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Figure 1: The U.S. Next Generation Weather Radar (NEXRAD) system. The white dots indicate
radar stations and the blue blobs surrounding them are detected migratory birds. The green and
yellow splotches are storms.

Figure 2: Roost exodus and appearance in radar data. (a) Illustration of roost exodus. (b) A
radar traces out cone-shaped slices of the atmosphere (left), which are rendered as top-down
images (center). This image from the Dover, Delaware radar station at 6:52 a.m. on October
2nd, 2010, shows at least eight roosts. Several are shown in more detail to the right, together
with crops of one roost from five consecutive reflectivity and radial velocity images over a period
of 39 minutes. These show the distinctive expanding ring and “red–white–green” diverging
velocity patterns.



Figure 3: Tree swallow fall migration in 2013. The colored circles show detected roost locations
within each half-month period. The color of each circle indicates the habitat type.

The decline of wildlife populations is one of the biggest environmental challenges of this century.
As a case in point, the North American bird population has declined by 2.9 billion birds since
1970—a drop of 29 percent [1]. Information about the full life cycles of migratory birds is thus
urgently needed to understand and reverse the causes of their decline. A first step is to gather
historical information about bird behaviors such as migration and habitat usage. However, these
behaviors are incredibly hard to measure. While some individual birds can be tracked with
digital devices, technical and logistical challenges prevent us from tracking a large number of
birds over long distances to gain a comprehensive understanding of continental-scale behaviors
such as migration.

Fortunately, the U.S. weather radar network offers an unprecedented opportunity to study
dynamic, continental-scale movements of animals over a long time period. The National
Weather Service operates a network of 143 radars in the contiguous U.S. These radars were
designed to study weather phenomena such as precipitation and severe storms, but are very
sensitive and turn out to also detect flying animals, including birds, bats, and insects. The data
archive dates from the early 1990s and provides comprehensive views of a number of
significant biological phenomena. These include broad-scale patterns of bird migration, such as
the density and velocity of migrating birds flying over the entire country, as shown in Figure 1.
Radars can also detect phenomena that can be matched to individual species, such as insect
hatches and departures of large flocks of birds or bats from roosting locations. For this reason,
radar data has been used in ecological research for decades. However, the scope of ecological
research using weather radar has historically been limited due to the difficulty of accessing the
biological information in the data. Researchers have only recently begun to apply artificial
intelligence (AI) to unlock truly broad-scale and long-term information from this rich data source
[2].

Tracking Birds with Artificial Intelligence
We developed an AI system to automatically track the roosting and migration behaviors of
several species of songbirds. These birds gather in large communal roosts at night during
portions of the year, and each roost may contain thousands to millions of birds. The roosts are
packed so densely that the birds are visible on radar when they depart in the morning. Roosts
occur all over the U.S., but few are documented, and most are never witnessed by humans
since birds enter and leave the roosts during twilight. Those who do witness the swarming



behavior of huge flocks at roosts report an awe-inspiring spectacle1. We are particularly
interested in swallow species, which, due to their unique behavior, create a distinctive
expanding ring pattern in radar (see Figure 2). During fall and winter, the tree swallow is the only
swallow species present in North America, so roost signatures provide nearly unambiguous
information about a single species at continental scale and a daily resolution. This is highly
significant from an ecological perspective. Swallows are aerial insectivores, a population that is
rapidly declining in North America, possibly due to widespread reductions in insect populations
amongst other causes. Precisely documenting migratory patterns is a research priority for
understanding the loss of these vulnerable bird populations [3].

The dramatic successes of deep learning for recognition tasks make it an excellent candidate
for detecting and tracking roosts using radar data. Our overall approach consists of four steps.
First, the radar scans are rendered as multi-channel images and a single-frame roost detector
system is built based on Faster R-CNN, an established object detection framework that uses
convolutional neural networks [4]. Interestingly, although radar data is visually different from
natural images, we found that pretraining the network on a large natural image dataset (in
particular ImageNet [5]) is quite useful; without pretraining, the networks took significantly longer
to converge and resulted in 15 percent lower performance. Then, a tracking system based on
the “detect-then-track” paradigm is developed. The system assembles roost detections into
sequences to compute biologically meaningful measures and improve detector performance.
Specifically, we employ a greedy heuristic to assemble detections from individual frames into
tracks, starting with high-scoring detections and incrementally adding unmatched detections
with high overlap in nearby frames. After associating detections, we apply a Kalman smoother
to each track using a linear dynamical system model for the bounding box center and radius.
Our error analysis suggests that most false positives from our detection and tracking pipeline
were due to precipitation, which appear as highly complex and variable patterns in radar
images—it is thus common to find small image patches that share the general shape and
velocity pattern of roosts. The second leading source of false positives was wind farms.
Surprisingly, the wind farms share several features of roosts: they appear as small
high-reflectivity “blobs” and have a diverse velocity field due to spinning turbine blades. We
exploit auxiliary information about precipitation and wind farms (e.g., a wind turbine database) to
reduce these false positives. In the final system, 93.5 percent of the top 521 tracks on test data
were correctly identified and tracked.

A significant challenge in this work was the presence of systematic differences in labeling style.
We obtained a data set of manually annotated roosts collected for prior ecological research,
believed to be nearly all tree swallow roosts. Each label records the position and radius of a
circle within a radar image that best approximates the roost. We collected scans starting from 30
minutes before sunrise to 90 minutes after, leading to a large data set of 63,691 labeled roosts
in 88,972 radar scans. However, this training data was annotated by different researchers and
naturalists using a public tool developed for prior research studies. Since the annotators had
different backgrounds and goals, and roost appearance in radar is poorly understood, there was
considerable variability in the labels, much of which was specific to individual users. This

1 See https://people.cs.umass.edu/~zezhoucheng/roosts for an example.
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variation makes evaluation using held-out data very difficult and inhibits learning due to
inconsistent supervision. To solve this issue, we developed a novel approach to jointly learn a
detector together with user-specific models of labeling style. Specifically, we modeled the true
label as a latent variable and introduced a probabilistic user model for the observed label
conditioned on the image, true label, and user. We developed a variational
expectation–maximization learning algorithm (for more details, see [6]) that permits learning with
only black-box access to an existing object detection model, such as Faster R-CNN. Our results
showed that accounting for user-specific labeling bias significantly improves evaluation and
learning.

Insights into a Migratory Season
Finally, we conducted a case study where we used our detector and tracker to synthesize
knowledge about continental-scale movement patterns of swallows. We applied our pipeline to
419,000 radar scans collected from 86 radar stations in the eastern U.S. from October 2013
through March 2014. During these months, tree swallows are the only swallow species in the
U.S. in fall and winter, and are the predominant species in early spring. They are thus
responsible for the vast majority of radar roost signatures. Widespread statistics of roost
locations and habitat usage throughout a migratory season have not previously been
documented. In this case study, our AI system enabled the first ever comprehensive
measurements of a single species of bird across its range on a daily basis. The detector has
excellent precision, detects previously unknown roosts, and demonstrates the ability to generate
urgently needed continental-scale information about the non-breeding season movements and
habitat use of an aerial insectivore. A summary of results from our case study is depicted in
Figure 3. In early October 2013, tree swallows left their breeding territories and formed
migratory and pre-migratory roosts throughout their breeding range across the northern U.S. By
early November, only a few roosts lingered near major water bodies in the central U.S.; some
birds have left the U.S. entirely to points farther south, while some remain in staging areas along
the Gulf Coast. By December, activity in the Gulf Coast has diminished, and roosts were more
concentrated in Florida, where a population of tree swallows will spend the entire winter. This
case study highlights the importance of the eastern seaboard and the Mississippi valley as
migration corridors, with different patterns of habitat use (wetland versus agricultural) in each.
The strong association with agricultural habitats during the harvest season suggests interesting
potential interactions between humans and the migration strategy of swallows. These results
provide a starting point to better understand and conserve the bird populations.

Conclusion
Looking into the future, our system will help scientists to collect fine-grained measurements of
birds—across the continent, at a daily time scale—from the entire 20-year radar archive. The
findings can be used to study trends in population size and migration behavior in relation to
changes in climate and habitat availability, and we will hopefully gain some of the first insights
into where and when birds die during their annual life cycle.
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