2203.12031v2 [cs.ET] 24 Mar 2022

.
.

arxiv

MemComputing vs. Quantum Computing: some analogies and major
differences™

Massimiliano Di Ventra, Fellow, IEEE*

Abstract— Quantum computing employs some quantum phe-
nomena to process information. It has been hailed as the future
of computing but it is plagued by serious hurdles when it comes
to its practical realization. MemComputing is a new paradigm
that instead employs non-quantum dynamical systems and
exploits time non-locality (memory) to compute. It can be
efficiently emulated in software and its path towards hardware
is more straightforward. I will discuss some analogies between
these two computing paradigms, and the major differences that
set them apart.

I. INTRODUCTION

There is a lot of discussion about “unconventional com-
puting”. What is meant by this is some type of computation
that does not rely on the traditional Turing paradigm, as
practically implemented with some architecture, such as the
von Neumann one. However, before adding the adjective
“unconventional” to computing, we should first answer the
following: What does it mean to compute and what is its
goal?

It should be obvious, but it’s worth stressing: the goal of a
computing machine is to solve problems that are challenging
for us, humans [1]. Although we can define mathematically
a plethora of “computers”, most of them remain academic
curiosities rather than useful tools in achieving such a goal.

Our modern computers (sometimes called “classical”;
see also Section II-D) satisfy the above goal quite well:
together with clever algorithms, they have been and still
are extremely useful in solving a wide range of tasks that
would be impossible for us, humans, to do by hand. Yet,
even when the best algorithms are applied to hard instances
of many combinatorial optimization problems, severe limita-
tions emerge. The compute time for such instances increases
exponentially when the size of the problem increases linearly.
Such problems are the norm, not the exception, in both
academic and industrial settings.

Enter Quantum Computing [2]. In its theoretical underpin-
nings quantum computers (QCs) rely on qubits: quantum-
mechanical systems with two states. To each qubit is as-
sociated a Hilbert space with basis states |0) and |1). A
general state, |U), in the Hilbert space of the qubit is a linear
combination of the type |¥) = ag|0) + a|1), where « and
«; are some complex numbers such that |ag|? + |y |? = 1.

*This work was supported by the National Science Foundation under
Grant No. 2034558.

IMassimiliano Di Ventra is with the Department of Physics,
University of California, San Diego La Jolla, CA 92093, USA
diventra@physics.ucsd.edu

© 2022 IEEE

Arguably the most famous application of QCs is prime
factorization implemented with Shor’s algorithm that if run
on an ideal (i.e., decoherence-free) QC would factor numbers
into primes in polynomial time [3]. The algorithm exploits
two physical properties that are not available to our tradi-
tional computers: quantum entanglement and interference.

Although limited in the size (and range) of problems
they can actually solve, QCs have shown that physics-based
approaches to computation provide advantages that are not
easily obtained with traditional means. However, physical
phenomena useful for computing are not just the domain of
Quantum Mechanics. Other, equally valid phenomena can be
exploited to solve hard combinatorial optimization problems.

Enter MemComputing (MC) [1], [4]. MC employs
time non-locality (memory) to compute and relies on
non-quantum dynamical systems as elementary building
blocks [5]. The physics of MC is then fundamentally dif-
ferent from that of Quantum Computing. This translates into
a completely different mathematical structure of MC with re-
spect to Quantum Computing, with important consequences
in both its software emulation and hardware realization.

In this short paper, I will highlight some analogies between
MemComputing and Quantum Computing, but most impor-
tantly their major differences. I will focus only on digital MC
machines (DMMs), those mapping a finite string of symbols
into a finite string of symbols [6]. These are the ones that
are easily scalable.

II. MEMCOMPUTING VS. QUANTUM COMPUTING
A. Collective computation and non-perturbative approaches

The fundamental reason why some combinatorial opti-
mization problems are challenging to solve is because they
require collective assignments of variables in the problem
specification [7]. Take for instance the following Boolean
formula relating the three logical variables vy, vo, v3:

©(v) = (mv1 Vo Vg) A(—v1 V-2 Vog) A(v1 V1w V-ws),
ey
where v = (v1,v2,v3), the symbols V and A represent
the logical OR and AND, respectively, while the symbol
— represents negation, and the parentheses define a clause
or constraint between variables. We want to know which
logical assignment of v satisfies such as formula, that is
when p(v) = 1.
Since the three variables appear in all three clauses, if we
started from a random assignment (0 or 1) of the variables
v, we would need to check each clause separately to see if

http://arxiv.org/abs/2203.12031v2

they are logically satisfied. Say, we start from the left of the
formula (1) and sequentially check if all clauses are satisfied.
If not, we change the initial assignment of the variables and
try again. This is easily done for such a simple formula. It
becomes a considerable challenge if the number of clauses
and variables grows in the thousands or even millions (which
is standard in many academic and industrial applications).

Instead, it would be ideal to have a machine that can
assign the correct value of such variables collectively, in the
sense that it does not proceed sequentially but in parallel
towards the solution, as if the machine were able to “see” the
global structure of the problem (how the different variables
“interact” in different clauses), not just its “local” features
(the satisfaction of a single clause).

Now, this type of global information is not so easy to
extract with traditional algorithms, as clever as they can
be. In fact, traditional algorithms can be classified as “per-
turbative methods” to computation: they change, following
some rule-based strategy, the value of one or a few variables
out of the many (large number of) variables in the problem
specification. Instead, what is really needed is some sort of
non-perturbative approach, where large numbers of variables
(even comparable to the size of the problem) simultaneously
change their values at different steps of the computation [1].

The attribute “non-perturbative” has a well defined mean-
ing in physics. It means that the elementary units of a physi-
cal system are strongly coupled, and we cannot describe their
dynamics by separating the system into a non-interacting
part, and then perturbing it by adding small interaction terms
(“small” compared to some energy scale characteristic of the
system). Physical ideas seem to show up again. They suggest
that we need to look for strongly coupled systems that
showcase non-perturbative phenomena that we can exploit
for computation.

B. Long-range order

If we were to think of this problem in physical terms, with
the variables representing actual physical quantities (e.g.,
voltages of an electrical circuit), and the logical gates as
interactions between these quantities, we would immediately
think of a machine that correlates these variables at all dis-
tances (wavelengths). Namely, we would think of a machine
with long-range order (LRO) [1].

In the case of a QC we would invoke entanglement, since
the latter does provide some type of collective behavior: a
perturbation in (or measurement of) one of the system’s parts,
would immediately affect other parts arbitrarily far away.
This can be viewed as a type of long-range correlation or
LRO.

However, a quantum system in an entangled state has to
be prepared experimentally in such as state (if it is not
naturally in such a state). For instance, entanglement of
qubits has to be realized experimentally at the beginning of
the computation, and maintained during the whole duration
of the computation for a QC to factor numbers [3]. And since
entanglement is very sensitive to decoherence, maintaining

it for long enough time for the computation to end is not an
easy feat.

C. Dynamical LRO as an epiphenomenon of memory

Instead, LRO can be found in a vast range of physical
systems that do not showcase quantum dynamics. In fact, it
may emerge as a natural byproduct of time non-locality even
if the different parts of a physical system interact locally [1].
To see this intuitively, suppose you have a collection of
classical spins, s;, on a lattice interacting locally, and their
dynamics are described by the Hamiltonian:

H=-JY sisj, si€{-11},)
<ij>
where the spin-spin interaction, with strength J, is short
range (only nearest-neighbor spins interact).

Suppose now that the spins have somehow memory of
their past interaction, and the time it takes this memory
to decay is much longer than the characteristic time of the
spin-spin interaction: ¢, ~ 1/|J| (in appropriate units). This
means that if a spin changes its value from, say, 1 to —1, or
vice versa, its neighbors would respond to such a change. In
turn, the latter ones will affect their neighbors, and so on, so
that the interaction propagates through the lattice. However,
if the spins have memory of their past dynamics, each one of
them would effectively “feel” the interaction of all the other
spins in the lattice through their time non-local response. In
other words, time non-locality has naturally induced spatial
non-locality even if the interactions are local [1]. It is this
property that DMMs exploit to solve hard combinatorial
optimization problems efficiently [6].

D. Classical vs. non-quantum

At this point it is worth making an important distinction.
In some computer science literature the word “classical” is
typically reserved for Turing machines, or our own traditional
computers (the closest physical realization of deterministic
Turing machines, but not exactly the same thing). This
is what is meant when we read that quantum computers
have reached (or not) “quantum supremacy” over “classical
computers’.

MemComputing machines (in general, not just DMMs)
are based on physical systems we would properly call
“classical”. However, they are not Turing machines and have
nothing to do with our traditional computers. It is for this
reason that I have used the word “non-quantum” rather than
“classical” to describe their dynamics.

E. Phase space vs. Hilbert space

That said, I can now move on to the mathematical structure
of MemComputing vs. Quantum Computing which has im-
portant consequences on the applicability of these machines.
As already mentioned, QCs are described by state vectors in
a Hilbert space. This is a topological vector space [2].

Instead, MC machines, being non-quantum, are described
by a state, x = {x1,...,zp}, with, say, D components (de-
grees of freedom) in a D-dimensional topological manifold

called the phase space. The dynamics of such machines are
then described by ordinary differential equations (ODEs) of
the type [1]:

x(t) = F(x(t));

where F' is a D-dimensional vector (the flow vector field),
and the equations require a state assignment at an initial time,
to.

The distinction between the phase space of MC machines
and the Hilbert space of a QC is substantial. The phase space
is a topological manifold whose dimension grows linearly
with the number of degrees of freedom. This means that if we
map the variables of a combinatorial optimization problem
into the degrees of freedom of a DMM, the phase space
grows linearly with the problem size.

On the other hand, the Hilbert space of N qubits is the
tensor product of the individual qubits’ Hilbert spaces. As
such, it grows exponentially (2V) with the number of qubits.

Here then lies an incredible advantage of a DMM vs. a
QC: a QC cannot be emulated efficiently on our traditional
computers. It would require exponentially growing resources.
A DMM instead can be simulated on such computers effi-
ciently. This is because the random-access memory required
to integrate numerically ODEs scales linearly with the num-
ber of degrees of freedom, and, if chaos is not present (as
in the DMMs [1]), the numerical stability of the simulations
can be also controlled with a polynomial overhead.

Therefore, the performance of DMMs, their robustness
against noise, etc., can be tested in software, even before
a hardware realization of the same is done. Furthermore,
the reliance on non-quantum dynamical systems with mem-
ory makes the hardware realization of DMMs much more
straightforward than that of QCs. In fact, time non-locality
can be emulated using active elements, such as transis-
tors [8]. Therefore, a full implementation of these machines
using CMOS is feasible [6], and they can operate at room
temperature, rather than at the cryogenic temperatures typical
of QCs.

MC then offers a workflow production similar to that of
our modern computers: the chip design and performance are
first simulated and checked numerically before the chips are
sent to production. This saves tons of time and money in
the process. No such advantage exists for QCs: to see their
actual performance, they have to be built in hardware, and
any issue that arises at that stage needs to be solved at that
point.

A wide range of problems in the combinatorial op-
timization class have been already solved using emula-
tions of DMMs; see [1] and references therein, and the
case studies reported by the company MemComputing, Inc.
(www.memcpu.com). These simulations have shown consid-
erable advantages compared to state-of-the-art algorithms ap-
plied to the same problems. Since numerical noise is “worse”
than physical noise (the former accumulates with integration
time; the latter is typically local in space and time), the
simulations also show the robustness of the solution search
by DMMs with respect to noise.

x(t = to) = o, (3)

F. Topological computing and its physical vacua

The above robustness (whether physical or numerical) is
due to the fact that DMMs employ topological objects to
compute [10]. These are instantons, namely a family of
topologically nontrivial deterministic trajectories smoothly
connecting pairs of critical points—those values of x sat-
isfying the condition F'(x(¢)) = 0 in Eq. (3)—of increasing
stability in the phase space [1].

Instantons are also the type of non-perturbative phenom-
ena (like quantum tunneling to which they are related) we
were after to solve hard combinatorial optimization problems
efficiently. This means that when an instanton occurs in phase
space it can involve a large number of degrees of freedom
(variables); in fact, even as large as the total number of
variables. In other words, instantons realize physically the
collective dynamics I mentioned above.

Note also that instantons occur “spontaneously”, in the
sense that once the dynamics of a DMM are initiated the
machine enters this instantonic phase on its own [1]. This
collective dynamical behavior does not need to be prepared
experimentally at the beginning of the computation, like
entanglement of a QC. It occurs during time evolution.

In addition, the transition amplitudes between any two
critical points are topological invariants on instantons, even
in the presence of noise [11]. This means that they cannot
change without changing the topology of phase space. Impor-
tantly, the number of instantonic steps required to reach the
solution of the problem at hand can be easily counted [11]:
it grows polynomially with the size of the problem to solve,
even in the presence of moderate noise [1].

Another type of topological computing has been suggested
for QCs [12], but has yet to be realized in practice. It would
rely on some strongly correlated electron systems to compute
protected against the unavoidable decoherence. The mathe-
matical framework to describe this form of computation is
a Schwarz-type fopological field theory (TFT) [9]. Instead,
to describe the dynamics of the non-quantum dynamical
systems representing DMMs a Witten-type TFT has been
employed [10], [11]. It is then interesting to see that a TFT
underlies the description of the physical vacua of topological
computation, whether quantum or not. Research on this
analogy and its consequences in computing would be thus
desirable.

G. Linear or non-linear machines?

Despite the above analogy, another major difference distin-
guishes DMMs from QCs (topological or not). DMMs rely
on non-linear phenomena, like instantons, to compute. On
the other hand QCs are fundamentally linear machines, if
we do not consider the measurement process, and possible
coupling with the environment (which leads to decoherence).
QCs manipulate state vectors in a linear vector space (a
Hilbert space) using linear operators (quantum gates) on that
space. As I mentioned in the Introduction, the price that
needs to be paid for this linearity is the exponential growth
of the Hilbert space dimension with the number of qubits
employed.

On the other hand, DMMs take advantage of non-
linearities (instantons) to compute efficiently with the dimen-
sion of the phase space growing linearly with the number of
degrees of freedom (size of the problem to solve). In other
words, DMMs have traded homogeneity and superposition,
typical of linear systems, with non-linear dynamics, to gain
linearity in the scaling of the phase space. As I have
discussed above, this trade-off favors MemComputing over
Quantum Computing.

H. Deterministic vs. probabilistic computing

Let me finally mention that DMMs (MC in general) are
deterministic dynamical systems. Noise is a nuisance, not a
fundamental tool to compute. QCs instead are probabilistic
machines: the calculation of a given problem needs to be
repeated many times on an equally prepared system, so that
an average of the results can be collected. This is an intrinsic
and unavoidable feature of Quantum Mechanics.

Although the act of repeating a measurement many times
(for the benefit of obtaining an average quantity with a
certain level of confidence) is not per se a show stopper,
it is definitely not advantageous if the same problem can be
solved with just one attempt. A deterministic machine holds
then a considerable advantage compared to a probabilistic
one. This advantage is even more pronounced if noise, in
the form of say, temperature fluctuations, is used as the
fundamental computing tool: such a probabilistic machine
would need to navigate an exponentially growing state space
with consequent detriment to its scalability as a function of
problem size.

III. CONCLUSIONS

In conclusion, I have discussed a few analogies and the
major differences between MemComputing and Quantum
Computing. These two physics-based paradigms of compu-
tation are fundamentally different in both the physics they
employ and their mathematical description. These differ-
ences have profound consequences on their applicability to
hard combinatorial optimization problems. MemComputing
machines can be efficiently emulated in software (showing
already substantial advantages compared to traditional algo-
rithms), while QCs need to be built in hardware to realize
their potential. Irrespective of these differences, the two
paradigms can provide fruitful cross-pollination of ideas with
possible benefits to both. Research in this direction would
then be beneficial.

REFERENCES

[1] M. Di Ventra, MemComputing: Fundamentals and Applications. Ox-
ford University Press, Oxford, UK, 2022.

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, UK, 2010.

[3]1 P.W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” 35th Annual Symposium on Foundations of Computer
Science, 1994, pp. 124.

[4] M. Di Ventra and Y. V. Pershin, “The parallel approach,” Nature
Physics, vol. 9, 2013, pp.200.

[5] FL. Traversa and M. Di Ventra “Universal MemComputing Ma-
chines,” IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 26, 2015, pp. 2702.

[6]

[7]

[8]

[9]

(10]

(11]

[12]

F. L. Traversa and M. Di Ventra, “Polynomial-time solution of prime
factorization and NP-complete problems with digital MemComputing
machines,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 27, 2017, pp. 023107.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness, W. H. Freeman & Co., New York,
1990.

Y. V. Pershin and M. Di Ventra, “Experimental demonstration of asso-
ciative memory with memristive neural networks,” Neural Networks,
vol. 23, 2010, pp. 881.

D. Birmingham, M. Blau, M. Rakowski, and G. Thompson, “Topo-
logical field theory,” Physics Reports, vol. 209, 1991, pp. 129.

M. Di Ventra, F. L. Traversa, and 1. V. Ovchinnikov, “Topological field
theory and computing with instantons,” Annalen der Physik (Berlin),
vol. 529, 2017, pp. 1700123.

M. Di Ventra and I. V. Ovchinnikov, “Digital MemComputing: from
logic to dynamics to topology,” Annals of Physics, vol. 409, 2019,
167935.

M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, “Topological
quantum computation,” The Bulletin of the London Mathematical
Society, vol. 40, 2002, pp. 40.

	I INTRODUCTION
	II MemComputing vs. Quantum Computing
	II-A Collective computation and non-perturbative approaches
	II-B Long-range order
	II-C Dynamical LRO as an epiphenomenon of memory
	II-D Classical vs. non-quantum
	II-E Phase space vs. Hilbert space
	II-F Topological computing and its physical vacua
	II-G Linear or non-linear machines?
	II-H Deterministic vs. probabilistic computing

	III CONCLUSIONS
	References

