure.
Therefore, this procedure leads to learning and inferring of D, that is appeared in the filtered AD equation (40).

Similar to Beetham and Capecelatro’s work for sparse regression [66], we employ a regularized linear regression method
namely as elastic net that combines the L; and L, penalties as its regularizer [67]. Using the implementation of the elastic
net method in scikit-learn [68] and assigning equal weights to the L; and L regularizes, we perform the regression
and the its quality is examined through scatter plots. As a common practice, and in order to choose proper training data
size, we perform cross-validation tests over our spatio-temporal dataset [15]. As a result, Fig. 4 shows the resulting scatter
plots after the regression for two cases with A/n =41, 53.

Using the described procedure, the proportionality coefficient for each filter width is achieved. Fig. 5 illustrates predicted
D,, through this regression procedure as a function of chosen filter width, and it is notable that the predicted D, decreases

10
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Fig. 3. Variations of the two-point correlation function given in (7) obtained for the modeled SGS flux ¢M°de!  is changed from O to 1, in addition
to the exact evaluation of C(ql’f, 5”) via exact values of the SGS scalar flux from DNS, illustrated for four filter widths (a) A/n =38, (b) A/n =20, (c)
A/n =41, and (d) A/n =53. The arrows indicate the increase of «. Insets depict the two-point correlation function values on smaller regions of the spatial
shift, r/n < 150, in logarithmic scale. These plots show that the true values of the two-point correlation function over the entire range of spatial shift is
well-approximated with finding the ap in the fractional-order SGS model.

(a) A/mp =41 ‘ (b) A/n =53 '

-0.8 —0.6 —-0.4 -0.2 0.0 0.2 0.4 -0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4

Model Model
9 9

Fig. 4. Regression plots between qﬁ““e and qﬁ""del for the filter widths, (a) A/n =41, and (b) A/n = 53. The corresponding optimal fractional-orders are
reported in Table 1.

to lower values as we chose smaller filter widths. This numerical observation is consistent with our theoretical interpretation
of D, as we pointed out in section 4.3. A vital consideration in developing an SGS model is the concept of scale-invariant
closure model, especially within the inertial-convective subrange [69]. As indicated in section 4.3, D, takes the unit of
[L2*/T]. Therefore, to study the scale invariance property, by choosing the filter width as the length-scale, one can compare
the variations of D, obtained from the sparse regression against A2%rt. Fig. 5 shows that the developed fractional-order
SGS model is scale-invariant.

6. A priori testing via SGS dissipation of the resolved scalar variance

We subsequently examine the capability of the optimal fractional SGS model in reproducing the PDF of SGS dissipation
of scalar variance, g® - G. Through addressing:
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Fig. 5. Variation of the proportionality coefficient, Dy, for fractional-order SGS model with filter width, and the scale invariance study.
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Fig. 6. Probability distribution functions of the SGS dissipation of scalar variance, for the exact values from filtered DNS, local eddy-diffusivity model, and
fractional-order SGS model at filter widths A/n =41, 53.

e The ability of the SGS model to capture heavy tails in the true PDF, and
o If the SGS model is capable of representing the backward scattering of the scalar variance cascade i.e., reproducing the

negative values in the PDF.

Considering two filter widths of A/n =41, 53, Fig. 6 shows the PDF of normalized SGS dissipation of filtered scalar variance
for the optimal fractional-order model, local EDM, and the true SGS flux. The sample space to compute the PDFs is identical
to the one we utilized to obtain the PDFs illustrated in Fig. 1a as fully described in section 3. Here, one can see that for
both of the filter widths the fractional-order SGS model successfully captures the broad tail of the PDF in the positive value
region for the SGS dissipation, however, the local eddy-diffusivity model fails to completely do that. The positive side of the
PDF is associated with the cascade of scalar variance from the resolved scales to the unresolved ones i.e., forward scattering
of the scalar variance. On the other hand, this figure remarkably demonstrates that unlike the local EDM, fractional-order
SGS model is able to predict the events with the negative SGS dissipation values as observed in the true SGS dissipation
PDFs. In fact, our resulting PDFs display that the nonlocal modeling of the SGS scalar flux through fractional-order operator
makes it possible to include the backward scattering in the LES of turbulent scalar transport. Similar observation in the
context of fractional-order SGS modeling was reported by Di Leoni et al., where their developed fractional SGS model was
shown to be able to reproduce the back-scattering of the filtered turbulent kinetic energy [46].

7. Conclusions and remarks

We developed a new data-driven nonlocal/fractional SGS model for the LES of passive scalars transported in the homo-
geneous isotropic turbulent flow. The main focus of our work was on obtaining an SGS model that is structurally designed
based on the nonlocal nature of the SGS scalar flux. Therefore, we first managed to present a through statistical interpre-
tation of nonlocality in the SGS dynamics using the single- and two-point statistics of the SGS scalar dissipation. Using a
rich dataset of high-fidelity data for the SGS flux obtained from direct filtering of DNS results, we illustrated the statistical
nonlocality embedded in the SGS dynamics and showed that it amplifies as the filter-width increases. Moreover, we showed
that the conventional means of SGS modeling originate from a local statistical representation for the SGS dynamics and
are intrinsically incapable of predicting the statistical nonlocality. As a robust starting point for our mathematical modeling,

12
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we started from Boltzmann-BGK kinetics as the microscopic transport framework for passive scalars in homogeneous tur-
bulence and considered the closure problem manifested in filtering the transport equations. By revisiting the kinetic-level
strategy for the LES modeling taking into account the consistency of the model for the filtered equilibrium distribution with
its macroscopic representation at the continuum level, we proposed to proceed with closure modeling using «-stable Lévy
distribution to address the nonlocal and non-Gaussian behavior of the closure at the kinetic level. In order to derive a macro-
scopic representation of such model to employ in the filtered AD equation, we used continuum averaging and obtained the
filtered and residual (modeled) passive scalar flux components that essentially return the filtered AD equation. Throughout
this procedure, the up-scaled model for the divergence of the residual flux takes the form of a fractional Laplacian acting
on the filtered scalar concentration with a model-specific proportionality coefficient. Next, we managed to calibrate the
fractional-order model in two separate data-driven stages. First we targeted identification of the optimal fractional order
using two-point statistics data for the normalized SGS dissipation function obtained from the DNS and minimizing the mis-
match function with its counterpart in the fractional-order SGS model. This procedure returned the optimal fractional order
that minimizes the single-point correlation between the modeled and true SGS scalar flux. Afterwards, following an sparse
regression strategy over the spatio-temporal data for the SGS scalar flux in a statistically-stationary turbulent scalar field, we
obtained the proportionality coefficient of the model. Moreover, we showed the consistency of the derived model in terms
of the relationship between the obtained proportionality coefficient and decreasing the filter-width. Finally, in an a priori
test, we showed that the identified model is capable of capturing the PDF tail associated with the forward scattering of
the filtered scalar variance and illustrated that our model has the capability to partially reproduce the backward scattering
phenomenon.
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Appendix A. Fractional-order differential operators

According to Lischke et al. [70], the fractional Laplacian operator, denoted by (—A)¥ with 0 <« <1, is defined as

a0 = / E% (u, e~ %) eté* dg
Rd

(2m)d

=}'_1{|’§|2°‘f{u}(’g‘)], (A1)

where F and F~! represent the Fourier and inverse Fourier transforms for a real-valued vector & = &, j=1, 2, 3, respec-
tively, and i = +/—1. Moreover, (-, -) specifies the Ly-inner product on RY, d =1, 2, 3. Therefore, the Fourier transform of
the fractional Laplacian is then obtained as

Flarum| =g r{u) @), (A2)
where a =1 recovers the integer-order Laplacian. Considering the definition of «-Riesz potential as
u(x) —u(s)
Iau(x) = Cd’_a mds, (A3)
Rd



A. Akhavan-Safaei, M. Samiee and M. Zayernouri Journal of Computational Physics 446 (2021) 110571

the fractional Laplacian can also be expressed in the integral form as

Qe u(x) —u(s)
(=A)"u@®) =Cy o md& (A4)
Rd
where Cg 4 = %ﬂﬁ for o € (0,1] and I'(-) represents Gamma function [70]. The «-Riesz potential is also formulated
[71] as
Totu@) = (—8)u@ =7 1§ Fu}®)}. (AS)
Considering (A.5), the Riesz transform is then given by
_ i£j
Rju@®) =V; Ty =7 - ﬁf{u}(g)], (A6)

which is utilized in formulating the SGS scalar flux.
Appendix B. Derivation of passive scalar flux

Regarding the filtered passive scalar flux given in (36), one can write that

o0

gi = / /(u,- — Vi) (55 F(Lss) — ®F(L)) e Sduds, (B.1)
0 Rd

where using the Taylor expansions of CI/DZS and F(Z:s) about their not shifted values and later on by utilizing the incom-
pressibility constraint, one arrives at the following

o0 ~
~ ~ 0d  ~
qi ://(u,- — Vi) (—ujstg) o F© e *duds (B.2)
0 Rd !
0 ([
‘L’ ~ ~ ~
:__;g% /Se—sds /(uj_vj)(uj—vj)F(/;)du.
CT i
0 Rd

Knowing that fooose_S ds =1, the diffusivity coefficient of the passive scalar, D, would be expressed as
T ~ ~ ~
D;=C_§ /(uj—v,-)(uj—vj)F(L)du. (B.3)
T
Rd

As a result, the filtered (resolved) passive scalar flux, q, and its divergence appearing in the right-hand side of (31) could be
written as
~ 9P y ~
Gi=-D-— = V-4=-DA®. (B.4)
i

On the other hand, the integral form of the modeled SGS flux in (37) can be written in the following form

qf = / /(u; — Vi) (@55 F* (Ls5) — ® F* (L)) e*duds. (B.5)
0 Rd

By adding and subtracting &5 s F*(L) to (43;/5 F¥(Lys)— @ F“(E)), one can rewrite (B.5) as

qf = / /(ui — Vi) (55 — @) F*(L) e~ *duds (B.6)
0 Rd
+ f / (u; — Vi) Brs (FY(Foe) — FU(D)) e~ duds,
0 Rd
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where the second integral is approximated as zero. Therefore, the modeled subgrid-scale scalar flux is simplified into

o
://(ui — Vi) (@55 — ) F*(L) e Sduds. (B.7)
0 Rd
Consndermg ui = (x; — x;)/st and approxnmatmg u; — Vi ~ u;, one can obtain that du = dx’ /(stg)3 [72,27]. As a result

=m-V) /c2 ~ uz/cT *® —x)2/(s Tg cr)?. According to the definition of isotropic c-stable Lévy distribution, F* (L)
C JLa+3)/2 \where C, is a real-valued constant. Consequently, (B.7) may be reformulated as

o0
1 X;—X,' —_ o~ Co
“J ) asg 55 =) Faaran )¢ W B.S
o //c%s3t§( STq )( 53 )<£(2a+3)/2>e s (B.8)
0 Rd
__Calcry™ / o2 g f(x %) (<1>(X2’)—<I>(x)) »
Tg X — x|20+3
0
= M[‘(z )/ (x —Xi) (CD(XZ/)—q)(X)) dx’
Tg xl o+3

By taking the divergence of the modeled SGS scalar flux in (B.8), we obtain

dx’ (B.9)

2a _ By _ D
Vg% = Colcr Tg) rQa)v. /(x xl)(<I>(x) (%))

Tg _ X|2°‘+3

Colcr T9)* <I>(x’)—d>(x) / 9P /dx; "
%'

B rQa) | Qo+ 2)] g3 X e

Due to symmetry, the second integral inside the large brace is zero and the other integral is nothing but the definition of
fractional Laplacian of the filtered passive scalar concentration, ®. Thus, (B.9) takes the following compact form

2a
V.qR= —%(m +2)TQa) (—A)*®, «e(0,1]. (B.10)
g
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