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Abstract—With the rapidly growing deployment of intelligent transportation systems (ITS) and smart traffic applications, vehicle
trajectory data are ubiquitously generated, e.g., from GPS navigation systems, mobile applications, and urban traffic cameras.
Analyzing such fine-grained data would greatly benefit the development of ITS and smart cities, yet pose severe privacy risks due to
the recorded drivers’ visited locations, routes, and driving habits. Recently, some privacy enhancing techniques were proposed to
sanitize such data. However, such schemes have some major limitations – they either lack formal privacy notions to quantify and bound
the privacy risks, or result in very limited utility, e.g., only a sequence of locations or aggregated information can be released (without
retaining the speeds, accelerations and the timestamps of vehicles). In this paper, we propose a novel framework to sanitize the
fine-grained vehicle trajectories with differential privacy (VTDP), which provides rigorous privacy protection against adversaries who
possess arbitrary background knowledge. Our VTDP technique involves three phases of differentially private sampling, which
sequentially generate all the three categories of data (besides a pseudo identity for each vehicle) – position, moving, timestamps. It
also includes a vehicle trajectory interpolation procedure to further improve the output utility with the properties of fine-grained vehicle
trajectory data. We conducted experiments on real vehicle trajectory datasets to validate the performance of our approach.

Index Terms—Differential Privacy, Fine-grained Vehicle Trajectory Data, Utility, Intelligent Transportation Systems.
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1 INTRODUCTION

W Ith the rapidly growing deployment of intelligent
transportation systems (ITS) and smart traffic appli-

cations, vehicle trajectory data are ubiquitously generated
from GPS navigation systems, mobile applications (e.g.,
Uber), urban traffic cameras, roadside unit and connected
vehicles to record temporal pattern of locations, speeds and
accelerations for each vehicle in a fine-grained manner [1].
Such fine-grained time series data can be collected and
analyzed to significantly promote the development of in-
telligent transportation systems, urban traffic optimization
(e.g., optimizing the mobility of urban traffic, and learning
the signalized phases of traffic lights [45]) and smart cities.

However, directly releasing or sharing such datasets for
analyses would pose severe privacy concerns to vehicles
and their drivers [5], [40]. Specifically, sequences of loca-
tions can reveal a driver’s frequently visited positions (e.g.,
residence, hospital) and preferred routes. Other attributes
(i.e., speed and acceleration) can reveal his/her driving
habits. Although vehicle/driver identities (i.e., VIN num-
ber and driver license numbers) have been replaced with
pseudo-IDs in such datasets, privacy risks have not been
addressed as re-identification attacks can still be applied
to the dataset with certain background knowledge. For
instance, if an adversary knows that a driver has visited
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some locations at specific times, even a small part of known
traces can make the individual’s entire data vulnerable to
re-identification. After re-identification, it will be readily
to track the driver/vehicle over any time period, learning
all visited locations (e.g., hospital, gas station, office and
residence) as well as his/her driving habits.

For this reason, in the past decade, privacy concerns in
some similar datasets have attracted significant interests [5],
[7], [10], [27], [39]. The existing techniques can be classified
into two different categories: (1) data sanitization techniques
[7], [27], [39], and (2) virtual trip lines (VTLs) [4], [5]. In
the former category, each of the data sanitization tech-
niques defines a privacy notion and proposes an algorithm
to anonymize individuals or obfuscate the location traces
while satisfying the defined privacy notion (e.g., general-
ization, suppression, or differential privacy [7], [27], [39]).
However, most of such privacy preserving techniques can
only generate either spatially aggregated data (e.g., traffic
statistics [8], [38]) or a sequence of locations (by omitting the
vehicle moving attributes, e.g., speed and acceleration, and even
the timestamps) [7], [27], [39]. Thus, the output utility would
be constrained, and the privately released data (without
indicators for traffic flow) may not function many urban
traffic analyses for developing smart cities, which request
the fine-grained data disclosure with moving/traffic infor-
mation and timestamps [1], [16].

In the latter category, Hoh et al. [4] proposed the idea
of virtual trip lines (VTLs) for protecting privacy, which
are geographic markers that indicate where vehicles should
provide location updates in their trajectories (which are
only a small subset of the trajectories around the signalized
traffic intersections in general). Ban and Gruteser [5] further
showed that VTLs can be utilized to regulate location and
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speed reports, such that the data needs for intersection
modeling (e.g., signal performance measurement) can be
satisfied while simultaneously protecting privacy. However,
the VTLs have the following limitations. First, the privacy
risks in the output data cannot be formally quantified and
bounded (e.g., via a privacy notion). Second, the output data
are collected based on specific areas, and cannot span over
the entire vehicle trajectories. Thus, the utility of the output
data might be limited to only a few applications.

In summary, we argue that most of the existing work ei-
ther do not rely on a formal privacy notion (e.g., VTLs based
techniques [4], [5]), or result in very limited utility (e.g., not
fine-grained, without moving attributes and timestamps).
To address all the above limitations, we propose a novel
privacy preserving technique to sanitize fine-grained vehicle
trajectories (all the attributes) with differential privacy [12],
[31], which provides rigorous privacy guarantee in datasets
against arbitrary background knowledge. It ensures that
adding or removing all complete trajectory of each vehicle
(all the attributes) does not result in significant privacy risks.

1.1 Contributions

Our differentially private scheme randomly samples the
output data without aggregation while satisfying the de-
fined rigorous privacy notion. Therefore, the major contri-
butions of this paper are summarized as follows.

• To the best of our knowledge, this is the first work
that sanitizes fine-grained vehicle trajectory data un-
der differential privacy guarantee to generate vehi-
cle pseudo IDs, coordinates, speeds, accelerations, and
timestamps. We note that our technique can output
one record-per-0.1 second fine-grained trajectories for
vehicles, the existing work on trajectory sanitization
[7], [27], [39] or privacy preserving traffic flows [24],
[33] mainly consider incomplete or coarse-grained
data., e.g., counts and occupancy times measured by
the installed loop detectors on highways.

• We propose a novel sanitization framework (namely,
VTDP) that includes three phases to sample all the
attributes in sequence with differential privacy. Our
framework also interpolates data to further improve
the output utility by any untrusted data recipient.

• Our VTDP framework is proposed based on sam-
pling mechanisms, which satisfy non-interactive dif-
ferential privacy [6], [18], [19], [25], [28]. Then, the
non-aggregated output data (from non-interactive
mechanisms) can be utilized for any utility-driven
vehicle trajectory analysis such as traffic light sig-
nal phase learning [9] and queue length estimation
[17]. Furthermore, we propose a novel multi-phase
sampling scheme which can efficiently compute the
output trajectories from our fine-grained data, which
ensuring both privacy and utility (see Example 1).

• We conduct experiments on real world vehicle tra-
jectory datasets [21] (e.g., the NGSIM data 1) and
validate the effectiveness of our scheme.

1. https://data.transportation.gov/api/views/8ect-6jqj

The remainder of this paper is organized as follows.
Section 2 presents some preliminaries for our scheme. Sec-
tion 3-5 illustrate the three phases of our differentially
private algorithm, and give the privacy analysis. Section
6 discusses the data interpolation for boosted utility and
the composition of differential privacy. We demonstrate the
experimental results in Section 7, discuss the related work
in Section 8, and conclude the paper in Section 9.

2 PRELIMINARIES

2.1 Fine-grained Vehicle Trajectory Data

TABLE 1
Fine-grained vehicle trajectory data

V-ID Position Moving Time
` x y v a d t

10 1 -72.2 1181.4 0 0 1 0.8
10 1 -73.38 1181.3 0 0 1 0.9
10 1 -75.54 1181.2 0 0 1 1.0

1001 2 4.1 163.7 18.4 1.2 1 57.8
1001 2 6.3 163.7 21.6 1.4 1 57.9
1001 2 9.9 164.7 15.1 -2.3 1 58.1
1005 1 -5.1 130.3 22.2 -1.9 1 60.2

. . . . . . . . . . . . . . . . . . . . .

Table 1 presents an example of the fine-grained vehicle
trajectory data, e.g., the NGSIM data collected from traffic
cameras.1 Such datasets include vehicle IDs (pseudo identi-
ties), lane ID `, lateral/longitudinal coordinates of a position
(x, y), speed v, acceleration a, day d, and time t, which
belong to four different categories (V-ID, position, moving
and time). Specifically, position consists of “lane” `, “later-
al/longitudinal coordinates” x and y where the coordinates
x and y can uniquely determine its lane ` (thus we skip
the lane in this paper). Moreover, we integrate “speed”
(v) and “acceleration” (a) as the moving attributes, and the
time includes “day” (d) and “time” (t). It is worth noting
that all the position coordinates, speeds and accelerations
are real numbers while the timestamps are discrete (e.g.,
with interval 0.1 second). To improve the output utility, all
the position coordinates, speeds and accelerations can be
approximated to discrete values (see Section 7.1).

Definition 2.1 (Vehicle Trajectory Data). A collection of
vehicles’ fine-grained trajectories, each of which includes a
pseudo-ID Vr denoting a vehicle, lane ID, coordinate (x, y),
and moving speed v and acceleration a in day d at time t.

Vehicle trajectories can be formulated as above. In intel-
ligent transportation systems (ITS), both vehicle speed and
acceleration are considered as a part of vehicle trajectory
data [1], [4], [5], [20]. Thus, we define “vehicle trajectory
data” to differentiate it from the definition of “trajecto-
ries” in the existing trajectory sanitization works (related
to location-based services) [7], [27], [39].

2.2 Privacy Notion
Before giving the definition of privacy notion, we first define
vehicle trajectory in the dataset.

Definition 2.2. (VEHICLE TRAJECTORY) Given a vehicle tra-
jectory dataset D of n vehicles V1, . . . , Vn, vehicle trajectory
Θr, r ∈ [1, n] is defined as all the tuples in D w.r.t. vehicle Vr .
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Fig. 1. Data sanitization framework for VTDP (after preprocessing)

With the definition of vehicle trajectory, we consider two
datasets D and D′ as neighboring inputs if they differ in
one vehicle trajectory Θr , which is the complete traveling
data corresponds to any vehicle Vr . Thus, our differential
privacy definition [7], [21], [25] would provide the guarantee
that adding or removing any vehicle trajectory does not result
in significant risk to the privacy of dataset. Although two
neighboring inputs D and D′ differ in only one vehicle
trajectory, the possible sets of outputs for applying a ran-
domization algorithm A to D and D′ might be different
since the extra vehicle trajectory Θr may generate items in
the output that cannot be derived from D or D′ withA (e.g.,
the pseudo-ID of vehicle Vr , an extreme speed, or a unique
timestamp in Θr). In this case, a relaxed differential privacy
[15], [18] notion can be defined:

Definition 2.3 ((ε, δ)-differential privacy). A randomization
algorithm [23] A satisfies (ε, δ)-differential privacy if for
all neighboring inputs D and D′ and any set of possible
outputs S, we have Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ
and Pr[A(D′) ∈ S] ≤ eεPr[A(D) ∈ S] + δ.

2.3 Sanitization Framework

We now present the framework for our vehicle trajectory
data sanitization with differential privacy (VTDP). The
overview of the framework is shown in Figure 1.

Multi-phase Sampling. Sampling the dataset is a way
to achieve differential privacy. Accordingly, we propose
a novel multi-phase sampling mechanism that randomly
generates true values from the original input in three phases.
Notice that, multi-phase sampling could improve the output
utility in two folds: (1) generating complete attributes in the
output (identical to the input) which can be used for any
analysis, and (2) more tuples can be retained while satis-
fying the same differential privacy guarantee (as demon-
strated in Example 1 and Figure 2).

• Phase I: Sampling the combinations of V-ID 2 and
Position (Vr , Pi) from the input data D with the
specified output count for each position. The optimal
output counts of different positions will be derived
(maximizing the utility while satisfying the constraints
of differential privacy guarantee for phase I) to sample
the V-IDs for each distinct position. Then, the output
schema in phase I (denoted as O1) is “V-ID, Position,
Count”. The details are given in Section 3.

2. V-ID refers to vehicle pseudo identity in this paper.

• Phase II: Sampling the combinations of V-ID, Posi-
tion and Moving (Vr , Pi, Mj) from the original input
data D with the phase I output O1. Then, the output
schema in phase II (denoted asO2) is “V-ID, Position,
Moving, Count”. The details are given in Section 4.

• Phase III: Sampling the original tuples (especially
the timestamps) from the original input data D with
the phase II output O2. Then, the output schema in
phase III (denoted as O3) is “V-ID, Position, Moving,
Timestamp”. The details are given in Section 5.

Note that swapping the order of the three phases can also
return a private output dataset but may result in reduced
utility in vehicle trajectory data sanitization (determined by
the characteristics of the attributes). For instance, if phase I
samples V-IDs for timestamps, phase II samples positions
based on the timestamps, and finally phase III samples
moving values, the retained number of tuples would be
less since many timestamps are associated with only a few
vehicles during night time.

The following example based on Figure 2 further demon-
strates the need for exerting the multi-phase sampling in
scenarios when the dataset is fine-grained and diversified.

Example 1. Figure 2 shows an excerpt of our vehicle trajectory
dataset which goes under two different sampling mechanisms with
the goal of achieving differential privacy. In the first mechanism,
each record is independently sampled (all attributes together). As
we use multinomial sampling in our scheme, all the records are
going to be suppressed with a high probability (only those that
have identical copies for all the attributes can be possibly retained).

In the second mechanism, by breaking down the dataset into
three sets of attributes (corresponding to three phases of sampling),
the number of copies for each unique attribute significantly in-
creases, e.g., as illustrated in the figure, the coordinates in four
records (−72.2, 1181.4), (−73.38, 1181.3), (−75.54, 1181.2),
(−76.5, 1181.2) are very close (which can be approximated as the
same position, as discussed in Section 7.1; close coordinates that
are approximated as the same position are marked with the same
color). This enhances the utility of the scheme through increasing
the chance of retaining individual records. Accordingly, vehicle
10 can be picked with probability of 0.75 in every single sampling
as it includes the same location (with very close coordinates) for
three times and vehicle 1001 also includes it.

Subsequent phases of sampling are then applied to estimate the
values for the remaining attributes in a utility preserving manner.

Note that, the multi-phase sampling is expected to ran-
domly generate a subset of the original dataset, in which
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Fig. 2. An example of sampling fine-grained vehicle trajectory data (one-phase vs multi-phase).

each of the phases satisfies differential privacy (also detailed
in the upcoming sections).

Boosting Utility. Our sanitization framework includes the
following components to improve the output utility.

• Multi-phase sampling improves the utility (as de-
scribed in Example 1).

• Multinomial sampling in phase I and II generates
counts by preserving their original distribution (e.g.,
the distribution of vehicles visiting the same posi-
tion, the distribution of moving values at the same
position) in the output (see Section 3 and 4).

• Utility is maximized in phase I for multinomial
sampling with differential privacy (see Section 3).

• Trajectory interpolation. Since each fine-grained tra-
jectory posed by one vehicle has an equal-length
interval between consecutive timestamps (e.g., 0.1
second), if any vehicle has sampled tuples in the out-
put O3, its complete output vehicle trajectory (at all the
times given in the input data) can be approximately
interpolated with the properties of vehicle trajectories
(i.e., the formulas between speed, acceleration and
times). This further improves the output utility, and
can be conducted by any untrusted data recipient
(without affect the privacy guarantee). The details
are discussed in Section 6.

3 PHASE I: SAMPLING (V-ID, POSITION)
VTDP in phase I, as shown in Figure 2, exerts sampling
over the pair of vehicle IDs and their visited positions in
the dataset. To preserve the distribution of vehicle IDs for
each visited position, multinomial sampling is employed in
phase I (as illustrated in Section 3.1). Next, as detailed in
Section 3.2, we show that this notion of randomization can
guarantee differential privacy with parameters ε and δ.

On the other hand, to boost the utility of the output,
phase I in VTDP formulates a utility maximizing problem

in which the optimal counts of specific positions emerge in
the output, will be computed under the differential privacy
constraints. Finally, we also ensure that no privacy violation
from the optimization procedure occurs (see the discussion
at the end of Section 3.3). Algorithm 1 presents the key steps
for sampling phase I (denoted as A1), and Table 2 presents
some frequently used notations in A1.

TABLE 2
Frequently used notations in phase I

Vr the rth vehicle ID, r ∈ [1, n]
Ω the set of distinct positions
Φ the set of distinct moving values
Ψ the set of distinct timestampes
Pi ∈ Ω the ith position, ∀i ∈ [1, |Ω|]
Mj ∈ Φ the jth moving value, j ∈ [1, |Φ|]
Tk ∈ Ψ the kth timestamp, k ∈ [1, |Ψ|]
D,O1 input data and output of phase I
|D|, |O1| the size of D and O1

ci count of position Pi in the input
xi count of position Pi in the output
cri count of pair of (Vr, Pi)

3.1 Multinomial Sampling

Given any output count xi for position Pi, multinomial
sampling runs xi independent trials to randomly pick V-IDs
for Pi. Specifically, in every trial, a pair of V-ID and position
(Vr, Pi) can be generated, and the probability for generating
(Vr, Pi) is cri

ci
where the total count of Pi is referred to

ci =
∑n
r=1 c

r
i . After all the xi trials, we denote the count of

Vr in the output as xri where
∑n
r=1 x

r
i = xi. For example, in

the input dataD, V1 has visited P1 for 6 times, V2 has visited
P1 for 2 times, V3 has visited P1 for 5 times, and V4 has
not visited P1. Then, while sampling V-IDs for position P1,
in any trial, the probabilities for sampling V1, V2, V3, V4 are

6
6+2+5+0 ,

2
6+2+5+0 ,

5
6+2+5+0 and 0. With the properties of

multinomial sampling, the portion of the output counts for
different pairs of V-ID and position (e.g., (V1, P1), (V2, P1),
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Data: input D, privacy budgets ε, δ
Result: output O1 as (V-ID, Position, Count)

1 for vehicle r ← 1 to n do
2 for position i← 1 to |Ω| do
3 retrieve count cri from D
4 end
5 end
6 for r ← 1 to n do

// DP for the Sampling
7 derive constraints with the privacy budgets (ε, δ) for variables

∀i ∈ [1, |Ω|], xi (the output count of all the vehicles for position
Pi)

8 end
9 compute the optimal counts ∀i ∈ [1, |Ω|], x∗i (while satisfying the

constraints in Line 6-8)
10 for position i← 1 to |Ω| do
11 randomly sample x∗i V-IDs for position Pi using multinomial

distribution: x∗i independent trials (randomly picking a V-ID in
each trial), where the probability of picking Vr in each trial is

cri∑n
r=1 c

r
i

12 end
// (Vr, Pi) is sampled for xri times

13 return the output O1 as (Vr, Pi, x
r
i )

Algorithm 1: Sampling phase I A1

(V3, P1), and (V4, P1)) lies similar to those in the input data
simply because ∀r ∈ [1, |Ω|], the expectation E(xri ) = xi · c

r
i

ci

is proportional to cri
ci

(as the same xi is applied).

3.2 Differential Privacy Guarantee
To investigate the differential privacy guarantee of multino-
mial sampling, we should explore the set of all possible out-
puts for any given input data D and any of its neighboring
input dataD′ (differing in one vehicle Vr’s vehicle trajectory
Θr). As a result, we have two cases for neighboring inputs
D and D’: D = D′ ∪Θr and D′ = D ∪Θr .

As discussed in Section 2.2, ε-differential privacy may
not be achieved in the sampling since the probabilistic
output O1 may include item from D′ yet cannot be from D
(or vice-versa), e.g., V-ID Vr . Then, the relaxed notion (ε, δ)-
differential privacy will be employed for phase I. Without
loss of generality, we let D = D′ ∪ Θr (the other case
D′ = D∪Θr will be discussed at the end of this subsection).

Now we divide the arbitrary output set S ⊆ Range(A1)
into S+ and S− where Vr ∈ S+ and Vr /∈ S− (note that S+

is formed with all the possible outputs with Vr while S− does not
include Vr). Therefore, we can derive a sufficient condition
for the randomization algorithm A1 and possible output O1

(phase I) to bound Pr[A1(D′)∈S]
Pr[A1(D)∈S] and Pr[A1(D)∈S]

Pr[A1(D′)∈S] (Gotz et
al. [15] also conducted similar study):

Theorem 1. Given any neighboring inputs D and D′, if ∀O1 ∈
S−, inequality Pr[A1(D′)=O1]

Pr[A1(D)=O1] ≤ e
ε holds, then Pr[A1(D′)∈S]

Pr[A1(D)∈S] ≤
eε also holds.

Proof. Since ∀O1 ∈ S+, Pr[A1(D′) = O1] = 0, we have

Pr[A1(D′) ∈ S] =

∫
∀O1∈S+

Pr[A1(D′) = O1]dO1

+

∫
∀O2∈S−

Pr[A1(D′) = O2]dO2

≤eε
∫
∀O2∈S−

Pr[A1(D) = O2]dO2

=eεPr[A1(D) ∈ S−]

≤eεPr[A1(D) ∈ S]

This completes the proof.

Similarly, we can prove that Pr[A1(D) ∈ S] ≤ δ +
eεPr[A1(D′) ∈ S]. This shows that we can ensure differ-
ential privacy by letting ∀O1 in any S− (viz. any output in
Range(A1) without Vr), Pr[A1(D′)=O1]

Pr[A1(D)=O1] ≤ e
ε in multinomial

sampling, detailed as below.

3.2.1 Case (1): ∀O1 ∈ Range(A1) where Vr /∈ O1

Due to Vr /∈ O1, we have Pr[A1(D′) = O1] > 0 and
Pr[A1(D) = O1] > 0 (O1 can be generated from both D and
D′ with multinomial sampling). At this time, we only need
to sample V-IDs for the positions ∀Pi ∈ D′, which is a
subset of D (otherwise, Vr might be included in O1). Since
sampling V-IDs for different positions is independent, we
now examine two situations of all the positions in D′.

1) Position Pi ∈ D′ \ Θr . The probabilities for sampling
any V-ID for Pi from D and D′ are equal (since vehicle
Vr’s trajectory Θr does not include Pi). Thus,

Pr[(A1(D(Pi)) = O1(Pi)]

Pr[(A1(D′(Pi)) = O1(Pi)]
= 1 (1)

where D(Pi) and O1(Pi) denote the position Pi’s share
of the input D and output O1.

2) Position Pi ∈ D′∩ Θr . At this time, sampling V-IDs for
position Pi should ensure that the probability of picking
V-ID Vr (out of all the vehicle IDs in D′ and Vr) with
multinomial sampling is bounded. Since picking V-IDs
for xi times trials is independent using multinomial
distribution, we have following equations:

Pr[A1(D′(Pi)) = O1(Pi)]

Pr[A1(D(Pi)) = O1(Pi)]

=
1

(1− cri
ci

)xi
= (

ci
ci − cri

)xi (2)

Given the output count ∀i ∈ [1, |Ω|], xi for the ith
position Pi, sampling vehicle IDs for each of the distinct
position Pi is independent. For instance, while sampling
for P1, the sampling results can be “(P1, V1, 5), (P1, V2, 3)”
where counts 5 and 3 are random. While sampling for
P2, the sampling results would be “(P2, V1, 2), (P2, V2, 1)”
where counts 2 and 1 are random. Therefore, the privacy
budget can be allocated for each sampling with sequential
composition [29]. As a result, for each of the |Ω| different
multinomial sampling (w.r.t. |Ω| different positions, respec-
tively), the following constraint can be generated:

max
∀Θr∈D

∏
∀Pi∈Θr

(
ci

ci − cri
)xi ≤ eε (3)

3.2.2 Case (2): ∀O1 ∈ Range(A1) where Vr ∈ O1

In this case, the output O1 would include item(s) from D
but not D′, e.g., Vr ∈ Θr . Then, δ is defined to bound such
probability Pr[A1(D) ∈ S] ≤ δ, which means

Pr[A1(D) ∈ S] ≤ δ =⇒ Pr[Vr ∈ A1(D)] ≤ δ (4)
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We now examine the probability Pr[A1(D) ∈ S] while
Pr[A1(D′) ∈ S] equals 0 (output includes Vr) as applying
multinomial sampling to D and D′, respectively.

max
∀Θr∈D

∏
∀Pi∈Θr

[1− (
ci − cri
ci

)xi ] ≤ δ (5)

Per Definition 2.3, while specifying a small number
δ, our algorithm ensures ε-differential privacy with high
probability (1− δ). Thus, we can simply remove the vehicle
trajectories whose data results in a violation of Equation 5.
Then, satisfcation of Equation 3 can ensure (ε, δ)-differential
privacy for our Phase I sampling A1.

Discussion: in case of D′ = D ∪ Θr , adding any vehicle
trajectory Θr to input D to generate D′. Similarly, as long
as the given ∀i ∈ [1, |Ω|], xi satisfy Equation 3 (now ci is
derived from D′ and cri is the count of Pi in Θr), differential
privacy is guaranteed.

3.3 Optimal Differentially Private Sampling

As analyzed in Section 3.2, if the output counts for all the
positions ∀i ∈ [1, |Ω|], xi satisfy inequality 3 (inequality 5 will
be employed in data preprocessing for small δ), then the multi-
nomial sampling to generate the output with schema (V-ID,
Position, Count) would satisfy (ε, δ)-differential privacy.

Theorem 2. Sampling in Algorithm 1 (Line 10-12) is (ε, δ)-
differentially private if and only if inequalities 3 hold for all Θr .

Proof. It is straightforward to prove that the probabilities
that results in Case (2) for all the vehicles and positions
are bounded by δ if inequality 5 holds (by setting δ in
the preprocessing). In addition, as analyzed in Case (1), if
inequality 3 holds for all Θr , per Theorem 1, we have:

e−ε ≤ Pr[A1(D) ∈ S]

Pr[A1(D′) ∈ S]
≤ eε (6)

where S represents any set of possible outputs (without
data from Θr). This completes the proof.

Notice that, in a special case ci = cri (the position in
Θr is unique, and cannot be found in D′), xi should be 0,
otherwise, inequality 3 cannot hold.

Therefore, we should look for the output counts ∀i ∈
[1, |Ω|], xi that satisfy Equation 3. Note that ∀i ∈ [1, |Ω|], xi
should be derived from D (or D′) by subjecting to:

s.t.


∀Θr ∈ D,

∏
∀Pi∈Θr

( ci
ci−cri

)xi ≤ eε

∀Θr ∈ D,
∏
∀Pi∈Θr

[1− (
ci−cri
ci

)xi ] ≤ δ
∀xi ≥ 0 and xi is an integer

(7)

While satisfying differential privacy, ∀i ∈ [1, |Ω|], xi can
have many possible results. We now seek for the optimal
output counts for the differentially private sampling. A
generic way of evaluating the utility is to measure the
difference between the count distribution of all the positions
in the input and output using distance metrics, e.g., `1-norm
or `2-norm. However, the utility optimization based on such
metrics may generate biased results towards the frequently

visited positions (and the diversity of the positions may not
be effectively preserved) [14].

To address such limitation, we define a universal utility
measure (for multiple applications) for all the variables
∀i ∈ [1, |Ω|], xi by following the KL-divergence 3 [18], [22],
which evaluates the entropy-based distance between all the
positions’ distributions in the input data ( c1|D| ,

c2
|D| , . . . ,

c|Ω|
|D| )

and the output data ( x1

|O1| ,
x2

|O1| , . . . ,
x|Ω|
|O1| ) where |D| and

|O1| represent the total number of records in the input and
output |D| =

∑|Ω|
i=1 ci and |O1| =

∑|Ω|
i=1 xi.

DKL =

|Ω|∑
i=1

ci
|D|
[

log(
ci
|D| ·

|O1|+ |Ω|
xi + 1

)
]

(8)

Recall that minimizing the KL-divergence can maximally
preserve the distribution/portion of each position in the
output. Then, with multinomial sampling, the distribution/-
portion of each combination of V-ID and position is expected
to be preserved in the output as well. Since xi may equal to
0 (in case of unique positions), the output counts in the KL-
divergence are captured by approximating xi with a close
value (xi + 1) to avoid zero denominator.

Therefore, we can formulate an optimization problem to
find the optimal multinomial sampling.

min :

|Ω|∑
i=1

ci
|D|

[
log(

ci
|D|
· |O1|+ |Ω|

xi + 1
)
]

s.t.


∀Θr ∈ D,

∏
∀Pi∈Θr

( ci
ci−cri

)xi ≤ eε

∀Θr ∈ D,
∏
∀Pi∈Θr

[1− (
ci−cri
ci

)xi ] ≤ δ
∀xi ≥ 0 and xi is an integer

(9)

We can solve the above nonlinear programming (NLP)
problem using pairwise linear approximation by converting
the objective function to linear (the constraints can be simply
converted to linear constraints) [18].

Differential Privacy for the Optimization. While applying
Algorithm 1 to D and D′ (solving the optimization problem
9) to get two sets of output counts ∀i ∈ [1, |Ω|], x∗i , and
∀i ∈ [1, |Ω|], x∗′i , respectively. In case that D = D′ ∪ Θr ,
∀i ∈ [1, |Ω|], x∗i can ensure (ε, δ)-differential privacy for
multinomial sampling. In case that D′ = D ∪ Θr , ∀i ∈
[1, |Ω|], x∗′i can ensure (ε, δ)-differential privacy. Apart from
such privacy guarantee, we also need to make such two
computed set of counts indistinguishable.

Specifically, we can consider the problem solving process
as a query over the input data D or D′, then the generic
Laplace noise [2] ∆

ε′ can ensure ε′-differential privacy for
the process of solving the problem [18], [19], where ε′ is an
additional privacy budget for this step, and sensitivity ∆ =
max∀D,D′ |x∗i − x∗

′

i | [13], [35]. Due to space limit, we skip

3. Optimizing the utility with KL-divergence can address the count
bias as an entropy-based measure [14]. The optimization can preserve
more distinct positions in the output as well as minimize the deviation
between the distributions of all the positions in the input and output
(ensuring that the data distribution in the output still lies close to that
in the input). Notice that, KL-divergence is also used as the distance
metric in case of similar scenarios. For instance, Acs et al. [3] measure
the distance of the two probability distributions (count distribution in
the input and output histograms).
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the details of such generic mechanism here. In summary, we
have the differential privacy guarantee for Algorithm 1.

Theorem 3. Phase I is (ε+ ε′, δ)-differentially private.

Proof. This can be proven by the sequential composition [29]
of solving the optimal problem and sampling.

4 PHASE II: SAMPLING MOVING

In this section, we present the sampling phase II of our
VTDP framework: randomly generating moving values by
breaking down the counts for different pairs of V-IDs and
positions to the counts for the triplets of V-IDs, positions
and moving values. Furthermore, we study the differential
privacy for phase II. Note that the required notations for
sampling phase II are listed in Table 3.

TABLE 3
Frequently used notations in phase II

x∗i optimal count for Position Pi in phase I
xri sampled count of (Vr, Pi) in phase I
n′ number of vehicles in the output of phase I
γr cardinality of sampled positions in phase I visited by Vr
θi(j) prior probability of sampling Mj for Pi (all vehicles)
θi prior probability vector θi = (θi(1), . . . , θi(|Φ|))
θri (j) posterior probability of sampling Mj for Pi and Vr
θri posterior probability vector θri = (θri (1), . . . , θri (|Φ|))
D1, D2 two datasets extract from the input D
λi(j) count of (Pi,Mj) in D1 (all the sampled vehicles)
xr
′
i count of all the moving for (Vr, Pi) in D2

xri (j)
′ count of (Vr, Pi,Mj) in D2

O2 output of phase II
xri (j) sampled count of (Vr, Pi,Mj) in phase II

4.1 Dirichlet-Multinomial Sampling
Similar to sampling phase I, the pair of visited position and
moving values (i.e., speed and acceleration) for each vehicle
in the trajectory data can be sampled with multinomial
distribution which is expected to preserve the distribution of
moving values associated with each position. More specifi-
cally, in phase II, for each vehicle, each moving data should
be sampled from each of its visited positions (generated in
phase I). Note that any count value for vehicle Vr and for
position Pi is sampled as xri in phase I, then xri moving
values (may include duplicates) will be sampled using an
individual multinomial sampling in phase II.

Given n vehicles in the original input, after phase I, we
denote the number of vehicles in the output as n′ where
n′ ≤ n (since some V-IDs might not be randomly picked).
Denoting the number of unique positions sampled for Vr in
phase I as γr , there are

∑n′

r=1 γ
r independent multinomial

sampling in phase II, each of which is allocated for a unique
pair of vehicle and one of its visited position. While sam-
pling any moving values Mj ∈ Φ at position Pi for vehicle
Vr , xri independent trials will be tossed where the probabil-
ities of possible sampling outcomes in every trial (denoted
as “probability vector” θri = (θri (1), θri (2), . . . , θri (|Φ|))) will
be learned from Dirichlet-Multinomial distribution [47] for
the following reasons.

First, the distribution can integrate observations (drawn
from the moving patterns posed by each vehicle in a par-
ticular position) and prior parameters (drawn from all the

moving patterns at the same position). Therefore, consider-
ing the huge volume of moving patterns existed in the data,
the posterior probability vector θri learned by the Dirichlet
distribution would become significantly more accurate (e.g.,
in vehicle trajectory interpolation and analyses performed
on the sanitized data). Second, sampling moving values
with Dirichlet-Multinomial distribution does not result in
false moving values. Specifically, if Vr has not visited Pi with
moving value Mj , then the probability θri (j) would be 0
(since the corresponding observation is 0).

4.1.1 Probability Vector Learning
Before learning the probability vector, we extract two
datasets from the input D (which can minimize the privacy
bound for phase II, as illustrated in Section 4.2):

1) Prior Data D1: a bipartite graph for every pair of
position and moving (Pi,Mj) and the corresponding
count λi(j) – for deriving the prior distribution θi(j).
The generation of D1 includes two steps: (1) removing
all the tuples inside each of the the unsampled trajecto-
ries (keeping only sampled data for n′ vehicles), and (2)
for every pair of position and moving (Pi,Mj), aggre-
gating all the vehicles and timestamps’ corresponding
tuples to get count di(j). Note that removing unsam-
pled vehicles’ data could ensure a tight privacy bound
(e.g., ε = 0) for phase II (as analyzed in Lemma 1).

2) Observation Data D2: for each vehicle Vr , extracting its
bipartite graph for each pair of its position and moving
(Pi,Mj). Specifically, for each vehicle Vr , we extract
sampled positions of Vr in phase I (γr distinct positions)
and the corresponding tuples in D (tuples including
unsampled positions will be removed), and aggregate
all the timestamps for the corresponding tuples for
(Vr, Pi,Mj) to get xri (j)

′.
Then, ∀j, λi(j) and θi(j) can be derived from data

D1 while ∀j, θri (j) can be derived from data D2. Per the
Bayes rule, we can learn the posterior distribution for the
probability vector: for each Vehicle Vr and its position Pi.

Pr(θri |M1, . . . ,M|Φ|) ∝ P (M1, . . . ,M|Φ||θri )Pr(θri )

∝
Γ(
∑|φ|
j=1 λi(j))∏|φ|

j=1 Γ(λi(j))

|φ|∏
j=1

(θri (j))
λi(j)−1 n!

xr1(1)! · · ·xri (|φ|)!

φ∏
j=1

θ
xri (j)′

i (j)

∝
|φ|∏
j=1

θri (j)
λi(j)−1+xri (j)′

where constant
∏|φ|
j=1 Γ(λi(j))

Γ(
∑|φ|
j=1 λi(j))

= Γ(λi(1))Γ(λi(2))···Γ(λi(|φ|))
Γ(λi(1)+λi(2)+···+λi(|φ|))

and Gamma function Γ(λi(j)) = (λi(j) − 1)!. Notice that,
the same prior probability vector θri is adopted for position
Pi for all the vehicles, thus θi and θri are interchangeable.
In addition, for Vr , the prior and posterior probabilities
for most of moving values M1, . . . ,M|Φ| are 0 in practice.
For simplicity of notations, we still use M1, . . . ,M|Φ| to
represent the moving values.

4.1.2 Sampling Algorithm (Phase II)
We now present our sampling algorithm for phase II. First,
the algorithm extracts D1 and D2 based on the output of
phase I (O1) and the original input D. Recall that,
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1) D1 is a bipartite graph with aggregated counts (in D)
for every pair of (Pi,Mj) where the data of unsampled
vehicles (∀Vr ∈ D \ D2) are not aggregated. Note
that D2 is the dataset including all the original tuples
corresponding to the sampled output after phase I.

2) D2 includes n′ bipartite graphs (for n′ sampled vehicles
in O1). Each vehicle’s bipartite graph is extracted as its
aggregated counts (in D) for every pair of (Pi,Mj) in
O1 (the output of phase I).

Second, the algorithm derives the prior probability vec-
tor of Dirichlet distribution and likelihood using D1 and
D2. Thus, the posterior probability vector can be obtained
using Bayes rule (using the expectation of the Dirichlet
distribution [32]).

Finally, for each vehicle Vr and each of its visited posi-
tion (e.g., Pi) in O1, we apply multinomial sampling with
its posterior probability vector and xri trials. Algorithm 2
presents the details of sampling phase II.

Data: input D, phase I output O1

Result: output O2 as (V-ID, Position, Moving, Count)
1 extract D1 and D2 from D (using the Vehicles in O1).
2 for j ← 1 to n do
3 prior P (θi(j))← E[θi(j)|λi(j)] where

E[θi(j)|λi(j)][θij ] =
λi(j)∑|Φ|
j=1

λi(j)

4 likelihood← xr
′
i (j)

xr
′
i

5 end
6 Posterior (θri (j))← prior (θi(j)) × likelihood xr

′
i (j)/(xr

′
i )

7 foreach Vr ∈ O1 do
8 for i← 1 to n do
9 randomly sample xri times moving values for vehicle Vr and

position Pi using multinomial distribution: the probability
of picking Mj in each trial is the posterior probability of
θri (j)

10 end
11 end
12 return the output O2 as (Vr, Pi,Mj , x

r
i (j))

Algorithm 2: Sampling phase II A2

4.2 Privacy Bound for Phase II

We now investigate the privacy bound for phase II, which
samples xri moving values for every pair of V-ID and
position (Vr, Pi) where its count xri is derived in phase I.

Lemma 1. Phase II does not leak any additional information by
sampling with the output of Phase I.

Proof. We explore the privacy leakage by integrating phase I
and II. Again, for two neighboring inputsD andD′, w.l.o.g.,
we let D = D′∪Θr . In phase I, the probability of generating
Case (2) (per Definition 2.3) is bounded by δ, which can
be a negligible probability. Then, we only need to discuss
Case (1) in phase I: ∀O1 ∈ Range(A1) where Vr /∈ O1, and
investigate the privacy bound in phase II.

After phase I, the outputs (without Vr) derived from
inputs D and D′ are (ε + ε′)-indistinguishable. Denoting the
output for phase II as O2, we first explore the multiplica-
tive difference between probabilities Pr[A2(D) = O2] and
Pr[A2(D′) = O2]. Specifically, as illustrated in Section 4.1,
both D1 and D2 are extracted from D (or D′ in the neigh-
boring input case) in phase II (for learning the probability
vector of multinomial sampling). In both D1 and D2, V-
IDs is the baseline for extracting the tuples, whereas in the

output of phase I: O1, the position is the baseline. Since O1

is indistinguishable for both inputs D and D′ (both without
Vr), each of two datasets D1 and D2 makes no difference
in case of both D and D′ (though D differs from D′ in any
vehicle trajectory Θr in phase I and II). Then, the probability
vector would be indistinguishable for D and D′, and thus
we have:

∀O2 ∈ Range(A2),
P r[A2(D) = O2]

Pr[A2(D′) = O2]
= 1 (10)

Note that even if a new vehicle trajectory Θ′r is added to
D at the beginning of phase II to form D′, data in Θ′r will
be suppressed while generating D1 and D2 for sampling
(due to O1). In this case, Equation 10 still holds. Similar to
Theorem 1, given any possible output set S in phase II, we
have Pr[A2(D′)∈S]

Pr[A2(D)∈S] = 1.
Therefore, Phase II ensures 0-indistinguishability to ran-

domly generate the output O2.

5 PHASE III: SAMPLING TIMESTAMPS

In this section, we discuss how to sample the timestamps
based on phase II output O2, which includes the out-
put count xri (j) for each pairs of position and moving
(Pi,Mj) for Vr . Then, the timestamps sampling for the
triplet (Vr, Pi,Mj) in phase III will be based on count xri (j).
Indeed, phase III is not the same as the previous two phases,
due to the uniqueness of timestamps. Specifically, for each
timestamp, there exists exactly only one vehicle at the same
position (which has been validated in our experimental
data). On the contrary, one vehicle may visit the same
location every day or stay at the one position over a period,
thus the triplet of (Vr, Pi,Mj) may have multiple unique
timestamps Tk ∈ {T1, T2, ...T|Ψ|} in D (denoting such count
as cri (j)). We then present our algorithm A3 by considering
the above facts. Similar to phase IIA2, phase III also extracts
a dataset D3 from D based on O2:

• For all vehicles ∀Vr ∈ O2, extract trajectories Θr from
D to generate D3.

For each triplet (Vr, Pi,Mj), the algorithm in phase
III randomly picks xri (j) timestamps out of cri (j) unique
timestamps from D3 (note that cri (j) are identical in D and
D3). However, since xri (j) was randomly generated with
multinomial sampling in phase I and II, xri (j) may exceed
cri (j), though the probability of generating such extreme
case is fairly low. Thus, we have to handle such extreme
case in our algorithm A3 in the following two situations.

• If xri (j) ≤ cri (j), the algorithm simply picks xri (j)
timestamps out of cri (j) unique timestamps from D3.

• If xri (j) > cri (j). The algorithm first picks all cri (j)
timestamps out of cri (j) unique timestamps from D,
and then randomly picks xri (j) − cri (j) timestamps
from other tuples which include position Pi and
moving Mj (other vehicles). Note that the associated
V-IDs for the latter picked timestamps will not be
Vr . This ensures that all the tuples randomly selected
from D are true tuples.
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Data: input D, phase II output O2

Result: output O3 as (V-ID, Position, Moving, Timestamp)
1 extract D3 from D (using the Vehicles in O2).
2 foreach Vr ∈ O2 do
3 for i← 1 to n do
4 if xri (j) ≤ cri (j) then
5 randomly pick xri (j) unique timestamps from cri (j) in

D3
6 else
7 randomly pick xri (j) unique timestamps from cri (j) in

D3

8 randomly picks xri (j)− cri (j) timestamps from other
tuples in D3 which include position Pi and moving
Mj (other vehicles)

9 end
10 end
11 end
12 return the output O3 as (Vr, Pi,Mj , Tk)

Algorithm 3: Sampling phase III A3

5.1 Privacy Bound for Phase III
Similar to phase II, phase III also ensures indistinguishabil-
ity for any neighboring inputs D and D′.

Lemma 2. Phase III does not leak any additional information by
sampling with the output of Phase II.

Proof. Given two inputs data D and D′ where D = D′ ∪Θr

(or D′ = D ∪ Θr), similar to D1 and D2 in phase II,
the datasets (denoted as D3) extracted from D and D′ for
sampling are indistinguishable, since O2 is indistinguish-
able for D and D′ after phase I and II, and data in Θr

is suppressed in D3 in any case. Then, the probabilities of
randomly picking any timestamp (tuple) from the D3 of D
and D′, and the count xri (j) are indistinguishable for any
neighboring inputs D and D′. Thus, we have:

∀O3 ∈ Range(A3),
P r[A3(D) = O3]

Pr[A3(D′) = O3]
= 1 (11)

Similar to Theorem 1 and Lemma 1, given any possible
output set S in phase III, we have Pr[A3(D′)∈S]

Pr[A3(D)∈S] = 1.
Therefore, phase III also ensures 0-indistinguishability to
randomly generate the output O3.

6 DISCUSSIONS

6.1 Vehicle Trajectory Interpolation
To further improve the output utility of our three-phase
sampling, we propose a vehicle trajectory interpolation pro-
cedure in the VTDP framework to approximately estimate the
missing values at different times.

As shown in Figure 1, the vehicle trajectory interpo-
lation can be conducted by the untrusted data recipients
(without affecting the privacy guarantee). Specifically, the
interpolation is executed based on every two consecutive
sampled tuples in trajectory θr (for the missing tuples
between them). For instance, at time T1 and T6, two tuples
are sampled in θr are sampled: “`, (x1, y1), v1, a1, T1” and
“`′, (x6, y6), v6, a6, T6”. Then, all the tuples at T2, T3, T4, T5

can be interpolated using the two tuples at T1 and T6 (all the
timestamps have equal intervals) with the following rules.

• The lane number of the first half of the tuples be-
tween T1 and T6 (viz. T2 and T3 in this example)
is assigned as ` (same as T1) while the second half
(viz. T4 and T5) is assigned as `′ (same as T6). If

there are odd number of timestamps between two
consecutive sampled tuples, the timestamp in the
middle is considered as the first half.

• The position (x, y) for timestamps T2, T3, T4, T5 will
be interpolated with equal distance between any two
adjacent timestamps: (x2, y2) = (x1 + x6−x1

6−1 , y1 +
y6−y1

6−1 ), (x3, y3) = (x1 + 2(x6−x1)
6−1 , y1 + 2(y6−y1)

6−1 ), . . . ,
(x5, y5) = (x1 + 4(x6−x1)

6−1 , y1 + 4(y6−y1)
6−1 ).

• The interpolation for acceleration a2, . . . , a5 follows
the same way as position.

• Speed v for timestamps T2, T3, T4, T5 will be interpo-
lated with the formula between speed, acceleration
and moving time. Then, v2 = v1 + a1(T2 − T1),
v3 = v2 + a2(T3 − T2), . . . , v5 = v2 + a2(T3 − T2).

It is worth noting that the above examples for vehicle
trajectory interpolation are illustrated in case of driving in
the same lane. If vehicles make turns or switch lanes, the
missing values in the output data can also be interpolated
in a similar manner.

Privacy Analysis. For any neighboring inputs D and D′,
since the probabilities of generating any O3 from D and
D′ are bounded, adversaries (e.g., untrusted data recipi-
ent) cannot identify whether any vehicle trajectory Θr is
included in the input or not – indistinguishability. Since such
trajectory interpolation is a deterministic procedure (after
receiving the output O3) without any additional informa-
tion, the adversaries cannot distinguish the interpolated
outputs from D and D′ either. Thus, the vehicle trajectory
interpolation does not affect the differential privacy guar-
antee of our VTDP framework (and it can be performed by
any untrusted data recipient).

6.2 Composition of Differential Privacy
Overall, the differential privacy for all the four major com-
ponents of VTDP (computing optimal counts, sampling
phase I, II and III) follows sequential composition [29]. We
now discuss the composition and the privacy bounds step
by step in our framework.

1) Computing the optimal counts (for sampling phase I):
this step satisfies ε′-differential privacy.

2) Multinomial sampling to generate O1 (sampling phase
I). Sampling V-IDs for each position is independent
but associates multiple positions with each V-ID. Thus,
sampling phase I for each position follows sequential
composition (as discussed in Section 3.2). This step
satisfies (ε, δ)-differential privacy.

3) Dirichlet-Multinomial sampling to generate O2 (sam-
pling phase II). Sampling moving values for every pair
of position and vehicle ID is independent (generating
disjoint outputs), thus sampling phase II for every pair
of position and vehicle ID follows parallel composition
of differential privacy. This step has also been proven
to satisfy 0-differential privacy (per Lemma 1).

4) Sampling timestamps to generate O3 (sampling phase
III). Similar to phase II, sampling timestamps for every
pair of position and moving in θr also follows paral-
lel composition of differential privacy. This step has
also been proven to satisfy 0-differential privacy (per
Lemma 2).
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Theorem 4. VTDP satisfies (ε+ ε′, δ)-differential privacy.

Proof. This can be proven by the sequential composition [29]
of three sampling phases.

6.3 Protection against Re-identification
We now discuss the re-identification attack to the sanitized
dataset of VTDP. Assume that an adversary possesses arbi-
trary background knowledge on a specific vehicle Vr , e.g.,
knowing a large portion of places that the vehicle/driver
has visited. While providing the differential privacy guaran-
tee by VTDP, the probabilities of generating any output from
D (with such vehicle’s data) and D′ (without such vehi-
cle’s data) are indistinguishable. Thus, the adversary cannot
identify if such vehicle is included in the dataset from the
output (since such output can also be obtained even if all
the known places are not included in the input). At this
time, knowing a large portion of places the vehicle/driver
has visited cannot facilitate the re-identification.

6.4 Application to Sanitizing Other Datasets
Recall that phase I in our VTDP samples a probabilistic
output with the attributes V-ID, position and count. Then,
phase II samples the moving values to be associated with the
V-ID and position. Finally, phase III samples the timestamps
to be associated with the V-ID, position and moving values.
The sanitization is not dependent on the number of fixed
attributes. In other words, if more attributes are attached
with the vehicle trajectories (e.g., distance to the traffic
signal [45]), an output can be generated with the same
number of tuples as the output of phase I. Following the
above property of VTDP, we can apply our VTDP (via multi-
phase sampling) to sanitize other datasets, such as generic
microdata [28] and network data [34].

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup
Dataset. We conduct experiments on the NGSIM dataset
[1], which is a real world fine-grained vehicle trajectory
data with “lane, coordinates (x, y), speed, acceleration, day,
time”. The experimental dataset includes 1,809 distinct ve-
hicles, each of them consists of 479,763 tuples in an arterial
road (Peachtree Street in Atlanta, GA). The time interval
for collecting data from each vehicle is 0.1 second. Table 4
presents the characteristics of our experimental dataset.

TABLE 4
Characteristics of the dataset

Distinct # Min Max
Vehicles ID 1,809 n/a n/a
Lane ID ` 7 (in multiple roads) n/a n/a
x (lateral) 66,336 -325.65 160.90

y (longitudinal) 372,003 0.0 2094.07
speed v 5,250 0.0 55.82

Acceleration a 2,451 -12.27 12.27
Day d 3 1 3
Time t 10,326 0.3 1,032.8

Data Approximation. Due to the fine-grained property of
vehicle trajectories, two different values of any attribute

might be extremely close, and can be approximated as
the same value. For instance, since the distance between
two coordinates (-72.2,1181.4) and (-73.38,1181.3) is very
small, they can be approximated as the same location.
Furthermore, moving values (20ft/s, 1.2ft/s2) and (22ft/s,
1.1ft/s2) may represent very similar moving attributes on
the road. Therefore, we preprocess such fine-grained dataset
by approximating close values in the raw data.

• First, all the positions (different combinations of `, x,
and y) can be partitioned with the equal size blocks
(e.g., using the average length of vehicles), each of
which can be approximated as a distinct position.
All the coordinates falling into each block share the
same position (e.g., the centroid coordinates). Then,
we denote such positions as P1, P2, . . . , P|Ω| ∈ Ω
where Ω represents the universe of positions and |Ω|
represents its cardinality.

• Second, we can also cluster all the moving values (dif-
ferent combinations of v and a) to approximate the
moving status of vehicles (e.g., identify K different
groups of moving status using K-means clustering
[46]). All the combinations of speed and acceler-
ation in the same cluster share the same moving
data (e.g., the mean of the cluster). Then, all the
distinct approximated moving values are denoted
as M1,M2, . . . ,M|Φ| ∈ Φ where Φ represents the
universe of the approximated combination of speed
and acceleration, and |Φ| denotes its cardinality. Note
that K can tune the granularity of the data in the
approximation.

• Finally, the day and time are also fine-grained with
equal length interval (e.g., 0.1 sec in the NGSIM
data), then we consider them as the index of
each vehicle’s trajectories, and all the unique com-
binations of day and timestamp are denoted as
T1, T2, . . . , T|Ψ| ∈ Ψ where Ψ is the universe of day
and time and |Ψ| denotes its cardinality.

As a result, some representative positions are plotted
in Figure 3(a) which demonstrates the traffic flow of the
arterial road (note that many vehicles make turns at the
intersections). For such fine-grained data, we approximate
close values using clusters (described above). The coordi-
nates of the positions are approximated by the equal size
blocks (16.6ft×16.6ft) in coordinate axes. Since every pair
of coordinates (x, y) can uniquely identify a position and
the corresponding lane, we skip the lane in the plots. Fur-
thermore, all the combinations of speed and acceleration are
plotted in Figure 3(b) and 3(c) (clustered by K-Means where
K=50 and 100 in the preprocessing while approximating
each cluster as a distinct moving value) where the data
points inside each cluster are marked with the same color.

Parameters. We evaluate the utility of our VTDP technique
with different privacy bounds for (ε + ε′, δ)-differential
privacy. We set ε ∈ [0.05, 0.65] and δ = 0.01. In addi-
tion, since ε′-differential privacy for computation of optimal
counts in phase I follows generic Laplace mechanism [13],
we do not evaluate the utility on different ε′. Instead, we
set ε′ = ln(2). We also test the output utility on different
number of vehicles, and different K used in approximat-
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(a) Coordinates of Positions (b) 50 Clusters for Speed and Acceleration (c) 100 Clusters for Speed and Acceleration

Fig. 3. Positions (x ft and y ft), speed (v ft/s) and acceleration (a ft/s2) in the experimental data (Peachtree Street in Atlanta, GA)
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Fig. 4. Output utility vs. different parameters

ing speed and acceleration. Then, we set vehicle number
n ∈ [100, 200, 300, . . . , 1800] and K ∈ [10, 15, . . . , 95, 100].

Platform. All the programs were implemented in Python
3.6.4 and tested on an HP PC with Inter Core i7-7700 CPU
3.60GHz and 32G RAM running Microsoft Windows 10 OS.

7.2 Utility Evaluation

We first evaluate the output utility using the KL-divergence
measure and the total output counts (after interpolation).
Notice that, in our VTDP framework, phase I determines
the V-IDs and the total output count for each vehicle in
O1, O2, O3 while phase II and III sample other attributes
by expanding the full tuples based on the output of phase
I and the data distribution in the input. Therefore, the
minimized KL-divergence in phase I (the objective function
of the optimization problem) can be an effective measure for
the overall output utility.

Figure 4(a) shows the KL-divergence results on varying
privacy bound ε (given δ and ε′) in case of different size of
the input (different number of vehicle trajectories). As the
number of vehicles n increases (from 450 to 1800), the utility
performs better given the same privacy bound. However, as
large privacy bounds are given, the KL-divergence results
are quite close for different number of vehicles (as shown in
Figure 4(a) and 4(b)). We observe that the KL-divergence for
approximating the speed and acceleration is almost steady
when K changes (see Figure 4(c)).

Our VTDP framework can generate a large number of
output tuples via data interpolation where most of the
interpolated tuples can be close to the original tuples (since
the sampled tuples span over the entire trajectory for most
of the vehicles). In the same group of experiments as Figure
4(a)-4(c), we plot the corresponding output counts in Figure
4(d)-4(f). The total count of tuples increases as the privacy
bound ε, and/or number of vehicles n increases. The param-
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Fig. 5. Retained counts (top 50 frequent) in the output data (VTDP vs. VTL)
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Fig. 6. Output trajectory comparison (two representative vehicles)

eter K for approximating moving values does not affect the
output counts. Note that the output utility slightly fluctuates
since our VTDP is a multi-phase randomization framework
(though the results have been averaged for 5 times). It is
worth noting that the total output count is not very close to
the input count in case of strong privacy guarantee (i.e.,
small ε for differential privacy). This may also occur in
many other high-dimensional data sanitization (e.g., search
queries [19], and trajectories [7]) and the output counts can
be further enlarged by relaxing the privacy budget due
to the tradeoff between privacy and utility. Indeed, since
the data distributions of the input and output can be close
after the sanitization, the output can still accurately function
many applications, as illustrated in Section 7.3.

7.3 Trajectories Comparison

Besides quantitatively measuring the output utility, we also
compare the utility of our VTDP technique with the existing
privacy preserving approach (“VTL”) [4], [5]. 4 We perform
two groups of comparisons. First, in Figure 5(a)-5(c), we
plot the top 50 frequent distinct positions (coordinates),
moving values (approximated combinations of speed and
acceleration), and timestamps (day and time) in one of our
experimental results (ε=0.65, n=1800, K=100). The counts
of such positions, moving values, and timestamps are well
preserved after interpolation in our VTDP framework. Note
that the interpolation is based on timestamps in the input
(considering timestamps as the index of tuples), the counts
of all the distinct timestamps are quite close, but slightly
smaller (compared to VTL) than that in the input simply

because some of the tuples for each vehicles have not been
sampled.

Second, we apply the same interpolation to both VTDP
and VTL (discussed in Section 6.1), and then we compare
the results obtained for the output data posed by each
specific vehicle. More specifically, in Figure 6, we plot a
part of the trajectories of two representative vehicles (e.g.,
Vehicle 95 and 1170) in the arterial road. The y axes in
Figure 6 show the longitudinal coordinates of the positions
(note that lateral coordinates have negligible changes in the
trajectories in that arterial road, we thus skip it for better
visualization). The x axes in Figure 6 show the timestamps
in sequence. The color bar presents the speed at different
times. The results demonstrate that our VTDP technique can
well preserve the trajectories and moving data (e.g., speed)
– the trajectories for the two vehicles lie very close to the
input compared to the interpolated results of VTL.

7.4 Comparison via Queue Length Estimation

We also evaluate that sanitized vehicle trajectories can still
be effectively used for traffic modeling. Then, we apply
real world traffic modeling applications, e.g., queue length
estimation [5], [17] (which predicts the queue length at
the traffic intersections) to our sanitized vehicle trajectories
(generated by VTDP) and the output data generated from
VTL techniques [4]. Thus, we compare the queue length
estimation results derived from the VTDP output with the
VTL outputs.

4. The utility of VTDP and other differentially private trajectory
sanitization techniques (e.g., [7], [27], [39]) are incomparable, since the
output of VTDP is generated with more attributes (and not aggregated).
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Fig. 7. Queue length estimation – penetration rate (50% or 100%): percent of vehicles in data collection (e.g., by mobile sensors, traffic cameras)

In literature, there are three different VTL techniques es-
tablished based on different criteria (e.g., sampling, entropy,
and probability) [4]. First, sampling based VTL technique ran-
domly captures a portion of the traces (say 50%) at each VTL
zone. Second, probability based VTL technique treats tracking
probability as a privacy metric to generate the VTLs. It
ensures that the released traces should have low tracking
probability, e.g., 0.2 probability indicates that no more than
one out of five vehicles can be successfully tracked. Third,
entropy based VTL technique calculates the entropy value
for a specific location trace for all possible vehicles that
previously passed for specific VTL zones. Higher level of
entropy gives higher confusion and better privacy.

In Figure 7, we demonstrate the queue length estimation
results (VTDP vs. different VTLs) with measures percentage
of released trace and Success Rate. The success rate of queue
length estimation (also adopted in [5]) indicates the perfor-
mance of traffic modeling application, which defines as the
percentage of cycles that the proposed algorithms can be
successfully applied (i.e., cycles that have 2 or more samples
of queued vehicles) [5]. Specifically, the “Baseline” results
are captured with all the data around the VTL zones. While
testing our sanitized data using queue length estimation
application with different ratios of vehicles involved in
the data collection (50% and 100% penetration rate), the
results are very close to the baseline (as shown in Figure 7).
Furthermore, compared to three different VTL techniques
with different parameters (e.g., 90% sample, 50% sample,
0.5 probability, 0.1 probability, 2.5 entropy, 0.95 entropy),
the vehicle trajectories generated by VTDP can provide
better success rates for queue length estimation at signalized
intersections. We can also observe that both the percentage
of released trace and success rate lie closer to the baseline as
ε increases (better utility with increased privacy budget).

Overall, our VTDP technique can generate vehicle tra-
jectories with better utility than the state-of-the-art while
ensuring stronger privacy guarantee. Recall that, applying
some existing techniques (e.g., [7], [27], [39]) to fine-grained
vehicle trajectories generates either incomplete attributes
(suppressing moving values and timestamps) or aggregated
data (e.g., for locations/positions). Thus, the results are
incomparable with our VTDP technique.

7.5 Computational Costs

Since our VTDP algorithm has O(n2) complexity: O(n2) for
optimal counts computation, O(n) for three phases of sam-
pling, and O(n) for data interpolation, the vehicle trajectory

data can be sanitized with high efficiency and scalability.
Thus, we do not present such low computation costs due to
space limit.

8 RELATED WORK

Vehicle trajectory data generated in mobile apps, traffic
monitoring cameras, and GPS navigation system have great
values to function intelligent transportation systems and
smart cities. However, the privacy concerns in such data
have received much attention, and have never been ade-
quately addressed. In the prior work, some privacy tech-
niques (including data sanitization [7], [27], [37], [39] and
VTLs [4], [5]) are proposed to moderate the privacy issues.
However, VTL techniques cannot fully protect the privacy
(with provable guarantee) and existing data sanitization
techniques cannot generate satisfactory fine-grained vehicle
trajectory data for urban traffic modeling [16]. To address
such limitations, our proposed VTDP technique satisfies the
differential privacy with boosted utility.

Dwork et al. [12], [13] first proposed the rigorous privacy
definition of differential privacy, which is a randomization
algorithm which guarantees that for any two neighboring
input datasets, the probabilities of generating any output
from two inputs are bounded. This notion provides suf-
ficient privacy protection for users regardless of the prior
knowledge possessed by the adversaries. In the past decade,
this has been extended to data release in different contexts.
For instance, McSherry et al. [30] solved the problem of
producing recommendations from collective user behavior
while providing differential privacy for users. Wang et al.
[43], [44] proposed a differentially private schemes for video
analytics. In particular, some non-interactive differentially
private data sanitization techniques [6], [19], [28] are very
relevant to our work. Li et al. [28] identified the weakness
of k-anonymity and proposed a privacy notion of safe k-
anonymization to address such vulnerability by applying
random sampling to meet k-anonymity and differential
privacy. Bild et al. [6] proposed an approach for imple-
menting the traditional data anonymization algorithm (k-
anonymity) with differentially private components where
k-anonymization was employed in order to reduce the
added noise. Both techniques generate sanitized outputs
for generic datasets while satisfying k-anonymity and dif-
ferential privacy simultaneously. In addition, Hong et al.
[19] proposed a multinomial sampling based approach to
generate sanitized search logs while maximizing the output
utility. Phase I in our VTDP framework is inspired from
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such work where trajectory data (e.g., position coordinates)
are substantially different from the search logs. Also, phase
II and III (in VTDP) sample additional values (e.g., speed,
acceleration and timestamps) based on the output of the
multinomial sampling and the original input (whereas the
timestamps in [19] are not published). Also, vehicle trajec-
tory data provides properties to further improve the output
utility via data interpolation.

Furthermore, previous work on preserving privacy in
practical transportation systems is sparse. Hoh et al. [17] rely
on a notion of privacy, k-anonymity, that is not particularly
strong at preserving location privacy [42]. In particular, they
focus on privacy for individual measurements, and thus do
not directly offer formal protection for users transmitting
time series such as location traces. Some research on privacy
for location-based services, e.g., [38], can be considered
somewhat related to our work. These works are typically
concerned with perturbing GPS location traces to provide
privacy while reconstructing some aggregate statistics, e.g,
average density. However, they generally either do not rely
on a formal definition of privacy, or consider simply the
minimization of mutual information between the users’ pri-
vate data and the published data, which ignores the crucial
issue of side information. In addition, Li et al. [26] has
quantified the privacy leakage while sharing the locations
in mobile social networks, and proposed a system-level
solution (i.e., SmartMask) to prevent the location privacy
breaches. Similar to our work, Ny et al. [33], [36] consider
more traditional static sensors, e.g., single loop detectors.
However, such techniques do not collect the fine-grained
trajectory data, and fine-grained vehicle trajectories are not
generated for output, either.

In intelligent transportation systems, privacy preserving
VANET (Vehicular Ad-hoc Networks) applications [11], [41]
may generate similar datasets. However, our VTDP sig-
nificantly differs from such works. Specifically, our VTDP
focuses on the differentially private vehicle trajectory (in-
cluding speed and acceleration) data sanitization. In such
case, a data curator applies the proposed offline algorithm to
generate a publishable dataset, which can be shared to any
untrusted party. However, VANET focuses more on real-
time communications between vehicles and/or infrastruc-
ture in a short range (e.g., real time computation/commu-
nication for road safety, and navigation) where privacy is
generally ensured by cryptographic schemes [41].

9 CONCLUSION

As the rapidly growing deployment of intelligent trans-
portation systems (ITS) and smart traffic applications, fine-
grained vehicle trajectory datasets are generated from every-
where in our real life, e.g., GPS navigation systems, mobile
applications, and urban traffic cameras. Although these data
are extremely valuable for the ITS development, privacy
risks also arise if such data are not properly sanitized
before release for analysis. Recently, some researchers have
proposed techniques to guarantee the privacy of vehicle
trajectory data, but still have some limitations.

In this paper, to the best of our knowledge, we take the
first step to propose a differentially private vehicle trajectory
data sanitization framework that can guarantee both strong

privacy protection and high output utility. Differential pri-
vacy ensures the protection against inferences (whether any
vehicle is involved in the input data) by the adversaries with
arbitrary background knowledge. Our VTDP framework
follows the sequential composition of multiple phases (par-
allel composition also exists in sampling phase II and phase
III) but with limited overall bounds (ε + ε′, δ). Our VTDP
also greatly improves the output utility with the proposed
vehicle trajectory interpolation based on the attributes of
vehicle trajectory data. As validated in our experimental
results, our VTDP framework generates fine-grained vehicle
trajectory data with high utility, compared to the existing
techniques (i.e., the VTL based techniques).
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