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MemComputing vs. Quantum Computing: some analogies and major

differences*
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Abstract— Quantum computing employs some quantum phe-
nomena to process information. It has been hailed as the future
of computing but it is plagued by serious hurdles when it comes
to its practical realization. MemComputing is a new paradigm
that instead employs non-quantum dynamical systems and
exploits time non-locality (memory) to compute. It can be
efficiently emulated in software and its path towards hardware
is more straightforward. I will discuss some analogies between
these two computing paradigms, and the major differences that
set them apart.

I. INTRODUCTION

There is a lot of discussion about “unconventional com-

puting”. What is meant by this is some type of computation

that does not rely on the traditional Turing paradigm, as

practically implemented with some architecture, such as the

von Neumann one. However, before adding the adjective

“unconventional” to computing, we should first answer the

following: What does it mean to compute and what is its

goal?

It should be obvious, but it’s worth stressing: the goal of a

computing machine is to solve problems that are challenging

for us, humans [1]. Although we can define mathematically

a plethora of “computers”, most of them remain academic

curiosities rather than useful tools in achieving such a goal.

Our modern computers (sometimes called “classical”;

see also Section II-D) satisfy the above goal quite well:

together with clever algorithms, they have been and still

are extremely useful in solving a wide range of tasks that

would be impossible for us, humans, to do by hand. Yet,

even when the best algorithms are applied to hard instances

of many combinatorial optimization problems, severe limita-

tions emerge. The compute time for such instances increases

exponentially when the size of the problem increases linearly.

Such problems are the norm, not the exception, in both

academic and industrial settings.

Enter Quantum Computing [2]. In its theoretical underpin-

nings quantum computers (QCs) rely on qubits: quantum-

mechanical systems with two states. To each qubit is as-

sociated a Hilbert space with basis states |0〉 and |1〉. A

general state, |Ψ〉, in the Hilbert space of the qubit is a linear

combination of the type |Ψ〉 = α0|0〉+α1|1〉, where α0 and

α1 are some complex numbers such that |α0|
2 + |α1|

2 = 1.
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Arguably the most famous application of QCs is prime

factorization implemented with Shor’s algorithm that if run

on an ideal (i.e., decoherence-free) QC would factor numbers

into primes in polynomial time [3]. The algorithm exploits

two physical properties that are not available to our tradi-

tional computers: quantum entanglement and interference.

Although limited in the size (and range) of problems

they can actually solve, QCs have shown that physics-based

approaches to computation provide advantages that are not

easily obtained with traditional means. However, physical

phenomena useful for computing are not just the domain of

Quantum Mechanics. Other, equally valid phenomena can be

exploited to solve hard combinatorial optimization problems.

Enter MemComputing (MC) [1], [4]. MC employs

time non-locality (memory) to compute and relies on

non-quantum dynamical systems as elementary building

blocks [5]. The physics of MC is then fundamentally dif-

ferent from that of Quantum Computing. This translates into

a completely different mathematical structure of MC with re-

spect to Quantum Computing, with important consequences

in both its software emulation and hardware realization.

In this short paper, I will highlight some analogies between

MemComputing and Quantum Computing, but most impor-

tantly their major differences. I will focus only on digital MC

machines (DMMs), those mapping a finite string of symbols

into a finite string of symbols [6]. These are the ones that

are easily scalable.

II. MEMCOMPUTING VS. QUANTUM COMPUTING

A. Collective computation and non-perturbative approaches

The fundamental reason why some combinatorial opti-

mization problems are challenging to solve is because they

require collective assignments of variables in the problem

specification [7]. Take for instance the following Boolean

formula relating the three logical variables v1, v2, v3:

ϕ(v) = (¬v1∨v2∨v3)∧(¬v1∨¬v2∨v3)∧(v1∨¬v2∨¬v3),
(1)

where v = (v1, v2, v3), the symbols ∨ and ∧ represent

the logical OR and AND, respectively, while the symbol

¬ represents negation, and the parentheses define a clause

or constraint between variables. We want to know which

logical assignment of v satisfies such as formula, that is

when ϕ(v) = 1.

Since the three variables appear in all three clauses, if we

started from a random assignment (0 or 1) of the variables

v, we would need to check each clause separately to see if© 2022 IEEE
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they are logically satisfied. Say, we start from the left of the

formula (1) and sequentially check if all clauses are satisfied.

If not, we change the initial assignment of the variables and

try again. This is easily done for such a simple formula. It

becomes a considerable challenge if the number of clauses

and variables grows in the thousands or even millions (which

is standard in many academic and industrial applications).

Instead, it would be ideal to have a machine that can

assign the correct value of such variables collectively, in the

sense that it does not proceed sequentially but in parallel

towards the solution, as if the machine were able to “see” the

global structure of the problem (how the different variables

“interact” in different clauses), not just its “local” features

(the satisfaction of a single clause).

Now, this type of global information is not so easy to

extract with traditional algorithms, as clever as they can

be. In fact, traditional algorithms can be classified as “per-

turbative methods” to computation: they change, following

some rule-based strategy, the value of one or a few variables

out of the many (large number of) variables in the problem

specification. Instead, what is really needed is some sort of

non-perturbative approach, where large numbers of variables

(even comparable to the size of the problem) simultaneously

change their values at different steps of the computation [1].

The attribute “non-perturbative” has a well defined mean-

ing in physics. It means that the elementary units of a physi-

cal system are strongly coupled, and we cannot describe their

dynamics by separating the system into a non-interacting

part, and then perturbing it by adding small interaction terms

(“small” compared to some energy scale characteristic of the

system). Physical ideas seem to show up again. They suggest

that we need to look for strongly coupled systems that

showcase non-perturbative phenomena that we can exploit

for computation.

B. Long-range order

If we were to think of this problem in physical terms, with

the variables representing actual physical quantities (e.g.,

voltages of an electrical circuit), and the logical gates as

interactions between these quantities, we would immediately

think of a machine that correlates these variables at all dis-

tances (wavelengths). Namely, we would think of a machine

with long-range order (LRO) [1].

In the case of a QC we would invoke entanglement, since

the latter does provide some type of collective behavior: a

perturbation in (or measurement of) one of the system’s parts,

would immediately affect other parts arbitrarily far away.

This can be viewed as a type of long-range correlation or

LRO.

However, a quantum system in an entangled state has to

be prepared experimentally in such as state (if it is not

naturally in such a state). For instance, entanglement of

qubits has to be realized experimentally at the beginning of

the computation, and maintained during the whole duration

of the computation for a QC to factor numbers [3]. And since

entanglement is very sensitive to decoherence, maintaining

it for long enough time for the computation to end is not an

easy feat.

C. Dynamical LRO as an epiphenomenon of memory

Instead, LRO can be found in a vast range of physical

systems that do not showcase quantum dynamics. In fact, it

may emerge as a natural byproduct of time non-locality even

if the different parts of a physical system interact locally [1].

To see this intuitively, suppose you have a collection of

classical spins, si, on a lattice interacting locally, and their

dynamics are described by the Hamiltonian:

H = −J
∑

<ij>

sisj , si ∈ {−1, 1}, (2)

where the spin-spin interaction, with strength J , is short

range (only nearest-neighbor spins interact).

Suppose now that the spins have somehow memory of

their past interaction, and the time it takes this memory

to decay is much longer than the characteristic time of the

spin-spin interaction: tc ∼ 1/|J | (in appropriate units). This

means that if a spin changes its value from, say, 1 to −1, or

vice versa, its neighbors would respond to such a change. In

turn, the latter ones will affect their neighbors, and so on, so

that the interaction propagates through the lattice. However,

if the spins have memory of their past dynamics, each one of

them would effectively “feel” the interaction of all the other

spins in the lattice through their time non-local response. In

other words, time non-locality has naturally induced spatial

non-locality even if the interactions are local [1]. It is this

property that DMMs exploit to solve hard combinatorial

optimization problems efficiently [6].

D. Classical vs. non-quantum

At this point it is worth making an important distinction.

In some computer science literature the word “classical” is

typically reserved for Turing machines, or our own traditional

computers (the closest physical realization of deterministic

Turing machines, but not exactly the same thing). This

is what is meant when we read that quantum computers

have reached (or not) “quantum supremacy” over “classical

computers”.

MemComputing machines (in general, not just DMMs)

are based on physical systems we would properly call

“classical”. However, they are not Turing machines and have

nothing to do with our traditional computers. It is for this

reason that I have used the word “non-quantum” rather than

“classical” to describe their dynamics.

E. Phase space vs. Hilbert space

That said, I can now move on to the mathematical structure

of MemComputing vs. Quantum Computing which has im-

portant consequences on the applicability of these machines.

As already mentioned, QCs are described by state vectors in

a Hilbert space. This is a topological vector space [2].

Instead, MC machines, being non-quantum, are described

by a state, x ≡ {x1, . . . , xD}, with, say, D components (de-

grees of freedom) in a D-dimensional topological manifold



called the phase space. The dynamics of such machines are

then described by ordinary differential equations (ODEs) of

the type [1]:

ẋ(t) = F (x(t)); x(t = t0) = x0, (3)

where F is a D-dimensional vector (the flow vector field),

and the equations require a state assignment at an initial time,

t0.

The distinction between the phase space of MC machines

and the Hilbert space of a QC is substantial. The phase space

is a topological manifold whose dimension grows linearly

with the number of degrees of freedom. This means that if we

map the variables of a combinatorial optimization problem

into the degrees of freedom of a DMM, the phase space

grows linearly with the problem size.

On the other hand, the Hilbert space of N qubits is the

tensor product of the individual qubits’ Hilbert spaces. As

such, it grows exponentially (2N ) with the number of qubits.

Here then lies an incredible advantage of a DMM vs. a

QC: a QC cannot be emulated efficiently on our traditional

computers. It would require exponentially growing resources.

A DMM instead can be simulated on such computers effi-

ciently. This is because the random-access memory required

to integrate numerically ODEs scales linearly with the num-

ber of degrees of freedom, and, if chaos is not present (as

in the DMMs [1]), the numerical stability of the simulations

can be also controlled with a polynomial overhead.

Therefore, the performance of DMMs, their robustness

against noise, etc., can be tested in software, even before

a hardware realization of the same is done. Furthermore,

the reliance on non-quantum dynamical systems with mem-

ory makes the hardware realization of DMMs much more

straightforward than that of QCs. In fact, time non-locality

can be emulated using active elements, such as transis-

tors [8]. Therefore, a full implementation of these machines

using CMOS is feasible [6], and they can operate at room

temperature, rather than at the cryogenic temperatures typical

of QCs.

MC then offers a workflow production similar to that of

our modern computers: the chip design and performance are

first simulated and checked numerically before the chips are

sent to production. This saves tons of time and money in

the process. No such advantage exists for QCs: to see their

actual performance, they have to be built in hardware, and

any issue that arises at that stage needs to be solved at that

point.

A wide range of problems in the combinatorial op-

timization class have been already solved using emula-

tions of DMMs; see [1] and references therein, and the

case studies reported by the company MemComputing, Inc.

(www.memcpu.com). These simulations have shown consid-

erable advantages compared to state-of-the-art algorithms ap-

plied to the same problems. Since numerical noise is “worse”

than physical noise (the former accumulates with integration

time; the latter is typically local in space and time), the

simulations also show the robustness of the solution search

by DMMs with respect to noise.

F. Topological computing and its physical vacua

The above robustness (whether physical or numerical) is

due to the fact that DMMs employ topological objects to

compute [10]. These are instantons, namely a family of

topologically nontrivial deterministic trajectories smoothly

connecting pairs of critical points—those values of x sat-

isfying the condition F (x(t)) = 0 in Eq. (3)—of increasing

stability in the phase space [1].

Instantons are also the type of non-perturbative phenom-

ena (like quantum tunneling to which they are related) we

were after to solve hard combinatorial optimization problems

efficiently. This means that when an instanton occurs in phase

space it can involve a large number of degrees of freedom

(variables); in fact, even as large as the total number of

variables. In other words, instantons realize physically the

collective dynamics I mentioned above.

Note also that instantons occur “spontaneously”, in the

sense that once the dynamics of a DMM are initiated the

machine enters this instantonic phase on its own [1]. This

collective dynamical behavior does not need to be prepared

experimentally at the beginning of the computation, like

entanglement of a QC. It occurs during time evolution.

In addition, the transition amplitudes between any two

critical points are topological invariants on instantons, even

in the presence of noise [11]. This means that they cannot

change without changing the topology of phase space. Impor-

tantly, the number of instantonic steps required to reach the

solution of the problem at hand can be easily counted [11]:

it grows polynomially with the size of the problem to solve,

even in the presence of moderate noise [1].

Another type of topological computing has been suggested

for QCs [12], but has yet to be realized in practice. It would

rely on some strongly correlated electron systems to compute

protected against the unavoidable decoherence. The mathe-

matical framework to describe this form of computation is

a Schwarz-type topological field theory (TFT) [9]. Instead,

to describe the dynamics of the non-quantum dynamical

systems representing DMMs a Witten-type TFT has been

employed [10], [11]. It is then interesting to see that a TFT

underlies the description of the physical vacua of topological

computation, whether quantum or not. Research on this

analogy and its consequences in computing would be thus

desirable.

G. Linear or non-linear machines?

Despite the above analogy, another major difference distin-

guishes DMMs from QCs (topological or not). DMMs rely

on non-linear phenomena, like instantons, to compute. On

the other hand QCs are fundamentally linear machines, if

we do not consider the measurement process, and possible

coupling with the environment (which leads to decoherence).

QCs manipulate state vectors in a linear vector space (a

Hilbert space) using linear operators (quantum gates) on that

space. As I mentioned in the Introduction, the price that

needs to be paid for this linearity is the exponential growth

of the Hilbert space dimension with the number of qubits

employed.



On the other hand, DMMs take advantage of non-

linearities (instantons) to compute efficiently with the dimen-

sion of the phase space growing linearly with the number of

degrees of freedom (size of the problem to solve). In other

words, DMMs have traded homogeneity and superposition,

typical of linear systems, with non-linear dynamics, to gain

linearity in the scaling of the phase space. As I have

discussed above, this trade-off favors MemComputing over

Quantum Computing.

H. Deterministic vs. probabilistic computing

Let me finally mention that DMMs (MC in general) are

deterministic dynamical systems. Noise is a nuisance, not a

fundamental tool to compute. QCs instead are probabilistic

machines: the calculation of a given problem needs to be

repeated many times on an equally prepared system, so that

an average of the results can be collected. This is an intrinsic

and unavoidable feature of Quantum Mechanics.

Although the act of repeating a measurement many times

(for the benefit of obtaining an average quantity with a

certain level of confidence) is not per se a show stopper,

it is definitely not advantageous if the same problem can be

solved with just one attempt. A deterministic machine holds

then a considerable advantage compared to a probabilistic

one. This advantage is even more pronounced if noise, in

the form of say, temperature fluctuations, is used as the

fundamental computing tool: such a probabilistic machine

would need to navigate an exponentially growing state space

with consequent detriment to its scalability as a function of

problem size.

III. CONCLUSIONS

In conclusion, I have discussed a few analogies and the

major differences between MemComputing and Quantum

Computing. These two physics-based paradigms of compu-

tation are fundamentally different in both the physics they

employ and their mathematical description. These differ-

ences have profound consequences on their applicability to

hard combinatorial optimization problems. MemComputing

machines can be efficiently emulated in software (showing

already substantial advantages compared to traditional algo-

rithms), while QCs need to be built in hardware to realize

their potential. Irrespective of these differences, the two

paradigms can provide fruitful cross-pollination of ideas with

possible benefits to both. Research in this direction would

then be beneficial.
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