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Abstract—We characterize the capacity for the discrete-time
arbitrarily varying channel with discrete inputs, outputs, and
states when (a) the encoder and decoder do not share common
randomness, (b) the input and state are subject to cost con-
straints, (c) the transition matrix of the channel is deterministic
given the state, and (d) at each time step the adversary can only
observe the current and past channel inputs when choosing the
state at that time. The achievable strategy involves stochastic
encoding together with list decoding and a disambiguation step.
The converse uses a two-phase “babble-and-push” strategy where
the adversary chooses the state randomly in the first phase, list
decodes the output, and then chooses state inputs to symmetrize
the channel in the second phase. These results generalize prior
work on specific channels models (additive, erasure) to general
discrete alphabets and models.

Index Terms—arbitrarily varying channels, channel capacity,
jamming

I. INTRODUCTION

In introductory courses on information theory and coding

theory students encounter two basic models for communica-

tion channels. The Shannon-theoretic model [1] for memory-

less channels treats the effect of the channel as random, where

each input symbol is transformed to an output symbol through

the same conditional distribution at each time step. Two

canonical examples are the binary symmetric channel (BSC)

and binary erasure channel (BEC). With high probability, for

sufficiently large n, a BSC flips close to pn bits for a codeword

of blocklength n and the probability of error is average-case,

measured over the randomness in the channel. By contrast,

in the basic coding theory model, errors and erasures are

modeled as worst-case: for a blocklength n the goal is to

design a code which can correct any pattern of pn errors or

erasures.

One way to understand the difference between these models

is to frame them both in the context of arbitrarily varying

channels (AVCs) [2] under constraints [3], [4]. In the AVC

there are three participants: Alice (the transmitter/encoder),

Bob (the receiver/decoder), and James (an adversarial jam-

mer). When communicating over an AVC, Alice encodes her

message into a codeword x of blocklength n and James can

choose an equal-length vector of channel states s. The output

y is formed by applying a channel law Wy|x.spy|x, sq letter-

by-letter to px, sq. The difference between the two classical

communication models can be captured by modeling the

information James has about the transmitted codeword. The

The work of ADS and ML was supported in part by the US National
Science Foundation under awards CCF-1909468 and CCF-1909451.

Shannon-theoretic model is similar to an oblivious adversary

who must choose s without any knowledge of x. The coding-

theoretic model is similar to a omniscient adversary in which

James can choose s as a function of the entire codeword x.

Once we frame the difference between average and worst

case models in terms of the AVC, a variety of “inter-

mediate case” models become natural by changing what

James can know about the transmitted codeword. In this

paper we consider one such model: the causal (or online)

adversary in which James chooses the channel state sptq
at time t based on knowledge of the current and past in-

puts pxp1q, xp2q, . . . , xptqq. The online adversary is a spe-

cial case of the delayed adversary [5], [6] who generates

each state symbol sptq based on the delayed observations

pxp1q, xp2q, ¨ ¨ ¨ , xpt ´ ∆qq for some integer 0 ď ∆ ď t.

Much of the prior work on causal adversaries deals with

specific channel models. Capacity results for special cases of

causal adversaries with “large alphabets” [7], the erasure set-

ting [8], [9], [10], the bit-flip/symbol-error setting [11], [10],

and the quadratically-constrained scenario [12] are known.

Other related channel models explored include settings with

a memoryless jammer [13], and bit-flip and erasure models

in which the channel is not state-deterministic but James can

observe the channel output [14].

In this work we focus on AVCs with finite input, state, and

output alphabets which are state-deterministic, meaning the

channel output yptq at each time t is a deterministic function

of xptq and sptq. In such models, James can compute the

channel output. Our goal is to establish capacity results for

general state-deterministic AVC models with cost constraints.

After defining our model in Section II, and key concepts in

Section III, we present an overview of our capacity analysis

in Section IV. At a high level, both our achievability and

converse proofs follow those appearing in [11], [10] address-

ing the causal bit-flip/symbol-error setting. The main technical

contribution in this work thus lies in the nature of expanding

the concepts and analysis in [11], [10] to fit the generalized

model of AVCs with both state and input constraints (cf.

Section IV). We highlight the major challenges of analyzing

general AVCs and the tools used to overcome these challenges

in the overview of Section IV. Formal proofs are provided in

an extended version of this manuscript [15].

II. MODEL

Notation: In this paper, all alphabets are finite and in

calligraphic script (e.g. X ). A boldface letter (e.g. x) in-
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dicates a random variable, and non-boldface (e.g. x) as its

realization. The set rM s “ t1, 2, . . . ,Mu. Tuples are written

with an underline sign and individual entries with the time

index in parentheses (e.g. x “ pxp1q, xp2q, . . . , xpnqq) and

xp1 : iq “ pxp1q, xp2q, . . . , xpiqq). The type Tx of a tuple x

is the empirical distribution of x. The set of all probability

distributions on an alphabet X is ∆pX q. The set of all

conditional distributions (randomized maps) from X to S is

∆pS|X q. The length n type class corresponding to P P ∆pX q
is denoted by TnpP q “

 
x P Xn : Tx “ P

(
. For a joint

distribution Px,s we write rPx,ssx and rPx,sss for the marginal

distributions of x and s.

A. Channels and codes

We consider a class of arbitrarily varying channels (AVCs)

with cost constraints on the input and state. Our formulation

of the cost constraint generalizes the standard definition [3]

by modeling the constraint as requiring that the type of the

channel input or state belong to a specified set.

Definition 1 (AVC). An arbitrarily varying channel (AVC)

is a sextuple pX ,S,Y, λx, λs,Wy|x,sq. Here, X ,S,Y are the

input, state and output alphabets, respectively. The input and

state constraints are specified by λx Ă ∆pX q and λs Ă ∆pSq,

respectively. The channel law is Wy|x,s P ∆pY|X ˆ Sq.

Our goal is to communicate one of M messages reliably

over this AVC. For a positive integer M , let M :“ rM s denote

all possible messages that the transmitter may send.

Definition 2 (Codes). A code for a causal AVC

pX ,S,Y, λx, λs,Wy|x,sq is a pair pEnc,Decq. Here

Enc P ∆pXn|Mq is a (potentially stochastic) encoder. For

m P M, we use Encpmq P Xn to denote the (possibly

random) encoding of m. Each such an encoding is called a

codeword. The set EncpMq of all codewords is called the

codebook, denoted by C. The length n of each codeword

is called the blocklength. The rate of C is defined as

RpCq :“ 1
n
logM . The code is required to satisfy the input

constraint: for every x P C, Tx P λx. The decoder is given

by Dec P ∆pM|Ynq. We use Decpyq P M to denote the

(potentially random) message output by the decoder given y.

Definition 3 (Jamming strategies). A jamming strategy of

blocklength n is a set of maps Jam “ pJam1, ¨ ¨ ¨ , Jamnq
where Jamt P ∆pS|Xnq is the jamming function at time t.

In a causal jamming strategy, Jamt P ∆pS|X tq.

Definition 4 (Communication over causal/online AVC).

Communication over a causal (a.k.a. online) AVC

pX ,S,Y, λx, λs,Wy|x,sq has the following requirements. Let

C be a code with an encoder-decoder pair pEnc,Decq and

Jam “ pJam1, ¨ ¨ ¨ , Jamnq be a causal jamming strategy.

We use Jamipxp1q, ¨ ¨ ¨ , xpiqq to denote the jamming symbol

generated by the adversary at time i. Before communication

happens, pEnc,Decq are fixed and revealed to the transmitter

Alice, the receiver Bob and the adversary James. James then

fixes a causal jamming strategy Jam “ pJam1, ¨ ¨ ¨ , Jamnq
which can depend on pEnc,Decq.

The code is required to satisfy the input constraint Tx P λx

for every x P C. Once a particular encoding x of a cer-

tain message m is transmitted by Alice, James observes x

causally. That is, for any i P rns, he observes xpiq after

observing xp1q, ¨ ¨ ¨ , xpi ´ 1q. Given his causal observation,

he computes spiq “ Jamipxp1q, ¨ ¨ ¨ , xpiqq which depends

only on xp1q, ¨ ¨ ¨ , xpiq (and pEnc,Decq, C which are known

to everyone). The channel then outputs y according to the

following distribution

Pr
“
y “ y

ˇ̌
x “ x, s “ s

‰
:“

nź

i“1

Wy|x,spypiq|xpiq, spiqq.

Receiving y, Bob decodes to Decpyq.

We consider the maximum (resp. average) probability of

error criterion in achievability (resp. converse).

Definition 5 (Error probability). Consider a causal AVC

pX ,S,Y, λs, λs,Wy|x,sq. Let pEnc,Decq and Jam be a

coding scheme and a jamming strategy for this chan-

nel, respectively. Define the maximum error probability

Pe,maxpEnc,Dec, Jamq as follows (the average error prob-

ability Pe,avg is defined analogously by averaging over mes-

sages m).

max
mPM

ÿ

xmPM
xm‰m

ÿ

yPYn

ÿ

sPSn

ÿ

xPXn

Encpx|mq¨

˜
nź

i“1

Jamipspiq|xp1 : iqqWy|x,spypiq|xpiq, spiqq

¸
¨ Decppm|yq.

Here we view Enc P ∆pXn|Mq, Jami P ∆pS|X iq and Dec P
∆pM|Ynq as conditional distributions.

B. State-deterministic AVCs

We consider a class of AVCs which are state deterministic

and have a single cost constraint on the state. More precisely,

we require the following five assumptions to hold:

1) All alphabets X ,S,Y are finite.1

2) The input constraint set λx Ă ∆pX q is convex. This is

a natural restriction – a non-convex set λx would imply

that the encoder is not allowed to time-share between

some potential transmissions.

3) The set λs Ă ∆pSq is specified by a single constraint:

λs :“

#
Ps P ∆pSq :

ÿ

sPS

PspsqBpsq ď Λ

+
,

for some B P R
|S| and Λ P R. This assumption will be

used in the achievability proof (cf. [15, Claim 9]).

4) The channel law Wy|x,s is deterministic, i.e., for every

px, sq P X ˆ S , there is a unique y P Y such that

Wy|x,spy|x, sq “ 1. Alternatively, we write the channel

law as a (deterministic) function W : X ˆ S Ñ Y . 2

1The quadratically-constrained infinite alphabet setting was considered in
prior work [12].

2Our achievability result actually does not require this restriction – it holds
even if the AVC is not state-deterministic. However, our current converse
arguments providing a capacity upper bound asymptotically matching the
rate achievable by our achievability scheme rely on state-determinism, since
they rely on the jammer being able to predict the channel output resulting
from a specific jamming strategy.
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5) There exists a zero-cost state s0 P S and a one-to-

one mapping φ : X Ñ Y for which for every x,

Wy|x,spφpxq|x, s0q “ 1. This final assumption is rather

natural and corresponds to many channel models. It

intuitively implies that there is a stand-down state for

James that on one hand has zero cost and on the other

does not corrupt communication at all, e.g., the “non-

erasure” state in an erasure channel. This assumption will

be used in [15, Claim 9].

III. MAIN RESULT AND SYMMETRIZATION

In order to state our main result we must define a notion of

symmetrizability [16], [4] that is appropriate to the causal AVC

model. Symmetrizabillity conditions play an important role

in characterizing AVC capacities under deterministic coding.

Roughly speaking, a channel is symmetrizable if James can,

via selecting the state sequence s, cause the channel to

behave like a symmetric two-user multiple-access channel

Wy|x,x1 py|x, x1q. Operationally, this means James can select

an alternative (“spoofing”) codeword x1 and use it to create

a state s such that Bob cannot tell if Alice sent x and James

chose x1 or if Alice sent x1 and James chose x.

There are two aspects of the causal AVC which make it

tricky to define a notion of symmetrizability. First is the online

nature of the adversarial attack: James has to choose the

elements of s sequentially as opposed to selecting x1 and then

s. Second is the cost constraint on s: if we think of the cost as

“power,” then James faces a power allocation problem. Taken

together, James could spend little power at the beginning and

more power at the end of the transmission or vice versa. In

the former case, Bob can get a good estimate of the message

initially but then the channel becomes much worse. In the

latter, Bob has a very bad estimate of the message but the

channel is less noisy at the end, allowing him to potentially

decode to the true message. Since James does not know the

transmitted codeword a priori, he has to choose how to allocate

the power “on the fly” while satisfying the cost constraint.

A. Symmetrizing distributions

Let K be a positive integer, U :“ rKs and A :“
t0, 1

K
, 2
K
, . . . , 1 ´ 1

K
u. For α P A, let Uďα :“ rαKs and

Uąα :“ rKszrαKs. Let Pu P ∆pUq be the uniform distribu-

tion. We define Px|u P ∆pX |Uq such that
“
PuPx|u

‰
x

P λx.

In our achievable scheme we will use a code in which the

total blocklength n is broken into K subblocks (which we

call chunks). We consider encoding and decoding strategies

that operate in two phases, the first having αK chunks

and other having p1 ´ αqK chunks. In each chunk, we

characterize James’s actions by a single letter channel. In

the first phase, James chooses s based on the the input x

and chunk u using a channel Vs|x,uďα P ∆pS|X ˆ Uďαq,

and in the second phase James chooses s based on the input

x, u, and an alternative spoofing input x1 using the channel

Vs|x,x1,uąα P ∆pS|X 2 ˆ Uąαq. Our distinction between the

two modes of James’ operation supports our converse “babble-

and-push” proof paradigm (see Section IV-A) in which James

first generates his jamming state s through Vs|x,uďα and then

tries to symmetrize using a spoofing codeword x1 through

Vs|x,x1,uąα . We note that this distinction does not limit James

in any way once we address achievability.

We define the induced single letter distribution over S

corresponding to such a strategy by

QpVs|x,uďα , Vs|x,x1,uąαq :“
1

αK

αKÿ

u“1

“
Px|u“uVs|x,uďα“u

‰
s

`
1

p1 ´ αqK

Kÿ

u“αK`1

”
Pb2
x|u“u

Vs|x,x1,uąα“u

ı
s

.

Note that importantly the second term is computed ac-

cording to the product distribution Pb2
x|u“u

. If Vs|x,x1,uąα

does not depend on x
1 then we can define QpVs|x,uq :“

1
K

řK

u“1

“
Px|u“uVs|x,u“u

‰
s

as a special case. We can now

define two sets of feasible jamming strategies, i.e., two sets

of distributions that satisfy the cost constraint.

Definition 6 (Feasible jamming distributions). Let Px|u P
∆pX |Uq. Define, for α P A,

FαpPx|uq “ tpVs|x,uďα , Vs|x,x1,uąαq : Qp¨q P λsu, (1)

FpPx|uq “ tVs|x,u : Qp¨q P λsu. (2)

Definition 7 (Cumulative mutual information). Fix Px|u,

α P A and Vs|x,uďα P ∆pS|X ˆ Uďαq. The cumulative

mutual information w.r.t. Px|u and Vs|x,uďα is defined as

IpPx|u, Vs|x,uďαq :“ Ipx;y|uďαq “ 1
K

řαK

u“1 Ipxu;yuq,

where the joint distribution of pxu,yuq is given by

Pxu,yu
px, yq :“

ÿ

sPS

Px|upx|uqVs|x,uďαps|x, uqWy|x,spy|x, sq.

IpPx|u, Vs|x,uďαq represents the normalized amount of in-

formation reaching Bob in the first αK chunks of the trans-

mitted codeword x under James attack governed by Vs|x,uďα .

Our results depend on a notion of symmetrizability defined

as follows.

Definition 8 (Symmetrizing distributions). Consider

pVs|x,x1 , V 1
s|x,x1 q P ∆pS|X 2q2. Define V to be the set of all

pVs|x,x, V
1
s|x,x1 q such that for all px, x1, yq P X 2 ˆ Y it holds

that
ÿ

sPS

Vs|x,x1 ps|x, x1qWy|x,spy|x, sq

“
ÿ

sPS

V 1
s|x,x1 ps|x1, xqWy|x,spy|x1, sq.

B. Main result

Let C be as defined in Equation (3) where |U | “ K. In

what follows, we show that C is the causal-capacity for AVCs

satisfying the assumptions in Section II-B. Equation (3) cor-

responds to the “babble-and-push” attack outlined below and

we also prove a matching achievability. See the proceeding

Section IV and [15, Sec. II] for a more comprehensive high-

level description of the capacity expression.
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C :“ lim sup
KÑ8

max
P

x|uP∆pX |Uq

rPuPx|us
x

Pλx

min

$
’’&
’’%

min
V
s|x,uPFpP

x|uq
IpPx|u, Vs|x,uq, min

pα,pV
s|x,uďα ,V

s|x,x1,uąα qqPAˆFαpP
x|uq

@uPUąα, pV
s|x,x1,u“u

,V 1
s|x,x1,u“u

qPV

IpPx|u, Vs|x,uďαq

,
//.
//-

(3)

Theorem 1 (Converse). For any δ ą 0 rate C ` δ is not

achievable for AVCs satisfying the assumptions in Section II-B.

Theorem 2 (Achievability). For any δ ą 0 rate C ´ δ is

achievable for AVCs satisfying the assumptions in Section II-B.

IV. OUTLINE OF THE ARGUMENT

As noted in the introduction, we defer formal proofs to an

extended version [15] and outline the main arguments here.

A. Converse

Let R ě C ` δ. Let K “ |U | “ polyKp1{δq for a suitable

polynomial polyK (that depends on the parameters of the AVC

at hand). James’s jamming strategy operates on K chunks

each of length n{K. We first describe the strategy when

Alice and Bob’s code is deterministic. We begin by showing

that James can find a subcode which contains a constant

fraction of codewords which are chunk-wise approximately

constant composition. That is, in each chunk u all codewords

in the subcode are approximately typical with respect to some

distribution Px|u“u. It is thus sufficient for James to cause an

error on this subcode.

1) James chooses an α representing a threshold point in

the code between his “babble” and “push” phases. The

former is applied to the first αK codeword chunks and

the latter to the remaining chunks.

2) In the “babble” phase James uses channels Vs|x,uďα“u

for u “ 1, 2, . . . αK and generates sptq for t ď αn by

passing xptq through this channel.

3) James then list-decodes the message based on

pxp1q, xp2q, . . . , xpαnqq. He chooses another “spoofing”

message from the list and corresponding codeword x1

(in order to confuse Bob between x and x1).

4) James uses channels Vs|x,x1,uąα“u for u “ αK `
1, αK ` 2, . . . ,K in the remaining chunks to generate

sptq by passing the pair pxptq, x1ptqq through the channel

Vs|x,x1,u“u in the u-th chunk.

This strategy must satisfy two conditions. First, it has to satisfy

the cost constraint, which is the sum of the cost from each

phase. The technical challenge comes in the second phase

because the joint type of x and x1 need not be a product

type. However, due to the Generalized Plotkin bound [17] we

show that the suffix state cost only needs to be computed with

respect to distributions Px,x1 that are convex combinations of

product distributions. These conditions constrain the induced

jamming distributions of James minimized over in the capacity

expression above (Equation (3)).

The second condition is that the “push” channels must

be symmetrizing (see Definition 8) ensuring that the suf-

fix pypαn ` 1q, . . . , ypnqq observed by Bob was equally

likely to have been generated by either the codeword suf-

fix xąα “ pxpαn ` 1q, . . . , xpnqq or the codeword suffix

x1ąα “ px1pαn ` 1q, . . . , x1pnqq. This forces a constant

probability of error for Bob since he cannot distinguish the

true message/codeword from the spoofing message/codeword

chosen by James.

To show that this strategy will work, we show via relatively

standard information-theoretic strong converse arguments that

for rate R exceeding the capacity expression above, if James

chooses a break point α such that the cumulative mutual in-

formation thus far is “just” below the rate, then Bob must still

have a large set (say of size 2Ωpnq) of codewords consistent

with what he has received. Here we use the assumption that

the channel is state deterministic: James can also compute the

same list as Bob. Then, via analysis paralleling the symbol-

error analysis [10], but significantly generalizing it to a general

class of AVCs, we show that the push strategy outlined above

will result in a constant probability (that depends on δ) of

James being able to cause a decoding error by Bob.

As mentioned, a key ingredient in the analysis is the

Generalized Plotkin bound [17] which ensures that with

positive probability the joint type of randomly sampled pairs

of codewords (more precisely, their suffixes) is a convex

combination of product distributions. This results in significant

cost savings for James. To guarantee James’ success (with

constant probability) in the setting of stochastic encoders

as well, we use information-theoretic and coding-theoretic

techniques introduced in prior work [11].

B. Achievability

Let R ď C ´δ. Alice uses a chunk-wise constant composi-

tion stochastic code with distributions tPx|u“uuKu“1 such that

the average composition Px “ 1
K

řK

u“1 Px|u“u satisfies the

input constraint. She uses K “ polyKp1{δq chunks and uses

polyrpδqn bits of private randomness, for suitable polynomials

polyK and polyr (that, again, depend on the parameters

of the AVC at hand). For every message m, chunk u, and

randomness r, Alice selects codeword-chunks of length n{K
uniformly from type Px|u“u. This use of encoder randomness,

which is independent in each chunk, forces uncertainty for

James about the actual codeword that will be transmitted

in the next chunk when conditioning on prior chunks. Such

randomly designed codes have several nice properties used in

our analysis. In particular, using AVC list-decoding arguments,

adapted to the chunkwise stochastic encoding scheme here,
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our codes are (w.h.p.) list-decodable with list size polyp1{δq.

In addition, extending concentration measures analyzed in

[10], codewords x1 in the lists obtained through list-decoding

have (with high probability over Alice’s private randomness)

joint type approximately Px,x1|u“u “ Pb2
x|u“u

with the trans-

mitted codeword x (for every chunk index u).

Bob’s decoding process is an iterative process reminiscent

of the 2-phase process of James presented in the converse

proof. Without any prior knowledge of James’ jamming strat-

egy s, Bob iterates over potentially transmitted codewords x1

and state vectors s1 that may have resulted with the received

word y. More specifically, taking causality into account, Bob

iterates over all potential jamming strategies V 1
s|x,u that satisfy

the jamming cost constraint with respect to Px|u and for each

such V 1 proceeds in 2-phases. First, he chooses a threshold α1

corresponding to V 1 such that α1K is the first chunk for which

the normalized cumulative mutual information (Definition 7)

is more than the rate R of the code, and list decodes under

the (potentially mistaken) assumption that James is acting

according to V 1
s|x,uďα1 . As mentioned above, Bob’s obtained

list will be of size polyp1{δq. Notice that, depending on the

studied V 1, the transmitted message m and the corresponding

codeword x may or may not be in the list. Bob’s objective at

this point is two-fold: to reject the list if it does not include the

transmitted codeword and, otherwise, to disambiguate the list,

i.e., find x. Both objectives are accomplished in the second

phase of Bob’s decoding.

In the second decoding phase, Bob examines each codeword

x1 in his obtained list and outputs the message m1 correspond-

ing to x1 if and only if y could have been obtained from x1

through a feasible s1. In particular, if there exists a vector

s1 and a corresponding pV 1
s|x,uďα1 , V 1

s|x,x1,uąα1 q P Fα1 pPx|uq

representing the transition from x1 to y through s1. Here,

pV 1
s|x,uďα1 , V 1

s|x,x1,uąα1 q is a refinement of V 1
s|x,u derived using

the joint type of x1 and the assumed s1 (both known to Bob),

and the transmitted x (unknown to Bob) where px, x1q are

assumed through code design to have type Pb2
x|u“u

. If no x1

in the list passes the test above, Bob continues in studying

the next jamming strategy V 1
s|x,u until eventually finding a

codeword and a corresponding message that pass the test.

Once such a codeword is found the decoding process is

terminated. If no codewords pass the test in any of Bob’s

iterations, a decoding error is considered.

In our analysis, we show, for every transmitted message m,

that with high probability over the stochasticity of Alice, the

decoding process will succeed. Namely, with high probability

over the stochasticity of Alice, only the codeword x corre-

sponding to Alice’s message m will pass the decoding test.

The proof involves a careful ordering on potential jamming

strategies V 1
s|x,u used by Bob in the decoding process and

the corresponding analysis for general channels requires more

care than the specific models considered in prior work. Specif-

ically, we order V 1 based on their corresponding thresholds α1

(from small to large). For such an ordering, it suffices to show

(i) that once Bob studies the correct Vs|x,u corresponding

to the actual (unknown to Bob) jamming vector s (or more

precisely, the correct triple pα, pVs|x,uďα , Vs|x,x1,uąαqq), then

using standard typicality arguments the message m will pass

the test of the decoder; and (ii) that for any “weaker” jammer

V 1, i.e., with α1 ď α, where α corresponds to the actual

jamming strategy of James through V above, no message will

pass the decoding test.

The main technical difficulty in our proof addresses case

(ii) above. Suppose, to the contrary, that Bob can decode

to an incorrect codeword x1 using the “wrong” choice of

pα1, pV 1
s|x,uďα1 , V 1

s|x,x1,uąα1 qq with α1 ď α, implied by a state

vector s1 which can generate y from x1. Considering the true

jamming vector s of James, and its corresponding single letter

representation pα, pVs|x,uďα , Vs|x,x1,uąαqq, which can generate

y from x and s, we have that the joint type of px, x1, yq can be

obtained in two different ways: through x1 and s1 via V 1, and

through x and s via V , implying that V 1 and V are a sym-

metrizing pair. More precisely, to reach a contradiction to the

definition of C in (3), and thus conclude our proof, we must

show that pV 1
s|x,x1,uąα1 “u

, V
s|x,x1,uąα1 “uq are a symmetrizing

pair for every chunk u “ αK ` 1, αK ` 2, ¨ ¨ ¨ ,K, and that

(without loss of generality) V 1
s|x,uďα1 “ V

s|x,uďα1 . For the

latter, one requires a crucial and novel step in our analysis

that relies on our iterative ordering of V 1 and in particular

on the fact that α1 ď α. Assumptions 3 and 5 on our AVC

appearing in Section II-B are distilled from this step in our

analysis. The former is then proven through a generalization

of the analysis for oblivious AVCs [4].

V. DISCUSSION

In this paper we characterized the capacity for AVCs with

online adversaries when the channel is state-deterministic.

This restriction on the channel class is used only in the

converse, where James must be able to compute the channel

output exactly, similar to previous “snooping” models for

bit flips/erasures [14]. It may be possible to extend this

argument to more general classes of AVCs, which we leave for

future work. On the achievability side, we note that perhaps

surprisingly, input distributions Px|u“u that are i.i.d. (i.e.

there is some Px such that Px|u“u “ Px for all u) do not

necessarily attain capacity for general AVCs. This is consistent

with prior work: while i.i.d. input distributions attain capacity

for finite alphabet symbol-error/erasure channels with no input

constraints [10], they do not for the quadratically constrained

casual model [12]. This seems counterintuitive given the

convexity of mutual information function and the linearity of

the symmetrizability condition. The reason is that Alice has

to choose a rate R and design her corresponding codebook

distribution to be simultaneously good for any possible choice

of α (and the corresponding feasible input distributions),

rendering the problem highly non-convex. This reveals another

interesting question for future work: are there computationally

tractable approximations for our capacity expression that will

reveal optimal encoder/jamming strategies?
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