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Abstract

In bounded-suboptimal heuristic search, one attempts to find
a solution that costs no more than a prespecified factor of
optimal as quickly as possible. This is an important setting,
as it admits faster-than-optimal solving while retaining some
control over solution cost. In this paper, we investigate sev-
eral new algorithms for bounded-suboptimal search, includ-
ing novel variants of EES and DPS, the two most prominent
previous proposals, and methods inspired by recent work in
bounded-cost search that leverages uncertainty estimates of
the heuristic. We perform what is, to our knowledge, the most
comprehensive empirical comparison of bounded-suboptimal
search algorithms to date, including both search and planning
benchmarks, and we find that one of the new algorithms, a
simple alternating queue scheme, significantly outperforms
previous work.

Introduction

Heuristic search methods are widely used in many real-
world autonomous systems. For example, search-based
methods have been used in self-driving cars (Ferguson,
Howard, and Likhachev 2008), Mars rovers (Mudgal et al.
2005), container terminals (Kim and Park 2004), and Ama-
zon warehouses (Li et al. 2021), as well as for power
scheduling (Thiébaux et al. 2013) and protein design (Al-
louche et al. 2019). However, users always want to solve
search problems that are too large to be solved optimally.
To find an optimal solution, one must examine every node
that is not provably too expensive, that is, all reachable
nodes n where f(n) < C∗, the optimal solution cost. Even
with an almost-perfect heuristic, there can be many such
nodes (Helmert and Röger 2008). This motivates suboptimal
search, in which one is allowed to return a solution whose
cost is greater than C∗.

One popular suboptimal setting is bounded-suboptimal
search, where we require that the returned solution’s cost
lies within a given factor w of C∗. The best-known algo-
rithm for this setting is weighted A* (Pohl 1970), a sim-
ple modification of A* that performs a best-first search on
f ′(n) = g(n) + w · h(n). The state-of-the-art algorithms
for bounded-suboptimal search are EES (Thayer and Ruml
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2011) and DPS (Gilon, Felner, and Stern 2016). Briefly, EES

tries to exploit an inadmissible cost-to-go heuristic ĥ(n) and

an estimate of state space graph distance-to-go d̂(n) in or-
der to quickly find solutions within the suboptimality bound.
DPS tries to expand the node that is estimated to be most
likely to lead to a solution within the suboptimality bound.
Neither algorithm consistently outperforms the other on the
classic search benchmarks on which they have been tested.

In this paper, we consider two additional ideas that have
been investigated in other contexts: explicitly estimating
the probability that a node will lead to a sufficiently good
solution (Fickert, Gu, and Ruml 2021) and using alter-
nating search queues ordered by different criteria (Röger
and Helmert 2010). By remixing these ideas with previ-
ous work, we develop several new bounded-suboptimal al-
gorithms. We perform the most comprehensive empirical
comparison of bounded-suboptimal search algorithms to
date, considering not only classic search benchmarks but
also domain-independent classical planning domains, and
we find that one of the new algorithms, a simple alternat-
ing queue scheme, significantly outperforms both EES and
DPS across most benchmarks. In addition to establishing
a new state-of-the-art in bounded-suboptimal search, this
work shows that there is still plenty of room for incorporat-
ing new ideas into classic single-agent unidirectional search.

Background

A bounded-suboptimal search problem can be defined as a
six-tuple 〈S, sinit , succ(s), c(s, s′), G,w〉, where S is a set
of states, sinit ∈ S is the initial state, succ(s) is the transi-
tion function yielding the set of successor states of s, c(s, s′)
is the cost of the transition from state s to its successor
s′ ∈ succ(s), G ⊆ S is the set of goal states, and w is a given
suboptimality bound. The task is to find a path from sinit to
a goal state, known variously as a solution or a plan, whose
sum of transition costs is within the factor w of optimal.
We say that a solution is w-admissible if it satisfies this re-
quirement and an algorithm is called a bounded-suboptimal
search algorithm if it is guaranteed to return a w-admissible
solution.

A node n represents a state in the search space with a cor-
responding path to it from the initial state; the cost of the
path is denoted by g(n) and h(n) is a heuristic estimate of



the path cost from the state represented by n to a goal (i.e,
cost-to-go). Let h∗(n) be the cost of an optimal plan from
n. If h(n) ≤ h∗(n) holds on all states then h is called ad-
missible. In that case, f(n) = g(n) + h(n) is a lower bound
on the cost of any plan to a goal with prefix n. Let fmin

be the lowest f value among all open nodes and let bestf
be a node with such an f value. Note that fmin represents
a lower bound on C∗. Let d(n) denote a distance estimate,
i.e., number of state transitions to reach a goal state from n.
Such an estimate can typically be derived similarly to h by
considering all actions as having a cost of one. Some algo-
rithms also use inadmissible (but potentially more accurate)

estimates ĥ and d̂. In our experiments below, we follow prior

work and derive ĥ and d̂ by debiasing h and d using online
observations of the one-step heuristic error (Thayer, Dionne,
and Ruml 2011).

Bounded-Suboptimal Search

The bounded-suboptimal setting has received attention since
the earliest days of heuristic search; we review here only the
work most relevant to the current state-of-the-art.

Focal Search is a family of algorithms that was first in-
troduced with A∗

ǫ (Pearl and Kim 1982). Similar to any
best-first search, focal search maintains a queue of open
nodes: those that have been generated but not yet expanded.
In addition, focal search also maintains a queue called fo-
cal that contains the subset of all open nodes that satisfy
f(n) ≤ w · fmin . Because fmin is a lower bound on
C∗, when a goal node n from focal is expanded, we have
f(n) = g(n) ≤ w · fmin ≤ w ·C∗, and thus n is guaranteed
to satisfy the suboptimality bound. This guarantee grants the
algorithm designer significant freedom for the node order-
ing in focal. In A∗

ǫ , focal is sorted by d(n), with the intuition
that we aim to find a goal in as few expansions as possible.
As Thayer, Ruml, and Kreis (2009) discuss, this can actually
lead to poor performance in practice because nodes with low
d often have high f , causing children of expanded nodes to
fail to qualify for focal.

Explicit Estimation Search (EES) (Thayer and Ruml
2011) is a more elaborate focal-style algorithm that uses
three estimates to guide its search: an admissible cost heuris-

tic h, an inadmissible cost heuristic ĥ, and an inadmissible
distance-to-go heuristic d̂. Let f̂ = g + ĥ and let best

f̂
be a

node with lowest f̂ , which we call f̂min . In addition to open,

EES maintains a queue sorted by f̂ , giving access to best
f̂

,

and a focal-style queue, containing only those nodes n with

f̂(n) ≤ w · f̂min , that is sorted by d̂, giving access to best
d̂
.

If f̂(best
d̂
) ≤ w ·fmin , EES expands best

d̂
, as it is expected

to be closest to a goal among nodes that appear sufficiently

promising. Otherwise, if f̂(best
f̂
) ≤ w ·fmin , EES expands

best
f̂

, as it is predicted to lead to the optimal solution. This

also can allow EES to raise the current best
f̂

value and thus

enlarge the set of candidates for best
d̂
. If neither best

d̂
nor

best
f̂

meet the suboptimality guarantee, EES will expand

bestf to raise fmin , hopefully allowing it to consider best
d̂

or best
f̂

in a future iteration.

Dynamic Potential Search (DPS) (Gilon, Felner, and
Stern 2016) aims to expand the node with the highest proba-
bility of leading to a goal within the suboptimality bound.
This is estimated using ‘potential,’ defined as ud(n) =
(w · fmin − g(n))/h(n). While potential is not explicitly
a probability, Stern, Puzis, and Felner (2011) show that it
yields the same ordering as the probability of leading to a
feasible solution, assuming the heuristic satisfies a linear er-
ror model. DPS uses a bucket-based open list with a bucket
for each (g, h) pair (which have the same potential value),
and reorders the buckets whenever fmin changes to keep the
open list sorted correctly.

DPSU (Gilon, Felner, and Stern 2017) is a variant of DPS
that calculates the potential using unit-cost versions of g and
h, counting each edge in the search space as one regardless
of its cost. It can perform better than DPS in some domains,
but in general it is surpassed by DPS and EES. We also note
that, while DPS and DPSU attempt to maximize the likeli-
hood of finding a qualified solution, they do not explicitly
attempt to optimize search time.

Bounded-Cost Search

Bounded-cost search is an alternative to bounded-
suboptimal search in which the search is given an absolute
cost bound C, rather than the relative factor w. The search
then attempts to find a plan with cost at most C as quickly
as possible. From an algorithm design perspective, having
an absolute cost bound can simplify things versus relying on
a dynamically changing fmin . Bounded-Cost EES (BEES)
(Thayer et al. 2012) is a variant of EES that uses only
two queues: open sorted by f and focal, containing only

nodes with f̂(n) ≤ C, sorted by d̂. Ordering nodes by f̂
is not required as the focal criterion no longer depends on

f̂min and is thus static. BEES expands best
d̂

unless focal is
empty, in which case it expands bestf .

Similarly, Potential Search (PS) (Stern, Puzis, and Fel-
ner 2011) is a variant of DPS that orders nodes by (C −
g(n))/h(n). Bucketing is not necessary as C is static.

Expected Effort Search (XES) (Fickert, Gu, and Ruml
2021) is a recent algorithm that orders nodes on an estimate
of expected search effort xe(n) = T (n)/p(n), where T (n)
is an estimate of the time to find a solution under n and
p(n) is the probability that that solution will be within the

cost bound. T (n) is instantiated by d̂(n) and p(n) is derived

from a probability distribution centered on f̂ as the proba-
bility mass between a lower bound (g, or f if the heuristic is
admissible) and the cost bound C.

New Algorithms

We first study several variations of EES. We then study how
XES can be adapted to the bounded-suboptimal setting. The
major challenge that arises is how to balance between pur-
suing promising nodes and raising the current bound, which
depends on fmin . We consider a simple way of resolving
this issue: merely alternating between multiple open lists.
We also consider incorporating potential.

All algorithms introduced in this section are variants of
focal search in the sense that they maintain an open list or-



dered by f , and have one or more additional queues con-
taining only nodes n with f(n) ≤ w · fmin sorted by other
ordering functions. Hence, any node n that they select for
expansion is guaranteed to have f(n) ≤ w · fmin ≤ w ·C∗,
making them sound bounded-suboptimal search algorithms.

Variations on EES

Although the design choices of EES appear reasonable, it
is natural to ask if they can be improved. For example, is
there a more appropriate condition for selecting nodes for
the focal list? Can ideas from the bounded-cost algorithms
BEES and XES be useful? In this section, we present new
variants of EES that probe these questions.

EES++ We first investigate the criterion for qualifying for

the focal list. In the original EES design, this is f̂(n) ≤ w ·

f̂min , where f̂(n) is our best guess of the total cost, and w ·

f̂min is our best guess of the suboptimality bound. However,
when a node in focal is selected for expansion, EES must

first check whether it satisfies the lower bound (f̂(best
d̂
) <

w ·fmin ) to maintain the suboptimality guarantee. Why put a
node into focal that will not be expanded? We propose to fix
this issue by introducing a variant named EES++ that uses

the focal condition f̂(n) ≤ w · fmin instead, ensuring that
every node in focal is prequalified for expansion. We can
then change the first step of the search strategy to simply
expand best

d̂
whenever focal is not empty.

Rushed EES We next consider whether the strategy of
BEES can be backported to bounded-suboptimal search.
This would mean a regular open list, sorted by f , and a focal

list, containing nodes with f̂(n) ≤ w · fmin , sorted by d.
Like with EES++, we also simplify the expansion strategy
to always select from focal if it is not empty. Otherwise, we
expand bestf to raise the bound, hopefully allowing more
nodes to qualify. This design emphasizes the ordering on d
and hence we call it Rushed EES.

Although Rushed EES appears simpler than EES, it still
requires three queues because when fmin changes, we need

to identify nodes whose f̂ requires that they be added or

removed from focal. To avoid sorting on f̂ , we would need
to change the focal condition to f(n) ≤ w · fmin , which
would leave us with A∗

ǫ , which is known to perform poorly.

EES95 EES, and all the variants introduced above, can
be seen as brittle in the sense that none of them consid-
ers the uncertainty of its estimates. Unlike DPS or XES,
a node believed to be barely below the bound is treated as
equally important as a node that is believed to be far below
the bound. Explicitly accounting for uncertainty using belief
distributions has yielded promising results recently in real-
time search (Mitchell et al. 2019; Fickert et al. 2020) and
bounded-cost search (Fickert, Gu, and Ruml 2021). These
belief distributions can be used to explicitly estimate the
probability that a node leads to a solution within the subop-
timality bound (we give more details in the next subsection).
We investigate whether probability estimates can be useful
in EES by incorporating them into the focal condition. The
new variant, called EES95, only inserts nodes into focal if

it additionally believes the node to have higher than 95%
probability to lead to a solution within the bound. By con-
sidering the uncertainty, the algorithm makes a more robust
meta-level decision in the focal condition. As this idea is or-
thogonal to the one considered in EES++, we also consider
a combination of the two, which we call EES95++.

Exploiting Expected Effort

We also investigate whether XES can be adapted directly
for bounded-cost search. Moving from a static cost bound
C to the dynamic suboptimality bound w · fmin necessi-
tates a focal search approach, where focal contains only
search nodes with f(n) ≤ w · fmin , ordered by the ex-
pected effort, and open is ordered by f to track fmin . Fol-
lowing XES’s paradigm of explicitly taking uncertainty into
account, we also model the uncertainty of the suboptimality
bound. We introduce two different approaches: a straight-
forward adaptation called Dynamic Expected Effort Search
(DXES), and a more complex variant called Considerate
DXES (CDXES).

DXES XES uses a single normal distribution Bbound cen-

tered on f̂ to estimate the solution cost under a search node
n, and thus the probability that it is within the cost bound:

Bcost(n) ∼ N (f̂(n), ((f̂(n)− f(n))/2)2) .

In DXES, we also use a second distribution Bbound to de-
scribe our current belief about the cost bound given by the

suboptimality factor w, of which our best guess is w · f̂min .

The value f̂min may change after each expansion—either
due to changes in the average heuristic error (when deriving

ĥ from h with online error correction) or due to nodes be-
ing added to or removed from the open list. We record the

f̂min value after each expansion in a collection δ, and use its
variance to obtain a belief distribution on the bound:

Bbound ∼ N (w · f̂min , var(δ)) .

The probability that a node n leads to a solution within
the suboptimality bound can now be expressed as the proba-
bility that a sample from Bcost(n) is not greater than a sam-
ple from Bbound . This probability P (Bcost(n) ≤ Bbound)
is equivalent to P (Bbound − Bcost(n) ≥ 0), and we can
construct the distribution B(n) = Bbound − Bcost(n) by
subtracting the means and adding the variances:

B(n) ∼ N (µ = w · f̂min − f̂(n),

σ2 = (
f̂(n)− f(n)

2
)2 + var(δ)).

From this distribution, we can compute the probability mass
that is greater or equal to zero to obtain the probability that
n leads to a solution within the bound (similar to XES).

Note that this approach requires fast access to three search
nodes at each expansion, namely the ones with minimal ex-

pected effort, f value, and f̂ value respectively. Accordingly,
our implementation uses three queues even though DXES al-
ways expands the node bestxe with minimal expected effort
xemin , which will always exist as the queue must at least
contain bestf .



CDXES DXES focuses on finding a solution within the
current known lower bound, however, it may be useful to
raise the bound as well; expanding bestf until fmin raises
sufficiently such that more promising nodes (that are cur-
rently outside w·fmin ) become available in the focal list. We
now introduce Considerate DXES (CDXES), which care-
fully considers the expected effort required to raise fmin

through successive expansions of bestf in order to make a
node more promising than bestxe available to focal. For ex-
ample, consider a node n that is not in focal with xe(n) = 10
expansions when xe(bestxe) = 20. If raising fmin suffi-
ciently to include n in focal takes fewer than 10 expansions,
then it would be worth doing that so we can expand n after-
wards and still expect less total search effort.

We estimate the effort to raise fmin to a desired f value
f◦ (i.e., the number of required bestf expansions) by

Tf◦ =

f◦−1∑

f=fmin

#openf ·
f◦ − f

ǫh
,

where #openf is the number of open nodes with the given
f value, and ǫh is the mean one-step error in h (Thayer,
Dionne, and Ruml 2011). The one-step heuristic error esti-
mates how the f value increases on average for each expan-
sion. For example, if ǫh = 0.2, we can expect f to increase
by one after five expansions. Tf◦ takes into account both
the amount by which fmin must increase to f◦ as well as
the number of open nodes with each intermediate f value.
In order to express the expected effort in expansions as
well, we change the remaining time estimator in xe(n) from

T (n) = d̂(n) to T (n) = d̂(n) · delay , where delay is the
average expansion delay (Dionne, Thayer, and Ruml 2011).
Now we can consider whether it would be beneficial to ex-
pand bestf in order to raise fmin : If there is a node n that is
currently not in the focal list that has xe(n)+Tf(n) < xemin ,
then CDXES expands bestf instead of the usual bestxe .

A Simple Round-Robin Scheme

EES and CDXES attempt to carefully estimate when rais-
ing the bound is useful. However, even if the inference rules
are well-founded, this metareasoning is based on heuristic
online information that might be quite unreliable. Hence
we also investigate a simpler alternative. We study a sim-
ple round-robin scheme using three queues: a focal list that
can be instantiated with any evaluation function, an open

list sorted by f̂ , and a cleanup list sorted by f . In or-
der to guarantee that solutions are within the given sub-
optimality bound, the first two queues only contain nodes
with f(n) ≤ w · fmin , while the cleanup list contains all
open nodes. The search then simply alternates between these
queues, expanding the node at the front of the current queue
at each expansion.

We explore three instantiations for the focal list ordering:
d, ud , and xe , resembling the main search strategies of EES,
DPS, and DXES respectively. In particular, note that EES
also considers expanding the node with either minimal dis-

tance, f , or f̂ , but follows a more sophisticated selection
strategy between those queues.

One drawback of the round-robin scheme is that it does
not converge to speedy search (best-first search on d) with
increasing suboptimality bounds. This can be a useful prop-
erty since it should lead to a solution the fastest when the
solution quality does not matter (Wilt and Ruml 2014). Both
EES and DXES satisfy that property: in both search algo-
rithms, eventually all nodes are in the focal list, and in DXES
all probability estimates become one with sufficiently large
weights. DPS on the other hand does not converge to speedy
search (and does not use a distance estimate at all).

Experimental Evaluation

We evaluate the introduced algorithms on both domain-
independent planning1 and classic search benchmarks2. On
the planning side, we implemented the algorithms in Fast
Downward (Helmert 2006) and use landmark cut (Helmert
and Domshlak 2009) as both heuristic and distance estima-
tor (using unit action costs). We compare the search algo-
rithms using all unique STRIPS instances from the optimal
tracks of the International Planning Competitions, for a total
of 1652 instances from 48 domains. The experiments were
run on a cluster with Intel Xeon E5-2660 CPUs using the
Lab framework (Seipp et al. 2017), with time/memory lim-
its of 30 minutes/4 GB. Figure 1 shows an overview of the
results on the planning domains for various bounds ranging
from w = 1 to w = 2. Normalized overall coverage corrects
for the different numbers of instances per domain. Table 1
gives details on coverage in individual domains for w = 1.5;
the last two rows show geometric means of search time and
number of expansions on commonly solved instances.

Regarding classic search benchmarks, we evaluate the al-
gorithms on C++ implementations of the sliding-tile puzzle,
vacuum world (Thayer and Ruml 2011), pancake (Kleitman
et al. 1975; Gates and Papadimitriou 1979; Heydari and Sud-
borough 1997), and racetrack (Barto, Bradtke, and Singh
1995) domains. We consider three variants of the 15-puzzle
with different action costs: uniform, heavy (costs equal to
the face of the tile), and inverse (one divided by the face of
the tile), using the Manhattan distance as the heuristic; we
use Korf’s (1985) classic 100 instances.

In vacuum world, we again consider two different cost
functions (uniform and heavy), using the minimum spanning
tree heuristic (Thayer and Ruml 2011). We evaluate the al-
gorithms on 60 random solvable instances of size 200× 200
where cells have a 35% probability of being blocked, and
the robot and dirt piles are placed at random locations (10
piles in the unit-cost version, 6 piles for heavy costs).

We also consider unit- and heavy-cost versions of the pan-
cake problem. In the latter, the action cost of the operator
that flips a prefix is the maximum among the two elements
on the extreme sides of the prefix. We use the GAP heuristic
(Helmert 2010) and the weaker GAP–2 heuristic that ignores
the first 2 pancakes of the target state. We use 100 randomly
generated instances.

Finally, we consider three different maps of the racetrack
domain: Barto (Barto, Bradtke, and Singh 1995) and two

1https://github.com/fickert/fast-downward-xes
2https://github.com/gtianyi/boundedSuboptimalSearch
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Figure 1: Normalized coverage over increasing suboptimal-
ity bounds on the planning domains.

representative maps (ost003d and den520d) from a pathfind-
ing repository (Sturtevant 2012). The (admissible) heuristic
computes the maximum distance in one dimension divided
by the maximum achievable velocity, and we use a precom-
puted Dijkstra distance estimate. For the Barto map, we use
25 random start locations (with at least 90% of the maximum
goal distance) for our evaluation. For ost003d and den520d,
we use a subset of the scenarios from the repository: we
choose 100 instances that have an optimal 2D path length
between 50 and 100.

The results on the search domains are shown in Figures 2
and 3. They show CPU time in seconds as a function of the
suboptimality bound. The error bars show 95% confidence
intervals on the mean across the commonly solved instances
(number shown in legend). The legends are sorted by the
geometric mean across all suboptimality bounds. The right
bottom panel shows aggregated results, where we compute
the geometric mean of the geometric means for each do-
main at every suboptimality bound. We do not include in-
verse tiles in the aggregation as it requires different subop-
timality bounds. We treat different cost functions as differ-
ent domains for tiles, vacuum world, and pancake. We treat
the three racetrack maps as one domain using the geometric
mean.

Variations on EES

The results in Figure 2 suggest that all the variants that con-
sider expanding nodes from three queues—EES, EES++,
EES95 and EES95++—are better than REES, which only
expands nodes from two queues and considers bestf only
when focal is empty. The weakness of REES is also ob-
served in the planning domains (cf. Figure 1). This implies
that, in bounded-suboptimal search, it is not a good idea
to concentrate too much on finding a solution quickly; one
must also allocate sufficient effort to bound estimation.

Looking at the different cost functions of the sliding tile
domain, EES++ outperforms the original EES as problems
get harder, with the most obvious data points in inverse
tiles. Keeping unqualified nodes out of focal is beneficial for
harder problems. For other relatively easier domains, EES++
does not make a big difference. EES95 and EES95++ per-
form similarly to EES, suggesting that incorporating uncer-
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Airport (50) 31 30 33 29 32 33 32 33
Blocks (35) 33 31 34 28 31 34 32 35
DataNetwork (20) 14 14 14 14 14 16 13 16
Depot (22) 9 10 10 8 9 11 8 11
DriverLog (20) 15 15 15 14 15 15 15 15
Elevators (30) 23 21 23 21 22 28 23 28
Floortile (40) 22 17 23 12 16 21 21 22
Freecell (80) 15 16 15 15 17 17 15 19
GED (20) 15 15 19 15 15 15 19 15
Grid (5) 2 2 2 2 2 3 2 3
Gripper (20) 20 15 20 8 9 9 16 18
Hiking (20) 10 10 10 9 10 12 10 11
Logistics (63) 48 42 48 43 42 41 45 44
Mprime (35) 22 22 23 22 21 22 23 23
Mystery (19) 17 17 17 15 15 17 17 17
Nomystery (20) 20 20 20 14 17 20 20 20
Openstacks (80) 36 34 36 33 33 37 31 38
OrgSynth-split (20) 16 16 16 15 16 16 16 16
Parcprinter (30) 30 30 30 30 30 30 28 30
Parking (40) 18 18 20 7 13 22 17 23
Pathways (30) 6 6 6 6 6 6 6 6
Pegsol (36) 35 33 35 33 34 36 35 36
Pipes-notank (50) 23 24 23 17 24 26 24 27
Pipes-tank (50) 13 13 13 14 14 17 13 18
PNetAlignment (20) 11 11 11 8 9 13 10 13
PSR (50) 49 49 50 49 50 50 50 50
Rovers (40) 14 12 13 11 15 14 14 18
Satellite (36) 14 13 14 11 13 13 14 12
Scanalyzer (28) 17 12 20 12 15 16 17 18
Snake (20) 7 7 7 6 8 7 7 7
Sokoban (30) 29 28 29 28 28 29 29 29
Spider (20) 12 11 12 11 11 12 11 12
Storage (30) 16 17 16 15 17 18 16 17
Termes (20) 7 11 9 6 6 10 7 10
Tetris (17) 7 7 8 6 6 8 7 8
Tidybot (30) 21 21 21 19 22 23 20 26
TPP (30) 7 8 8 8 9 9 7 8
Transport (59) 18 19 18 18 20 22 18 23
Trucks (30) 21 18 18 14 18 20 21 19
VisitAll (33) 21 20 21 18 21 23 21 23
Woodworking (30) 26 27 26 26 28 29 27 30
Zenotravel (20) 14 14 15 13 13 14 14 14
Others (274) 191 191 191 191 191 191 191 191

Sum (1652) 995 967 1012 894 957 1025 982 1052
Normalized (%) 58.7 57.0 60.0 51.5 55.6 60.7 57.9 62.5

Expansions 569 558 472 734 511 383 665 371
Search time (s) 0.65 0.91 0.55 1.09 0.83 0.65 1.05 0.65

Table 1: Coverage over the IPC instances for w = 1.5.

tainty is not as straightforward as in the bounded-cost search
setting. In fact, the aggregated plot suggests that the original
EES performs the most robustly of all.

Exploiting Expected Effort

Consider Figure 1. Somewhat surprisingly, the success of
XES in bounded-cost search does not directly transfer to
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Figure 2: EES variants on search domains: CPU time (in seconds) as a function of the suboptimality bound.

the bounded-suboptimal setting as its adaptation DXES per-
forms poorly here. A major reason is that DXES neglects to
raise the suboptimality bound: when looking at its search be-
havior in comparison to algorithms such as EES, we found
that fmin increases much more slowly throughout the search
in DXES. This was the main motivation behind CDXES and
the round-robin strategies, which explicitly aim to raise fmin

by expanding bestf . Yet, as Figure 1 shows, CDXES per-
forms even worse than DXES. By periodically expanding
bestf , the probability estimates may significantly change

due to fluctuations in fmin (and f̂min ), leading to many
nodes with outdated values in the open list. As an attempt
to ameliorate this, we tested a variant of CDXES that lazily
reevaluates nodes whose xe values change between insertion
and expansion: the CDXES	 configuration requeues nodes
if their updated xe estimate differs by more than 5%. This
significantly improves results, though it still does not reach
the overall performance of WA* and DPS. We tested this
approach also for DXES and RR-DXES, but found that the
results of the former remain almost unchanged, but perfor-
mance degrades for the latter. Similarly, a bucket-based re-
ordering strategy akin to DPS also did not improve results
for DXES.

Table 1 shows that CDXES	 has merit in a few domains:
it has strictly higher coverage than the other algorithms in
Snake, and has equal (or better) coverage with fewer ex-
pansions in Grid, Miconic, Parcprinter, and TPP on com-

monly solved instances. Overall though, the XES variants
for bounded-suboptimal do not carry over the success from
bounded-cost search and are outperformed by the baselines
in most domains. We also ran experiments with DXES on
the search domains with similar results, i.e., performance
was worse overall compared to the baselines. Due to its low
coverage in many domains, we omit it in the figures for
the search domains to retain a larger number of commonly
solved instances. It appears that, even though it is possible
to port bounded-cost algorithms to the bounded-suboptimal
setting (Gilon, Felner, and Stern 2016), it is not trivial to
achieve high performance.

Round-Robin Algorithms

Figure 3 compares the round-robin algorithms using d, ud ,
or xe in the focal list against the baselines weighted A*,
EES, and DPS. In the sliding-tile domains, RR-d outper-
forms the state-of-the-art algorithms, and so does RR-DXES
on the heavy- and inverse-cost versions (we omit weighted
A*, DPS, and RR-DPS in inverse tiles due to their poor
coverage). In the regular pancake domain, weighted A* and
DPS show relatively strong performance, but they are again
surpassed by the round-robin algorithms on the more diffi-
cult heavy-cost variant. Interestingly, the potential variant of
the round-robin algorithms, RR-DPS, does not work as well
as RR-d and RR-DXES, and is generally outperformed by its
base version DPS. Aggregated over all search domains (see
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Figure 3: Round-robin variants on the search domains: CPU time (in seconds) as a function of the suboptimality bound.

the right bottom plot in Figure 3) RR-d performs the best
overall, with a significant margin over the other algorithms,
in particular for smaller suboptimality bounds.

The experiments on the planning domains paint a similar
picture (consider again Figure 1 and Table 1). The round-
robin variants RR-d and RR-DXES perform best overall,
significantly outperforming the other algorithms across most
tested suboptimality bounds. As observed on the search do-
mains, RR-DPS loses out to its baseline DPS: for w = 1.5,
RR-DPS improves coverage over DPS in 4 domains, but
lowers it in 18. In contrast, RR-DXES demonstrates ex-
tremely robust performance. In terms of coverage, it is a
strict improvement over DXES, boosting coverage in 38 (!)
domains while never falling below DXES for w = 1.5; and
almost halving the number of expansions on average. Ex-
cluding domains where all algorithms have the same cover-
age, RR-DXES is the (at least shared) best algorithm on 28
out of 42 domains. As the suboptimality bound increases,
RR-d catches up and surpasses RR-DXES at w = 4 (omit-
ted from Figure 1 for space).

In order to test whether periodically expanding both bestf
and best

f̂
is important, we also tested configurations that

alternate the focal queue only with either bestf or best
f̂

,

and found them to be inferior to the variants presented here.
We conclude that bestf and best

f̂
are useful components for

bounded-suboptimal search.

Conclusions

Our comprehensive empirical investigation considered sev-
eral principled modifications to EES but, unfortunately,
found that none of them improve performance significantly.
We also considered several ways to exploit estimates of
search effort, which was surprisingly difficult. The most ef-
fective approach was to eschew sophisticated metareason-

ing and merely use f , f̂ , and either d or xe within a simple
round-robin queue framework.

Despite the state-of-the-art results obtained by RR-d and
RR-DXES, the success of these round-robin algorithms sug-
gests that plenty of room remains for developing principled
selection mechanisms. It does not appear straightforward to
estimate when a bounded-suboptimal algorithm should de-
vote effort to improving the bound estimation versus pursu-
ing promising solutions.

The strength of DPS in certain domains is also intriguing,
as the algorithm does not explicitly optimize search speed.
Merely incorporating potential into a round-robin frame-
work does not seem sufficient to gain its benefits. Further re-
search is necessary to understand how best to leverage prob-
abilistic estimates in suboptimal search.
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Helmert, M.; and Röger, G. 2008. How Good is Almost
Perfect? In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence (AAAI), volume 8, 944–949.

Heydari, M. H.; and Sudborough, I. H. 1997. On the diam-
eter of the pancake network. Journal of Algorithms, 25(1):
67–94.

Kim, K. H.; and Park, Y.-M. 2004. A crane scheduling
method for port container terminals. European Journal of
Operational Research, 156(3): 752–768.

Kleitman, D.; Kramer, E.; Conway, J.; Bell, S.; and
Dweighter, H. 1975. Elementary Problems: E2564–E2569.
The American Mathematical Monthly, 82(10): 1009–1010.

Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal Ad-
missible Tree Search. In Proceedings of IJCAI-85, 1034–
1036.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI), 11272–11281.

Mitchell, A.; Ruml, W.; Spaniol, F.; Hoffmann, J.; and
Petrik, M. 2019. Real-time planning as decision-making un-
der uncertainty. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2338–2345.

Mudgal, A.; Tovey, C.; Greenberg, S.; and Koenig, S. 2005.
Bounds on the travel cost of a mars rover prototype search
heuristic. SIAM Journal on Discrete Mathematics, 19(2):
431–447.

Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-4(4): 391–399.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1(3-4): 193–204.
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