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A photoplethysmography (PPG) is an uncomplicated and inexpensive optical technique widely used in the healthcare domain

to extract valuable health-related information, e.g., heart rate variability, blood pressure, and respiration rate. PPG signals

can easily be collected continuously and remotely using portable wearable devices. However, these measuring devices are

vulnerable to motion artifacts caused by daily life activities. The most common ways to eliminate motion artifacts use

extra accelerometer sensors, which sufer from two limitations: i) high power consumption and ii) the need to integrate an

accelerometer sensor in a wearable device (which is not required in certain wearables). This paper proposes a low-power

non-accelerometer-based PPG motion artifacts removal method outperforming the accuracy of the existing methods. We use

Cycle Generative Adversarial Network to reconstruct clean PPG signals from noisy PPG signals. Our novel machine-learning-

based technique achieves 9.5 times improvement in motion artifact removal compared to the state-of-the-art without using

extra sensors such as an accelerometer, which leads to 45% improvement in energy eiciency.

CCS Concepts: · Applied computing→ Health informatics; · Computing methodologies→Machine learning.

Additional Key Words and Phrases: Machine Learning, Deep Generative models, Cycle GAN, PPG Signals, Motion Artifacts

removal, Noise removal

1 INTRODUCTION

A photoplethysmography (PPG) is a simple, low-cost, and convenient optical technique used for detecting

volumetric blood changes in the microvascular bed of target tissue [4]. Valuable health-related information can

be extracted from PPG signals such as heart rate and heart rate variability.

Nowadays, PPG signals can easily be collected continuously and remotely using inexpensive, convenient,

and portable wearable devices (.e.g., smartwatches, rings, etc.) which makes them a suitable source in wellness

applications in everyday life. However, PPG signals collected from portable wearable devices in everyday settings

are often measured when a user is engaged with diferent kinds of activities and therefore are distorted by motion

artifacts. The signal with a low signal-to-noise ratio leads to inaccurate vital signs extraction which may risk

life-threatening consequences for healthcare applications. There exists a variety of methods to detect and remove

motion artifacts from PPG signals. The majority of the works related to the detection and iltering of motion

artifacts in PPG signals can reside in three categories: (1) non-acceleration based, (2) using synthetic reference

data, and (3) using acceleration data.

The non-acceleration based methods do not require any extra accelerometer sensor for motion artifact detection

and removal. In existing works, these approaches utilize certain statistical methods due to the fact that some

statistical parameters such as skewness and kurtosis will remain unchanged regardless of the presence of the
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noise. In [17], such statistical parameters are used to detect and remove the impure part of the signal due to

motion artifacts. In [12], authors detect motion artifacts using a Variable Frequency Complex Demodulation

(VFCDM) method. In this method, the PPG signal is normalized after applying a band-pass ilter. Then, to detect

motion artifacts, VFCDM distinguishes between the spectral characteristics of noise and clean signals. Then, due

to a shift in the frequency, an unclean-marked signal is removed from the entire signal. Another method in this

category is proposed in [25] that uses the Discrete Wavelet Transform (DWT) method.

In non-accelerometer based methods, the clean output signal is often shorter than the original signal, since

unrecovered noisy data is removed from the signal. To mitigate this problem, a synthetic reference signal can be

generated from the corrupted PPG signal. In [33], authors use Complex Empirical Mode Decomposition (CEMD)

to generate signals. In [18], two PPG sensors are being used to generate a reference signal. One of the sensors is

a few millimeters away from the skin, which only measures PPG during movements. First a band-pass ilter is

applied on both recorded signals; then, an adaptive ilter is used to minimize the diference between two recorded

signals.

Sensors are the most critical part of wearable sensing devices, and their sensitivity plays an important

role[26, 30]. Often an accelerometer sensor is also embedded in wearable devices. To eliminate the efect of

motion artifacts, acceleration data can be used as a reference signal. In [37], with the help of acceleration data,

Singular Value Decomposition (SVD) is used for generating a reference signal for an adaptive ilter. Then, the

reference signal and PPG signal pass through an adaptive ilter to remove motion artifacts. With a similar

approach, authors in [39] use DC remover using another type of adaptive ilter. Another method for motion

artifact removal is proposed in [11] which follows three steps: (1) signals are windowed, (2) the output signal is

iltered, and (3) a Hankel data matrix is constructed.

Even though using an accelerometer-based method increases the model’s accuracy, it sufers from two limita-

tions: i) high power consumption and ii) the need to integrate an accelerometer sensor in a wearable device (which

is not required in certain wearables). To overcome these issues, machine learning techniques can be employed as

an alternative method to remove noise and reconstruct clean signals [9, 40, 41]. Furthermore, machine learning

techniques, proven to be useful in numerous research areas [15, 27ś29, 36], are utilized in healthcare domain in

processing of a variety of physiological signals such as PPG for data analysis purposes [5ś8, 13, 22]. The aim of

this paper is to propose a machine learning non-accelemoter-based PPG motion artifacts removal method which

is low-power and can outperform the accuracy of the existing methods (even the accelerometer-based techniques).

In recent studies, applying machine learning for image noise reduction has been investigated extensively. The

most recent studies use deep generative models to reconstruct or generate clean images [14, 38]. In this paper,

we propose a novel approach which converts noisy PPG signals to a proper visual representation and uses deep

generative models to remove the motion artifacts. We use a Cycle Generative Adversarial Network (CycleGAN)

[43] to reconstruct clean PPG signals from noisy PPG. CycleGAN is a novel and powerful technique in unsu-

pervised learning, which targets learning the distribution of two given datasets to translate an individual input

data from the irst domain to a desired output data from the second domain. The advantages of CycleGAN over

other existing image translation methods are i) it does not require the pairwise dataset, and ii) the augmentation

in CycleGAN makes it practically more suitable for datasets with fewer images. Hence, we use CycleGAN to

remove motion artifacts from noisy PPG signals and reconstruct the clean signals. Our experimental results

demonstrate the superiority of our approach compared to the state-of-the-art with a 9.5 times improvement with

approximately 45% improvement in the energy eiciency due to eliminating accelerometer sensors.

The rest of this paper is organized as follows. Section Methods introduces the employed dataset and our

proposed pipeline architecture. In section Results we summarize the result obtained by our proposed method

and compare our result with the state-of-the-art in motion artifact removal from PPG signals. Finally, in the

Conclusion section we discuss the strengths and limitations of our method and we cover the future work.
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2 METHODS

In this paper, we present an accurate non-accelerometer-based motion artifacts removal model from PPG signals.

This model mainly consists of a module for artifact detection and another one for motion artifact removal. We

present in Figure 1 the low chart of our proposed model.

No No

Raw PPG Signal

Clean PPG SignalArtifact Detection

Signal Segmentation
and Normalization Artifact Removal

Noisy?

Yes

Fig. 1. Flowchart of the proposed method

The artifact removal module consists of sub-modules (Figure 2) that deliver the task of cleaning the input

signal by transforming it into a two dimensional image and using CycleGAN to remove the two dimensional

noise induced by the artifacts. Consequently, the clean image is transformed to a signal that is returned in the

output. Each of these modules are discussed in detail in their corresponding sections.

Noisy Window Image Construction CycleGAN 
Noise Removal Signal Reconstruction

Fig. 2. Flowchart of the artifact removal module

In order to train this model, two datasets of PPG signals are required: one consisting of clean PPG signals and

the other one containing noisy PPG signals (In the rest of this paper, by noisy PPG signals we are refering to PPG

signals afected by motion artifact). The model’s evaluation requires both clean and noisy signals to be taken from

the same patient in the same period of time. However, recording such data is not feasible as patients are either

performing an activity, which leads to recording a noisy signal or are in a steady-state, which produces a clean

signal. For this reason, we simulate the noisy signal by adding data from an accelerometer to the clean signal.

This is a common practice and has been used earlier in related work (e.g., [34]) to address this issue. This way,

the efectiveness of the model can be evaluated eiciently by comparing the clean signal with the reconstructed

output of the model on the derived noisy signal. In the following subsections, we explain the process of data

collection for both clean and noisy datasets.

ACM Trans. Comput. Healthcare
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2.1 BIDMC Dataset

For the clean dataset, we use BIDMC dataset [31]. This dataset contains signals and numerics extracted from

the much larger MIMIC II matched waveform database, along with manual breath annotations made from two

annotators, using the impedance respiratory signal.

The original data was acquired from critically ill patients during hospital care at the Beth Israel Deaconess

Medical Centre (Boston, MA, USA). Two annotators manually annotated individual breaths in each recording

using the impedance respiratory signal. There are 53 recordings in the dataset, each being 8 minutes long and

containing:

• Physiological signals, such as the PPG, impedance respiratory signal, and electrocardiogram (ECG) sampled

at 125 Hz.

• Physiological parameters, such as the heart rate (HR), respiratory rate (RR), and blood oxygen saturation

level (SpO2) sampled at 1 Hz.

• Fixed parameters, such as age and gender. The ages range from 19 to higher than 90. Also, out of 53 subjects

in this dataset, 20 of them are males and 32 are females (one subject’s sex is not determined).

• Manual annotations of breaths.

2.2 Data Collection

We conducted laboratory-based experiments to collect accelerometer data for generating noisy PPG signals. Each

of these laboratory-based experiments consisted of 27 minutes of data. A total of 33 subjects participated in the

laboratory-based experiments. The ages of the subjects ranged from 20 to 62, and 17 of them were males while

16 were females. In each experiment, subjects were asked to perform speciic activities while the accelerometer

data were collected from them using an Empatica E4 [2] wristband worn on their dominant hand. The Empatica

E4 wristband is a research-grade wearable device that ofers real-time physiological data acquisition, enabling

researchers to conduct in-depth analysis and visualization. A recent research study detects and discriminates

acute psychological stress (APS) in the presence of concurrent physical activity (PA) using the PPG and the

Accelerometer data collected from Empatica E4 wristband [35]. Figure 3 shows our experimental procedure. Note

that the accelerometer signals are only required for generating/emulating noisy PPG signals, and our proposed

motion artifact removal method does not depend on having access to acceleration signals.

Rest
Finger

Tappping

Low Intensity

Finger
Tappping

High Intensity

Rest
Waving

Low Intensity

Waving

High Intensity

Rest
Shaking
Hands

Low Intensity

Shaking
Hands

High Intensity

Rest
Runnig Arm

Swings

Low Intensity High Intensity

Rest
Fist

Open/Close

Low Intensity High Intensity

Rest
3D Arm

Movement

Low Intensity High Intensity

Runnig Arm
Swings

Fist
Open/Close

3D Arm
Movement

Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Fig. 3. Experimental procedure to collect accelerometer data.

According to Figure 3, each experiment consists of 6 diferent activities: (1) Finger Tapping, (2) Waving, (3)

Shaking Hands, (4) Running Arm Swing, (5) Fist Opening and Closing, and (6) 3D Arm Movement. Each activity

lasts 4 minutes in total, including two parts with two diferent movement intensities (low and high), each of
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which lasts 2 minutes. Activity tasks are followed by a 30 seconds rest (R) period between them. During the rest

periods, participants were asked to stop the previous activity and put both their arms on a table, and stay in

a steady state. Accelerometer data collected during each of the activities were later used to model the motion

artifact. We describe this in the next subsection.

2.3 Noisy PPG signal generation

To generate noisy PPG signals from clean PPG signals, we use accelerometer data collected in our study. Clean PPG

signals are directly collected from the BIDMC dataset. Accelerometer data is taken at 32 Hz, thus we down-sample

the clean signals to 32 Hz to ensure they are synchronized with the collected accelerometer data.

Empatica has an onboard MEMS type 3-axis accelerometer that measures the continuous gravitational force

(g) applied to each of the three spatial dimensions (x, y, and z). The scale is limited to ±2g. Figure 4 shows an

example of accelerometer data collected from E4.
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-0.58

0.78

0.10

-0.58

Fig. 4. An example of Accelerometer data from Connect, the subject moves into position, walks, runs, and then simulates the

turning of a car’s steering wheel. The dimensional axes are depicted in red, green and blue.

Along with the raw 3-dimensional acceleration data, Empatica also provides a moving average of the data.

Every second, the following summation is calculated over the (32 samples) input received from the accelerometer

sensor,

S =
∑

t=132 max( |Accx [t ]−Accx [1] |, |Accy [t ]−Accy [1] |, |Accz [t ]−Accz [1] |)

(1)

where Acci [t] is the value of the accelerometer sensor (g) along the i-th dimension at time frame (sample) t ,

and Acci [1] is the irst value of the accelerometer sensor (g) along the i-th dimension in the current window. The

max(a,b, c ) function simply returns the maximum value among a, b, and c . It is worth to mention that the values

stored in the arrays Accx ,Accy , and Accz change after each window is processed.

Afterwards, the value of the moving average for the new window will be calculated based on this summation

and the value of the moving average on the previous window,

Avg[w] = 0.9 × Avg[w − 1] + 0.1 ×
S

32
(2)

Figure 5 visualizes this moving average over the data.

This iltered output (Avg) is directly used as a model for motion artifacts in our study. To simulate the noisy

PPG signals, we add this artifact model to a 2 minutes window of the clean PPG signals collected from the BIDMC

dataset. We use 40 out of 53 signals in BIDMC directly as the clean dataset for training. Among these 40 signals,

20 are selected and augmented with the accelerometer data to construct the noisy dataset for training. The 13
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Fig. 5. The same data as Figure 4 is visualized using the moving average. From Connect, the subject moves into position,

walks, runs, and then simulates the turning of a car’s steering wheel. The dimensional axes are depicted in red, green and

blue.

remaining BIDMC signals and accelerometer data were added together to form the clean and noisy datasets for

testing. In the rest of this section we describe each part of the model introduced in Figure 1.

2.4 Noise Detection

To perform noise detection, irst, the raw signal , which is downsampled to 32 Hz, is normalized by a linear

transformation to map its values to the range (0, 1). This can be performed using a simple function as below:

Signorm =
Sigraw −min(Sigraw)

max(Sigraw) −min(Sigraw)
(3)

where Sigraw is the raw signal and Signorm is the normalized output. Then, the normalized signal is divided

into equal windows of size 256, which is the same window size we use for noise removal. These windows are

then used as the input of the noise detection module to identify the noisy ones.

The similar type of machine learning network used in [42] can be employed as a noise detection system.

To explain the network structure for the noise detection method (Table 1 and Figure 6), irst, we use a 1D-

convolutional layer with 70 initial random ilters with a size of 10 to select the basic features of the input data

and convert the matrix size from 256 × 1 to 247 × 70. To extract more complex features from the data, another

1D-convolutional layer with the same ilter size 10 is required. As the third layer, a pooling layer with a ilter size

of 3 is utilized. In this layer, a sliding window slides over the input of the layer and in each step, the maximum

value of the window is applied to the other values. This layer converts a matrix size of 238 × 70 to 79 × 70. To

select additional complex features, another set of convolutional layers are used with a diferent ilter size. This

set is followed by two fully connected layers of sizes 32 and 16. Lastly, a dense layer of size 2 with a softmax

activation would produce the probability of each class: clean and noisy. The maximum of these two probabilities

would be identiied as the result of the classiication. The accuracy of our proposed binary classiication method

is 99%, which means that the system can almost always detect a noisy signal from a clean signal.

2.5 Noise Removal

In this section, we explore the reconstruction of noisy PPG signals using deep generative models. Once a

noisy window is detected, it is sent to the noise removal module for further processing. First, the windows are

transformed into 2-dimensional images, to exploit the power of existing image noise removal models, and then a
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32
16
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1D-Convolutional 
layer with 70 filters

1D-Convolutional 
layer with 70 filters

1D-Convolutional 
layer with 140 filters

1D-Convolutional 
layer with 140 filters

Max Pooling layer

Global Average
Pooling layer

Three Dense layers

Noiseless
OR

Noisy

Fig. 6. The structure of the noise detection model.

Table 1. The layer configuration of the noise detection model.

igure

Layer Structure Output

Conv1D+Relu 70 × 10 247 × 70

Conv1D+Relu 70 × 10 238 × 70

Max pooling 1D 3 79 × 70

Conv1D+Relu 140 × 10 70 × 140

Conv1D+Relu 140 × 10 61 × 140

Global average pooling N/A 140

Dense+Relu 128 32

Dense+Relu 16 16

Dense+Softmax 2 2

trained CycleGAN model is used to remove the noise induced by the motion artifact from these images. In the

inal step of the noise removal, the image transformation is reversed to obtain the clean output.

The transformation needs to provide visual features for unexpected changes in the signal so that the CycleGAN

model would be able to distinguish and hence reconstruct the noisy parts. To extend the 1-dimensional noise on

the signal into a 2-dimensional visual noise on the image, we apply the following transformation:

Img[i, j] = loor((Sig[i] + Sig[j]) × 128) (4)

where Sig is a normalized window of the signal, Img is the 2d array storing the grayscale image, and i and

j are time frames in the window. Each pixel, i.e. each entry of Img, will then have a value between 0 and 255,

representing a grayscale image. An example of such transformation is provided in Figure 7 for both clean and

noisy signals. According to this igure, the noise efect is visually observable in these images.

Autoencoders and CycleGAN are two of the most powerful approaches for image translation. These methods

have proven to be efective in the particular case of noise reduction. Autoencoders require the pairwise translation

of every image in the dataset. In our case, clean and noisy signals are not captured simultaneously, and their

quantity difers. CycleGAN, on the other hand, does not require the dataset to be pairwise. Also, the augmentation

ACM Trans. Comput. Healthcare
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(a) Reference PPG (b) Noisy PPG

l l

Fig. 7. An example of signal to image transformation.

in CycleGAN makes it practically more suitable for datasets with fewer images. Hence, we use CycleGAN to

remove motion artifacts from noisy PPG signals and reconstruct the clean signals.

CycleGAN is a Generative Adversarial Network designed for the general purpose of image-to-image translation.

CycleGAN architecture was irst proposed by Zhu et al. in [43].

The GAN architecture consists of two networks: a generator network and a discriminator network. The

generator network starts from a latent space as input and attempts to generate new data from the domain. The

discriminator network aims to take the generated data as an input and predict whether it is from a dataset (real)

or generated (fake). The generator is updated to generate more realistic data to better fool the discriminator, and

the discriminator is updated to better detect generated data by the generator network.

The CycleGAN is an extension of the GAN architecture. In the CycleGAN, two generator networks and two

discriminator networks are simultaneously trained. The generator network takes data from the irst domain

as an input and generates data for the second domain as an output. The other generator takes data from the

second domain and generates the irst domain data. The two discriminator networks are trained to determine

how plausible the generated data are. Then the generator models are updated accordingly. This extension itself

cannot guarantee that the learned function can translate an individual input into a desirable output. Therefore,

the CycleGAN uses a cycle consistency as an additional extension to the model. The idea is that output data by

the irst generator can be used as input data to the second generator. Cycle consistency is encouraged in the

CycleGAN by adding an additional loss to measure the diference between the generated output of the second

generator and the original data (and vice versa). This guides the data generation process toward data translation.

In our CycleGAN architecture, we apply adversarial losses [16] to both mapping functions (G : X → Y and

F : Y → X ). The objective of the mapping function G as a generator and its discriminator DY is expressed as

below:

LGAN (G,DY ,X ,Y ) = Ey∼pdata (y )[log logDY (y)] + Ex∼pdata (x )[log log(1 − DY (G (x )))] (5)

where the function G takes an input from domain X (e.g., noisy PPG signals), attempting to generate new data

that look similar to data from domain Y (e.g., clean PPG signals). In the meantime, DY aims to determine whether

its input is from the translated samplesG (x ) (e.g., reconstructed PPG signals) or the real samples from domain Y .

A similar adversarial loss is deined for the mapping function F : Y → X as LGAN (F ,DX ,Y ,X ).

ACM Trans. Comput. Healthcare
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As discussed before, adversarial losses alone cannot guarantee that the learned function can map an individual

input from domain X to the desired output from domain Y . In [43], the authors argue that to reduce the space of

possible mapping functions even further, learned mapping functions (Y and F ) need to be cycle-consistent. This

means that the translation cycle needs to be able to translate back the input from domain X to the original image

as X → G (X ) → F (G (X )) ∼ X . This is called forward cycle consistency. Similarly, backward cycle consistency is

deined as: y → F (y) → G (F (y)) ∼ y. This behavior is presented in our objective function as:

Lcyc (G, F ) = Ex∼pdata (x )[∥F (G (x )) − x ∥1] + Ey∼pdata (y )[∥G (F (y)) − y∥1] (6)

Therefore, the inal objective of CycleGAN architecture is deined as:

L(G, F ,DX ,DY ) = LGAN (G,DY ,X ,Y ) + LGAN (F ,DX ,Y ,X ) + λLcyc (G, F ) (7)

where λ controls the relative importance of the two objectives.

In Equation 7, G aims to minimize the objective while an adversary D attempts to maximize it. Therefore, our

model aims to solve:

G∗, F ∗ = argminL(G, F ,DX ,DY ) (8)

The architecture of the generative networks is adopted from Johnson et al. [21]. This network contains four

convolutions, several residual blocks [19], and two fractionally-strided convolutions with stride 0.5. For the

discriminator networks, they use 70 × 70 PathGANs [20, 23, 24].

After the CycleGAN is applied to the transformed image, the diagonal entries are used to retrieve the recon-

structed signal.

Sigrec[i] = Img[i, i]/256 (9)

3 RESULTS

In this section, we assess the eiciency of our model based on the following measures: root mean square error

(RMSE) and peak-to-peak error (PPE). A signal window size of 256 and an image size of 256 by 256 were used for

all experimental purposes, and 25% of the data was assigned for validation. The noise detection module had an

accuracy of 99%. The summary of the results for noise removal, including the improvement for each noise type

and noise intensity, can be found in Table 2.

For each noise type, there are two entries in this table, one corresponding to the slow movement and the other

one corresponding to the fast movement. The average S/N value for slow movements is 21.7dB, as provided in

the table, while the average S/N value for fast movements is 14.0dB. For each of the measures, RMSE and PPE,

we calculated the error between the generated signal and the reference signal as well as the error between the

noisy signal and the reference signal in order to observe the improvement of the model on the noisy signal. The

degree of improvement on each noise type is added in a separate column in the table. According to the table, the

average of improvement on RMSE is 41× and the average of improvement on PPE is 58×.

An example of a reconstructed signal is presented in Figure 8, together with the noisy PPG and the reference

PPG signal. As we can see in this igure, the noise is signiicantly reduced, and the peak values are adjusted

accordingly, conirming that the image transformation successfully represents the noise in a visual format.

3.1 Comparison

In this section we compare our model’s eiciency with the state-of-the-art (Table 3). To minimize the diference

between our experimental setup and the setups used in the related works we use the same measures. Such com-

parison for the state-of-the-art artifact detection and artifact removal algorithms has been made comprehensively

in [32] , where the algorithms are compared according to their input/output PPE and RMSE. We use [32] as the

base of our comparison and we provide PPE and RMSE improvements of our method to display its eiciency

with respect to both measures. It should be noted that it is not feasible to perform a close comparison between

ACM Trans. Comput. Healthcare
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Table 2. Results of the proposed method.

Noise Type S/N (dB) RMSE

Gen.

(BPM)

RMSE

Nsy.

(BPM)

RMSE

Imprv.

PPE

Gen.

(BPM)

PPENsy.

(BPM)

PPE

Imprv.

Waving 20.04 0.213 41.76 196.07× 0.136 32.89 241.60×

Waving 11.30 2.43 55.30 22.75× 1.088 37.90 34.84×

3D Arm Movement 20.17 1.644 92.12 56.03× 0.772 44.03 57.06×

3D Arm Movement 13.12 1.688 65.99 39.10× 0.700 48.49 69.29×

Shaking Hands 21.66 1.556 61.89 39.78× 0.576 28.62 49.71×

Shaking Hands 14.96 4.203 84.31 20.06× 2.677 64.58 24.12×

Finger Tapping 22.99 1.758 63.43 36.07× 0.653 45.14 69.14×

Finger Tapping 13.99 3.008 21.76 7.235× 1.191 10.70 8.99×

Fist Open Close 25.11 1.648 35.74 21.69× 0.528 24.51 46.44×

Fist Open Close 16.69 2.151 51.28 23.84× 1.113 42.65 38.33×

Running Arm 20.14 2.056 22.93 11.16× 0.715 19.32 27.02×

Running Arm 13.98 3.807 77.73 20.42× 1.348 50.75 37.64×

Average 17.85 2.18 56.19 41.18× 0.958 37.465 58.68×

our model and the existing works, due to the diferences in the datasets and the lack of a public dataset providing

noisy and clean signals simultaneously.

Table 3. The summary comparison of our result with the existing methods. MAE stands for Mean absolute error.

Paper Method Accelerometer Before Outcome

Proposed method CycleGAN No PPE 37.46 BPM

RMSE 56.18 BPM

PPE 0.95 BPM

RMSE 2.18 BPM

Hanyu and Xiaohui [17] Statistical Evaluation No PPE 8.1 BPM PPE 7.85 BPM

Bashar et al. [12] VFCDM No N/A 6.45% false positive

Lin and Ma [25] DWT No PPE 13.97 BPM PPE 6.87 BPM

Raghuram et al. [33] CEMD LMS Syn. PPE 0.466 BPM PPE 0.392 BPM

Hara et al. [18] NLMS and RLS Syn. RMSE 28.26 BPM RMSE 6.5 BPM

Tanweer et al. [37] SVD and X-LMS Yes N/A PPE 1.37 BPM

Wu et al. [39] DC remover and RLS Yes N/A STD 3.81

Baca et al. [11] MAR and AT Yes N/A MAE 2.26 BPM

Askari et al. [10] SSA + MA Removal No N/A RMSE 6.73 BPM

In comparison to non-accelerometer-based methods, our model signiicantly outperforms these models. The

best performance observed in previous work is reported in [18] that improves the average RMSE from 28.26BPM

to 6.5BPM (4.3× improvement). However, our model’s improvement on average RMSE is from 56.18 to 2.18 (25.8×

improvement). In most of the existing accelerometer-based methods, no value is provided for the degree of the

input noise. Although the best reported PPE belongs to [33] with an outcome of 0.392BPM, the best improvement

is achieved by [25] from 13.97BPM to 6.87BPM (2.03× improvement). However, our model’s improvement on

average PPE is from 37.46BPM to 0.95BPM (39.4× improvement).
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l l l

(a) The clean reference signal of Figure 7 on the let, alongside its noisy signal in the middle, and the reconstructed clean

signal on the right.

l

(b) A comparison of the reference signal and the reconstructed signal together with the residual image of the reconstruction

is included in this figure. The brighter the pixels are the more diference the reconstructed image has in that pixel compared

to the original image, meaning that the motion artifact is slightly apparent in the reconstructed signal.

Fig. 8. Signal reconstruction

3.2 Resource Usage

In this section, we provide detailed information about the resources being used. Previously, we claimed that our

implemented model consumes a lower amount of power in comparison to the accelerometer-based models. We

designed an experiment to measure the consumed power for our implemented model and accelerometer-based

models to compare power consumption. First, we did 32Hz-sampling in a Raspberry Pi 4 device for ive minutes

by using a low-power accelerometer, ADXL343 [1]. Then, we measured the average consumed power of this

task by using SmartPower2 5VDC Power Supply [3]. Secondly, we measured the average power consumption of

our CycleGAN model in the test phase for ive minutes with the same raspberry pi and power analyzer. In other

words, we did these sub-tasks (1) trained the model, (2) tested our pre-trained model on the raspberry pi, and (3)

monitored the power consumption. For embedded devices, the critical key is being low power in the training

phase is not crucial; since training can be done on the cloud instead of the device itself. In table 4, you can ind the

results of this experiment. According to Table 4, our proposed method in average uses 45% less power compared

to an accelerometer-based artifact removal method.
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Table 4. Average power consumption of raspberry pi 4

Idle Accelerometer-based Proposed Method

Power Consumption 2.23 W 3.76 W 3.07 W

To complete the analysis for resource usage, we also considered average time and memory consumption. We

completed our proposed model’s training and testing phase on a server, with a GPU of RTX 3080 Ti and a CPU

of Xeon E5-2680 v2, and monitored the resources. In table 5, the information about resource usage is provided.

Since our purpose is cleaning the PPG signal in real-time, low time consumption in the test phase is important.

Based on the results, our model needs just 0.3 Sec to clean the PPG signal, which makes it a feasible solution for

real-time PPG noise removal.

Table 5. Average time and memory consumption of the proposed method in training and testing phase

Time CPU Memory GPU Memory

Train 909.786 Sec 488 MB 10828MB

Test 0.398 Sec 26 MB 1MB

4 DISCUSSION

Noise reduction has been extensively studied in image processing, and the introduction of powerful models

such as CycleGAN has shown promising results in terms of noise reduction in images. Inspired by this fact, we

proposed a signal to image transformation that visualizes signal noises in the form of image noise. To the best of

our knowledge, this is the irst use of CycleGAN for bio-signal noise reduction which eliminates the need for an

accelerometer to be embedded into wearable devices, which in turn helps to reduce the power consumption and

cost of these devices.

It should be noted that despite the signiicant beneits of our proposed method in removing noise in diferent

situations, it may not be efective in all possible scenarios. Clearly, the intensity of noise applied to the signals,

and the variations of the noise, also called noise categories, are controlled for the purpose of this study. In other

words, if the source of the generated motion artifact is changed in a way that the range in heart rate variations is

observable in compared with existing activities in this work, this method may not be applicable. Although it will

improve the error, it does not guarantee a reasonable upper bound. However, the same limitations also exist in

the related works.

5 CONCLUSIONS

In this paper, we presented an image processing approach to the problem of noise removal from PPG signals

where the noise is selected from a set of noise categories that simulate the daily routine of a person. This method

does not require an accelerometer on the sensor, therefore, it can be applied to other variations of physiological

signals, such as ECG, to reduce the power usage of the measuring device and improve its eiciency. In this work,

the novel use of CycleGAN as an image transformer is leveraged to transform such physiological signals. On

average, the reconstructed PPG performed using our proposed method ofers 41× improvement on RMSE and

58× improvement on PPE, outperforming the state-of-the-art by a factor of 9.5.
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