2022 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-2159-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISIT50566.2022.9834709

2022 IEEE International Symposium on Information Theory (ISIT)

The Capacity of Causal Adversarial Channels

Yihan Zhang
Institute of Science and Technology Austria
zephyr.z798 @ gmail.com

Abstract—We characterize the capacity for the discrete-time
arbitrarily varying channel with discrete inputs, outputs, and
states when (a) the encoder and decoder do not share common
randomness, (b) the input and state are subject to cost con-
straints, (c) the transition matrix of the channel is deterministic
given the state, and (d) at each time step the adversary can only
observe the current and past channel inputs when choosing the
state at that time. The achievable strategy involves stochastic
encoding together with list decoding and a disambiguation step.
The converse uses a two-phase ‘“babble-and-push” strategy where
the adversary chooses the state randomly in the first phase, list
decodes the output, and then chooses state inputs to symmetrize
the channel in the second phase. These results generalize prior
work on specific channels models (additive, erasure) to general
discrete alphabets and models.

Index Terms—arbitrarily varying channels, channel capacity,
jamming

I. INTRODUCTION

In introductory courses on information theory and coding
theory students encounter two basic models for communica-
tion channels. The Shannon-theoretic model [1] for memory-
less channels treats the effect of the channel as random, where
each input symbol is transformed to an output symbol through
the same conditional distribution at each time step. Two
canonical examples are the binary symmetric channel (BSC)
and binary erasure channel (BEC). With high probability, for
sufficiently large n, a BSC flips close to pn bits for a codeword
of blocklength n and the probability of error is average-case,
measured over the randomness in the channel. By contrast,
in the basic coding theory model, errors and erasures are
modeled as worst-case: for a blocklength n the goal is to
design a code which can correct any pattern of pn errors or
erasures.

One way to understand the difference between these models
is to frame them both in the context of arbitrarily varying
channels (AVCs) [2] under constraints [3], [4]. In the AVC
there are three participants: Alice (the transmitter/encoder),
Bob (the receiver/decoder), and James (an adversarial jam-
mer). When communicating over an AVC, Alice encodes her
message into a codeword z of blocklength n and James can
choose an equal-length vector of channel states s. The output
y is formed by applying a channel law Wy . s(y|, s) letter-
by-letter to (z,s). The difference between the two classical
communication models can be captured by modeling the
information James has about the transmitted codeword. The
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Shannon-theoretic model is similar to an oblivious adversary
who must choose s without any knowledge of x. The coding-
theoretic model is similar to a omniscient adversary in which
James can choose s as a function of the entire codeword x.

Once we frame the difference between average and worst
case models in terms of the AVC, a variety of “inter-
mediate case” models become natural by changing what
James can know about the transmitted codeword. In this
paper we consider one such model: the causal (or online)
adversary in which James chooses the channel state s(t)
at time ¢ based on knowledge of the current and past in-
puts (z(1),z(2),...,z(t)). The online adversary is a spe-
cial case of the delayed adversary [5], [6] who generates
each state symbol s(¢) based on the delayed observations
(z(1),2(2),- - ,z(t — A)) for some integer 0 < A < ¢.

Much of the prior work on causal adversaries deals with
specific channel models. Capacity results for special cases of
causal adversaries with “large alphabets” [7], the erasure set-
ting [8], [9], [10], the bit-flip/symbol-error setting [11], [10],
and the quadratically-constrained scenario [12] are known.
Other related channel models explored include settings with
a memoryless jammer [13], and bit-flip and erasure models
in which the channel is not state-deterministic but James can
observe the channel output [14].

In this work we focus on AVCs with finite input, state, and
output alphabets which are state-deterministic, meaning the
channel output y(¢) at each time ¢ is a deterministic function
of z(t) and s(t). In such models, James can compute the
channel output. Our goal is to establish capacity results for
general state-deterministic AVC models with cost constraints.

After defining our model in Section II, and key concepts in
Section III, we present an overview of our capacity analysis
in Section IV. At a high level, both our achievability and
converse proofs follow those appearing in [11], [10] address-
ing the causal bit-flip/symbol-error setting. The main technical
contribution in this work thus lies in the nature of expanding
the concepts and analysis in [11], [10] to fit the generalized
model of AVCs with both state and input constraints (cf.
Section IV). We highlight the major challenges of analyzing
general AVCs and the tools used to overcome these challenges
in the overview of Section IV. Formal proofs are provided in
an extended version of this manuscript [15].

II. MODEL

Notation: In this paper, all alphabets are finite and in
calligraphic script (e.g. X). A boldface letter (e.g. x) in-
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dicates a random variable, and non-boldface (e.g. x) as its
realization. The set [M] = {1,2,..., M}. Tuples are written
with an underline sign and individual entries with the time
index in parentheses (e.g. z = (z(1),z(2),...,z(n))) and
z(1:4) = (z(1),2(2),...,2(¢))). The type T, of a tuple =
is the empirical distribution of z. The set of all probability
distributions on an alphabet X is A(X). The set of all
conditional distributions (randomized maps) from & to S is
A(S]X). The length n type class corresponding to P € A(X)
is denoted by 7,(P) = {zeX":T, = P}. For a joint
distribution Py ¢ we write [Py s]x and [Px s]s for the marginal
distributions of x and s.

A. Channels and codes

We consider a class of arbitrarily varying channels (AVCs)
with cost constraints on the input and state. Our formulation
of the cost constraint generalizes the standard definition [3]
by modeling the constraint as requiring that the type of the
channel input or state belong to a specified set.

Definition 1 (AVC). An arbitrarily varying channel (AVC)
is a sextuple (X, S,V, Ax, As, Wy s). Here, &', S, are the
input, state and output alphabets, respectively. The input and
state constraints are specified by \x < A(X) and A\s < A(S),
respectively. The channel law is Wy x s € A(Y|X x S).

Our goal is to communicate one of M messages reliably
over this AVC. For a positive integer M, let M := [M] denote
all possible messages that the transmitter may send.

Definition 2 (Codes). A code for a causal AVC
(X, 8, Y, A, As, Wyixs) is a pair  (Enc,Dec). Here
Enc € A(X™|M) is a (potentially stochastic) encoder. For
m € M, we use Enc(m) € X™ to denote the (possibly
random) encoding of m. Each such an encoding is called a
codeword. The set Enc(M) of all codewords is called the
codebook, denoted by C. The length n of each codeword
is called the blocklength. The rate of C is defined as
R(C) := Llog M. The code is required to satisfy the input
constraint: for every z € C, T, € M. The decoder is given
by Dec € A(M|Y™). We use Dec(y) € M to denote the
(potentially random) message output by the decoder given y.

Definition 3 (Jamming strategies). A jamming strategy of
blocklength n is a set of maps Jam = (Jamj,---,Jam,)
where Jam; € A(S|X™) is the jamming function at time ¢.
In a causal jamming strategy, Jam; € A(S|X?).

Definition 4 (Communication over causal/online AVC).
Communication over a causal (ak.a. online) AVC
(X,8,Y, A, As, Wy|x.s) has the following requirements. Let
C be a code with an encoder-decoder pair (Enc, Dec) and
Jam = (Jamj,---,Jam,) be a causal jamming strategy.
We use Jam;(x(1), - ,z(7)) to denote the jamming symbol
generated by the adversary at time ¢. Before communication
happens, (Enc, Dec) are fixed and revealed to the transmitter
Alice, the receiver Bob and the adversary James. James then
fixes a causal jamming strategy Jam = (Jamy,---,Jam,)
which can depend on (Enc, Dec).

The code is required to satisfy the input constraint T, € Ay
for every x € C. Once a particular encoding = of a cer-
tain message m is transmitted by Alice, James observes z
causally. That is, for any ¢ € [n], he observes x(i) after
observing z(1),--- ,z(i — 1). Given his causal observation,
he computes s(i) = Jam;(z(1),---,z(:¢)) which depends
only on z(1),--- ,z(i) (and (Enc,Dec),C which are known
to everyone). The channel then outputs y according to the
following distribution n a

Prly=y|x=2s=3s]:= 1_[ Wyx,s(y(i)|z(3), 5(7)).

i=1
Receiving y, Bob decodes to Dec(y).

We consider the maximum (resp. average) probability of
error criterion in achievability (resp. converse).

Definition 5 (Error probability). Consider a causal AVC
(X,8,Y,As; As, Wy|x,s). Let (Enc,Dec) and Jam be a
coding scheme and a jamming strategy for this chan-
nel, respectively. Define the maximum error probability
P max(Enc, Dec, Jam) as follows (the average error prob-
ability P, . is defined analogously by averaging over mes-
sages m).

S NN Y Eactelm

meEM yeYn seS™ zeX™
m#£m

max
meM

<H Jam; (s(i)](1 : i))Wyx,s(y(i”x(i)vs(i))) - Dec(mly).

Here we view Enc € A(X"| M), Jam; € A(S|X?) and Dec €
A(M|Y™) as conditional distributions.

B. State-deterministic AVCs

We consider a class of AVCs which are state deterministic
and have a single cost constraint on the state. More precisely,
we require the following five assumptions to hold:

1) All alphabets X, S, ) are finite.'

2) The input constraint set Ay < A(X) is convex. This is
a natural restriction — a non-convex set A\x would imply
that the encoder is not allowed to time-share between
some potential transmissions.

3) The set As < A(S) is specified by a single constraint:

As == {ps € A(S): ), Puls)B(s) < A} :
sSeS

for some B € RISl and A € R. This assumption will be
used in the achievability proof (cf. [15, Claim 9]).

4) The channel law Wy‘x)s is deterministic, i.e., for every
(z,s) € X x S, there is a unique y € Y such that
Wyx,s(ylz,s) = 1. Alternatively, we write the channel
law as a (deterministic) function W: X x S — Y. ?

IThe quadratically-constrained infinite alphabet setting was considered in
prior work [12].

2Qur achievability result actually does not require this restriction — it holds
even if the AVC is not state-deterministic. However, our current converse
arguments providing a capacity upper bound asymptotically matching the
rate achievable by our achievability scheme rely on state-determinism, since
they rely on the jammer being able to predict the channel output resulting
from a specific jamming strategy.
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5) There exists a zero-cost state s € S and a one-to-

one mapping ¢ : X — Y for which for every z,
Wyix,s(@(x)|z,50) = 1. This final assumption is rather
natural and corresponds to many channel models. It
intuitively implies that there is a stand-down state for
James that on one hand has zero cost and on the other
does not corrupt communication at all, e.g., the “non-
erasure” state in an erasure channel. This assumption will

be used in [15, Claim 9].

III. MAIN RESULT AND SYMMETRIZATION

In order to state our main result we must define a notion of
symmetrizability [16], [4] that is appropriate to the causal AVC
model. Symmetrizabillity conditions play an important role
in characterizing AVC capacities under deterministic coding.
Roughly speaking, a channel is symmetrizable if James can,
via selecting the state sequence s, cause the channel to
behave like a symmetric two-user multiple-access channel
Wy|x,x (y|z,2"). Operationally, this means James can select
an alternative (“spoofing”) codeword z’ and use it to create
a state s such that Bob cannot tell if Alice sent x and James
chose 2’ or if Alice sent 2’ and James chose z.

There are two aspects of the causal AVC which make it
tricky to define a notion of symmetrizability. First is the online
nature of the adversarial attack: James has to choose the
elements of s sequentially as opposed to selecting 2’ and then
s. Second is the cost constraint on s: if we think of the cost as
“power,” then James faces a power allocation problem. Taken
together, James could spend little power at the beginning and
more power at the end of the transmission or vice versa. In
the former case, Bob can get a good estimate of the message
initially but then the channel becomes much worse. In the
latter, Bob has a very bad estimate of the message but the
channel is less noisy at the end, allowing him to potentially
decode to the true message. Since James does not know the
transmitted codeword a priori, he has to choose how to allocate
the power “on the fly” while satisfying the cost constraint.

A. Symmetrizing distributions

Let K be a positive integer, & = [K] and A :=
{0,%,%,...,1 — &}. For a € A, let US™ := [aK] and
U= = [K)\[aK]. Let P, € A(U) be the uniform distribu-
tion. We define Py, € A(X[U) such that [Pqu|u]x € Ax.

In our achievable scheme we will use a code in which the
total blocklength n is broken into K subblocks (which we
call chunks). We consider encoding and decoding strategies
that operate in two phases, the first having oK chunks
and other having (1 — «)K chunks. In each chunk, we
characterize James’s actions by a single letter channel. In
the first phase, James chooses s based on the the input x
and chunk u using a channel Vjjx y<o € A(S|X x US®),
and in the second phase James chooses s based on the input
x, u, and an alternative spoofing input x’ using the channel
Vapxx/u=a € A(S|A? x Y=*). Our distinction between the
two modes of James’ operation supports our converse “babble-
and-push” proof paradigm (see Section IV-A) in which James

first generates his jamming state s through V|4 y<o and then
tries to symmetrize using a spoofing codeword z’ through
Vsjx,x,u==- We note that this distinction does not limit James
in any way once we address achievability.

We define the induced single letter distribution over S
corresponding to such a strategy by

1 aK
Q(V5|x,u<a, S|X7X’7u>") = 047 = [leu:uvs\x,uécx:u]s
@2
u=aK+1

Note that importantly the second term is computed ac-
cording to the product distribution Pﬁ?i:u' If Vojx,x/ u=
does not depend on x’ then we can define Q(Vyix.u)

7 Zu 1[ Pyju=uVs|x,u= u] as a special case. We can now
define two sets of feasible Jamming strategies, i.e., two sets
of distributions that satisfy the cost constraint.

Definition 6 (Feasible jamming distributions). Let Py, €
A(X|U). Define, for o € A,
-Fa(Px\u) = {(‘/;|x,u<aa‘/;|x,x’,u>a) : Q() € )\S}v (D
]:(Px\u) = {‘/;|x,u : Q() € AS} (2)
Definition 7 (Cumulative mutual information). Fix Pyjy,

a € A and Vyxy<a € A(S|X x US®). The cumulative
mutual information w.rt. Py, and Vg y<a is defined as

I(Px|uvv\x ugo‘) = I(X'Y‘uga) = KZ (Xu;yu)7
where the joint distribution of (x,,y,) is given by

ZPx\ x‘u)leu\ ( |l‘ u) y|xs( |$,S)
sSeS

quvyu (m y

I(Pxju, Vsjx,u<e) represents the normalized amount of in-
formation reaching Bob in the first K chunks of the trans-
mitted codeword z under James attack governed by Vjx y=<a-

Our results depend on a notion of symmetrizability defined
as follows.

Definition 8 (Symmetrizing distributions). Consider
(Vaix, x,,V‘x o) € A(S|X?)% Define V to be the set of all
(Vajx.x VS‘x ) such that for all (z,2’,y) € X x Y it holds
that

ZV‘XX/ sla, 2" ) Wy ks (ylz, s)
seS

Z s|x,x’ |x/ax)Wy|x,s(y|‘rlaS)-
seS

B. Main result

Let C be as defined in Equation (3) where /| = K. In
what follows, we show that C' is the causal-capacity for AVCs
satisfying the assumptions in Section II-B. Equation (3) cor-
responds to the “babble-and-push” attack outlined below and
we also prove a matching achievability. See the proceeding
Section IV and [15, Sec. II] for a more comprehensive high-
level description of the capacity expression.
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min
Valx,u€F (Px|u)

C:=limsup max min
K—w Pxu€A(X|U)

[P Prju] €2

I(P, V. min
P S""“)’(a,ws‘x e Voot iz )JEAX Fa (Prj)

I(Px|u7 ‘/;|x,u<a) ©)]

N4

Vueld™ <, (V. S‘x‘x,,u:u)ev

s|x,x/ , u=u>

Theorem 1 (Converse). For any § > 0 rate C + § is not
achievable for AVCs satisfying the assumptions in Section II-B.

Theorem 2 (Achievability). For any § > 0 rate C — § is
achievable for AVCs satisfying the assumptions in Section II-B.

IV. OUTLINE OF THE ARGUMENT

As noted in the introduction, we defer formal proofs to an
extended version [15] and outline the main arguments here.

A. Converse

Let R > C + 0. Let K = |U| = polyk(1/9) for a suitable
polynomial poly j (that depends on the parameters of the AVC
at hand). James’s jamming strategy operates on K chunks
each of length n/K. We first describe the strategy when
Alice and Bob’s code is deterministic. We begin by showing
that James can find a subcode which contains a constant
fraction of codewords which are chunk-wise approximately
constant composition. That is, in each chunk u all codewords
in the subcode are approximately typical with respect to some
distribution Py|y—,,. It is thus sufficient for James to cause an
error on this subcode.

1) James chooses an « representing a threshold point in
the code between his “babble” and “push” phases. The
former is applied to the first « K codeword chunks and
the latter to the remaining chunks.

2) In the “babble” phase James uses channels Vjjx y<a—y,
for u = 1,2,...aK and generates s(t) for t < an by
passing z(t) through this channel.

3) James then list-decodes the message based on
(z(1),z(2),...,2(an)). He chooses another “spoofing”
message from the list and corresponding codeword z’
(in order to confuse Bob between z and z/).

4) James uses channels Vi x/ u>o—y for u = aK +
1,aK + 2,..., K in the remaining chunks to generate
s(t) by passing the pair (z(t),2’(t)) through the channel
Vs|x,x’,u=u 10 the u-th chunk.

This strategy must satisfy two conditions. First, it has to satisfy
the cost constraint, which is the sum of the cost from each
phase. The technical challenge comes in the second phase
because the joint type of z and z’ need not be a product
type. However, due to the Generalized Plotkin bound [17] we
show that the suffix state cost only needs to be computed with
respect to distributions Py x/ that are convex combinations of
product distributions. These conditions constrain the induced
jamming distributions of James minimized over in the capacity
expression above (Equation (3)).

The second condition is that the “push” channels must
be symmetrizing (see Definition 8) ensuring that the suf-
fix (y(an + 1),...,y(n)) observed by Bob was equally
hkely to have been generated by either the codeword suf-
fix 2% = (z(an + 1),...,2(n)) or the codeword suffix
2> = (2'(an + 1), g’(n)) This forces a constant
probablhty of error for Bob since he cannot distinguish the
true message/codeword from the spoofing message/codeword
chosen by James.

To show that this strategy will work, we show via relatively
standard information-theoretic strong converse arguments that
for rate R exceeding the capacity expression above, if James
chooses a break point « such that the cumulative mutual in-
formation thus far is “just” below the rate, then Bob must still
have a large set (say of size 2°(")) of codewords consistent
with what he has received. Here we use the assumption that
the channel is state deterministic: James can also compute the
same list as Bob. Then, via analysis paralleling the symbol-
error analysis [10], but significantly generalizing it to a general
class of AVCs, we show that the push strategy outlined above
will result in a constant probability (that depends on J) of
James being able to cause a decoding error by Bob.

As mentioned, a key ingredient in the analysis is the
Generalized Plotkin bound [17] which ensures that with
positive probability the joint type of randomly sampled pairs
of codewords (more precisely, their suffixes) is a convex
combination of product distributions. This results in significant
cost savings for James. To guarantee James’ success (with
constant probability) in the setting of stochastic encoders
as well, we use information-theoretic and coding-theoretic
techniques introduced in prior work [11].

B. Achievability

Let R < C'—9. Alice uses a chunk-wise constant composi-
tion stochastic code with distributions {Pyjyu—, }4—; such that
the average composition Py = % 271;1 Pyju=y satisfies the
input constraint. She uses K = polyx(1/) chunks and uses
poly,.(0)n bits of private randomness, for suitable polynomials
polyx and poly, (that, again, depend on the parameters
of the AVC at hand). For every message m, chunk u, and
randomness r, Alice selects codeword-chunks of length n/K
uniformly from type Pyju—,- This use of encoder randomness,
which is independent in each chunk, forces uncertainty for
James about the actual codeword that will be transmitted
in the next chunk when conditioning on prior chunks. Such
randomly designed codes have several nice properties used in
our analysis. In particular, using AVC list-decoding arguments,
adapted to the chunkwise stochastic encoding scheme here,
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our codes are (w.h.p.) list-decodable with list size poly(1/4).
In addition, extending concentration measures analyzed in
[10], codewords 2’ in the lists obtained through list-decoding
have (with high probability over Alice’s private randomness)
joint type approximately Py x/ju—., = Pf?li:u with the trans-
mitted codeword z (for every chunk index ).

Bob’s decoding process is an iterative process reminiscent
of the 2-phase process of James presented in the converse
proof. Without any prior knowledge of James’ jamming strat-
egy s, Bob iterates over potentially transmitted codewords z’
and state vectors s’ that may have resulted with the received
word y. More specifically, taking causality into account, Bob
iterates over all potential jamming strategies v/ x,u that satisfy
the jamming cost constraint with respect to Py|,, and for each
such V’ proceeds in 2-phases. First, he chooses a threshold '
corresponding to V"’ such that o K is the first chunk for which
the normalized cumulative mutual information (Definition 7)
is more than the rate R of the code, and list decodes under
the (potentially mistaken) assumption that James is acting
according to Vs/\x,u@" As mentioned above, Bob’s obtained
list will be of size poly(1/§). Notice that, depending on the
studied V", the transmitted message m and the corresponding
codeword x may or may not be in the list. Bob’s objective at
this point is two-fold: to reject the list if it does not include the
transmitted codeword and, otherwise, to disambiguate the list,
i.e., find x. Both objectives are accomplished in the second
phase of Bob’s decoding.

In the second decoding phase, Bob examines each codeword
2’ in his obtained list and outputs the message m’ correspond-
ing to 2’ if and only if y could have been obtained from z’
through a feasible s'. In particular, if there exists a vector
s’ and a corresponding ( s/\x,usw s/\x,x’,u>"‘/) € For(Pxu)
representing the transition from z’ to y through s’. Here,
(Vs’lx_’u@,, s/|x.,x',u>u’) is a refinement OF‘/;I\x,u derived using
the joint type of 2’ and the assumed s’ (both known to Bob),
and the transmitted z (unknown to Bob) where (z,z') are
assumed through code design to have type Pf?li:u. If no 2’/
in the list passes the test above, Bob continues in studying
the next jamming strategy Vvs/|x}u until eventually finding a
codeword and a corresponding message that pass the test.
Once such a codeword is found the decoding process is
terminated. If no codewords pass the test in any of Bob’s

iterations, a decoding error is considered.

In our analysis, we show, for every transmitted message m,
that with high probability over the stochasticity of Alice, the
decoding process will succeed. Namely, with high probability
over the stochasticity of Alice, only the codeword x corre-
sponding to Alice’s message m will pass the decoding test.
The proof involves a careful ordering on potential jamming
strategies Vs"x’u used by Bob in the decoding process and
the corresponding analysis for general channels requires more
care than the specific models considered in prior work. Specif-
ically, we order V' based on their corresponding thresholds o/
(from small to large). For such an ordering, it suffices to show
(i) that once Bob studies the correct V|« . corresponding

to the actual (unknown to Bob) jamming vector s (or more
precisely, the correct triple (o, (Vgjx,u<e, Vsjx,x/,u>))), then
using standard typicality arguments the message m will pass
the test of the decoder; and (ii) that for any “weaker” jammer
V’, ie., with o’ < «a, where « corresponds to the actual
jamming strategy of James through V' above, no message will
pass the decoding test.

The main technical difficulty in our proof addresses case
(i) above. Suppose, to the contrary, that Bob can decode
to an incorrect codeword z’ using the “wrong” choice of
(o, (Vs,\x,usa”Vs,\x,x',uw’)) with o/ < «, implied by a state
vector s’ which can generate y from z’. Considering the true
jamming vector s of James, and its corresponding single letter
representation (o, (Vgjx,u<e, Vsjx,x/,u>)), Which can generate
y from z and s, we have that the joint type of (z, z’, y) can be
obtained in two different ways: through 2’ and s’ via V’, and
through z and s via V, implying that V' and V are a sym-
metrizing pair. More precisely, to reach a contradiction to the
definition of C' in (3), and thus conclude our proof, we must
show that (Vs,\x,x/,uw’:u’ Vejxx/,u>o’ =) ar¢ a symmetrizing
pair for every chunk u = aK + 1,aK + 2, | K, and that
(without loss of generality) Vs"&u@, = Vs|x,u<a’- For the
latter, one requires a crucial and novel step in our analysis
that relies on our iterative ordering of V'’ and in particular
on the fact that o/ < a. Assumptions 3 and 5 on our AVC
appearing in Section II-B are distilled from this step in our
analysis. The former is then proven through a generalization
of the analysis for oblivious AVCs [4].

V. DISCUSSION

In this paper we characterized the capacity for AVCs with
online adversaries when the channel is state-deterministic.
This restriction on the channel class is used only in the
converse, where James must be able to compute the channel
output exactly, similar to previous ‘“snooping” models for
bit flips/erasures [14]. It may be possible to extend this
argument to more general classes of AVCs, which we leave for
future work. On the achievability side, we note that perhaps
surprisingly, input distributions Py|,—, that are iid. (i.e.
there is some Py such that Py,—, = Px for all u) do not
necessarily attain capacity for general AVCs. This is consistent
with prior work: while i.i.d. input distributions attain capacity
for finite alphabet symbol-error/erasure channels with no input
constraints [10], they do not for the quadratically constrained
casual model [12]. This seems counterintuitive given the
convexity of mutual information function and the linearity of
the symmetrizability condition. The reason is that Alice has
to choose a rate R and design her corresponding codebook
distribution to be simultaneously good for any possible choice
of a (and the corresponding feasible input distributions),
rendering the problem highly non-convex. This reveals another
interesting question for future work: are there computationally
tractable approximations for our capacity expression that will
reveal optimal encoder/jamming strategies?
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