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Abstract

To survive in nutrient-poor habitats, carnivorous plants capture small organisms comprising complex
substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to
the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of
nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in
multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of
carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from
their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage,
pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct)
glands then absorb the released compounds via various membrane transport proteins or endocytosis.
Thus, these glands function in a manner similar to animal cells that are physiologically important in the
digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous
plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell
walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on
the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on

the forms and functions of glands.
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Main text

The carnivorous plant leaf as an all-in-one organ analogous to the animal digestive tract. Like an
animal’s mouth, carnivorous plants use their trapping structures to “eat” their prey, primarily small
arthropods. All carnivorous plants discovered to date capture their prey using modified leaves called
“trap leaves”, except for Triantha (false asphodel), which was recently shown to produce flypaper-type
traps exclusively on its flower stalks (Lin et al., 2021). Although trap leaves share many functions with
animal digestive tracts, there are striking differences in their spatial arrangements (Fig. 1). Most
vertebrate digestive tracts are divided into functionally specialized organs such as the mouth, stomach,
and intestines, where food is digested and absorbed in distinct compartments (Hedrich, 2015). In
carnivorous plants, however, the prey does not travel through a digestive tract but instead remains in
the same organ where it was captured for subsequent digestion and absorption (comparable to some
animals with a blind-ended digestive tract, such as polyps (Steinmetz, 2019)). Therefore, in principle,
trap leaves are all-in-one organs with multifaceted functions, regardless of trap type (Fig. 2). However,
in certain trap types, a spatial split of functions may be observed within the organ (i.e., within a single
leaf). A striking example is the eel traps of Genlisea (corkscrew plants), in which bifurcating arm-like
trapping organs are well separated from the digestive chamber (Fig. 2).

Most carnivorous plants employ their leaf-derived traps (or parts of these structures) for both
photosynthesis and prey capture, while a few plants develop specialized trap leaves in addition to
conventional foliar leaves (Cephalotus [Albany pitcher plant], Genlisea, and some Utricularia
[bladderworts] species) or compensate for the reduced photosynthetic function of the traps by
generating modified shoots (most Utricularia species) (Fleischmann et al., 2018b; Fleischmann, 2018).

The primary function of the animal stomach is the chemical breakdown of food. The parietal
cells of the human stomach secrete hydrochloric acid (Engevik et al., 2020), which creates a highly
acidic environment with a pH of ~1.5 (Dressman et al., 1990; Russell et al., 1993). The acidic conditions
serve as a barrier against food-borne pathogens and provide the optimal environment for digestive
enzyme activity (Smith, 2003; Martinsen et al., 2005). Although typically not as acidic as the human
stomach, the digestive fluids of carnivorous plants can be highly acidic, often reaching pH 2 to 3, which
is more acidic on average than the gastric acids of insect-eating animals (Beasley et al., 2015) (Fig. 3
and Table S1). Akin to the animal stomach, this acidic environment is primarily generated by inorganic
acids, mainly hydrochloric acid (Rea, 1982). The molecular machinery that generates hydrochloric acid
is largely unknown in many carnivorous plants, but in Dionaea (Venus flytrap), active exocytosis
coincides with the secretion of calcium, protons, and chloride, suggesting the involvement of vesicle-
mediated transport that prevents disturbance of the membrane potentials of gland cells (Scherzer et al.,
2017). Alternatively, membrane proteins such as ion channels may be involved in this process, as shown

in animals (Fig. 1B).
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One major proteolytic enzyme activated under acidic conditions in the human stomach is pepsin
(Fruton, 2002). Since pepsin contains two aspartic acid residues in its active site, this enzyme belongs
to the aspartic protease protein family. Carnivorous plants use enzymes similar to animal pepsin to
break down animal proteins, as discovered by Charles Darwin (Darwin, 1875). More recently,
carnivory-active proteolytic enzymes were isolated from MNepenthes (tropical pitcher plants),
Cephalotus, and Sarracenia (North American pitcher plants) and were found to be aspartic proteases
(Athauda et al., 2004; Hatano and Hamada, 2008; Rottloff et al., 2016; Fukushima et al., 2017).
Although Dionaea also secretes aspartic proteases (Schulze et al., 2012; Paszota et al., 2014), cysteine
proteases are likely the most abundant proteolytic enzymes in its digestive fluid (Takahashi et al., 2011;
Libiakova et al., 2014). Many carnivorous plants possess several additional enzyme classes that degrade
various high-molecular-weight compounds found in an insect’s body. Examples include chitinases,
which break down chitin, a component of the arthropod exoskeleton; ribonucleases, which break down
nucleic acids; and other enzymes, such as amylases, esterases, and phosphatases (Ravee et al., 2018).
This rich enzymatic repertoire parallels that of animal digestive systems (Lemaitre and Miguel-Aliaga,
2013; Janiak, 2016). Their evolutionary origin is often linked to defense mechanisms (discussed later),
but some enzymes appear to have been coopted from other ancestral functions (Kocab et al., 2020). The
secretion of proteins such as digestive enzymes is assumed to occur via the conventional secretory
pathway common to plants and animals (Wang et al., 2018), although other pathways may also be
involved (see Supplemental Text 1). However, in several carnivorous plants, prey digestion is partly or
fully performed by associated microorganisms that live in the trap—comparable to the intestinal
microbiota in animals, which are also essential for digestion (Hanning and Diaz-Sanchez, 2015).

Digested food in the human stomach is transported to the intestine, where degraded products
are absorbed. Numerous transporter proteins in animal intestines participate in the uptake of a variety
of nutrients such as ions, sugars, amino acids, and peptides (Pacha, 2000; Jackson and Mclaughlin,
2006; Broer, 2008; Boudry et al., 2010; Schmidt et al., 2010; Estudante et al., 2013; Brder and
Fairweather, 2018; Rajendran et al., 2018; Engevik and Engevik, 2021). Several transporter proteins
involved in nutrient absorption have been identified in Dionaea, whose repertoire may be distinct from
its human counterparts (Fig. 1B). Although transporters usually absorb only specific compounds,
mammalian intestines, often during early postnatal life, can encapsulate extracellular macromolecules
in vesicles and absorb them into cells intact (Pacha, 2000). This process, endocytosis, enables relatively
non-selective nutrient uptake. This combination of membrane protein action and endocytosis is also
found in carnivorous plant leaves (Adlassnig et al., 2012). Thanks to their variety of digestive enzymes
and absorption pathways, carnivorous plants can utilize a wide range of prey-derived small and large

molecules; the latter include proteins, nucleic acids, chitins, and glucans (Matusikova et al., 2018).

Digestive and absorptive glands. Glands are not unique to carnivorous plants, as many vascular plants

possess glands for secreting various materials, including nectar, mucilage, resin, salts, aromatic
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compounds, and physiological residues (Callow et al., 2000; Mehltreter et al., 2021). Such exudates
often contain hydrolytic enzymes and other proteins (Shepherd and Wagner, 2007; Heil, 2011). Some
of the most commonly secreted proteins are pathogenesis-related proteins, which prevent fungal and
bacterial growth via hydrolytic activity or function in processes such as lipid transfer and defense
signaling (Sels et al., 2008). As such, the glandular functions in trap leaves may be considered
convergent exaptations of the various repertoires of structures and exudates found across angiosperm
phylogeny (Juniper et al., 1989; Fleischmann et al., 2018a b). For example, in a study of 19 non-
carnivorous plants, 15 species were found to have protease activity in their glandular trichome
secretions (Spomer, 1999).

Like other secretory tissues, such as hydathodes, salt glands, and nectaries (Fahn, 1988; Vogel,
1998), the glands of carnivorous plants are distinguished by their physiological functions, which are
related to prey digestion and nutrient absorption. Their morphology is often well differentiated from
that of other epidermal cells (Juniper et al., 1989), but in Sarraceniaceae, epidermal cells that may differ
only slightly in size from surrounding cells exhibit cuticular permeability and endocytotic activity, the
hallmark features of carnivorous plant glands (Koller-Peroutka et al., 2019). Digestive glands secrete
mucilage, ions, and proteins including digestive enzymes (Darwin, 1875; Juniper et al., 1989). The same
or morphologically distinct glands then absorb the degraded compounds via the activities of membrane
transport proteins and endocytosis. The occurrence of more than one type of gland is common in
carnivorous plant groups (Juniper et al., 1989), but their functional differentiation is not clearly
understood in many species. Although glands are defined based on their secretory or absorptive
functions, they are often judged to be glands based on their morphology and localization. As such, it
has been assumed that these morphological differences come with functional differences in terms of
digestive and absorptive capabilities, but more recent evidence points towards at least partial overlap in
functions between different types of glands in different lineages. For example, phosphatase activity
could be detected in both sessile and stalked glands of Pinguicula (butterworts) (Ptachno et al., 2006),
suggesting both glands are capable of digestion. There is also evidence of endocytotic uptake in both
types of glands of Drosophyllum (Adlassnig et al., 2012). However, a more comprehensive study

comparing all relevant genera and glands will be necessary to dispel the initial dogma completely.

Evolution of different trap types from flypaper traps. The flypaper trap is the most frequently
occurring type of trap in carnivorous plants, having independently evolved in at least six lineages,
including three in the Lamiales alone (in Pinguicula, Byblis [rainbow plants], and Philcoxia)
(Schéferhoff et al., 2010; Fleischmann et al., 2018a b), at least one each within the Caryophyllales and
Ericales (Albert et al., 1992), as well as the recently discovered carnivorous inflorescences of Triantha
occidentalis (Lin et al., 2021) (Fig. 2). Some plants are considered “para-carnivorous”, that is, sticky
plants that casually trap insects but do not make use of the trapped “prey”, for example, Ibicella

(Ptachno et al., 2009) and Stylidium (Darnowski et al., 2006). Note that the features required for the
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carnivorous syndrome are controversial and vary among researchers (Adamec et al., 2021); the term
“para-carnivorous” is not clear-cut and does not imply a “transitional species” on the way to becoming
a carnivorous plant. In any case, even more disparate species throughout the angiosperm phylogeny
possess sticky trichomes (likely upwards of thousands of species), including ones that are unequivocally
not currently considered carnivorous or para-carnivorous; instead, they entrap arthropods primarily for
herbivore defense, as exemplified by several Lamiales and Solanaceae species (Adlassnig et al., 2010;
Bar and Shtein, 2019; Adamec et al., 2021; Chase and Christenhusz, 2021).

Flypaper traps may have given rise to all other trap types (Albert et al., 1992; Fleischmann et
al., 2018b). In the carnivorous Caryophyllales, the most parsimonious hypothesis is that the flypaper
trap type is plesiomorphic, with snap traps and pitfall traps derived from ancestors with sticky traps
(Heubl et al., 2006; Renner and Specht, 2011; Fleischmann et al., 2018b; Fleischmann et al., 2018a).
Similarly, the flypaper trap of Pinguicula is sister to the two other trap types in Lentibulariaceae in
carnivorous Lamiales (Miiller et al., 2006). Although possibly not an immediate phylogenetic sister
(Lofstrand and Schonenberger, 2015), the pitfall traps in Ericales are also closely related to those of a
flypaper trap lineage (Roridula).

Evidence suggests that mucilage production in ancestral flypaper traps has been retained in
some of these other trap types. For instance, both Utricularia and Genlisea (suction and eel traps,
respectively; Lentibulariaceae) produce bifid trichomes with mucilage secretions on their traps and
globose glands that secrete mucilage on their leaves (Taylor, 1989; Ptachno et al., 2006; Adlassnig et
al., 2010; Fleischmann, 2012). Interestingly, certain species of the pitfall-trapping Nepenthes genus
produce a mucilage-derived, highly viscoelastic digestive fluid (Gaume and Forterre, 2007; Bauer et
al., 2011; Bonhomme et al., 2011; Renner and Specht, 2011) that aids in prey retention (Di Giusto et
al., 2008; Moran et al., 2013; Bazile et al., 2015; Gaume et al., 2019; Kang et al., 2021), representing a
type of hybrid trapping strategy reminiscent of their close relatives Drosera (sundews). Exploring
mucilage-mediated interactions with other organisms could shed light on the evolution of carnivorous

plants (Box 1).

Mucilage production and secretion mechanisms. Little is known about the production and secretion
of mucilage across the various carnivorous plant lineages, although limited evidence is available for
members of the Caryophyllales (Droseraceae and Drosophyllaceae) and Lamiales (Lentibulariaceae).
The mucilage of Drosera binata contains an acidic polysaccharide comprising arabinose, galactose,
glucuronic acid, mannose, and xylose (Gowda et al., 1982; Erni et al., 2008), while the acidic
polysaccharide of D. capensis is slightly modified and is composed of ester sulfate, galactose,
glucuronic acid, mannose, and xylose (Rost and Schauer, 1977). Across Drosera, however, the Golgi
apparatus appears to be responsible for both mucilage production and secretion (Schnepf, 1961a;
Dexheimer, 1978; Outenreath and Dauwalder, 1986; Lichtscheidl et al., 2021). The glands of the

Caryophyllales carnivores Triphyophyllum and Drosophyllum also produce acidic secretions. The
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constituents of these secretions in Triphyophyllum are unknown, but those in Drosophyllum contain
carbohydrates produced by the Golgi apparatus (Schnepf, 1961b; Schnepf, 1963a; Schnepf, 1972;
Marburger, 1979). Interestingly, the polysaccharide found in Drosophyllum mucilage differs from that
of Drosera and includes the monomers arabinose, galactose, glucuronic acid, rhamnose, and xylose, as
well as ascorbic acid (Schnepf, 1963b). Similarly, in Pinguicula of the Lentibulariaceae,
polysaccharides are prevalent in the sticky mucilage and are likely transported intracellularly by vesicles
derived from the Golgi apparatus, as observed in Drosera and Drosophyllum (Heslop-Harrison and
Knox, 1971; Vassilyev and Muravnik, 1988). In P. vulgaris, the mucilage itself is stored within
vacuoles, as well as the periplasmic space, before being released to the gland surface (Vassilyev and
Muravnik, 1988; Adlassnig et al., 2010). In closely related Genlisea, mucilage is also stored in the
periplasmic space of secretory glands (Ptachno, 2008). A notable exception to the polysaccharide-rich
mucilages of carnivorous plants is the genus Roridula, which secretes resinous compounds and will be

discussed further below.

Convergent co-option of digestive enzymes. The highly repeated convergent evolution of plant
carnivory (Fig. 2) suggests that the transition from the non-carnivorous to carnivorous state was broadly
genetically accessible to a wide range of angiosperm lineages. In agreement with this idea, all known
digestive enzymes of carnivorous plants are not unique but originated from ubiquitous gene families
found throughout flowering plants (Fukushima et al., 2017). In particular, defense-related genes tend to
be repurposed for digestive physiology (Bemm et al., 2016), with possible changes in biochemical
properties occurring through positively selected convergent amino acid substitutions (Fukushima et al.,
2017). Several proteins involved in plant defense, including hydrolytic enzymes, are secreted to the
extracellular space (Lee et al., 2004). Pathogenic microbes, fungi, and both phytoparasitic and
herbivorous (and sometimes prey) insects share many biological components (e.g., chitin), perhaps

providing a ready basis for the evolutionary co-option of enzyme-encoding genes.

Secretion of digestive enzymes. Various digestive enzymes have been identified in the digestive fluid
of carnivorous plants and are thought to be secreted from glands (Heslop-Harrison, 1975; Juniper et al.,
1989; Ravee et al., 2018; Hedrich and Fukushima, 2021). In particular, extracellular phosphatase
activity is a widely detected, key characteristic of the glands of carnivorous plants (Ptachno et al., 2006;
Plachno et al., 2009; Lin et al., 2021). However, thus far, genes encoding secreted phosphatases have
only been isolated in Nepenthes and Cephalotus (Fukushima et al., 2017). Additionally, commonly used
dye-based method appears to label both intracellular and extracellular phosphatase activity following
intensive endocytosis (Ptachno et al., 2006), which may confound the extracellular signal with the
intracellular noise of housekeeping phosphatases. Not much is known about the tissue-specific secretion
and localization of digestive enzymes, except for the phosphatases and the aspartic protease

Nepenthesin | expressed in the parenchyma around the glands of Nepenthes (Athauda et al., 2004). In
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Cephalotus, which conditionally produces distinct trapping leaves (Fukushima et al., 2017; Fukushima
etal.,2021), approximately half of the genes encoding digestive fluid proteins are specifically expressed
in pitcher leaves, but the other half are also expressed in the photosynthetic, non-trapping leaves
(Fukushima et al., 2017). Trap-preferential gene expression has been reported in other species as well,
with a few exceptions (Rottloff et al., 2011; Nishimura et al., 2013; Rottloff et al., 2013; Arai et al.,
2021). Perhaps these digestive enzymes exist in a bifunctional state for defense and digestion, or perhaps
they are encoded by sub-/neofunctionalized duplicates specialized for digestive physiology, which

might influence the tissues and cell types that secrete the enzymes.

Proton transport. The acidity of digestive fluid is a hallmark of carnivorous plants. Although the pH
varies among carnivorous plant genera (Fig. 3B), the digestive fluids of carnivorous plants are often
more acidic than the gastric juices of animals with specialized feeding habits, including insect-eating
carnivores (Fig. 3A). This strong acidity has several potential benefits, including the capacity for (1)
killing prey (Bazile et al., 2015); (2) suppressing microbial growth (Buch et al., 2013); (3) acid-mediated
auto-activation of aspartic proteases, a process similar to pepsin activation in the animal stomach
(Runeberg-Roos et al., 1991; Fruton, 2002; Buch et al., 2015); (4) efficient degradation of proteins and
other substrates by digestive enzymes with acidic pH optima (An et al., 2001; Saganova et al., 2018);
and (5) nutrient absorption driven by proton gradients. Protons and potassium ions are thought to be the
primary cations in some carnivorous plant species due to their abundance and the scarcity of other
cations (Nemcek et al., 1966; Juniper et al., 1989; Scherzer et al., 2013; Gao et al., 2015; Scherzer et
al., 2015; Fasbender et al., 2017) (Box 2). Although the pH of digestive fluid varies among species, its
acidity is usually higher than the apoplastic pH in other plants (Fig. 3A). Compared to other pitcher
plants, many Sarraceniaceae species rely more on microbes than their own digestive enzymes (Luciano
and Newell, 2017), likely explaining why the liquid in their pitchers tends to be less acidic than that of
other carnivorous plants (Fig. 3). In many carnivorous plant groups, the digestive fluid is acidic even in
the resting state and becomes more acidic upon prey capture (Table S1).

The strong acidity of digestive fluid can be attributed to the activity of proton pumps (Rea, 1984).
This view was supported by pharmacological treatment of Nepenthes with H'-pump inhibitors and an
activator that especially affected plasma membrane H'-ATPases (An et al., 2001). Noninvasive
microelectrode ion flux measurements confirmed that the gland cells in Nepenthes and Dionaea release
protons into the pitcher or snap-trap lumen (Moran et al., 2010; Scherzer et al., 2017). In Nepenthes,
the putative plasma membrane proton pump gene NaPHA1 is expressed in glands (An et al., 2001). In
Dionaea, the levels of vacuolar AHA10-type proton pump transcripts changed in response to
coronatine, which mimics bioactive jasmonic acid and induces some prey-capture responses in
carnivorous Caryophyllales, a process likely related to acid secretion by exocytotic vesicles (Scherzer
etal., 2017) (Supplemental Text 1). Future research should address which proton pumps are responsible

for fluid acidification and how they differ among carnivorous species.
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Anion transport. To generate hydrochloric acid, both chloride and protons must be excreted into the
digestive fluid. Classical pharmacological analyses with metabolic inhibitors demonstrated that the
ionic gradients between digestive fluid and gland cells are actively modulated in carnivorous plants
(Juniper et al., 1989). Chloride ions are a principal anion in the digestive fluids of some carnivorous
species, such as Nepenthes spp. (Morrissey, 1955; Nemcek et al., 1966). In these pitcher plants, the
release of chloride ions coincides with the secretion of proteases (Liittge, 1966), as in Dionaea (Rea et
al., 1983; Scherzer et al., 2017) and Pinguicula (Heslop-Harrison and Heslop-Harrison, 1980). In
Dionaea, the vacuolar voltage-dependent chloride channel CLC (stands for ChLoride Channel) is
implicated in chloride transport during prey digestion (Scherzer et al., 2017). Since digestive fluid
contains only trace amounts of organic acids (Voelcker, 1849; Morrissey, 1955), it appears that organic
anions such as malate (which functions in osmotic regulation in certain plant cells) do not play major
roles in this process (Fernie and Martinoia, 2009; Aratjo et al., 2011; Lopez-Arredondo et al., 2014).
However, organic acids are relatively abundant in the traps of Utricularia, even though the fluid pH is

close to neutral (Sirova et al., 2011).

Ammonium absorption. In contrast to the digestive tracts of animals (Romero-Gomez et al., 2009),
ammonium likely serves as the preferred form of nitrogen for uptake in carnivorous plants (Fig. 1B).
After prey capture, ammonium is released into the digestive fluid in Dionaea (Scherzer et al., 2013).
The addition of pure protein also resulted in ammonium accumulation, and the relative abundance of
released amino acids indicates that the enzymatic deamination of glutamine, in particular, produces
ammonium in the digestive fluid of Dionaea (Scherzer et al., 2013). Tracer experiments supported the
notion that nitrogen, likely in the form of ammonium, is separated from the carbon skeleton of glutamate
in digestive fluid (Fasbender et al., 2017). In multiple carnivorous plants, ammonium transporters
(AMTs) appear to play pivotal roles in ammonium uptake. Transporters for nitrogenous compounds in
Nepenthes often show negligible expression in glands, except for AMT1 (Schulze et al., 1999). AMT1
transcripts are localized exclusively to the head cells of the gland, pointing to the involvement of AMT1
in ammonium uptake. Likewise, in Dionaea, AMTI shows gland-specific expression, with further
upregulation following coronatine treatment (Scherzer et al., 2013). Cephalotus also has an AMT1 gene
that shows preferential expression in pitcher leaves (Fukushima et al., 2017). Interestingly, some AMT1
genes in Arabidopsis thaliana (thale cress) are highly expressed in roots and are thought to be involved
in the uptake of ammonium ions from the soil (Gazzarini et al., 1999; Rawat et al., 1999), suggesting

possible co-option of this gene from roots to traps in multiple lineages.

Membrane trafficking. The direct transport of nutrients via membrane proteins is not the only way
substances are absorbed and distributed by cells. Large molecules, such as whole proteins and degraded

peptides, can be taken up and released via endocytosis and exocytosis, respectively (Battey et al., 1999;
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Doherty and McMahon, 2009; Paez Valencia et al., 2016). Active endocytosis is observed in the glands
of many carnivorous lineages (Adlassnig et al., 2012). In Nepenthes, for example, a few small vesicles
were observed within gland cells one hour after the application of a fluorescent tracer, and by 30 hours
they combined into one or a few large vesicles that occupied most of the cell volume (Adlassnig et al.,
2012).

Membrane trafficking must also be involved in the export of digestive enzymes. Newly synthesized
digestive enzymes could follow the classical pathway of protein secretion, in which proteins are
synthesized in the endoplasmic reticulum and modified in the Golgi apparatus to be packaged into
vesicles in the trans-Golgi network and shuttled out via the plasma membrane (Battey et al., 1999; Cui
et al., 2020). Indeed, exosome formation was observed in the glands of coronatine-stimulated Dionaea
(Hawes et al., 1991; Thiel and Battey, 1998; Scherzer et al., 2017) and other species (Juniper et al.,
1989).

Cuticular permeability. To exchange substances efficiently, the plasma membranes of gland cells
must be accessible to the external environment. The plant epidermis is usually protected by a continuous
cuticle, but gland cells of carnivorous plants often show cuticular pores or gaps that allow the passage
of small molecules. The presence of such cuticular discontinuities has been revealed in many
carnivorous plants using electron microscopy and staining with dyes such as methylene blue, which
cannot penetrate intact cuticles (Juniper et al., 1989; Ptachno et al., 2007; Adlassnig et al., 2012; Koller-
Peroutka et al., 2019; Lichtscheidl et al., 2021). While the glands of many species exhibit cuticular
permeability, there are some inter-species differences (Adlassnig et al., 2012). In Drosera, both stalked
and sessile glands show cuticular permeability. Cephalotus produces small and large glands, but only
small glands show clear cuticular permeability. Dye staining appears to correspond well with functional
maturity; in Dionaea, immature glands do not stain, and only mature glands show clear permeability.
Using fluorescent tracers, endocytotic activity was detected in cells exhibiting cuticular permeability
(Adlassnig et al., 2012). In carnivorous Ericales (Sarraceniaceae and Roridulaceae), nutrient uptake is
achieved through cuticular pores and an underlying digestive epithelium (Juniper et al., 1989; Anderson,
2005; Ptachno et al., 2006) that functions as a gland. The genetics underlying cuticular discontinuity

remain unknown.

Hormonal regulation of gland cell physiology. The digestive systems of carnivorous plants have a
likely origin in defense mechanisms against herbivores (Hedrich and Fukushima, 2021). Considering
that phytohormones regulate diverse physiological processes, such as plant growth, abiotic stress
resistance, and defense against pathogens and insects, it is highly likely that their roles extend to
digestive physiology (Pavlovi¢ and Mithofer, 2019). Jasmonate accumulation during prey capture has
been directly observed in Drosera, Aldrovanda (waterwheel plant), and Nepenthes (Nakamura et al.,

2013; Yilamujiang et al., 2016; Krausko et al., 2017; JakSova et al., 2021). In Dionaea, jasmonates
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induce trap closure and digestive fluid secretion (Escalante-Pérez et al., 2011; Libiakova et al., 2014;
Pavlovi¢ and Mithofer, 2019), coupled with proton efflux (Scherzer et al., 2017). While jasmonate
induced a carnivory-related response in Caryophyllales species, no effect was detected in Pinguicula
and Utricularia (Kocéb et al., 2020; Jaksova et al., 2021). Although several other phytohormones are
also important in plant defense (Berens et al., 2017), the application of abscisic acid, salicylic acid,
gibberellin, and indole-3-acetic acid had no detectable effect on the trapping and digestive physiology
of Dionaea, Drosera, or Pinguicula (Escalante-Pérez et al., 2011; Libiakova et al., 2014; Krausko et
al., 2017; Pavlovic€ et al., 2017; Kocab et al., 2020). By contrast, salicylic acid induced trap closure in
Aldrovanda, although the observed pharmacological damage questions its physiological interpretation
(JakSova et al., 2021). The roles of these and other phytohormones, including ethylene, cytokinins, and

brassinosteroids, remain largely unexplored.

Gland morphology in Oxalidales. Oxalidales has only one carnivorous member, Cephalotus
follicularis of the monotypic family Cephalotaceae, which remains quite isolated phylogenetically and
morphologically in this angiosperm order (Fleischmann et al., 2018b). Although Cephalotus uses
pitcher-shaped leaves as pitfall traps similar to those of the independently evolved carnivorous lineages
Nepenthes and Sarraceniaceae, the arrangement and types of glands are lineage specific. Unlike in
Nepenthes, the lower part of the inner pitcher wall is not evenly endowed with glands in Cephalotus
(Moran et al., 2010); instead it has two opposing areas where the glands are densely localized (Fig. 2).
Within these gland patches, both small and large glands are embedded in the epidermis and are easily
distinguished. From a purely visual point of view, small gland cells can be described as immobile
stomatal guard cells whose aperture is plugged with a “wall plug” comprising a thickened cell wall
(Juniper et al., 1989). Large glands consist of multiple (25 to 200) cells arranged in a dome-like pattern
forming clusters of different sizes (Vogel, 1998) (Supplemental Text 2). Large clusters are found in the
glandular patch, and the glands gradually become smaller from the pitcher wall up to its peristome
(Juniper et al., 1989; Vogel, 1998). The small glands have permeable cuticles (Adlassnig et al., 2012)
and various enzyme activities such as esterase, protease, and phosphatase activity (Juniper et al., 1989;
Plachno et al., 2006). The large glands have impermeable cuticles (Adlassnig et al., 2012), and only
acid phosphatase activity (Ptachno et al., 2006) has been demonstrated. These differences gave rise to
the idea that Cephalotus developed a division of labor in its secretory systems: large glands for fluid
production and small glands for digestive enzyme production (Juniper et al., 1989). Whether such a
strict division of labor exists or whether these activities overlap remains a question for future research.
Analysis of gland morphology pointed to a likely evolutionary connection between somatic guard cells
and small glands (Lloyd, 1942) but not large glands (Parkes and Hallam, 1984), although such
morphological (dis-)similarity does not provide conclusive evidence for their evolutionary

(un)relatedness (Juniper et al., 1989).
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Gland morphology in Caryophyllales. Some of the most well-known carnivorous plants are found in
the non-core group of the order Caryophyllales (a.k.a., Nepenthales), ranging from the sundew and
Venus flytrap (both Droseraceae) to the pitcher plants of the Nepenthaceae; this order includes genera
with a variety of trap types (Supplemental Text 3; Fig. 2). Glandular trichomes are prevalent in the
lineages sister to the carnivorous group, such as Plumbago (Supplemental Text 3), and these trichomes
may be homologous to those in caryophyllid carnivores. A carnivorous common ancestor of
Caryophyllales might have already developed two types of glands, stalked and sessile (Heubl et al.,
2006), although a stochastic character mapping analysis did not necessarily support such a scenario
(Renner and Specht, 2011). Only a single type of digestive gland maintains the pitcher fluid of
Nepenthes by releasing enzymes and absorbing nutrients (An et al., 2002; Adlassnig et al., 2012). A
piece of epidermis arches above each digestive gland (Owen, Jr., 1999; Wang et al., 2009). These
structures are morphologically similar to the lunate cells of the upper parts of the pitcher, which are
thought to provide difficult locomotive terrain for trapped insects (Wang et al., 2009; Wang et al., 2016;
Wang et al., 2018a). A continuous layer of epidermal cells curves underneath the gland, with vascular
cells in close proximity (Owen, Jr., 1999). The stalked glands in the other carnivorous Caryophyllales
are vascularized whereas the glands of all other carnivorous plants are non-vascularized (Fenner, 1904;
Lloyd, 1942; Juniper et al., 1989; Fleischmann et al., 2018b). In Drosera, these glands are called
tentacles due to their exceptional anatomical and physiological characteristics. Nitschke (Nitschke,
1861) suggested that these organs represent modified leaf pinnae or outgrowths of the lamina margin,
a theory that has since been refuted (Lloyd, 1942). In approximately 90% of Drosera species
(Fleischmann et al., 2018a), increasing numbers of tentacles move toward the captured prey, likely to
increase the contact surface area with the prey (Juniper et al., 1989). It was originally believed that the
site of mechanosensation was the neck of the stalked cells, directly under the gland head, where the
stalk is most bendable (Williams, 1976). However, transcripts of the stretch-activated ion channel gene
FLYCATCHERI (FLYCI.1 and FLYCI.2) were recently found to be localized specifically to the outer
secretory cells of the glandular head, whereas in Dionaea, FLYC] transcripts were specifically detected
in sensory cells (in which most trigger hair flexure occurs) (Procko et al., 2021), pointing to the
evolutionary connection between digestive glands and Venus flytrap trigger hairs. These trigger hairs
invoke rapid trap closure via action potentials, but little is known about the associated channels (Bohm
and Scherzer, 2021), except for FLYC1, which functions in mechanosensing (Procko et al., 2021), and
the Shaker-type channel K* channel Dionaea muscipula 1 (KDM1), which functions in K" re-uptake
during the hyperpolarization phase (losip et al., 2020). The X-shaped quadrifid digestive glands of the
aquatic plant Aldrovanda (Droseraceae) show remarkably similar morphology to those of the non-
related Lamialean genus Utricularia (Lentibulariaceae). This gland shape increases the surface area of

the expanded gland head cells in plants with an aquatic lifestyle.
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Gland morphology in Lamiales. Among Lamiales, Byblis and Philcoxia are passive flypaper-type
carnivorous plants with relatively few species, whereas Lentibulariaceae is a large family comprising
three genera with different trapping mechanisms: Pinguicula with flypaper traps, Genlisea with eel
traps, and Utricularia with suction traps (Supplemental Text 4). As in other flypaper-type carnivorous
plants, Byblis, Pinguicula, and at least some species of Philcoxia show dimorphism, with stalked and
sessile glands (Fig. 2). The terminal cells of their glands form head-like structures, except in Utricularia,
where they develop arm-like elongations, like those in the glands located at the trap margins of
Aldrovanda (Droseraceae). The type of cuticular discontinuity varies among Lentibulariaceae genera
(Ptachno et al., 2007). The non-vascularized stalked glands of Pinguicula produce mucilage via a unique
mechanism among carnivorous plants. It has been suggested for three Pinguicula species that during
maturation, the gland fills with digestive fluid and undergoes autolysis, leaving dead cells full of
mucilage (Heslop-Harrison and Heslop-Harrison, 1981). Thus, Pinguicula might be incapable of
regenerating the gland after excretion. However, a study of another species provided compelling
evidence that the glands remain active during digestion (Vassilyev and Muravnik, 1988). This
discrepancy, which may stem from interspecies differences, should be reexamined in the future. In
Lentibulariaceae, like in most Lamiales, gland cells are polyploid, which likely aids in their increased

physiological activity (Fleischmann et al., 2018Db).

Gland morphology in Ericales. Sarraceniaceaec comprises three extant taxa: Heliamphora (sun
pitchers), Darlingtonia (cobra lily), and Sarracenia. Their pitfall traps share an elongated, funnel-
shaped silhouette that in some species collects rainwater, while in other species, an enlarged pitcher lid
prevents the pitchers from being flooded (Chen et al., 2018). In all of these pitcher plants, the prey falls
into the pitcher, where it is then digested. For glands, Sarraceniaceae utilize morphologically
unremarkable epidermal cells called digestive epithelia (Fig. 2), wherein endocytosis occurs (Koller-
Peroutka et al., 2019). Dye staining of digestive zones revealed regions of these epidermal cells with
permeable cuticles (Koller-Peroutka et al., 2019).

Ericales contains an additional carnivorous genus, Roridula, with flypaper-type traps. In
addition to digestive epithelia, it has morphologically distinctive glands that sit on top of a multicellular
trichome. Each globular gland contains an indentation at its pole for increased surface area (Fig. 2). The
longest trichomes are thought to be responsible for prey entanglement, the shortest ones for
immobilization, and the medium-sized ones for slowing down prey movements (Voigt et al., 2009). The
adhesive power of the glue, which in Roridula is resinous (in all other sticky carnivorous plants, it is
aqueous), is derived from triterpenoid compounds (Simoneit et al., 2008), making it a lipophilic resin
that is sticky even underwater (Voigt et al., 2015). Due to this lipophilic secretory nature, Roridula
exhibits unique features, such as digestive mutualism with symbiotic hemipterans (Ellis and Midgley,
1996) and a lack of digestive enzymes in the fluid (Lloyd, 1934) (Box 1 and Supplemental Text 5).

However, even in the absence of symbionts, Roridula seems to be capable of nutrient uptake from prey
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to some extent (Plachno et al., 2009). Digestive epithelia seem to be the likely site of nutrient uptake,
since phosphatase activity was only found in the epidermis of the leaves, rather than stalked glands

(Ptachno et al., 2009).

Gland morphology in Poales. Many epiphytic bromeliads collect water in a “tank” formed by tightly
arranged rosette leaves (Ladino et al., 2019). Insects and other organic material can accumulate in these
small bodies of water, termed phytotelmata. Among bromeliads, Brocchinia reducta, B. hechtioides and
Catopsis berteroniana are recognized as carnivorous (Fish, 1976; Frank and O’Meara, 1984; Givnish
et al., 1984; Givnish et al., 1997; Fleischmann et al., 2018b). Brocchinia reducta actively utilizes dead
matter by absorbing free nutrients, earning the species a spot among carnivorous plants (Givnish et al.,
1984; Benzing et al., 1985). Brocchinia hechtioides is less well studied, but it shares many carnivory-
associated traits with B. reducta, such as overall morphology and habit, acidic tank water, emission of
nectar-like scent, presence of insect carcasses in the tank and similar trichome structure (Givnish et al.,
1997). The glandular trichomes of B. reducta have very weak phosphatase activity, but it remains
unclear if they produce digestive enzymes themselves (Ptachno et al., 2006): Digestion is likely handled
by bacteria and inquilines (Leroy et al., 2016). In B. reducta, glands are scattered across the entire leaf
surface instead of being restricted to specific zones as in other pitcher plants (Juniper et al., 1989). These
glandular trichomes are embedded in epidermal cavities, with the heads even with the inner tank surface
(Benzing et al., 1985). The gland cap is radially organized, but it lacks the central disc cells typically
observed in Tillandsioideae species such as Catopsis (Benzing et al., 1985). In that genus, four central
disc cells are surrounded by multiple layers of cells, with each layer increasing in cell number (Benzing,
1976).

Paepalanthus bromelioides belongs to the Eriocaulaceae and even though not directly related
to the bromeliads, its habitus is very similar to them: A rosette of leaves forms a water tank, the leaves
are covered in wax possibly slippery to insects and produce UV-reflecting powder (Figueira et al.,
1994). Although its carnivorous nature is under debate among scientists (Fleischmann et al., 2018b),
some evidence points towards the plant being able to partially utilise nitrogen from insect carcasses and
faeces of inquiline predators falling into the water tank (Nishi et al., 2013). This species may be
considered carnivorous under the confines of digestive mutualism but remains severely understudied.
While there are mentions of hydrophilous trichomes near the leaf bases, a detailed description of any

digestive glandular structure has yet to be provided (Figueira et al., 1994).

Gland morphology in Alismatales. Triantha is the only carnivorous lineage in the monocot order
Alismatales. Carnivory has only been demonstrated in Triantha occidentalis (Lin et al., 2021), but it
may also exist in the three other species of the genus. Triantha is unique among carnivorous plants in
that it captures prey (small insects) solely on its sticky flowering stems and thus only during the

flowering season, perhaps to enhance reproductive fitness (Lin et al., 2021). Unlike other genera in
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Tofieldiaceae, Triantha contains glandular hairs along its inflorescences (Packer, 2003), with fewer,
smaller glands along the lower part of the stem, which is less sticky. The cylindrical glands are
multicellular and typically concave at the top. The internal structure of the gland remains to be studied.
The flowering stem of 7. occidentalis secretes phosphatase (Lin et al., 2021), and phosphatase substrate
hydrolysis is strongest on the glands, which appear to specifically secrete this digestive enzyme. The
other digestive enzymes that 7riantha may produce and the mechanism by which the plant absorbs

nutrients remain to be demonstrated.

Concluding remarks. Studies of multiple carnivorous plant lineages revealed that various properties
of glands have been acquired in parallel, such as gland dimorphism, cuticular permeability, acid
secretion, endocytotic activity, and digestive enzyme secretion. However, the underlying molecular
mechanisms are often unknown; thus, it is not clear whether these similar traits are brought about by
the functions of common genes (see Outstanding Questions). The exception is the genes encoding
digestive enzymes, in which multiple cases of convergent co-options are well documented. By contrast,
the actions of phytohormones and gland morphology tend to be lineage specific. The glands in Dionaea
have been particularly well characterized, mainly in terms of enzyme secretion and nutrient absorption
(Hedrich and Neher, 2018; Hedrich and Fukushima, 2021). To understand the evolutionary trends of
carnivorous plant glands, it is important to study multiple lineages and to apply knowledge about a well-
studied species to other species. In addition to studying glands, further research is needed to integrate
our fragmentary knowledge about other carnivory-related traits, such as prey attraction and trap
development. The convergent evolution of carnivorous plants provides an opportunity to study both
common, convergent trends and unique traits in the establishment of glands and other specialized

tissues.
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Advances Box

Glandular structures are common among vascular plants, but many carnivorous plant glands show
a distinct, common set of features for digestion and absorption.

The glands of carnivorous plants secrete mucilage, acids, and proteins, including digestive
enzymes, and absorb degraded products using membrane proteins and endocytosis.

Many genetic components underlying carnivory are tightly linked to defense mechanisms, such as

pathogenesis-related proteins and jasmonate-mediated gene regulation.

Outstanding Questions Box

How do the digestive fluids of carnivorous plants achieve the same level of acidity as the gastric
juices of some animals?

Are there convergent evolutionary trends in gland functions among independently evolved
carnivorous plants, as well as between carnivorous plants and animals?

Which cells of non-carnivorous ancestors of a given lineage served as the evolutionary origin of
carnivorous glandular cells?

How were ancestral cellular functions overwritten, repurposed, or reconciled with the new
carnivorous functions of glands?

Which molecular evolutionary mechanisms (e.g., gene duplication with sub-/neofunctionalization
and/or new regulatory relationships) led to the convergent co-option of multiple protein families

involved in gland functions?
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Text Boxes

Box 1. Sticky mucilage provides biotic interactions. Mucilage production has implications for other
biotic interactions in carnivorous plants. Roridula relies on symbiotic hemipterans living on their traps
to digest their prey (Ellis and Midgley, 1996), and similar interactions might also occur in Byb/is (China
and Carvalho, 1951; Hartmeyer, 1998; Lowrie, 1998). A possibly mutualistic, fungivorous mite species
was found living in the sticky leaves of Pinguicula longifolia (Antor and Garcia, 1995). These symbiotic
arthropods require particular biomechanical adaptations to overcome the adhesive forces of these sticky
glands and maintain mobility (Voigt and Gorb, 2010). Caterpillars (Fletcher, 1908; Osaki and Tagawa,
2020) and a hoverfly larva (Fleischmann et al., 2016) have also evolved behavioral and physical
adaptations to overcome mucilage adhesion to consume the leaves and tentacles or entrapped prey of
Drosera. Almost nothing is known about the effects of viscoelastic fluid on the aquatic symbionts living
in Nepenthes pitchers, but one study (Gilbert et al., 2020) revealed little difference in the microbial
community composition between species with and without sticky fluid in a greenhouse setting. The
nature of the potential microbial and arthropod communities in highly viscoelastic fluid in pitcher plant

phytotelmata remains largely unexplored.

Box 2. Transporters enable cation uptake. Like other plants, carnivorous plants require nitrogen and
phosphate, but other elements such as potassium, iron, and manganese are also essential (Adlassnig et
al., 2009). The task of potassium uptake in Dionaea muscipula is divided between two membrane
proteins: the K transporter 1-like (KT1-like), Shaker-type potassium channel DmKT1 and the high
affinity K" transporter-type (HAK-type) transporter DMHAKS (Scherzer et al., 2015). The low-affinity,
high-capacity channel DmKT1 absorbs the K" released by digestion of prey using the steep K* gradient
between the gland cell and the digestive fluid. To avoid the turning point of K*-flowback, these channels
close in response to low K* concentrations, and the proton-driven transporter DmHAKS prevents
unused K* from being wasted: This transporter has high-potassium affinity but weak selectivity. Sodium
absorption is likely to be mediated by the sodium channel DmHKT1, whose transcript level is up-
regulated by mechanical stimulations and the application of coronatine (Bohm et al., 2016a; Bohm et

al., 2016b).

Supplemental Data

Supplemental Methods S1.

Supplemental Text S1. Potential roles of the vacuole in gland physiology.
Supplemental Text S2. Possible link between large glands and extrafloral nectaries.
Supplemental Text S3. Glands of Caryophyllales carnivores.

Supplemental Text S4. Glands of Lamiales carnivores.

Supplemental Text S5. Glands of Ericales carnivores.

19



606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

Supplemental Table S1. The pH levels of digestive fluids of different species.
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Figure 1. Functional similarities between a trap leaf and a digestive tract. (A) The spatial differentiation of the digestive
system. The sites for eating, digestion, and absorption are spatially separated in the animal system (symbolized by colors),
but not in carnivorous plants (overlapping colors). (B) Secretory and absorptive pathways that are discussed in the main text
and Box 2. Note that the figure shows an imaginary synthetic cell because interspecies and gland-type-specific differences in
these processes are often unknown in carnivorous plants. Among the many secretory and absorptive pathways and membrane
proteins identified in parietal cells (Yao and Forte, 2003; Engevik et al., 2020), chief cells (Hirschowitz, 1967), and intestinal
epithelial cells (Pacha, 2000; Rajendran et al., 2018; Engevik and Engevik, 2021) in animals, only the counterparts of those
characterized in carnivorous plants are shown. The cell wall and cuticle are not shown. The organelles are not shown to scale.
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colors). (B) Secretory and absorptive pathways that are discussed in the main text and Box 2. Note that
the figure shows an imaginary synthetic cell because interspecies and gland-type-specific differences
in these processes are often unknown in carnivorous plants. Among the many secretory and absorptive
pathways and membrane proteins identified in parietal cells (Yao and Forte, 2003; Engevik et al., 2020),
chief cells (Hirschowitz, 1967), and intestinal epithelial cells (Pacha, 2000; Rajendran et al., 2018;
Engevik and Engevik, 2021) in animals, only the counterparts of those characterized in carnivorous

plants are shown. The cell wall and cuticle are not shown. The organelles are not shown to scale.
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Figure 2. Evalution of glandular cells in carmivorous plants. The order-level phylageny of Mlowering plants (The Angiosperrm
Phylogeny Group et al., 2016} is shown on the |eft, with lineages containing carnivorous plants and their trap types highlighted
in red. Trap leaves and glands of representative species are shown on the right. To increase visibility, methylens blee staining
was applied to the glands of Cephalotus, Sarracenia, Heliamphora, Darlingtonia, and Roridula. Whole or parts of the
photographs of Genlisea, Mricularia, and Philcoxia were reproduced from the literature (Yang et al., 2009; Pereira &t al.,
2012; Fleischrmann, 2018). The photographs of Aldrevanda were pravided by Dirk Becker. Original pictures (including scale
bars for micrescopic pictures) are available in figshare (hittps:/fdoi.org/10.60B4/mI.figshare. 18271529} under CC BY 4.0
(htps:/fereativecommons.org/licenses, by f4.0/).

Figure 2. Evolution of glandular cells in carnivorous plants. The order-level phylogeny of flowering
plants (The Angiosperm Phylogeny Group et al., 2016) is shown on the left, with lineages containing

carnivorous plants and their trap types highlighted in red. Branch lengths have no information. Trap
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leaves and glands of representative species are shown on the right (for scanning electron microscopy,
see Supplemental Method 1). To increase visibility, methylene blue staining was applied to the glands
of Cephalotus, Sarracenia, Heliamphora, Darlingtonia, and Roridula (Supplemental Method 2). Whole
or parts of the photographs of Utricularia and Philcoxia were reproduced from the literature (Yang et
al., 2009; Pereira et al., 2012). The photographs of Aldrovanda were provided by Dirk Becker. Original
pictures (including scale bars for microscopic pictures) are available in figshare

(https://doi.org/10.6084/m9.figshare.18271529) under CcC BY 4.0

(https://creativecommons.org/licenses/by/4.0/).
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Figure 3. Digestive fluid acidity across the tree of life. (A) Extracellular pH in the digestive organs
of plants and animals. The plant apoplast and phylloplane (i.e., leaf surface) were included for
comparison with the digestive fluid of carnivorous plants. The datasets for animal stomachs and plant

phylloplane were obtained from the literature (Beasley et al., 2015; Gilbert and Renner, 2021). The
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source data for the others are available in Table S1. When pH was measured at multiple time points or
under multiple conditions, only the lowest value was included. The silhouettes of representative

organisms were obtained from PhyloPic (http://phylopic.org). The silhouette of Cathartes aura is

licensed under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/) by Sevcik et al. (B)

pH of the digestive fluids of different carnivorous plant genera. Boxplot elements are defined as follows:

center line, median; box limits, upper and lower quartiles; whiskers, 1.5 X interquartile range.
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Supplemental Methods

Supplemental Method S1. Scanning electron microscopy. Samples were fixed overnight in
glutaraldehyde solution (6.25% [w/v] glutaraldehyde in 75 mM Serensen phosphate buffer, pH 7.4) and
washed five times with Serensen phosphate buffer (100 mM, pH 7.4) in 5-minute intervals. Dehydration
was performed via a nine-step process using an acetone gradient (30%/50%/75%/90%/5%100%[v/v]
acetone for 15/20/30/45/5%x30 min). Finally, critical-point-dried (BAL-TEC CPD 030 Critical Point
Dryer) samples were sputter-coated in a gold-palladium alloy (BAL-TEC SCD 005 Sputter Coater).

Images were taken using a JEOL JSM-7500F field emission scanning electron microscope.

Supplemental Method S2. Methylene blue staining. Samples were stained with an aqueous 0.1%
[w/v] methylene blue solution. Cephalotus follicularis, Sarracenia purpurea, and Heliamphora nutans
pitchers were filled with the methylene blue solution. Darlingtonia californica received the same
treatment, but the hood of the trap was cut open to allow access to the pitcher. Roridula gorgonias
leaves were removed at the base and completely submerged in the solution. After 10 minutes, the
pitchers were removed from the plant and thoroughly rinsed with water to remove excess staining
solution. Roridula leaves were removed from the bath and rinsed with water as well. Microscopy
sections were taken from the digestive zone of the pitcher (lower 15%) and along the midrib of the

Roridula leaf.
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Supplemental Texts

Supplemental Text S1. Potential roles of the vacuole in gland physiology. Although its involvement
in gland cell physiology is unknown, in non-carnivorous plants, the vacuole builds vesicles that fuse
with the plasma membrane (or the vacuole directly fuses with this structure) and release their contents
into the apoplast (Echeverria, 2000; Hatsugai et al., 2009; Yun and Kwon, 2017; Shimada et al., 2018).
Thus, proteins are safely stored inside the vacuole and are rapidly released in large quantities when
needed. In Dionaea muscipula gland cells, AHA10 (encoding a vacuolar proton pump) and CLC genes
(encoding vacuolar anion transporters) were upregulated in response to coronatine, pointing to a role
for the vacuole in digestive physiology (Scherzer et al., 2017).

The vacuole plays a major role in fluid secretion in Pinguicula (Heslop-Harrison and Heslop-
Harrison, 1981). During the last stage of glandular cell maturation, a controlled type of autolysis takes
place, which has been described as interrupted holocrine secretion. During this process, the vacuolar

membrane dissolves, and its entire contents are released (Heslop-Harrison and Heslop-Harrison, 1981).

Supplemental Text S2. Possible link between large glands and extrafloral nectaries. Cephalotus
utilizes extrafloral nectaries to attract its prey (Vogel, 1998; Ellison and Adamec, 2018). The structure
of the nectaries resembles that of large glands, but they contain only 25 to 30 cells (Vogel, 1998). The
extrafloral nectaries are located on the inner side of the lid, on the teeth of the peristome, and on the
outer side of the pitcher wall, whereas most large glands are located in the glandular region inside the

trap (Juniper et al., 1989; Vogel, 1998; Ellison and Adamec, 2018).

Supplemental Text S3. Glands of Caryophyllales carnivores. Arguably the most famous and well-
studied carnivorous plant is Dionaea muscipula, the Venus flytrap. The trapping organ comprises two
leaf lobes with teeth-like extensions at their rims, invoking the image of a foothold trap. The inner
surfaces of the lobes are covered with digestive glands. The upper, exposed part of each gland is ~100
um in diameter, comprising secretory cells of a slightly convex shape (Scala et al., 1968). Basal cells
anchor the gland to the epidermis and are connected to the secretory cells by a layer of endodermoid
cells (Juniper et al., 1989). Upon prey capture, the trap closes and starts releasing digestive fluid through
the secretory cells. Additional sessile glands on the trap rim are tasked with the secretion of
carbohydrate-rich mucilage (Joel et al., 1985). These glands lie in small indentures, which protect them
from physical damage when the trap closes (Juniper et al., 1989).

Aldrovanda vesiculosa is the aquatic sister species to Dionaea muscipula. Their traps look very
similar, with two lobes connected via a midrib and teeth-like structures sitting at the rim. Aldrovanda
traps are much smaller (only a few millimeters in size). Digestive glands are densely distributed in the
center of the trap. The rim region bears quadrifid glands (sometimes called absorptive hairs (Atsuzawa

et al., 2020)): These X-shaped structures closely resemble those of Utricularia, another aquatic
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carnivore of the distantly related Lentibulariaceae whose quadrifid glands in X-shaped structures likely
aid in water removal and digestion (Lloyd, 1942; Fineran and Lee, 1975; Fineran, 1985; Ptachno et al.,
2007). The idea that Aldrovanda glands possess the convergent function of water removal is attractive
due to their morphological similarity, but this needs to be confirmed. The glands in Aldrovanda likely
play a role in digestion, as they show phosphatase activity (Ptachno et al., 2006). The teeth-like
structures of the snap traps might be modified stalked glands that have lost their secretory function
(Heubl et al., 2006).

The genus Drosera is a diverse taxon with ca. 260 recognized species (Fleischmann et al.,
2018a; Cross et al., 2020). Drosera traps come in various shapes and sizes, but they all share common
elements. All known Drosera species have sticky flypaper traps. The stickiness is provided by stalked
glands covering the leaf surface. These glands vary in size, with the longest tentacles sitting at the outer
regions and gradually smaller ones toward the center. The glandular head is roughly oval and is usually
covered by mucilage droplets, which earned Drosera its common name “sundew”. When viewed under
the microscope, distinct structures inside the glandular head become visible: The outermost cells are
epidermal cells with a very thin cuticle (Fenner, 1904; Lloyd, 1942), allowing for easier mucilage
excretion. The next layer comprises inner gland cells, which are parenchymal. Below this is a bell-
shaped area of endodermoid cells separated by Casparian strips (Fenner, 1904): These lignified cell
walls are usually associated with roots, where they function in water transport (Lersten, 1997).
Casparian strips are impermeable to water, effectively forcing water through the symplastic pathway
(Stockle and Vermeer, 2020). At the core of the glandular head is the vascular system, a tracheid body,
which narrows into a single canal through the stalk (Ragetli et al., 1972). Unlike the flypaper traps of
other lineages, the stalked glands move slowly in ca. 90% of the known Drosera species (Fleischmann
et al., 2018a). Once an insect is stuck on the leaf, tentacles around the insect begin to move towards it,
involving more glands to increase prey retention. An exceptionally fast movement occurs in D.
glanduligera, D. burmannii, and some of the Australian pygmy Drosera (D. section Bryastrum), where
the outermost tentacles catapult prey directly onto the leaf center (Poppinga et al., 2012). Directly on
the leaf surface, among the forest of tentacles, sit much smaller, sessile glands. These glands lack a stalk
and typically consist of four head cells, a single-celled neck, and two basal cells. These sessile glands
lack vasculature at maturity (Fenner, 1904; Juniper et al., 1989). An additional type of sessile gland
with just two head cells has been reported in D. capensis (Naidoo and Heneidak, 2013). Sessile glands
may aid in digestion by releasing digestive enzymes (Matusikova et al., 2005; Naidoo and Heneidak,
2013), but their role in absorption was put into question by fluorescent tracer experiments (Adlassnig
etal.,2012). Their fluid is more liquid than that of stalked glands, providing better solubility of digestive
enzymes (Von Byern and Grunwald, 2010).

More distantly related to the Droseraceae, but still part of the Caryophyllales, are two other
plants with flypaper traps: Drosophyllum lusitanicum and Triphyophyllum peltatum. Rather atypical for

most carnivorous plants, the monotypic D. lusitanicum grows in relatively dry environments (Lloyd,
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1942; Adlassnig et al., 2006). Its leaves are elongated and very thin. They are curled up when young
and straighten out gradually over time, similar to ferns. On the leaf surface, as well as on the flower
pedicle and calyx, are relatively large stalked glands and sessile glands that are visible to the naked eye
(Ojeda et al., 2021). The stalked glands are mushroom-shaped and exude mucilage. They do not move
in response to prey capture. The sessile glands function in digestion and remain dry until stimulated
(Green et al., 1979; Vassilyev, 2005). The stalked and sessile glands of Drosophyllum contain xylem
and phloem.

Triphyophyllum peltatum is a special case among carnivorous plants in that it is only
carnivorous during a short period of its lifetime. While the closely related Ancistrocladaceae lost their
carnivory entirely, 7. peltatum can produce trap leaves when the plant is still young, usually during the
rainy season (Green et al., 1979; Fleischmann et al., 2018b). The traps are morphologically similar to
those of Drosophyllum and grow and uncurl in the same manner. These traps also have both stalked
mucilage glands and sessile digestive glands with xylem and phloem (Green et al., 1979; Marburger,
1979). Unlike both Drosera and Drosophyllum, tracheids branch out extensively inside the stalked
glands of T. peltatum (Juniper et al., 1989). Triphyophyllum glands are the largest among the known
flypaper carnivores (and among angiosperms in general, as they are only outsized by the resinous glands
of some Velloziaceae), with heads reaching up to 1 mm in diameter (Green et al., 1979).

The last carnivorous group of the Caryophyllales (regarding trap type) is the Nepenthaceae.
Nepenthes species typically produce large, elaborate pitcher traps. A short, flexuous tendril sprouts off
its flattened, photosynthetic petiole, which serves as the connection between the pitcher proper and the
rest of the plant. The pitchers themselves are often funnel-shaped, as they are more bulbous at the
bottom (depending on the species) and open up toward the top. The entrance to the pitcher is marked
by a thick collar—the peristome—with short tooth-like protrusions and a leaf hanging above as a lid.
Nectary glands in small cavities between the teeth attract prey (Joel, 1988; Moran, 1996; Merbach et
al.,2001). At the very bottom of the Nepenthes pitcher is the digestive zone. Here, large digestive glands
maintain the digestive fluid by releasing enzymes and absorbing nutrients (An et al., 2002; Adlassnig
et al., 2012). Cells in the topmost layer of the digestive glands have thick walls and a thin cuticle facing
the inside of the pitcher. A continuous layer of epidermal cells curves underneath the gland, with
vascular cells in close proximity. A piece of epidermis arches above each digestive gland (Owen, Jr.,
1999; Wang et al., 2009); these lunate ridges resemble stomatal cells. More lunate cells can be found
near the peristome, albeit without glands beneath them (Wang et al., 2018). Due to their morphology,
lunate cells are thought to originate from guard cells and to interfere with insect movement by providing
a difficult surface in conjunction with particular wax crystals (Wang et al., 2009; Wang et al., 2016;
Wang et al., 2018).

The flowers of Plumbago (Plumbaginaceae), a non-carnivorous taxon from the sister group to
the carnivorous lineage in Caryophyllales, bear sticky glandular trichomes, superficially resembling

those of Drosophyllum, but with little or no vascularization (Stoltzfus et al., 2002). Although these

39



1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

trichomes can trap insects and secrete digestive enzymes, the plant does not appear to make use of the
digested nutrients (Stoltzfus et al., 2002). Unlike in Triantha, whose glands on flower stalks are utilized
for carnivory (Lin et al., 2021), the glandular trichomes on floral organs of other plants are thought to
function in defense against herbivory (Kerner von Marilaun, 1878). The flower is an expensive and
critical organ for plants, making it advantageous to invest in its protection (“optimal defense theory”)

(McKey, 1974; McKey, 1979; Rhoades, 1979).

Supplemental Text S4. Glands of Lamiales carnivores. The sticky leaves of ca. 110 species of
Pinguicula are usually arranged in a rosette, with each leaf heavily covered in stalked and sessile glands.
Below each stalked gland sits a basal reservoir cell, which is connected to four to eight surrounding
cells via plasmodesmata (Heslop-Harrison and Heslop-Harrison, 1981). The stalks of these glandular
trichomes are single-celled and shaped like a bowling pin: thicker near the base and narrowing towards
the head. The head itself is composed of a single cell surrounded by 16 roughly symmetrically
distributed cells (Fenner, 1904; Juniper et al., 1989). The sessile glands are arranged in a similar manner,
but without the stalk and surrounded by just eight cells (Fenner, 1904; Lloyd, 1942; Heslop-Harrison
and Heslop-Harrison, 1981). Underneath the secretory head of the sessile gland is a single endodermoid
cell, followed by another single reservoir cell (Heslop-Harrison and Heslop-Harrison, 1981).

Genlisea is a unique genus. Instead of roots, its 30 species bear subterranean leaves
(Fleischmann, 2012; Fleischmann, 2018). These leaves lack chlorophyll and form a tube, which
branches off into two “arms”. Each arm is twisted like a corkscrew, providing an entrance for potential
prey into the trap. Inward-pointing trichomes allow the prey to only move further inside. The prey
eventually ends up inside a thicker part of the tube: a digestive chamber. On the inner surface of the
digestive chamber are digestive glands, which are thought to continuously release digestive fluid into
the chamber (Plachno et al., 2007). An ancestor to Genlisea might have actively transported water
(Jobson et al., 2004), and the positioning of digestive glands could be a remnant of this (Pfachno et al.,
2007; Fleischmann, 2012). The glands are made of three types of cells: terminal cells in radial
arrangement, one endodermoid cell, and one basal cell (Lloyd, 1942; Ptachno et al., 2007). These cells
take on both secretory and absorptive functions (Fleischmann, 2012).

Utricularia is an immediate sister genus to Genlisea containing both terrestrial and aquatic
species. These species lack roots, instead bearing subterranean or aquatic trap leaves. These traps form
a bladder whose entrance contains sensory trigger hairs and is sealed off by a trap door (Lloyd, 1942;
Reifenrath et al., 2006; Westermeier et al., 2017). To arm the trap, water inside must be evacuated to
reduce the water pressure inside (Lloyd, 1942). When the prey disturbs the trigger hairs at the trap door
entrance, it becomes sucked inside the trap via the rapid bulging of bladder walls (Lloyd, 1942). The
trap door is covered with stalked mucilage glands, which are thought to seal the trap door following
prey capture (Westermeier et al., 2017; Ptachno et al., 2019). Along the inside of the trap walls are bifid
or quadrifid glands. Their terminal cells exhibit a highly complex cell wall labyrinth, which might
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enable vigorous water transport (Fineran and Lee, 1975; Sasago and Sibaoka, 1985; Ptachno et al.,
2007). Utricularia might use these glands to rapidly remove water from the trap (Lloyd, 1942; Fineran
and Lee, 1980; Fineran, 1985) and for absorptive and secretory processes (Lloyd, 1942; Fineran and
Lee, 1975; Fineran, 1985; Sirova et al., 2003; Juang et al., 2011).

In Byblis, like most species of Pinguicula, most of the aerial parts of the plant are densely
covered in mucilage glands, up to and including the floral scapes and sepals (Juniper et al., 1989; Kocab
et al., 2020). Its stalked glands are highly similar to those of Pinguicula as well, with a single-celled
stalk and a radial arrangement of head cells (Fenner, 1904; Juniper et al., 1989). However, rather than
sitting on top of a singular basal cell, Byblis stalked glands are surrounded by smaller epidermal cells
(Fenner, 1904; Juniper et al., 1989).

A relatively recent addition to the cadre of lamialean carnivorous plants is Philcoxia. This genus
currently comprises seven species endemic to Brazil (Scatigna et al., 2018). Philcoxia plants have
minute, green leaves, which are usually buried beneath a thin layer of sand and prey upon nematodes
with their sticky traps (Pereira et al., 2012). While early studies could not confirm phosphatase activity
in the glandular trichomes of these plants, more recent reports of phosphatase activity in P. minensis
and the presence of nematodes stuck on the leaves of P. rhizomatosa categorize Philcoxia as a
carnivorous plant (Pereira et al., 2012; Scatigna et al., 2015; Scatigna et al., 2017; Fleischmann et al.,
2018b). In addition to stalked glands that secrete mucilage, sessile glands have been described (Taylor

et al., 2000), although whether they are universally present in this genus is not clear.

Supplemental Text S5. Glands of Ericales carnivores. There is little evidence for the presence of
digestive enzymes in Roridula glands and their resinous exudate (Lloyd, 1934). Plachno et al. studied
phosphatase activity in different carnivorous lineages and did not observe fluorescence in Roridula
stalked glands, but rather in the epidermis of the leaf surface (Ptachno et al., 2006), which constitutes a
physiologically highly active “digestive epithelium” for nutrient uptake from the feces of associated
mutualistic arthropods (Anderson, 2005). A follow-up study found that despite the absence of
phosphatase activity in the glands (and the absence of a symbiotic insect), phosphate uptake was
comparable to that of Drosophyllum lusitanicum (Ptachno et al., 2009). There may be an evolutionary
connection between this phenomenon and digestion in the Sarraceniaceae. Both Roridulaceae and
Sarraceniaceae appear to absorb nutrients using relatively simple glands comprising specialized
epidermal cells bearing thin cuticles for easier transport, whereas other carnivorous lineages utilize
more complex structures for the same task.

One hypothesis on how carnivory in plants could evolve is via “foliar feeding” (Fernandez and
Eichert, 2009; Fernandez and Brown, 2013) on hairy, non-carnivorous leaves. Dense trichomes retain
sticky droplets that catch insect parts and other organic matter. The released nutrients could then be
absorbed through the epidermis. Under this scenario, carnivory in the Ericales would represent a step

between foliar feeding and advanced carnivory. The extrafloral glands of Ericales secrete resin, not
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1324  aqueous mucilage, but enzymes cannot dissolve prey in lipophilic resin; this may explain the origin of
1325  digestive mutualism with capsid bug partners in Roridula (Anderson, 2005; Fleischmann et al., 2018b).
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Supplemental Tables

Supplemental Table S1. The pH levels of digestive fluids of different species. (separate file)
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