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Abstract

Many differentially private algorithms for answering database queries involve a
step that reconstructs a discrete data distribution from noisy measurements. This
provides consistent query answers and reduces error, but often requires space that
grows exponentially with dimension. PRIVATE-PGM is a recent approach that uses
graphical models to represent the data distribution, with complexity proportional to
that of exact marginal inference in a graphical model with structure determined by
the co-occurrence of variables in the noisy measurements. PRIVATE-PGM is highly
scalable for sparse measurements, but may fail to run in high dimensions with dense
measurements. We overcome the main scalability limitation of PRIVATE-PGM
through a principled approach that relaxes consistency constraints in the estimation
objective. Our new approach works with many existing private query answering
algorithms and improves scalability or accuracy with no privacy cost.

1 Introduction

A central problem in the design of differentially private algorithms is answering sets of counting
queries from a database. Many proposed algorithms follow the select-measure-reconstruct paradigm:
they select a set of measurement queries, they privately measure them (using Gaussian or Laplace
noise addition), and then they reconstruct the data or query answers from the noisy measurements.
When done in a principled manner, the reconstruct phase serves a number of critical functions:
it combines the noisy evidence provided by the measurement queries, it allows new unmeasured
queries to be answered (with no additional privacy cost), and it resolves inconsistencies in the noisy
measurements to produce consistent estimates, which often have lower error. In this paper, we propose
a novel, scalable, and general-purpose approach to the reconstruct step. With a principled approach
to this problem, future research can focus on the challenging open problem of query selection.

Most existing general-purpose methods for reconstruction cannot scale to high-dimensional data, as
they operate over a vectorized representation of the data, whose size is exponential in the dimension-
ality [1–6]. Some special purpose methods exist that have better scalability, but are only applicable
within a particular mechanism or in certain special cases [7–11, 5, 12–15]. A recently-proposed
method, PRIVATE-PGM [16], offers the scalability of these special purpose methods and retains
much of the generality of the general-purpose methods. PRIVATE-PGM can be used for the recon-
struction phase whenever the measurements only depend on the data through its low-dimensional
marginals. PRIVATE-PGM avoids the data vector representation in favor of a more compact graphical
model representation, and was shown to dramatically improve the scalability of a number of popular
mechanisms while also improving accuracy [16]. PRIVATE-PGM was used in the winning entry of
the 2018 NIST differential privacy synthetic data contest [17, 18], as well as in both the first and
second-place entry of the follow-up 2020 NIST differential privacy temporal map contest [19, 20].
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While PRIVATE-PGM is far more scalable than operating over a vector representation of the data, it is
still limited. In particular, its required memory and runtime depend on the structure of the underlying
graphical model, which in turn is determined by which marginals the mechanism depends on. When
the mechanism depends on a modest number of carefully chosen marginals, PRIVATE-PGM is
extremely efficient. But, as the number of required marginals increases, the underlying graphical
model becomes intractably large, and PRIVATE-PGM eventually fails to run. This is due to the
inherent hardness of exact marginal inference in a graphical model.

In this paper, we overcome the scalability limitations of PRIVATE-PGM by proposing a natural
relaxation of the estimation objective that enforces specified local consistency constraints among
marginals, instead of global ones, and can be solved efficiently. Our technical contributions may be
of broader interest. We develop an efficient algorithm to solve a generic convex optimization problem
over the local polytope of a graphical model, which uses a body of prior work on generalized belief
propagation [21–31] and can scale to problems with millions of optimization variables. We also
propose a variational approach to predict “out-of-model” marginals given estimated pseudo-marginals,
which gives a completely variational formulation for both estimation and inference: the results are
invariant to optimization details, including the approximate inference methods used as subroutines.

Our new approach, APPROX-PRIVATE-PGM (APPGM), offers many of the same benefits as
PRIVATE-PGM, but can be deployed in far more settings, allowing effective reconstruction to
be performed without imposing strict constraints on the selected measurements. We show that
APPGM permits efficient reconstruction for HDMM [32], while also improving its accuracy, allows
MWEM [5] to scale to far more measurements, and improves the accuracy of FEM [33].

2 Background

We first review background on our data model, marginals, and differential privacy, following [16].

Data Our input data represents a population of individuals, each contributing a single record
x = (x1, . . . , xd) where xi is the ith attribute belonging to a discrete finite domain Ωi of ni possible
values. The full domain is Ω =

∏d
i=1 Ωi and its size n =

∏d
i=1 ni is exponential in the number of

attributes. A dataset X consists of m such records X = (x(1), . . . ,x(m)). It is often convenient to
work with an alternate representation of X: the data vector or data distribution p is a vector of length
n, indexed by x ∈ Ω such that p(x) counts the fraction of individuals with record equal to x. That is,
p(x) = 1

m

∑m
i=1 I{x(i) = x}, ∀x ∈ Ω, where I{·} is an indicator function.

Marginals When dealing with high-dimensional data, it is common to work with marginals defined
over a subset of attributes. Let r ⊆ [d] be a region or clique that identifies a subset of attributes and,
for x ∈ Ω, let xr = (xi)i∈r be the sub-vector of x restricted to r. Then the marginal vector (or
simply “marginal on r”) µr, is defined by:

µr(xr) =
1

m

m∑
i=1

I{x(i)
r = xr}, ∀xr ∈ Ωr :=

∏
i∈r

Ωi. (1)

This marginal is the data vector on the sub-domain Ωr corresponding to the attribute set r. Its size
is nr := |Ωr| =

∏
i∈r ni, which is exponential in |r| but may be considerably smaller than n. A

marginal on r can be computed from the full data vector or the marginal for any superset of attributes
by summing over variables that are not in r. We denote these (linear) operations by Mr and Ps→r, so
µr = Mrp = Ps→rµs for any r ⊆ s. We will also consider vectors µ that combine marginals for
each region in a collection C, and let MC be the linear operator such that µ = (µr)r∈C = MCp.

Differential Privacy Differential privacy protects individuals by bounding the impact any one
individual can have on the output of an algorithm.
Definition 1 (Differential Privacy [34]). A randomized algorithmA satisfies (ε, δ)-differential privacy
if, for any input X, any X′ ∈ nbrs(X), and any subset of outputs S ⊆ Range(A),

Pr[A(X) ∈ S] ≤ exp(ε) Pr[A(X′) ∈ S] + δ

Above, nbrs(X) denotes the set of datasets formed by replacing any x(i) ∈ X with an arbitrary new
record x′(i) ∈ Ω. When δ = 0 we say A satisfies ε-differential privacy.
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3 Private-PGM

In this section we describe PRIVATE-PGM [16], a general-purpose reconstruction method applied to
differentially private measurements of a discrete dataset. There are two steps to PRIVATE-PGM: (1)
estimate a representation of the data distribution given noisy measurements, and (2) infer answers to
new queries given the data distribution representation.

In particular, suppose an arbitrary (ε, δ)-differentially private algorithm A is run on a discrete
dataset with data vector p0, where A only depends on p0 through its low-dimensional marginals
µ0 = MCp0 for some collection of cliques C. The sample y ∼ A(µ0) typically reveals noisy
high-level aggregate information about the data. PRIVATE-PGM will first estimate a compact
representation of a distribution p̂ that explains y well, and then answer new queries using p̂.

Estimation: Finding a Data Distribution Representation PRIVATE-PGM first estimates a data
vector by finding p̂ to solve the inverse problem minp L(MCp), where L(µ) is a convex loss function
that measures how well µ explains the observations y. Since L(MCp) only depends on p through its
marginals, it is clear we can find the optimal marginals by instead solving the following problem.

Problem 1 (Convex Optimization over the Marginal Polytope). Given a clique set C and convex loss
function L(µ), solve

µ̂ ∈ argmin
µ∈M(C)

L(µ),

whereM(C) = {µ : ∃ p s.t. MCp = µ} is the set of realizable marginals, known as the marginal
polytope of C [35].

The solution to this problem gives marginals that are consistent with some underlying data vector and,
therefore, typically provide a better estimate of the true marginals than y. In the general case, the
loss function L can simply be set to the negative log likelihood, i.e., L(µ) = − log Pr[A(µ) = y],1
however other choices are also possible. As a concrete motivating application, consider the case
where the mechanism A adds Gaussian noise directly to the data marginals µ0, i.e., A(µ0) = y
where yr = µ0,r + N (0, σ2Inr

). In this case, the log-likelihood is proportional to the squared
Euclidean distance and gives the loss function L(µ) = ‖µ− y‖22, so the problem at hand is an L2

minimization problem. The theory for PRIVATE-PGM focuses on convex loss functions, but the
algorithms are also used to seek local minima of Problem 1 when L is non-convex.

Algorithm 1 PROX-PGM [16]

Input: Convex loss function L(µ)

Output: Marginals µ̂, parameters θ̂
θ̂ = 0
for t = 1, . . . , T do
µ̂ =MARGINAL-ORACLE(θ̂)

θ̂ = θ̂ − ηt∇L(µ̂)

return µ̂, θ̂

Graphical models Two remaining issues are how to
solve Problem 1 and how to recover a full data vector
from µ̂. PRIVATE-PGM addresses both with graphical
models. A graphical model with clique set C is a distri-
bution over Ω where the unnormalized probability is a
product of factors involving only subsets of variables,
one for each clique in C. It has the form

pθ(x) =
1

Z
exp

(∑
r∈C

θr(xr)

)
.

The real numbers θr(xr) are log-potentials or parameters. The full parameter vector θ =
(θr(xr))r∈C,xr∈Ωr

matches the marginal vector µ in size and indexing, and the relationship be-
tween these two vectors is central to graphical models [35]:

• A parameter vector θ determines a unique marginal vector µθ ∈M(C), defined as µθ = MCpθ,
the marginals of pθ. Marginal inference is the problem of (efficiently) computing µθ from θ. It
can be solved exactly by algorithms such as variable elimination or belief propagation with a
junction tree [36]. We denote by MARGINAL-ORACLE an algorithm that outputs µθ on input θ.

• For every µ ∈ M(C) with positive entries, there is a unique distribution pθ in the family of
graphical models with cliques C that has marginals µ, and pθ has maximum entropy among all
distributions with marginals µ.

1For mechanisms with continuous output values, interpret this as a negative log-density.
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Figure 1: Comparison of different region graph structures defined over a domain with attributes
{A,B,C,D,E} that support the cliques C = {{A,B,C}, {A,D}, {B,C,D}, {D,E}}.

PROX-PGM (Algorithm 1) is a proximal algorithm to solve Problem 1 [16]. It returns a marginal
vector µ̂ ∈M(C) that minimizes L(µ) and parameters θ̂ such that pθ̂ has marginals µ̂. The core of
the computation is repeated calls to MARGINAL-ORACLE. The estimated graphical model pθ̂ has
cliques C that coincide with the marginals measured by the privacy mechanism, and has maximum
entropy among all distributions whose marginals minimize L(µ). In general, there will be infinitely
many distributions that have marginals µ̂ (and hence are equally good from the perspective of the loss
function L). PRIVATE-PGM chooses the distribution with maximum entropy, which is an appealing
way to break ties that falls out naturally from the graphical model.

Inference: Answering New Queries With pθ̂ in hand, PRIVATE-PGM can readily estimate new
marginals µr. There are two separate cases. If r is contained in a clique of C, we say r is “in-model”,
and we can readily calculate µr from the output of PROX-PGM. The more interesting case occurs
when r is out-of-model (is not contained in a clique of C): in this case, the standard way to compute
µr is to perform variable elimination in the graphical model pθ .
Remark 1. The complexity of PRIVATE-PGM depends on that of MARGINAL-ORACLE, which
depends critically on the structure of the cliques C measured by the privacy mechanism. In general,
running time is exponential in the treewidth of the graph G induced by attribute co-occurrence within
a clique of C. When G is tree-like, PRIVATE-PGM can be highly efficient and exponentially faster
than working with a full data vector. When G is dense, PRIVATE-PGM may fail to run due to time or
memory constraints. This limitation is not specific to the PROX-PGM algorithm: Problem 1 is as
hard as marginal inference, which can be solved by minimizing the (convex) variational free energy
over the marginal polytope [36]. A primary difficulty is the intractability ofM(C), which is a convex
set, but in general requires a very large number of constraints to represent explicitly [35]. In two
state-of-the-art mechanisms for synthetic data, MST [18] and PrivMRF [20], C was specifically
chosen to limit the treewidth and ensure tractability of Private-PGM. In other mechanisms agnostic
to the limitations of PRIVATE-PGM, like HDMM and MWEM, the set C can often lead to graphs
with intractable treewidths.

4 Our Approach

In this section we describe our approach to overcome the main scalability limitations of PRIVATE-
PGM, by introducing suitable approximations and new algorithmic techniques. Our innovations
allow us to scale significantly better than PRIVATE-PGM with respect to the size of C. A high-level
idea is to use approximate marginal inference in the PROX-PGM algorithm, but doing so naively
would make it unclear what, if any, formal problem is being solved. We will develop a principled
approach that uses approximate inference to exactly solve a relaxed optimization problem.

Region Graphs Central to our approach is the notion of a region graph, which is a data structure
that encodes constraints between cliques in a natural graphical format and facilitates message passing
algorithms for approximate marginal inference.
Definition 2 (Region Graph [36]). A region graph G = (V, E) is a directed graph where every vertex
r ∈ V is an attribute clique and for any edge r → s ∈ E we have that r ⊇ s. We say that G supports
a clique set C if for every clique r ∈ C, there exists some r′ ∈ V such that r ⊆ r′.

For any region graph, there is a corresponding set of constraints that characterize the local polytope
of internally consistent pseudo-marginals, defined below.
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Definition 3 (Local Polytope [36]). The local polytope of pseudo-marginals associated with a region
graph G = (V, E) is:

L(G) =

{
τ ≥ 0

∣∣∣∣ 1>τ r = 1 ∀r ∈ V
Pr→sτ r = τ s ∀r → s ∈ E

}
. (2)

The nodes in the region graph correspond to the cliques in the pseudo-marginal vector, while the
edges in the region graph dictate which internal consistency constraints we expect to hold between
two cliques. These constraints are necessary, but not sufficient, for a given set of pseudo-marginals to
be realizable, i.e.,M(V) ⊆ L(G). In the special case when G is a junction tree, these constraints
are also sufficient, and we haveM(V) = L(G).We use the notation τ in place of µ to emphasize
that τ is not necessarily a valid marginal vector, even though we will generally treat it as such. This
notational choice is standard in the graphical models literature [35]. The general idea is to relax
problems involving the intractable marginal polytope to use the local polytope instead, since L(G) is
straightforward to characterize using the linear constraints in Equation (2).

Region graphs can encode different structures, including junction trees and factor graphs as
special cases. For example, Figure 1 shows three different region graphs that support C =
{{A,B,C}, {A,D}, {B,C,D}, {D,E}}. At one extreme is the Junction Tree, shown in Fig-
ure 1a, which is obtained by merging cliques {A,B,C}, {A,D}, and {B,C,D} into a super-clique
{A,B,C,D}. Here,M(V) = L(G), and ordinary belief propagation in this graph corresponds to
exact marginal inference. At the other end of the extreme is the Factor Graph, shown in Figure 1b.
This graph contains one vertex for every clique r ∈ C, plus additional vertices for the singleton cliques.
It encodes constraints that all cliques must agree on common one-way marginals. For example, τABC
and τBCD must agree on the shared one-way marginals τB and τC , but not necessarily on the shared
two-way marginal τBC . A natural middle ground is the fully Saturated Region Graph, shown in
Figure 1c. This graph includes every clique r ∈ C as a vertex, and includes additional vertices to
capture intersections between those cliques. Unlike the factor graph, this graph does require that
τABC is consistent with τBCD with respect to the τBC marginal. Unlike the junction tree, this
graph does not require forming super-cliques whose size grow quickly with |C|. For more details
about the concepts above, please refer to [36, Section 11.3].

The methods we describe in this paper apply for any region graph that supports C. By default, we
simply use the fully saturated region graph, which is the smallest region graph that encodes all
internal consistency constraints, and can easily be constructed given the cliques C [36].

Estimation: Finding an Approximate Data Distribution Representation We begin by introduc-
ing a very natural relaxation of the problem we seek to solve.
Problem 2 (Convex Optimization over the Local Polytope). Given a region graph G and a convex
loss function L(τ ) where τ = (τ r)r∈V , solve:

τ̂ = argmin
τ∈L(G)

L(τ ).

In the problem above, we simply replaced the marginal polytopeM(V) from our original problem2

with the local polytope L(G). Since this is a convex optimization problem with linear constraints, it
can be solved with a number of general purpose techniques, including interior point and active set
methods [37]. However, these methods do nothing to exploit the special structure in the constraint set
L(G), and as such, they have trouble running on large-scale problems.

Our first contribution is to show that we can solve Problem 2 efficiently by instantiating PROX-PGM
with a carefully chosen approximate marginal oracle. To do so, it is useful to view approximate
marginal inference through the lens of the free energy minimization problem, stated below.
Problem 3 (Approximate Free Energy Minimization [36]). Let G be a region graph, θ = (θr)r∈V
be real-valued parameters, and Hκ(τ ) =

∑
r∈V κrH(τ r), where κr ∈ R are counting numbers,

and H(τ r) = −
∑

xr∈Ωr
τ r(xr) log τ r(xr) is the Shannon entropy of τ r, solve:

τ̂ = argmin
τ∈L(G)

−τ>θ −Hκ(τ )

2If G supports C, we can assume without loss of generality that Problem 1 was defined onM(V) instead of
M(C). In particular, the loss function L can be written to depend on marginals (µr′)r′∈V instead of (µr)r∈C ,
because the latter can be computed from the former.
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This problem approximates the (intractable) variational free energy minimization problem [35], for
which the optimum gives the true marginals of pθ, by using L(G) instead of M(V), and using
Hκ(τ ) as an approximation to the full Shannon entropy. Many algorithms for approximate marginal
inference can be seen as solving variants of this free energy minimization problem under different
assumptions about G and κ [21–31].
Theorem 1 (Algorithm for Approximate Free Energy Minimization [25]). Given a region graph
G, parameters θ = (θr)r∈V , and any positive counting numbers κr > 0 for r ∈ V , the convex
generalized belief propagation (CONVEX-GBP) algorithm of [25] solves the approximate free energy
minimization problem of Problem 3.

CONVEX-GBP is listed in Appendix A (Algorithm 2) and is a message-passing algorithm in the
region graph that uses the counting numbers as weights. Importantly, the complexity of CONVEX-
GBP depends mainly on the size of the largest clique in the region graph. In many cases of practical
interest, this will be exponentially smaller in the saturated region graph than in a junction tree.
Theorem 2. When PROX-PGM uses CONVEX-GBP as the MARGINAL-ORACLE (with any positive
counting numbers κ), it solves the convex optimization problem over the local polytope of Problem 2.

This result is remarkable in light of previous work, where different counting number schemes are used
with the goal of tightly approximating the true entropy, and form the basis for different approximate
inference methods. In our setting, all methods with convex counting numbers are equivalent: they
may lead to different parameters θ̂, but the corresponding pseudo-marginals τ̂ = CONVEX-GBP(θ̂)
are invariant. Indeed, the optimal τ̂ depends only on the estimation objective L(τ ) and the structure
of the local polytope. We conjecture that a similar invariance holds for traditional marginal-based
learning objectives with approximate inference [38] when message-passing algorithms based on
convex free-energy approximations are used as the approximate inference method.

Proof. Since L is a convex function and L is a convex constraint set, this problem can be solved with
mirror descent [39]. Each iteration of mirror descent requires solving subproblems of the form:

τ t+1 = argmin
τ∈L

τ>∇L(τ t) +
1

ηt
D(τ , τ t), D(τ , τ t) = ψ(τ )− ψ(τ t)− (τ − τ t)>∇ψ(τ t).

Here,D is a Bregman distance measure and ψ is some strongly convex and continuously differentiable
function. Setting ψ = −Hκ, a negative weighted entropy with any (strongly) convex counting
numbers κ, we arrive at the following update equation:

τ t+1 = argmin
τ∈L(G)

τ>∇L(τ t) +
1

ηt

(
−Hκ(τ ) +Hκ(τ t) + (τ − τ t)>∇Hκ(τ t)

)
= argmin

τ∈L(G)

τ>
(
ηt∇L(τ t) +∇Hκ(τ t)

)
−Hκ(τ ) (algebraic manipulation)

= argmin
τ∈L(G)

τ>
(
ηt∇L(τ t)− θt

)
−Hκ(τ ) (Lemma 1; Appendix A)

= CONVEX-GBP
(
G, θt − ηt∇L(τ t), κ

)
(Theorem 1)

Inference: Answering New Queries We now turn our attention to the problem of inference. The
central challenge is to estimate out-of-model marginals. Let τ̂ and θ̂ be the estimated pseudo-
marginals and corresponding parameters after running PROX-PGM with CONVEX-GBP and region
graph G. We have τ̂ ≈ µ0, and want an estimate τ̂ r ≈ µ0,r where r 6∈ V .

CONVEX-GBP is the mapping such that τ̂ = CONVEX-GBP(θ̂) ≈ µ0. Thus, it is appropriate to
use CONVEX-GBP with estimated parameters θ̂ as the basis for estimating new pseudo-marginals.
This requires selecting an expanded region graph G′ that supports r and new counting number κr. In
Appendix B, we analyze this approach for an idealized setting and find that it leads to estimates τ̂ r
that maximize the entropy H(τ̂ r) subject to τ̂ r being consistent with τ̂ on overlapping marginals.
However, there are two practical difficulties with the idealized setting. First, there may be no τ̂ r
that is consistent with τ̂ on overlapping marginals: this is because τ̂ satisfies only local consistency
constraints. Second, the idealized case uses κr very close to zero, and CONVEX-GBP performs
poorly in this case. Instead, we design an optimization algorithm to mimic the idealized setting:
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Figure 2: Comparison between PROX-PGM with exact and approximate inference (for different
region graph structures): (a) error on in-model (measured) marginals, (b) error on out-of-model
(unmeasured) marginals, and (c) scalability of PROX-PGM vs. number of measured marginals.

Problem 4 (Maximize Entropy Subject to Minimizing Constraint Violation). Let τ̂ = (τ̂u)u∈V and
let r /∈ V . Solve:

max
τ̂r

H(τ̂ r) subject to τ̂ r ∈ argmin
τr∈S

∑
u∈V,s=u∩r

‖Pr→sτ r − Pu→sτ̂u‖22.

This relaxes the constraint that τ̂ r agrees with τ̂ on overlapping marginals, to instead minimize the
L2 constraint violation. The inner problem is a quadratic minimization problem over the probability
simplex S . We show in Appendix B that a maximizer of Problem 4 is obtained by solving the inner
problem once using entropic mirror descent [39].

The advantages of Problem 4 are that it is low-dimensional, only requires information from τ̂ about
attributes that are in r, can be solved much more quickly than running CONVEX-GBP, and can be
solved in parallel for different marginals r, r′. This also gives a fully variational approach: both
estimation and inference are fully defined through convex optimization problems that can be solved
efficiently, and whose solutions are invariant to details of the approximate inference routines such as
counting numbers.

5 Experiments

Comparison to PRIVATE-PGM in a Simple Mechanism We begin by comparing the accuracy
and scalability of APPGM and PRIVATE-PGM for estimating a fixed workload of marginal queries
from noisy measurements of those marginals made by the Laplace mechanism. We use synthetic data
to control the data domain and distribution (details in Appendix C.1) and measure k different 3-way
marginals with ε = 1, for different settings of k. We run PROX-PGM with different versions of
MARGINAL-ORACLE: Exact, Saturated Region Graph, and Factor Graph, where the first corresponds
to PRIVATE-PGM, and the latter two to APPGM with the corresponding region graph (Figure 1).

Accuracy. We first show that when exact inference is tractable, some accuracy is lost by using
approximate inference, but the estimated pseudo-marginals are much better than the noisy ones. We
use eight-dimensional data with n1 = · · · = n8 = 4, which is small enough so exact inference is
always tractable, and measure random 3-way marginals for k from 1 to

(
8
3

)
= 56. We then run 10000

iterations of PROX-PGM using differing choices for MARGINAL-ORACLE, and report the L1 error
on in- and out-of-model marginals, averaged over all cliques and across five trials.

In Figure 2a, we see that the error of all PROX-PGM variants is always lower than the error of
the noisy measurements themselves. Exact (PRIVATE-PGM) always has lowest error, followed
by Saturated Region Graph, then Factor Graph. This matches expectations: richer region graph
structures encode more of the actual constraints and hence provide better error. The trend is similar
for out-of-model marginals (Figure 2b). Factor Graph, which only enforces consistency with respect
to the one-way marginals, performs poorly on unmeasured cliques, while Saturated Region Graph
and Exact, which enforce more constraints, do substantially better. The difference between Saturated
Region Graph and Exact is smaller, but meaningful.

Scalability. Next we consider high-dimensional data and compare the scalability of Exact and
Saturated Region Graph on 100-dimensional data with n1 = · · · = n100 = 10. We vary k from 1
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Figure 3: Three examples of using PROX-PGM to improve scalability and accuracy of other algo-
rithms.

to 104 and calculate the per-iteration time of PROX-PGM.3 We consider two schemes for selecting
measured cliques: random selects triples of attributes uniformly at random, and greedy selects triples
to minimize the junction tree size in each iteration. As shown in Figure 2c, Exact can handle about 50
random measured cliques or 1000 greedy ones before the per-iteration time becomes too expensive
(the growth rate is exponential). In contrast, Saturated Region Graph runs with 10000 measured
cliques for either strategy and could run on larger cases (the growth rate is linear).

Improving Scalability and Accuracy in Sophisticated Mechanisms We show next how PROX-
PGM can be used to improve the performance of two sophisticated mechanisms for answering
complex workloads of linear queries, including marginals. HDMM [32] is a state-of-the-art algorithm
that first selects a “strategy” set of (weighted) marginal queries to be measured, and then reconstructs
answers to workload queries. MWEM [5] is another competitive mechanism that iteratively measures
poorly approximated queries to improve a data distribution approximation. In each algorithm, the
bottleneck in high dimensions is estimating a data distribution p̂, which is prohibitive to do explicitly.
PRIVATE-PGM can extend each algorithm to run in higher dimensions [16], but still becomes
infeasible with enough dimensions and measurements. HDMM is a “batch” algorithm and either can
or cannot run for a particular workload. Because MWEM iteratively selects measurements, even
in high dimensions it can run for some number of iterations before the graphical model structure
becomes too complex. By using APPGM instead, HDMM can run for workloads that were previously
impossible, and MWEM can run for any number of rounds. We use the FIRE dataset from the 2018
NIST synthetic data competition [40], which includes 15 attributes and m ≈ 300,000 individuals.

For HDMM, we consider workloads of k random 3-way marginals, for k = 1, 2, 4, 8, . . . , 256, 455,
run five trials, and report root mean squared error, the objective function that HDMM optimizes.
Figure 3a shows the results. HDMM with a full data vector cannot run for k > 2, but we can still
analytically compute the expected error if it were able to run. HDMM + Exact fails to run beyond
k = 16, while HDMM + Region Graph is able to run in every setting, substantially expanding the
range of settings in which HDMM can be used. Both variants offer the significant error improvements
of PGM-style inference, because they impose non-negativity constraints that reduce error. For
example, when k = 455, there is a 3× reduction in RMSE.

For MWEM, we consider the workload of all 2-way marginals, use a privacy budget of ε = 0.1
per round, and run for as may rounds as possible, until MWEM has measured all 2-way marginals
or exceeds a generous time/memory limit of 24 hours and 16GB. Figure 3b shows the results. As
expected, MWEM + Exact runs successfully in early iterations, but exceeds resource limits by 35–40
rounds. In comparison, MWEM + Region Graph can run to completion and eventually measure all
2-way marginals. For a fixed number of rounds, Exact has lower error, in this case, substantially
so, but results are data-dependent (we evaluate with other datasets in Appendix C). The difference
can largely be traced to Exact’s better performance on out-of-model cliques. In contrast, HDMM’s
measurements support all workload queries, so no out-of-model inference is required, and we see
little gap between exact and approximate inference. Improving performance of approximate inference
for out-of-model marginals is an area to be considered for future work; see Appendix B.

Additional experiments We also apply APPGM to improve the accuracy of FEM, a recent state-of-
the-art query-answering mechanism [33]. The setup is similar to the DualQuery experiment in [16]:

3Scalability experiments were conducted on two cores of a machine with a 2.4GHz CPU and 16 GB of RAM.
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we run FEM to completion to release y, but instead of answering queries directly with y, we use
APPGM to estimate pseudo-marginals, from which we compute query answers. This leads to a
modest error reduction for all ε (Figure 3c; details in Appendix C). In Appendix C we also compare
PRIVATE-PGM and APPGM directly to a method proposed in PriView [9] for estimating consistent
marginals, and find that PGM-based methods are more accurate for almost all values of ε. We
additionally compare PRIVATE-PGM and APPGM to the recent Relaxed Projection method [14],
and found that APPGM performs better for ε > 0.1, although is outperformed for ε ≤ 0.1.

6 Practical Considerations and Limitations

When using our approach in practice, there are several implementation issues to consider. First
note that CONVEX-GBP is an iterative algorithm that potentially requires many iterations to solve
Problem 3, and this marginal inference routine is called within each iteration of PROX-PGM. Our
theory requires running CONVEX-GBP until convergence, but in practice we only need to run it for a
fixed number of iterations. In fact, we find that by warm starting the messages in CONVEX-GBP
to the values from the previous call, we can actually run only one inner iteration of CONVEX-GBP
within each outer iteration of PROX-PGM. This approach works remarkably well and makes much
faster progress on reducing the objective than using more inner iterations. The main drawback of
this is that we can no longer rely on a line search to find an appropriate step size within PROX-PGM,
since one iteration of CONVEX-GBP with warm starting is not necessarily a descent direction. Using
a constant step size works well most of the time, but selecting that step size can be tricky. We utilize
a simple heuristic that seems to work well in most settings, but may require manual tuning in some
cases. Second, we observed that introducing damping into CONVEX-GBP improved its stability and
robustness, especially for very dense region graphs. Finally our MWEM experiment revealed that it is
better to use PRIVATE-PGM over APPGM in the context of an MWEM-style algorithm, even though
PRIVATE-PGM is more limited in the number of rounds it can run for. This performance difference
can be traced back to our method for out-of-model inference, where utilization of local information
only can lead to poor estimates. We discuss alternative approaches for this problem in Appendix B.

7 Related Work

A number of recent approaches support reconstruction for measurements on high-dimensional data.
As part of the PriView algorithm [9], the authors describe a method for resolving inconsistencies in
noisy measured marginals, which has since been incorporated into other mechanisms [41, 11, 42, 10].
Like APPGM, their method only guarantees local consistency. In Appendix C, we show empirically
that it achieves similar (but slightly worse) error than APPGM. In addition, the method is less general,
as measured queries may only be marginals, while APPGM allows an arbitrary convex loss function
to be specified over the marginals. This extra generality is critical for integrating with mechanisms
like HDMM, FEM, and MWEM when the workload contains more complex linear queries.

In concurrent work, Aydore et al. [14] and Liu et al. [15] proposed scalable instantiations of the
MWEM algorithm, both avoiding the data vector representation in favor of novel compact repre-
sentations. Although originally described in the context of MWEM-style algorithms, the key ideas
presented in these works can be abstracted to the more general setting considered in this work.
Specifically, these methods can be seen as alternatives to APPGM for overcoming the scalability
limitations of PRIVATE-PGM; each of these methods make different approximations to overcome
the inherent hardness of Problem 1. A direct comparison between PRIVATE-PGM or APPGM, and
these alternatives remains an interesting question for future research.

To avoid the data vector representation, Liu et al. [13] restrict the support of the data vector to the
domain elements that appear in a public dataset. This is much more scalable, but could result in poor
performance if the public domain and the input domain differ substantially.

Lastly, Dwork et al. [12] propose an algorithm similar to APPGM. Their approach also projects
onto an outer approximation of the marginal polytope, using the Frank Wolfe algorithm. The outer
approximation is constructed via geometric techniques and is different from the local polytope we
consider. They prove favorable error bounds with polynomial running time, but leave open the
implementation and evaluation of their approach. By using the local polytope and message-passing
algorithms, our method can scale in practice to problems with millions of variables.

9



Acknowledgements

This work was supported by the National Science Foundation under grant IIS-1749854, by DARPA
and SPAWAR under contract N66001-15-C-4067, and by Oracle Labs, part of Oracle America,
through a gift to the University of Massachusetts Amherst in support of academic research.

References
[1] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing

linear counting queries under differential privacy. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 123–134.
ACM, 2010.

[2] Jaewoo Lee, Yue Wang, and Daniel Kifer. Maximum likelihood postprocessing for differential
privacy under consistency constraints. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 635–644. ACM, 2015.

[3] Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanavajjhala, and
Gerome Miklau. Ektelo: A framework for defining differentially-private computations. In
Conference on Management of Data (SIGMOD), 2018.

[4] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the
sparse and approximate cases. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 351–360, 2013.

[5] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for
differentially private data release. In Advances in Neural Information Processing Systems, pages
2339–2347, 2012.

[6] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release.
In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 273–282, 2007.

[7] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially private histograms through consistency. Proceedings of the VLDB Endowment, 3
(1-2):1021–1032, 2010.

[8] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differentially private data
cubes: optimizing noise sources and consistency. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 217–228. ACM, 2011.

[9] Wahbeh Qardaji, Weining Yang, and Ninghui Li. PriView: Practical differentially private
release of marginal contingency tables. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1435–1446. ACM, 2014.

[10] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo He, Jiming
Chen, and Yang Zhang. PrivSyn: Differentially private data synthesis. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[11] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. CALM: Consistent
adaptive local marginal for marginal release under local differential privacy. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 212–229,
2018.

[12] Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Efficient algorithms for privately
releasing marginals via convex relaxations. Discrete & Computational Geometry, 53(3):650–
673, 2015.

[13] Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Steven Wu. Leverag-
ing public data for practical private query release. In Proceedings of the 38th International
Conference on Machine Learning, pages 6968–6977, 2021.

10



[14] Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron
Roth, and Ankit A Siva. Differentially private query release through adaptive projection. In
Proceedings of the 38th International Conference on Machine Learning, pages 457–467, 2021.

[15] Terrance Liu, Giuseppe Vietri, and Zhiwei Steven Wu. Iterative methods for private synthetic
data: Unifying framework and new methods. arXiv preprint arXiv:2106.07153, 2021.

[16] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based estimation and
inference for differential privacy. In International Conference on Machine Learning, pages
4435–4444. PMLR, 2019.

[17] www.nist.gov. 2018 differential privacy synthetic data challenge, 2018. URL
https://www.nist.gov/communications-technology-laboratory/pscr/
funding-opportunities/open-innovation-prize-challenges-1.

[18] Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Winning the nist contest: A scalable and
general approach to differentially private synthetic data. Journal of Privacy and Confidentiality,
2021.

[19] www.nist.gov. 2020 differential privacy temporal map challenge, 2020. URL
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/
current-and-upcoming-prize-challenges/2020-differential.

[20] Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. Data synthesis via differentially private
markov random fields. Proceedings of the VLDB Endowment, 14(11):2190–2202, 2021.

[21] Tom Heskes. On the uniqueness of loopy belief propagation fixed points. Neural Computation,
16(11):2379–2413, 2004.

[22] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted belief
propagation algorithms and approximate ML estimation by pseudo-moment matching. In
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 3, page 3,
2003.

[23] Wim Wiegerinck. Approximations with reweighted generalized belief propagation. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2005.

[24] Po-Ling Loh and Andre Wibisono. Concavity of reweighted kikuchi approximation. In
Proceedings of the 27th International Conference on Neural Information Processing Systems-
Volume 2, pages 3473–3481, 2014.

[25] Tamir Hazan, Jian Peng, and Amnon Shashua. Tightening fractional covering upper bounds
on the partition function for high-order region graphs. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence, pages 356–366, 2012.

[26] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approxima-
tions and generalized belief propagation algorithms. IEEE Transactions on information theory,
51(7):2282–2312, 2005.

[27] Tamir Hazan and Amnon Shashua. Convergent message-passing algorithms for inference over
general graphs with convex free energies. In Proceedings of the Twenty-Fourth Conference on
Uncertainty in Artificial Intelligence, pages 264–273, 2008.

[28] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent message passing algorithms: a
unifying view. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 393–401, 2009.

[29] Tom Heskes. Convexity arguments for efficient minimization of the bethe and kikuchi free
energies. Journal of Artificial Intelligence Research, 26:153–190, 2006.

[30] Tom Heskes and Onno Zoeter. Generalized belief propagation for approximate inference in
hybrid bayesian networks. In International Workshop on Artificial Intelligence and Statistics,
pages 132–140. PMLR, 2003.

11

https://www.nist.gov/communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-challenges-1
https://www.nist.gov/communications-technology-laboratory/pscr/funding-opportunities/open-innovation-prize-challenges-1
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential


[31] Payam Pakzad and Venkat Anantharam. Estimation and marginalization using the kikuchi
approximation methods. Neural Computation, 17(8):1836–1873, 2005.

[32] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Optimizing error
of high-dimensional statistical queries under differential privacy. Proceedings of the VLDB
Endowment, 11(10):1206–1219, 2018.

[33] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient
algorithms for private synthetic data release. In International Conference on Machine Learning,
pages 9765–9774. PMLR, 2020.

[34] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Third Theory of Cryptography Conference, 2006.

[35] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[36] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[37] Stephen Boyd, , and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[38] Justin Domke. Learning graphical model parameters with approximate marginal inference.
IEEE transactions on pattern analysis and machine intelligence, 35(10):2454–2467, 2013.

[39] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[40] Diane Ridgeway, Mary Theofanos, Terese Manley, Christine Task, et al. Challenge design and
lessons learned from the 2018 differential privacy challenges. 2021.

[41] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. Differentially private high-dimensional
data publication via sampling-based inference. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 129–138. ACM,
2015.

[42] Amrita Roy Chowdhury, Theodoros Rekatsinas, and Somesh Jha. Data-dependent differentially
private parameter learning for directed graphical models. In International Conference on
Machine Learning, pages 1939–1951. PMLR, 2020.

[43] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven
Wu. Dual query: Practical private query release for high dimensional data. In International
Conference on Machine Learning, pages 1170–1178. PMLR, 2014.

[44] Ninghui Li, Zhikun Zhang, and Tianhao Wang. Dpsyn: Experiences in the nist differential
privacy data synthesis challenges. Journal of Privacy and Confidentiality, 11(2), 2021.

12



A Approximate Marginal Inference Algorithm

Algorithm 2 CONVEX-GBP: Convex Generalized Belief Propagation [25]

Input: Region Graph G = (V, E), parameters θ = (θr)r∈V , convex counting numbers κr > 0
Output: Model marginals τ = (τ r)r∈C
κr,t = κr/(κt +

∑
p→t κp)

Initialize mr→t(xt) = 0 and λt→r(xt) = 0
for i = 1, . . . do

for r → t do
mr→t(xt) = κr log

(∑
xr\xt

exp
(

(θr(xr) +
∑
c6=r λc→r(xc)−

∑
p λr→p(xp))/κr)

))
λt→r(xt) = κr,t

(
θt(xt) +

∑
c λc→t(xt) +

∑
pmp→t(xt)

)
−mt→r(xt)

for r ∈ C do
τ r(xr) ∝ exp

(
(θr(xr) +

∑
t λt→r(xt)−

∑
p λr→p(xr))/κr

)
return τ = (τ r)r∈V

Lemma 1. Let G be a region graph, let κ be positive counting numbers, and suppose τ̂ =

CONVEX-GBP(G, θ̂, κ) for parameters θ̂. Then, for any vector z:

argmin
τ∈L(G)

−τ> (−∇Hκ(τ̂ ) + z)−Hκ(τ ) = argmin
τ∈L(G)

−τ>
(
θ̂ + z

)
−Hκ(τ )

For the remainder of this section, let S be the linear subspace parallel to the affine hull of L(G), and
let S⊥ be the orthogonal complement of S. That is, if we write L(G) = {τ ≥ 0 : Aτ = b} using
the constraint matrix A, then S is the null space of A. This means that for any 0 < τ ∈ L(G) and
z ∈ S, there is some λ > 0 such that τ + λz ∈ L(G). On the other hand, if z ∈ L(G) and z /∈ S,
there is no λ > 0 such that τ + λz ∈ L(G).

Proof. Because τ̂ = CONVEX-GBP(G, θ̂, κ) we know that τ̂ minimizes −τ̃>θ̂ −Hκ(τ̃ ) over all
τ̃ ∈ L(G), and it is easy to see from the final line of CONVEX-GBP that τ̂ > 0. Therefore, we can
apply Lemma 2 below to conclude that there are vectors v⊥,v′⊥ ∈ S⊥ such that

−∇Hκ(τ̂ ) = u(τ̂ ) + v⊥

θ̂ = u(τ̂ ) + v′⊥

where u(τ̂ ) is the projection of −∇Hκ(τ̂ ) onto S.

We will now show that the linear parts of the objectives of the two minimization problems in the
lemma statement differ by only a constant. Since the nonlinear part is the same, this will prove that
the objectives as a whole differ by only a constant, so the problems have the same minimizers, as
stated.

Let z = z‖ + z⊥ where z‖ ∈ S and z⊥ ∈ S⊥. Then, for any τ ∈ L(G), the linear component of the
first objective is

−τ>(−∇Hκ(τ ) + z) = −τ>(u(τ̂ ) + v⊥ + z‖ + z⊥) = −τ>(u(τ̂ ) + z‖) + c (3)

where c = −τ>(v⊥ + z⊥) is a constant that does not depend on τ , since, for any τ , τ ′ ∈ L(G) we
have

τ ′>(v⊥ + z⊥)− τ>(v⊥ + z⊥) = (τ ′ − τ )>(v⊥ + z⊥) = 0,

since τ ′ − τ ∈ S and v⊥ + z⊥ ∈ S⊥.

Similarly, the linear component of the second objective is

−τ>(θ̂ + z) = −τ>(u(τ̂ ) + v′⊥ + z‖ + z⊥) = −τ>(u(τ̂ ) + z‖) + c′ (4)

where c′ = −τT (v′⊥ + z⊥) is a (different) constant independent of τ .

This shows that the objectives differ by a constant, and completes the proof.

Equation (3) and Equation (4) show that the objectives differ by a constant, which completes the
proof.
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Lemma 2. Let G be a region graph, let κ be positive counting numbers, and let τ ∈ L(G) with
τ > 0. Define Θ(τ ) = {θ : τ = argminτ̃∈L(G)−τ̃>θ −Hκ(τ̃ )} to be the set of all θ such that
CONVEX-GBP(G, θ, κ) = τ . Then

Θ(τ ) = u(τ ) + S⊥

where u(τ ) is the projection of −∇Hκ(τ ) onto S.

Proof. This follows fairly standard arguments in convex analysis after noting that the objective of
the optimization problem coincides with the convex conjugate of −Hκ (e.g., see Rockafellar, 20151;
Bertsekas, 20092), but with some specialization to our setting.

Define f(τ ) to be the extended real-valued function that takes value −Hκ(τ ) for τ ∈ L(G) and
+∞ for τ /∈ L(G). Let ∂f(τ ) be the subdifferential of f at τ ∈ L(G).

We will first show that Θ(τ ) = ∂f(τ ).

By the definition of a subgradient, for τ ∈ L(G),

θ ∈ ∂f(τ ) ⇐⇒ f(τ̃ ) ≥ f(τ ) + θ>(τ̃ − τ ) ∀τ̃ ∈ Rd

⇐⇒ f(τ̃ ) ≥ f(τ ) + θ>(τ̃ − τ ) ∀τ̃ ∈ L(G)

⇐⇒ τ>θ − f(τ ) ≥ τ̃>θ − f(τ̃ ) ∀τ̃ ∈ L(G)

⇐⇒ τ = argmax
τ̃∈L(G)

τ̃>θ − f(τ̃ )

⇐⇒ τ = argmin
τ̃∈L(G)

−τ̃>θ −Hκ(τ̃ )

⇐⇒ θ ∈ Θ(τ ).

In the second line, we used the fact that the inequality always holds for τ̃ /∈ L(G) because f(τ̃ ) =
+∞ and the other quantities are finite. In the third line, we used the fact that f(τ̃ ), which coincides
with −Hκ(τ̃ ) on L(G), is strictly convex, so τ is a unique maximizer of τ̃>θ − f(τ̃ ).

Now, we will show that ∂f(τ ) = u(τ ) + S⊥ = {u(τ ) + v : v ∈ S⊥}, which will conclude the
proof.

We use the following characterization of the subdifferential (Rockafellar, 2015, Theorem 23.2):

θ ∈ ∂f(τ ) ⇐⇒ θ>z ≤ f ′(τ ; z) ∀z ∈ Rd (5)
where f ′(τ ; z) is the directional derivative of f along direction z. Since f is the restriction of the
differentiable function −Hκ to L(G), its directional derivatives coincide with those of −Hκ for
points τ ∈ L(G) with τ > 0 and directions in z ∈ S (so that τ + λz ∈ L(G) for small enough
λ > 0), and are equal to +∞ for points τ ∈ L(G) and directions z /∈ S (so that τ + λz /∈ L(G) for
any λ > 0). That is, for τ ∈ L(G) with τ > 0,

f ′(τ ; z) =

{
−∇H(τ )>z z ∈ S
+∞ z /∈ S (6)

Therefore, by Equation (5) and Equation (6), for any τ ∈ L(G) with τ > 0,

θ ∈ ∂f(τ ) ⇐⇒ θ>z ≤ f ′(τ ; z) ∀z ∈ Rd

⇐⇒ θ>z ≤ f ′(τ ; z) ∀z ∈ S
⇐⇒ θ>z ≤ −∇H(τ )>z ∀z ∈ S
⇐⇒ θ>z = −∇H(τ )>z ∀z ∈ S
⇐⇒ θ = u(τ ) + v v ∈ S⊥,

where u(τ ) is the projection of −∇H(τ ) onto S. In the second line, we used the fact that the
inequality always holds for z /∈ S because f ′(τ ; z) = +∞ and the other quantities are finite. In the
fourth line, we observed that z ∈ S iff −z ∈ S (since S is a linear subspace) and

θ>(−z) ≤ −∇H(τ )>(−z) ⇐⇒ θ>z ≥ −∇H(τ )>z,

1Rockafellar, R. T. (2015). Convex analysis. Princeton university press.
2Bertsekas, Dimitri P. Convex optimization theory. Belmont: Athena Scientific, 2009.
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so the third line is equivalent to both inequalities holding for all z ∈ S. The equivalence of the final
line to the penultimate line is a straightforward exercise by breaking both θ and −∇H(τ ) into their
orthogonal components along S and S⊥, respectively, and observing that the component of −∇H(τ )
along S is u(τ ).

B Out-of-Model Inference

We now turn our attention to the problem of out-of-model inference; i.e., estimating τ r where
r 6∈ V . There are many approaches for this problem that seem natural on the surface, but upon close
inspection each one has it’s problems. In Section 4, we proposed one approach that had certain
desirable properties, but we considered many alternatives which enumerate below and discuss in
detail.

B.1 Variable Elimination in pθ

In PRIVATE-PGM, out-of-model inference was done by performing variable elimination in the
graphical model pθ . There are two problems with applying that idea here. First, variable elimination
will not in general be tractable for the graphical models we may encounter, since it is an exact
inference method. Second, if we run variable elimination to estimate in-model marginals from θ
produced by PROX-PGM, it will give a different answer than the pseudo-marginals τ produced
by PROX-PGM (even if τ ∈ M(V) is a realizable marginal). In this case, the pseudo-marginals
estimated by PROX-PGM are the ones that should be trusted, and the parameters θ are only useful in
the context of our approximate marginal oracle CONVEX-GBP. In summary, this approach is not
viable, and even if it was, it has undesirable properties.

Before moving on, we make note of an alternate way to perform exact out-of-model inference that
will motivate our first approach to approximate out-of-model inference. They key idea is to add a
new zero log-potentials θr = 0 for the new clique whose marginal we are interested in estimating.
Clearly, the introduction of this zero log-potential does not change the distribution pθ or it’s in-model
marginals µθ . However, when we run an exact MARGINAL-ORACLE with these new parameters, it
will produce all in-model marginals, and the new out-of-model marginal as well.

B.2 Running CONVEX-GBP on an Expanded Region Graph

Using the idea above, one approach to out-of-model inference is to expand the region graph to include
the region r whose pseudo-marginal we are interested in. This will require adding at least one new
vertex r to the region graph. Edges and additional vertices could be added depending on the structure
of the existing region graph, and the desired local consistency constraints that τ r should obey. With
this new region graph, we can set θr = 0 (and do the same for any additional vertices we added as
well), and run CONVEX-GBP on the new graph. This is an interesting idea, but it leaves open several
questions:

1. What nodes and edges should be included in the augmented region graph?

2. What counting numbers should be assigned to those nodes?

3. What formal guarantees can we make about this approach?

4. Can we analyze the message-passing equations in CONVEX-GBP to perform an equivalent
computation without re-running the algorithm in its entirety?

For question (1) above, a natural choice is to use the same structure as the original region graph.
For example, if the original region graph is a factor graph, then we can simply add one new vertex
corresponding to the new one, and add edges connecting to the singleton cliques. If the original
region graph is saturated, then we can build a new saturated region graph that includes the new clique.

For question (2) above, a natural choice is to use κ′r = 1 for all regions r (including the new
region), since that is the scheme used to set κ within PROX-PGM. Unfortunately, the new pseudo-
marginals τ ′ = CONVEX-GBP(θ′, κ′) may not agree with the originally optimized pseudo-marginals
τ = CONVEX-GBP(θ, κ) on the in-model cliques. Specifically, τ r need not equal τ ′r when r ∈ V .
This is clearly undesirable, and would be a consistency violation. A better choice of the counting
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numbers would be κ′r = κr for r ∈ V and κr′ = 0 otherwise. As we show below, this approach has a
compelling theoretical guarantee.
Theorem 3. Let G = (V , E) be a region graph, θ be parameters, κ be positive counting numbers
and let τ = CONVEX-GBP(G, θ, κ). Now let G′ = (V ′, E ′) be a region graph that extends G (i.e,
V ⊆ V ′ and E ⊆ E ′), θ′r = θr if r ∈ V and θ′r = 0 if r 6∈ V , κ′r = κr for r ∈ V and κ′r = ε
otherwise.

τ ′ = lim
ε→0+

CONVEX-GBP(G′,θ′, κ′)

If S = {τ ′ ∈ L(G′) | τ ′r = τ r∀r ∈ V} 6= ∅, then

τ ′ = argmax
τ ′∈S

∑
r∈V′\V

H(τ ′r)

Proof. We begin by restating the free energy minimization problem solved by CONVEX-GBP.

µ′ = argmin
τ ′∈L(G′)

−θ>τ ′ −Hκ′(τ ′)

= argmin
τ ′∈L(G′)

−
[∑
r∈V

θ>r τ
′ + κrH(τ ′r)

]
−
[ ∑
r∈V′\V

0>τ ′ + εH(τ ′r)
]

= argmin
τ ′∈L(G′)

−
[∑
r∈V

θ>r τ
′ + κrH(τ ′r)

]
− ε

∑
r∈V′\V

H(τ ′r)

Note that as ε→ 0, the objective only depends on τ r for r ∈ V (and not r ∈ V ′ \ V). Thus, τ r only
affect the problem via the constraints they impose on the problem. Since τ is the optimizer of the
relaxed problem when L(G′) is replaced by L(G) (which includes a subset of the constraints), if τ is
feasible in the larger problem (which it is by assumption S 6= ∅), it is also optimal in this problem.
Moreover, since we are taking the limit as ε→ 0 from the right, there will be an infinitesimally small
entropy penalty, which will force µ′r to have maximum entropy among marginals that are consistent
with µ, as desired.

Theorem 3 is a compelling reason to use this approach, namely running CONVEX-GBP with zero
counting numbers for the new cliques whose marginals we are estimating. One subtle detail to this
theorem is that it is certainly possible that S = ∅, which means that there aren’t any pseudo-marginals
in the expanded region graph that are consistent with the pseudo-marginals in the original region
graph. In this case, it is not immediately clear how to characterize the behavior of this approach.
Remark 2 (Special Case: Factor Graph). In the special case when both the original and expanded
region graphs are factor graphs, we can guarantee that S 6= ∅ and we can efficiently estimate the
new pseudo-marginal without rerunning CONVEX-GBP over the full graph. Since factor graphs only
require each pseudo-marginal to be internally consistent with respect to the one-way marginals, we
can always find higher-order marginals by multiplying the one-way marginals. Clearly, this gives the
maximum entropy estimate for the new pseudo-marginal that is internally consistent with the existing
ones. This is a computationally cheap estimate: it simply requires multiplying one-way marginals
and does not require any iterative message passing scheme.

For more complex region graphs, things do not work out so nicely. Since we are mainly interested in
saturated region graphs in this work, this nice result for factor graphs is not particularly useful for
our purposes. In practice, there is a problem with running CONVEX-GBP with a zero or near-zero
counting numbers. We observed empirically that using small counting numbers severely deteriorates
the convergence rate of CONVEX-GBP, and for that reason, this is not an ideal approach.

B.3 Minimizing Constraint Violation and Maximizing Entropy

While the method described above has some drawbacks in practice, the principles underlying the
approach are still sound: namely, we should find the maximum entropy distribution for the new
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marginal that is consistent with the existing marginals (for some natural notion of consistency).
However, for complex region graphs, it is certainly possible that no such marginals exist. In that case,
a natural alternative would be to find a pseudo-marginal that minimizes the constraint violation, and
among all minimizers, has maximum entropy. This is the approach that we evaluated empirically, and
described in Section 4.

It requires solving a quadratic minimization problem over the probability simplex. This problem
can be readily solved with iterative proximal algorithms like entropic mirror descent [39]. Entropic
mirror descent guarantees the solution found will have maximum entropy among all minimizers of
the objective. Thus, when S 6= ∅, this method gives the same answer as Theorem 3. However, it is
more general, and also does something principled when S = ∅. Additionally, this method does not
require any information about attributes not in r, and even though it is an iterative algorithm, each
iteration runs much faster than an iteration of CONVEX-GBP.

B.4 Running PROX-PGM over expanded local polytope.

While the idea above is more principled than the alternatives that preceded it, it is still not ideal
because it does not guarantee perfect consistency between the in-model pseudo-marginals and the
out-of-model pseudo marginals. When perfect consistency is not achievable, it settles for minimizing
the constraint violation.

We can overcome this limitation by running PROX-PGM on an over-saturated region graph. That
is the region graph will contain vertices for every region necessary to define the loss function, and
every region whose pseudo-marginal we are interested in estimated. The additional regions do not
affect the loss function (the log-potentials will always remain 0), but it does impact the constraints.
In particular, upon convergence, the estimated pseudo-marginals will all be locally consistent. This
comes at a cost, however. Since the region graph contains more vertices and edges, each iteration of
PROX-PGM requires more time, and the algorithm as a whole is slower. Whether it makes sense to
use this strategy depends on how important perfect consistency is, as well as how many new marginals
must be answered. In our empirical evaluation of this approach, we found that it did produce better
estimates than the previous idea, but also took considerably longer.

B.5 Incorporating Global Information

As we saw empirically in Section 5, our approach to out-of-model inference did not perform particu-
larly well compared to the exact method used in PRIVATE-PGM. We conducted more experiments to
verify this in Appendix C.2. In this subsection, we explore in greater detail why it did not perform
well in all cases.

Consider a simple graphical model with cliques C = {{A,B}, {B,C}}, and suppose that A is highly
correlated with B and B is highly correlated with C. Then clearly, A and C should also be highly
correlated. When performing exact inference in this model, we preserve this correlation between A
and C. However, when we only require local consistency for the new clique, we will assume that A
and C are independent, and lose the correlation between A and C.

Note that all methods described thus far suffer from this problem, not just the one method we
evaluated in this paper. To correctly preserve the correlation between A and C, we would have
to first estimate the {A,B,C} marginal then derive the {A,C} marginal from it. This could be
accomplished by adding an {A,B,C} region to the region graph and using any of the methods
described above. In this toy problem, it is easy enough to do and feasible, but for larger region graphs,
it is not immediately obvious how to generalize the idea.

Since exact marginal inference is not feasible for the graphs we are interested in, it is clear that
we must make some approximation. It is not clear what the nature of the approximation should be,
however. We showed that only using local information in the approximation has problems in some
cases, and utilizing some global information may give better results in some cases. We leave this as
an interesting open problem.
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C Additional Experiments

C.1 Synthetic Data used in Experiments

Given a domain size (n1, . . . , nd) and a number of records m, we generate synthetic data to use in
experiments as follows:

1. Compute a random spanning tree of the complete graph with nodes 1, . . . , d. The edges in this
tree will correspond to the cliques in our model.

2. For each edge r in the tree, set θr ∼ N(0, σ2)nr . Here σ is a “temperature” parameter that
determines the strength of the parameters.

3. Sample m records from the graphical model pθ .

C.2 MWEM Experiments

In Figure 3b of Section 5 we observed that integrating APPGM into MWEM can enable the
mechanism to run for more rounds, but the approximation resulted in much worse error for the same
number of rounds. When run to completion, MWEM+APPGM did achieve lower error than the
minimum error achieved by MWEM+PRIVATE-PGM, but it required running for 3× as many rounds
and thus spending 3× as much privacy budget. In the figure below, we include additional lines for
different privacy levels ε = 0.05, 0.1, 0.2 per round. As shown in the figure, it would be better to
run MWEM + Exact for 35 round at ε = 0.1 than it would be to run MWEM + Region Graph for 70
rounds at ε = 0.05.
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As hinted at in the main text, the main reason Region Graph performs poorly here is because it only
incorporates local information when conducting out-of-model inference, which is problematic for
this dataset. To demonstrate that this is really the problem, we repeat the experiment with ε = ∞.
That is, in each round of MWEM, we exactly select the worse approximated clique, and measure
the corresponding marginal with no noise. Since no noise is added, the measured marginals solve
Problem 2 and there is no need to run PROX-PGM. Thus, the only difference between Exact and
Region Graph is in the handling of out-of-model marginals. We run the experiment for five datasets
and plot the results below. The additional error for Region Graph is particularly large for the fire
and msnbc dataset but not as much for adult, loans, and titanic. msnbc is a click stream dataset
and is thus naturally modeled as a Markov chain. Once the 2-way marginals corresponding to the
edges in this Markov chain are measured, MWEM + Exact achieves very low error. MWEM + Exact
preserves the long range dependencies between the first and last node in the chain, whereas MWEM
+ Region Graph only preserves the local dependencies, which explains the difference in this case.
Some datasets (like adult, loans, and titanic) do not have strong dependency chains as msnbc does,
and in these cases there is a smaller difference in error for out-of-model marginals.

18



0 20 40 60 80 100
Rounds of MWEM

0

10 2

10 1

100

L 1
 W

or
kl

oa
d 

Er
ro

r

fire
MWEM + Exact
MWEM + Region Graph

0 20 40 60 80
Rounds of MWEM

0

10 2

10 1

100

L 1
 W

or
kl

oa
d 

Er
ro

r

adult
MWEM + Exact
MWEM + Region Graph

0 200 400 600 800 1000
Rounds of MWEM

0

10 2

10 1

100

L 1
 W

or
kl

oa
d 

Er
ro

r

loans
MWEM + Exact
MWEM + Region Graph

0 20 40 60 80 100 120
Rounds of MWEM

0

10 2

10 1

100

L 1
 W

or
kl

oa
d 

Er
ro

r

msnbc
MWEM + Exact
MWEM + Region Graph

0 5 10 15 20 25 30 35
Rounds of MWEM

0

10 2

10 1

100

L 1
 W

or
kl

oa
d 

Er
ro

r

titanic
MWEM + Exact
MWEM + Region Graph

C.3 FEM Experiments

As hinted at in Section 5, our method can be integrated into FEM as well [33]. The integration is
similar to how PRIVATE-PGM is used to improve DualQuery [16, 43]. Like MWEM, FEM runs for
a specified number of rounds, and maintains an estimate of the data distribution (in tabular format)
throughout the execution. In each round, FEM selects a query from the workload that is poorly
approximated under the current estimate of the data distribution using the exponential mechanism.
This is the only way in which FEM interacts with the sensitive data (Unlike MWEM, it does not
measure this query with Laplace noise). It then adds records to the estimated dataset that could
explain the previous measurement, in the hopes of reducing the error on that query.

To integrate into FEM, we first note that the mechanism only depends on the data through the answers
to the workload. If the workload consists of marginal queries, then our methods apply. We derive
an expression for the (negative) log-likelihood of the observations, which are the samples from the
exponential mechanism in each round, and use this as our objective function for Problem 2. After
solving Problem 2 with PROX-PGM, we can use the estimated pseudo-marginals to answer the
workload in place of the synthetic dataset generated by FEM.

In this experiment, we use the adult dataset, as that was one of the main datasets considered in FEM.
We note that FEM has a number of hyper-parameters, and it is not obvious how to select them, and
selecting them incorrectly can result in very poor performance. However, in the authors open source
implementation, they provided a set of tuned hyper-parameters a particular dataset/workload pair:
the adult dataset and the workload of 64 random 3-way marginals. For a fair comparison, this is the
experimental setting we consider.

We run FEM and FEM + Region Graph and note that FEM + Exact failed to run here, because the
underlying junction tree necessary to perform exact marginal inference is too large. We report the
L∞ workload error (which is what FEM is designed to minimize), as well as the L1 workload error
(which better captures the overall error. The results are shown below. In general, FEM + Region
Graph achieves slightly lower error than regular FEM in both L∞ and L1 error. There is one outlier
for L∞ error when ε = 1 that skews the results, and there was negligible improvement at ε = 0.25
and ε = 0.5 as well. There was consistent improvement in L1 error for every value of ε, although the
magnitude of the improvement is somewhat small.
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C.4 Comparison with PriView and Relaxed Projection

As discussed in Section 7, PriView proposed a method for resolving inconsistencies in noisy marginals
that can be seen as a less general competitor to us. We compare against that competitor here. We
use the implementation of this method available from team DPSyn in the 2018 NIST synthetic data
competition [44]. In addition, we compare against a variant of the Relaxed Projection algorithm from
[14]. We describe the modifications made to this algorithm in the next section.

To compare these methods with our proposed method, we consider the adult dataset and measure 32
random 2-way marginals using the Gaussian mechanism with privacy parameters ε ∈ [0.01, 100] and
δ = 10−6. In this particular case, PRIVATE-PGM can also run, so we include that as a competitor as
well. We report the L1 error of the estimated marginals, averaged over all measured marginals and
5 trials for each method in the table below. All four methods for resolving inconsistencies provide
significantly better error than the original noisy marginals.

Ignoring Relaxed Projection, PROX-PGM (Exact) is the best method in every setting except ε = 100.0.
The second best method is PROX-PGM (Region Graph) in every setting except ε = 0.01 and
ε = 100.0. At the smallest value of ε, our method is likely overfitting to the noise, and the estimated
pseudo-marginals are likely far from the set of realizable marginals. At the largest value of ε, both
variants of PROX-PGM simply didn’t run for enough iterations (10000 was used in this experiment).
Due to the small amount of noise, the true solution to Problem 2 likely does not contain any negatives,
and the PriView approach solves the relaxed problem without the non-negativity constraints in closed
form. PROX-PGM should eventually converge to the same solution but it would require more than
10000 iterations.

Relaxed Projection (RP) performs slightly better than even PROX-PGM (Exact) for ε ≤ 0.1, an
interesting and surprising observation. We conjecture that this is because RP essentially restricts the
search space to distributions which are a mixture of products (as described in the next section). This
can be seen as a form of regularization, which can help in the high-privacy / high-noise regime. For
ε > 0.1, RP is worse than both PROX-PGM (Exact) and PROX-PGM (Region Graph). Moreover, it
is the only method whose error does not tend towards 0 as ε gets larger. We suspect this is due to
the non-convexity in the problem formulation for RP: it is finding a local minimum to the problem
that does not have 0 error. Alternatively, it could be possible that the restircted search space does not
include a distribution with near-zero error, although we believe this is a less likely explanation.

ε PROX-PGM PROX-PGM PriView Relaxed Noisy
(Exact) (Region Graph) Consistency Projection Marginals

0.0100 0.4375 ± 0.0245 0.5630 ± 0.0344 0.5229 ± 0.0202 0.4189 ± 0.0275 28.050 ± 0.1249
0.0316 0.2848 ± 0.0081 0.3277 ± 0.0100 0.3525 ± 0.0078 0.2567 ± 0.0045 8.8782 ± 0.0254
0.1000 0.1724 ± 0.0032 0.1788 ± 0.0025 0.1965 ± 0.0051 0.1620 ± 0.0036 2.8091 ± 0.0101
0.3162 0.0908 ± 0.0009 0.0931 ± 0.0018 0.1007 ± 0.0016 0.1031 ± 0.0025 0.8919 ± 0.0030
1.0000 0.0433 ± 0.0008 0.0447 ± 0.0006 0.0510 ± 0.0003 0.0746 ± 0.0009 0.2853 ± 0.0007
3.1622 0.0187 ± 0.0001 0.0198 ± 0.0002 0.0229 ± 0.0003 0.0617 ± 0.0007 0.0934 ± 0.0003
10.000 0.0074 ± 0.0001 0.0087 ± 0.0001 0.0095 ± 0.0001 0.0582 ± 0.0011 0.0324 ± 0.0001
31.622 0.0037 ± 0.0000 0.0045 ± 0.0000 0.0040 ± 0.0000 0.0579 ± 0.0017 0.0125 ± 0.0000
100.00 0.0027 ± 0.0000 0.0032 ± 0.0000 0.0018 ± 0.0000 0.0574 ± 0.0012 0.0054 ± 0.0000
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C.5 Implementation Details for Relaxed Projection

The authors of the Relaxed Projection method released their code on GitHub. They provided code to
run their end-to-end MWEM-style algorithm, but did not expose the subroutine for performing the
relaxed projection in a way that can easily be tested in isolation. For that reason, we compare against
a faithful reimplementation of their approach. This reimplementation is available in the open source
PRIVATE-PGM repository.

One way to view RP is as optimizing over the set of distributions which are mixtures of products.
That is, each row of the relaxed tabualr format can be viewed as a product distribution (if the values
for each feature are non-negative and sum to one). For multiple rows, this translates to a format
that has capacity to represent a mixture of product distributions. While the authors do not propose
restricting the feature values to satisfy the aforementioned constraints, in our reimplemenation, we
apply softmax transformations to the table to ensure this invariant holds. This is related to RAPsoftmax

as described by Liu et al. [15], although the interpretation as a mixture of products was not mentioned
in that work. For the experiment above, we consider distributions with 100 mixture components.
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