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Gaussian states and measurements collectively are not powerful-enough resources for quantum computing,
as any Gaussian dynamics can be simulated efficiently, classically. However, it is known that any one non-
Gaussian resource—a state, a unitary operation, or a measurement—together with Gaussian unitaries, makes
for universal quantum resources. Photon number resolving (PNR) detection, a readily realizable non-Gaussian
measurement, has been a popular tool to try and engineer non-Gaussian states for universal quantum processing.
In this paper, we consider PNR detection of a subset of the modes of a zero-mean pure multimode Gaussian
state as a means to herald a target non-Gaussian state on the undetected modes. This is motivated from the
ease of scalable preparation of Gaussian states that have zero mean, using squeezed vacuum and passive linear
optics. We calculate upper bounds on the fidelity between the actual heralded state and the target state. We
find that this fidelity upper bound is 1/2 when the target state is a multimode coherent cat-basis cluster state,
a resource sufficient for universal quantum computing. This proves that there exist non-Gaussian states that are
not producible by this method. Our fidelity upper bound is a simple expression that depends only on the target
state represented in the photon-number basis, which could be applied to other non-Gaussian states of interest.
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I. INTRODUCTION

Production of non-Gaussian quantum states of light, and
all-optical realization of non-Gaussian quantum unitary oper-
ations, are critical for most applications of photonic quantum
information processing, e.g., universal photonic quantum
computation [1], quantum-enhanced receivers for optical
communications [2,3], all-optical quantum repeaters for
long-distance entanglement distribution [4–6], and quantum-
enhanced optical sensing [7–12].

Gaussian states and Gaussian unitaries, produced by the
action of linear and quadratic Hamiltonians on the vacuum
state, have efficient and complete mathematical representa-
tions [13–15]. Non-Gaussian states is a vast set—it consists
of states generated via the action, on the multimode vac-
uum state, of a unitary with Hamiltonian that is a third-
or higher-order polynomial in the field operators. Therefore,
non-Gaussian states are inherently underexplored and their
general representations less understood.

Deterministic realization of non-Gaussian unitary opera-
tions, such as the self-Kerr gate [16,17] and the cubic-phase
gate [18], is near impossible at optical frequencies [19]. The
extreme resource inefficiency resulting from this deficiency,
combined with the fact that Gaussian states and Gaussian
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unitaries are a classically simulable resource [20], have kept
all-photonic quantum computing from being pursued as one of
the top contenders for quantum computing, for decades since
their invention, despite their obvious importance in optical
communications and sensing applications, and not requir-
ing quantum transduction for networking far-flung quantum
processors—a major benefit unique to photonic quantum en-
codings.

Recent advances in discrete variable (DV), i.e., single-
photon-qubit based, quantum computing [16] have revealed
that deterministic production of even small non-Gaussian re-
source states (e.g., a three-photon-entangled GHZ state) can
enable resource-efficient universal photonic quantum com-
puting, despite two-qubit gates being inherently probabilistic
[1,21]. However, a systematic understanding of efficient pro-
duction of even such simple non-Gaussian states as GHZ
states and realization of simple two-qubit non-Gaussian mea-
surements (e.g., Bell-state measurements) required for DV
quantum computing has proven extremely difficult [22].

A major attraction of continuous variable (CV) quantum
computing [18] is that large Gaussian entangled (cluster)
states [23] can be produced experimentally in a one-shot de-
terministic fashion [24,25]. Further, CV qubit states, such as
the GKP qubit is known to be the most loss-resilient encoding
of the qubit in a bosonic mode [26] that admit deterministic
Clifford gates using Gaussian unitaries, and there are native
CV quantum codes to correct for loss errors [27]. Since Gaus-
sian states are not universal [20], one needs a non-Gaussian
operation to enable universal quantum computing [28]. Exper-
imentally, the most readily-available non-Gaussian resource is
photon number resolving (PNR) detection [29]. One common
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modality in which a PNR detector can be used to proba-
bilistically engineer non-Gaussian states is photon subtraction
[30,31], which also is known to increase entanglement [32].
Photon subtraction from multimode Gaussian states has been
achieved experimentally [33–35] and several theoretical as-
pects of photon subtraction have been studied [36–43]. In this
paper, we consider a more general and simpler to describe
set-up, namely partial PNR detection [44,45], i.e., employing
PNR detection on a subset of the modes of a multimode
Gaussian state, to herald the undetected modes in a desired
state, conditioned on the PNR detectors’ click pattern on the
detected modes. The heralded state is non-Gaussian unless all
PNR detectors register zero photon clicks. This is because the
projection on vacuum is a Gaussian operation and therefore
will not impart any non-Gaussianity to the heralded state). We
point out that partial measurements have been used before in
different contexts, e.g., to realize minimal-disturbance mea-
surements experimentally [46].

The most general multimode Gaussian state is described by
a covariance matrix and a coherent displacement vector. Zero-
mean Gaussian states are those whose displacement vector, or
the mean-field amplitude, is zero. A general K-mode Gaussian
state can be produced by passing K displaced-squeezed states
through a linear-optical unitary transformation, which in turn
admits a systematic design in terms of K (K − 1) 50-50 beam-
splitters and an equal number of unspecified phase elements
[13,14]. Experimentally, the most challenging part in the
above is preparing a displaced squeezed state. Preparation of
squeezed vacuum state, or two-mode squeezed vacuum state
of light—both of which are zero-mean Gaussian states—on
the other hand, is routinely performed using spontaneous para-
metric downconversion, e.g., using a χ (2) nonlinear medium.
Recent experiments have demonstrated on-chip squeezed-
vacuum generation [47,48]. Further, since fully programmable
linear optical circuits have also been realized on-chip [49],
scalable generation of arbitrary multimode zero-mean Gaus-
sian states is well within the reach of modern technology.
This is the reason why we focus in this paper, on evaluating
whether arbitrary non-Gaussian states can be prepared just by
partial-PNR detection on zero-mean Gaussian states.

This paper is organized as follows: In Sec. II we explain
how photon subtraction and addition can be seen as a special
case of partial PNR. Said section can be skipped by the expe-
rienced reader but it possesses some pedagogical value, and
it sets notation. In Sec. III we review briefly the mathematical
description of partial PNR (see also Refs. [45,50]) and we also
provide a simple proof that any pure zero-mean Gaussian state
engineered with partial PNR will necessarily give a zero-mean
non-Gaussian state. In Sec. IV we present the fidelity between
the heralded state and a given non-Gaussian (target) state.
The idea behind the upper bound on said fidelity is based
on the Cauchy-Schwartz inequality. In Sec. V, we calculate
said bound for any product state of single-mode superposi-
tion of the binary phase-shift keyed (BPSK) coherent states
| − γ 〉, |γ 〉 and give a few examples. In Sec. VI we calculate
fidelity upper bounds for multimode entangled states that are
superpositions of multimode coherent states where each mode
is from the BPSK constellation. The first special case of an
entangled state of this type that we consider is the coherent
GHZ state, for which our fidelity upper bound comes out to

1 (a trivial upper bound). However, for the coherent-cat basis
cluster states (CCCS), our fidelity upper bound evaluates to
1/2, showing such a state cannot be prepared by partial PNR
on a zero-mean Gaussian state. Finally, in Sec. VII, we sum-
marize our results: We discuss how the fidelity upper bound
relates to the absence of a nonzero mean (or coherent dis-
placement), we put our findings in context with the literature
on non-Gaussian quantum state preparation, present further
intuition, and briefly discuss future directions of research.

II. PARTIAL PNR AS A GENERALIZATION OF PHOTON
SUBTRACTION AND ADDITION

Let us consider photon subtraction on the most general
single-mode Gaussian pure state: a squeezed-coherent state
|α1, r1〉, where α1, r1 ∈ C are the displacement and squeez-
ing parameters, respectively. The state interacts with vacuum
on a beam-splitter of transmissivity τ . On the reflective (low-
transmissivity) output port of the beam-splitter, PNR detection
is performed, which registers, say, n1 photons. This heralds
the subtraction of n1 photons from the input state. This con-
ditional photon-subtracted state |%n1〉—i.e., the state heralded
on the transmitted port of the beam-splitter—is non-Gaussian
whenever n1 ! 1. One can write down the probability of de-
tecting n1 photons (and hence producing |%n1〉) as a function
of α1, r1, and τ [45]. A natural generalization of this setup
is to allow for further Gaussian resources by substituting the
vacuum state at the other input of the beam-splitter with an-
other single mode Gaussian pure state |α2, r2〉, α2, r2 ∈ C,
and then proceed with PNR detection on one output port, and
considering the heralded state on the other output port if n1
photons are detected. No matter what figure of merit we might
choose on the quality of the heralded state (e.g., fidelity to
some target state), it can only improve or, at worst, remain the
same as compared to that using photon subtraction. This is
because vacuum is a trivial special case of a pure Gaussian
state. We term this setup partial PNR detection [44]: PNR
detection on one mode of a two-mode general Gaussian pure
state to seek a desired postselected non-Gaussian state on the
undetected mode.

Next, let us consider photon subtraction on all modes of a
K-mode pure Gaussian state (which in general is entangled),
by coupling the ith mode with vacuum on a beam-splitter of
transmissivity τi, i = 1, . . . , K . If we count all the ancillary
vacuum states as input modes, we have a 2K-mode Gaussian
state K modes of which are detected with PNR, resulting in a
K-mode (generally non-Gaussian) state. An obvious general-
ization is to consider an N-mode Gaussian pure state (where
N can be even or odd) and to apply PNR detection on N − M
modes, resulting in an M-mode state |%nM+1,...,nN 〉, conditioned
on the PNR pattern (nM+1 . . . , nN ).

Let us note that partial PNR detection schemes incorpo-
rates multiple photon addition as well. Photon addition is
modeled utilizing a beam-splitter whose upper input is the
state |&〉 (or a mode of the state) which will undergo photon
addition while in the beam-splitter’s lower input port a Fock
state |n〉 is injected. A PNR detector is applied on the lower
output port which if heralds m " n photons, then photons have
been added to the state |&〉, resulting to a state |%〉 which in
general will be non-Gaussian. To produce a Fock state |n〉,
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FIG. 1. Generic scheme of heralding an M-mode state |%〉 from
an N-mode zero-mean Gaussian state |&〉. The state |&〉 is produced
by the interaction of N squeezed vacuum states through a general
passive (beam-splitters and phase shifters) Gaussian unitary opera-
tion U . Partial PNR detection on the N − M lower modes of |&〉
produces a non-Gaussian state |%〉 on the undetected M modes.

i.e., the input to the lower port of the beam-splitter, one can
consider a two-mode squeezed vacuum state (TMSV) whose
one mode is detected using a PNR detector. Then, this Fock
state can be used for the photon addition task. Equivalently,
one can include several TMSV states as part of a general
Gaussian state and all the PNR detectors to be included in
the very last step of the state engineering protocol.

III. MATHEMATICAL DESCRIPTION OF PARTIAL
PNR ON ZERO-MEAN GAUSSIAN STATES

Let us consider a zero-mean N-mode Gaussian (in general
entangled) pure state |&〉, prepared by mixing N single-mode
squeezed vacuum states of squeezing parameters ri, 1 " i "
N , in a linear optical N-mode unitary operation U . We con-
sider partial PNR detection on N − M of those modes and the
generic setup is shown in Fig. 1. In Ref. [45] and Ref. [50]
it was shown that conditioned on the PNR detection pattern
(nM+1 . . . , nN ), the M-mode heralded state |%nM+1,...,nN 〉 ≡
|%〉 can be written in the Fock basis as,

|%〉 =
∞∑

n1,...,nM=0

cn1...nM |n1 . . . nM〉, (1)

where

cn1...nM =
In1...nM nM+1...nN√

P
∏N

i=1

√
ni!2ni cosh ri

. (2)

The probability of obtaining the PNR pattern (nM+1, . . . , nN )
is given by

P =
∞∑

n1,...,nM=0

∣∣In1...nN

∣∣2

∏N
i=1 ni!2ni cosh ri

(3)

and

In1...nN =
{

0
∑N

i=1 ni = odd

haf(σ )
∑N

i=1 ni = even
, (4)

where the hafnian [51] in Eq. (4) is evaluated for a matrix σ
whose elements are defined as

σi j = 2
(
H−1

i j − H−1
i+N j+N

)
, (5)

where

H−1 = 1
2

[
3I − A − iC i(A − I + iC)

i(A − I + iC) I + A + iC

]
, (6)

and A and C are block matrices that define the covariance
matrix,

(−1 =
(

A C
C 2I − A,

)
(7)

of the Q function of |&〉, i.e., of the form Q( 'R) =
[(2π )N

√
det (]−1 exp[− 'RT (−1 'R/2], where 'RT =

(q1, . . . , pN ) are the phase-space coordinates.
We note that the formulas of this section can be found

in Ref. [45] and Ref. [50]. The details of state |&〉 (i.e., its
covariance matrix) are not relevant to this work and we just
provide Eqs. (5), (6), and (7) for completeness. The rest of the
expressions of this section can be found in Ref. [45].

Without loss of generality, we set the modes undergoing
PNR to be the “last” N − M modes of |&〉. Further, we
consider ri > 0 to be real valued, or equivalently, all phases
are pushed into the passive interferometer U that entangles
the squeezed vacuum states to create the resource Gaussian
state |&〉.

For the main result of this paper, we will not need to invoke
the explicit dependence of σ on |&〉, through the squeezing
parameters ri and the parameters of the entangling passive
linear-optical unitary U . The property of importance to us will
be the parity of the PNR detector’s pattern in Eq. (4).

Let us now prove that if the N-mode Gaussian resource
state |&〉 is zero mean, then the heralded M-mode conditional
state |%〉 is also zero mean. In other words, the mean-field
amplitude of |%〉 is zero, i.e., 〈%|âi|%〉 ≡ 〈âi〉% = 0 for all
i ∈ {1, . . . , M}. Expressing this condition in the Fock basis,
we have:

〈âi〉% =
∞∑

n1,...,nM=0

√
ni + 1cn1...ni ...nM c∗

n1...ni+1...nM
.

As per Eqs. (2) and (4), the coefficients cn1...ni ...nM (and hence
their complex conjugates) are nonzero only if n1 + · · · + ni
+ · · · + nN = even. Therefore, for each nonzero term in
the sum above, n1 + · · · + ni + · · · + nN = even, and hence
n1 + · · · + ni + 1 + · · · + nN = odd. Hence, c∗

n1...ni+1...nM
=

0, rendering every term in the sum to be zero. Therefore,
〈âi〉% = 0.

IV. FIDELITY UPPER BOUND ON
THE CONDITIONAL STATE

In Sec. III we proved that a zero-mean Gaussian pure
state under partial PNR will necessarily give a zero-mean
conditional state on the unmeasured modes. Therefore, it is
natural to anticipate that any non-Gaussian target state with
an arbitrary nonzero mean-field would not have a fidelity
arbitrarily close to 1 with a non-Gaussian state engineered
using partial PNR on zero-mean Gaussian states. However,
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the question of what the highest said fidelity can be, remains
open. In this section, we provide a general recipe to find an
upper bound to the fidelity for any target state. In subsequent
sections, we will apply this technique to evaluate our fidelity
upper bound on specific non-Gaussian states of interest.

The fidelity F = |〈%t |%〉|2 between the conditional state
|%〉 of Eq. (1) and a non-Gaussian target state |%t 〉 =∑∞

n1,...,nM=0 dn1...nM |n1 . . . nM〉 reads

F =
∣∣∣∣∣

∞∑

n1,...,nM=0

c∗
n1...nM

dn1...nM

∣∣∣∣∣

2

. (8)

It is apparent that if we use the Cauchy-Schwartz inequality on
Eq. (8), we will get F " 1. However, we will see that under
the constraint [Eqs. (2) and (4)] n1 + · · · + nN = even, the
Cauchy-Schwartz inequality gives a nontrivial upper bound.
Then n1 + · · · + nM = even if the summation of the PNR
pattern (nM+1, . . . , nN ) is even, and n1 + · · · + nM = odd if
the summation of the PNR pattern (nM+1, . . . , nN ) is odd.
Therefore, we rewrite Eq. (8) as

F =
{

Feven,
∑N

i=nM+1
ni = even

Fodd,
∑N

i=nM+1
ni = odd

, (9)

where

Feven =

∣∣∣∣∣∣∣

∞∑

n1,...,nM=0
n1+···+nM=even

c∗
n1...nM

dn1...nM

∣∣∣∣∣∣∣

2

, (10)

Fodd =

∣∣∣∣∣∣∣∣

∞∑

n1,...,nM=0
n1+···+nM=odd

c∗
n1...nM

dn1...nM

∣∣∣∣∣∣∣∣

2

. (11)

Let us consider the case where n1 + · · · + nM = even. Then
Fodd = 0 and we can use the Cauchy-Schwartz inequality to
get

Feven "
∞∑

n1,...,nM=0
n1+···+nM=even

∣∣cn1...nM

∣∣2
∞∑

n1,...,nM=0
n1+···+nM=even

∣∣dn1...nM

∣∣2
.

Finally, exploiting the fact that the state |%〉 has nonzero coef-
ficients under the constraint n1 + · · · + nM = even, we write

∞∑

n1,...,nM=0
n1+···+nM=even

∣∣cn1...nM

∣∣2 = 1, (12)

and we get

Feven "
∞∑

n1,...,nM=0
n1+···+nM=even

∣∣dn1...nM

∣∣2 = ueven. (13)

Similarly, for the complementary case where n1 + · · · + nM =
odd, we have that Feven = 0 and

Fodd "
∞∑

n1,...,nM=0
n1+···+nM=odd

∣∣dn1...nM

∣∣2 = uodd. (14)

Four observations are necessary here. First, we observe that
0 " ueven " 1 and 0 " uodd " 1 and both bounds depend only
on the target state, and therefore they are easy to compute.
Second, the non-Gaussian target state is normalized, and
therefore

uodd = 1 − ueven. (15)

It is possible that for the desired non-Gaussian target state,
ueven and uodd to be unequal. In that case, we will use as upper
bound the larger among the two and herald on the PNR pattern
whose parity corresponds to that of the higher upper bound.
Third, let us note that we view fidelity as necessary criterion
for successful non-Gaussian state engineering. For example,
a coherent cat state N−1

0 (|γ 〉 + | − γ 〉) (where | ± γ 〉 is a
coherent state and N0 is normalization) can have high fidelity
with vacuum for small, albeit nonzero, γ amplitude. However,
vacuum and small coherent cat states are inherently different.
On the other hand, if one derives a low-enough upper bound
for the fidelity, then the impossibility of producing the state
under consideration is certain. Last, we observe that assuming
a zero-mean Gaussian resource state, resulted to imposing
a specific parity on the PNR pattern. The question now is
how this parity constraint impacts the state engineering per-
formance.

V. FIDELITY UPPER BOUNDS FOR COHERENT
CAT PRODUCT STATES

Consider a single mode state |c〉, which is a superposition
of two coherent states |±γ 〉,

|c〉 = b1|γ 〉 + b2| − γ 〉, (16)

where b1, b2 ∈ C satisfy

(b1b∗
2 + b∗

1b2)e−2|γ |2 = 1 − |b1|2 − |b2|2, (17)

so that 〈c|c〉 = 1. Let us calculate the upper bounds of
Eqs. (13) and (14) for the product state |c〉⊗M . Following
Eq. (13), we have

ueven =
∞∑

n1,...,nM=0
n1+···+nM=even

|〈n1|c〉|2 . . . |〈nM |c〉|2,

which can be rewritten as

ueven =
∞∑

n1,...,nM=0

|〈n1|c〉|2 . . . |〈nM |c〉|2 1 + (−1)n1+···+nM

2
.

(18)

By separating the fraction of Eq. (18) and using the fact that
state |c〉⊗M is normalized we get

ueven = 1
2

+ 1
2

∞∑

n1,...,nM=0

|〈n1|c〉|2 . . . |〈nM |c〉|2(−1)n1+···+nM .

(19)

Using Eq. (16), the Fock basis expansion of a coherent state
|γ 〉 = exp(−|γ |2/2)

∑∞
n=0 γ n/

√
n!|n〉, and Eq. (17), we find

ueven = 1
2 + 1

2 [e2|γ |2 − 2(|b1|2 + |b2|2) sinh(2|γ |2)]M,

(20)
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and using Eq. (15) we get

uodd = 1
2 − 1

2 [e2|γ |2− 2(|b1|2+ |b2|2) sinh(2|γ |2)]M . (21)

We observe that ueven and uodd for the state of Eq. (16) depend
only on the absolute values of the the state’s coefficients when
expressed as a coherent states’ superposition. We note that for
our N-mode Gaussian state, the M-mode produced state, and
the M target states, we allow N and M, 1 " M < N , to be
arbitrary.

As applications, we will consider the following target
states:

|0̄〉 = 1
N0

(|γ 〉 + | − γ 〉), (22)

|1̄〉 = 1
N1

(|γ 〉 − | − γ 〉), (23)

|+〉 = 1√
2

(|0̄〉 + |1̄〉), (24)

|−〉 = 1√
2

(|0̄〉 − |1̄〉), (25)

where Nk =
√

2[1 + (−1)ke−2|γ |2 ], k = 0, 1. The states of
Eqs. (22), (23), (24), and (25), are the computational-
and rotated-basis qubit states corresponding to the coherent
cat-basis qubit—one of the leading qubit candidates for all-
photonic quantum computing. The states |0̄〉 and |1̄〉 form the
so-called logical qubit basis, while the states |+〉 and |−〉 are
derived by the action of a Hadamard gate (defined on the qubit
basis) on the logical qubit basis’ kets. For the |0̄〉, |1̄〉 states
we find

u|0̄〉⊗M

even = 1, (26)

u|0̄〉⊗M

odd = 0, (27)

u|1̄〉⊗M

even = 1 + (−1)M

2
, (28)

u|1̄〉⊗M

odd = 1 − (−1)M

2
. (29)

Consistent with the parity of the |0̄〉, |1̄〉 states, we see that a
PNR pattern whose summation is odd cannot herald the state
|0̄〉, while the state |0̄〉 is not impossible to be engineered if
the summation of the PNR pattern is an even number. Also,
if M is an odd (even) number, then |1̄〉 cannot be heralded
if the PNR pattern is summed to an even (odd) number. We
note that an upper bound equal to 1 does not mean that the
state can be engineered with perfect fidelity. However, high
fidelity for generating approximations of the |0̄〉, |1̄〉 states
has been found in the literature [45,50,52] using the partial
PNR method, even with the resource Gaussian state being zero
mean.

For the |+〉, |−〉 states we find

u|+〉⊗M

even = 1
2 , (30)

u|+〉⊗M

odd = 1
2 , (31)

u|−〉⊗M

even = 1
2 , (32)

u|−〉⊗M

odd = 1
2 . (33)

Since |+〉, |−〉 are not zero-mean states, we expect that the
upper bound should reflect that by being less than 1. In fact,
the upper bounds are low enough to conclude that the |+〉, |−〉
states cannot be heralded no matter what the summation of
the PNR pattern is. Let us assume that we can engineer the |0̄〉
or |1̄〉 state with perfect fidelity from a zero-mean Gaussian
state using partial PNR. Then, since it is impossible to engi-
neer the |+〉, |−〉 states utilizing a zero-mean Gaussian state,
we conclude that any optical implementation of a Hadamard
gate (defined in the qubit space) based on Gaussian resources
and partial PNR, must necessarily include displacements, in
accordance with the setups presented in [53].

VI. FIDELITY UPPER BOUNDS FOR COHERENT
GHZ AND CLUSTER STATES

Consider a non-Gaussian target state that is the multimode
superposition,

|C〉 =
2M∑

l=1

bl |γ (l )〉, (34)

where bl ∈ C are such that state |C〉 is normalized and |γ (l )〉 is
a product of M coherent states |γ 〉, | − γ 〉, or any combination
thereof (there exist 2M such product states). We can rewrite
Eq. (34) as

|C〉 =
2M∑

l=1

bl (−1)ν(l )·n̂|γ〉, (35)

where |γ〉 ≡ |γ (1)〉 is a product of M coherent states |γ 〉, ν(l )
is a vector consisting of M components which are combi-
nations of ±1 [e.g., ν(1) = (1, . . . , 1), ν(2) = (−1, 1, . . .),
ν(3) = (1,−1, 1, . . . , 1), there exist 2M such vectors], and
n̂ = (n̂1, . . . , n̂M ). Equation (13) gives

ueven =
∞∑

n1,...,nM=0
n1+···+nM=even

|〈n1 . . . nM |C〉|2

=
∞∑

n1,...,nM=0

|〈n1 . . . nM |C〉|2
[

1 + (−1)n1+···+nM

2

]
.

(36)

Working out Eq. (36) and using (35) we get

ueven = 1
2

+ e−M|γ |2

2

∞∑

n1,...,nM=0

|γ |2(n1+···+nM )

n1! . . . nM!

×
∣∣∣∣∣

2M∑

l=1

bl (−1)ν(l )·n

∣∣∣∣∣

2

(−1)n1+···+nM , (37)

where n = (n1, . . . , nM ). It is hard to write Eq. (37) in closed
form; however, if one specifies the coefficients bl , the summa-
tion is rendered computable. One could write an expression
that is similar to Eq. (37) for a state like (34) but with different
coherent amplitudes per mode; however, states with equal
coherent amplitudes are relevant to quantum computing. We
remind the reader that the upper bound uodd is always given
by uodd = 1 − ueven as per Eq. (15).
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A. GHZ states

Let us examine the following GHZ states:

|GHZ±〉 = 1
N±

(|γ〉 ± | − γ〉), (38)

where N± =
√

2(1 ± e−2M|γ |2 ) are the normalization con-
stants. Applying Eq. (37) and (15) we find

u|GHZ+〉
even = 1, (39)

u|GHZ+〉
odd = 0, (40)

u|GHZ−〉
even = 0, (41)

u|GHZ−〉
odd = 1, (42)

which is again consistent with the fact that the mean filed
amplitude of GHZ states is zero and with the parity of the
PNR pattern imposed by the absence of displacement in the
resource Gaussian state. We note again that we do not prove
that our upper bound is attainable. However, it has been shown
that GHZ states can be produced with high fidelity [45] even
with zero-mean resource Gaussian states.

B. Coherent cat-basis cluster state

Let us move to a more interesting case. Consider the CZ2
gate whose action is defined as CZ2|0̄0̄〉 = |0̄0̄〉, CZ2|0̄1̄〉 =
|0̄1̄〉, CZ2|1̄0̄〉 = |1̄0̄〉, and CZ2|1̄1̄〉 = −|1̄1̄〉 and therefore is
an entangling operation when it acts on |++〉. In this work, we
denote as CZ any product consisting of multiple two-mode
CZ2 gates, acting on any two qubits of a multiqubit product
state. In fact, we consider that CZ acts on the state |+〉⊗M ,
i.e., CZ|+〉⊗M , to create entanglement between any possible
couple of |+〉 states at the same time, therefore creating a
cluster state on the coherent-cat basis, i.e.,

|CCCS〉 = CZ|+〉⊗M, (43)

is any coherent cat-basis cluster state. Using Eq. (24), said
state can be written as

|CCCS〉 = 1
2M/2

[
s1|0̄ . . . 0̄〉 + s2|1̄0̄ . . . 0̄〉 + · · ·

+ sM+2|0̄ . . . 0̄1̄〉 + sM+3|1̄1̄ . . . 0̄〉
+ · · · + s(M

2 )+(M+3)|0̄ . . . 1̄1̄〉

+ · · · + s2M |1̄ . . . 1̄〉
]
. (44)

Let us explain the terms of Eq. (44): The first line is the prod-
uct state |0̄〉⊗M and there is

(M
0

)
= 1 such state. The second

line is a product of M − 1 |0̄〉 states and 1 |1̄〉 state which can
take any position and therefore there are

(M
1

)
= M such states

present in said line. Similarly, in the third line the 2 |1̄〉 states
can take any position and there are

(M
2

)
such states, and so on.

Finally, in the last line all states are |1̄〉 and there is only one
such state as

(M
M

)
= 1. The prefactors si, i = 1, . . . , 2M can

only be ±1, according to the prescription of any given CZ gate
creating any desired cluster configuration. In fact, unless there
are at least two |1̄〉 vectors present, one can set si = 1, ∀i.

From Eqs. (13) and (44) we have

u|CCCS〉
even = 1

2M

∞∑

n1,...,nM=0
n1+···+nM=even

|s1〈n1 . . . nM |0̄ . . . 0̄〉 + · · ·

+ s2M 〈n1 . . . nM |1̄ . . . 1̄〉|2. (45)

Let us examine the cross-terms of the expansion of | . . . |2
in Eq. (45), i.e., terms with different prefactors si. Any such
term is the product 〈n1 . . . nM |q̄1 . . . q̄M〉〈q̄′

1 . . . q̄′
M |n1 . . . nM〉,

with q̄1, . . . , q̄M = 0, 1 and q̄′
1, . . . , q̄′

M = 0, 1. Since
they are cross-terms, there is at least one i = 1, . . . , M
such that q̄i .= q̄′

i. Given the Fock expansion coef-
ficients 〈n|0̄〉 = N−1

0 e−|γ |2/2γ n[1 + (−1)n]/
√

n! and
〈n|1̄〉 = N−1

1 e−|γ |2/2γ n[1 − (−1)n]/
√

n!, we see that any
cross-term will be proportional to [1 + (−1)ni ][1 − (−1)ni ] =
1 − (−1)2ni = 0, for at least one i.

Therefore, the only nonzero terms in Eq. (45) are of
the form |si〈n1 . . . nM |q̄1 . . . q̄M〉|2 = |〈n1 . . . nM |q̄1 . . . q̄M〉|2,
since |si|2 = 1. Therefore, we have

u|CCCS〉
even = 1

2M

M∑

k=0

(
M
k

)
u|0̄⊗(M−k)1̄⊗k〉

even . (46)

From Eq. (13) and following the methods of Sec. V, we find
that

u|0̄⊗(M−k)1̄⊗k〉
even = 1 + (−1)k

2
. (47)

Finally, from Eqs. (46), (47), and (15) we find

u|CCCS〉
even = 1

2 , (48)

u|CCCS〉
odd = 1

2 . (49)

Any |CCCS〉 has inherently nonzero mean-field amplitude
because the |+〉 has nonzero displacement. The upper bound
of Eqs. (48) and (49) quantifies the damage of not considering
displacement as a resource. An upper bound equal to 1/2 on
the fidelity with any produced state shows that any |CCCS〉
state is well beyond reach with a zero-mean Gaussian resource
state.

VII. CONCLUSIONS AND DISCUSSION

Partial PNR is the new trend for non-Gaussian bosonic
state engineering because essentially it circumvents the
technical difficulties of constructing non-Gaussian optical
unitary operations. However, the are two main drawbacks in
said approach: (i) optimization methods are needed to reveal
an optimal resource Gaussian state that maximizes the fidelity
and probability of occurrence of an acceptable produced state
(ii) fidelity is merely a necessary criterion. Any numerical
optimization typically does not give intuition on the under-
lying physics of state engineering. In this paper we asked
what would happen if we forbid our resource state to possess
any displacements and therefore reveal the implications on
coherent-cat basis clusters under any optimization of such
resource. We recognized that zero displacement restricts the
parity of the observed PNR pattern and therefore it restricts
the Fock expansion coefficients (modulo squared) one should
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sum up to derive a fidelity upper bound, yielding a hard 1/2
upper bound for target states with nonzero mean-field ampli-
tude such as the |+〉, |−〉, and |CCCS〉 states.

As a by-product, we argued that any optical implementa-
tion, i.e., based on Gaussian resources and partial PNR, of a
qubit Hadamard gate (an operation transforming |0̄〉 → |+〉)
must necessarily include displacements. This Hadamard gate
could be a separate module consisting m displaced squeezed
states as inputs to a passive n-mode interferometer (m < n).
The rest of the n − m input modes could be the output state
of another partial PNR-based scheme which produces the |0̄〉
or |1̄〉 states. The Hadamard optical module and the |0̄〉 or |1̄〉
state generator could be combined into a single interferometer,
with single mode dispalced squeezed inputs, and an array
of PNR detectors at the output, some of which control the
production of |0̄〉 or |1̄〉 and another PNR subset the realization
of the Hadamard gate.

It is known that PNR detectors and Gaussian states com-
prise a universal resource set [28]. Therefore, by working with
a general pure Gaussian state, i.e., including displacements,
universality must be restored. Apparently, a displacement
D(α) on the undetected output would not suffice as it can
be easily seen that for example D(α)|0̄〉 .= |+〉. All displace-
ments must be applied on the squeezed single mode states
going into the passive interferometer or just before partial
PNR (i.e., equivalently partially projecting a zero-mean Gaus-
sian state onto displaced Fock states). However, a constructive
way of designing partial PNR-based schemes which would
attain universality is still elusive.

The holy grail of this line of research would be a systematic
theory for non-Gaussian state engineering for specific classes
of states that are useful in various quantum information pro-
cessing tasks such as cluster states for quantum computing,
all-optical quantum repeaters, metrologically optimal states
in distributed quantum sensing, etc. One specific interesting
question that relates to the states considered in this paper is as
follows: Whether the GHZ states considered in this work can
be transformed into the CCCS by using local unitaries (e.g.,
it is known that a star-topology cluster state and a GHZ state
are local-Hadamard equivalent [54]), where the local unitaries
are themselves realized by postselected non-Gaussian ancilla
states which in turn were heralded using Gaussian states and
PNR detectors [53].

Such questions could be answered by expanding the math-
ematical formalism developed in Refs. [45,50] to include
displacements. This could catalyze further progress toward
the non-Gaussian state engineering, if not in providing con-
structive ways for attaining universality, but at least for
constructing optical implementations for specific useful to
quantum computation modules.
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