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Group Testing on General Set-Systems

Mira Gonen, Michael Langberg, and Alex Sprintson

Abstract—Group testing is one of the fundamental problems
in coding theory and combinatorics in which one is to identify
a subset of contaminated items from a given ground set. There
has been renewed interest in group testing recently due to its
applications in diagnostic virology, including pool testing for
the novel coronavirus. The majority of existing works on group
testing focus on the uniform setting in which any subset of size
d from a ground set V of size n is potentially contaminated.

In this work, we consider a generalized version of group
testing with an arbitrary set-system of potentially contaminated
sets. The generalized problem is characterized by a hypergraph
H = (V,E), where V represents the ground set and edges ¢ € E
represent potentially contaminated sets. The problem of gener-
alized group testing is motivated by practical settings in which
not all subsets of a given size d may be potentially contaminated,
rather, due to social dynamics, geographical limitations, or other
considerations, there exist subsets that can be readily ruled out.
For example, in the context of pool testing, the edge set £ may
consist of families, work teams, or students in a classroom, i.e.,
subsets likely to be mutually contaminated. The goal in studying
the generalized setting is to leverage the additional knowledge
characterized by H = (V, E) to reduce the number of tests.

The paper considers both adaptive and non-adaptive group
testing and makes the following contributions. First, for the non-
adaptive setting, we show that finding an optimal solution for
the generalized version of group testing is NP-hard. For this
setting, we present a solution that requires O(dlog|E|) tests,
where d is the maximum size of a set ¢ € E. Our solutions
generalize those given for the traditional setting and are shown
to be of order-optimal size O(log |E|) for hypergraphs with edges
that have “large” symmetric differences. For the adaptive setting,
when edges in E are of size exactly d, we present a solution of
size O(log |E| + dlog® d) that comes close to the lower bound of
Q(log |E| + d).

I. INTRODUCTION

Group testing is one of the fundamental problems in cod-
ing theory, statistical inference, and combinatorics due to
its practical importance in a broad range of applications,
such as multi-access communication [1], pattern matching
[2], molecular biology, and others. The problem has deep
connection to other fundamental problems in combinatorics
and coding theory [3].

The group testing problem was subject to a large number of
studies since its introduction more than 75 years ago (refer to,
e.g., [4], [5] and references therein). An instance of the group
testing problem includes a ground set V' of items of size n, a
subset of which may be contaminated (we refer to the latter
set as a contaminated set). In the traditional setting, for a
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given parameter d, any subset of V of size d may potentially
be a contaminated set. The contaminated set can be detected
through a pooling process which includes a series of tests,
where each test reveals the existence of a contaminated item
in the tested subset of items. The goal of the group testing
problem is to design a minimum set of tests that can identify
the contaminated set of items in V. The testing algorithms
can be constructed in a non-adaptive manner, i.e., fixed in
advance, or in an adaptive manner, i.e., each test can depend
on the outcome of previous tests.

In this work, we study a more general version of group
testing, termed here generalized group testing, in which the
set-system of potentially contaminated sets is characterized by
ahypergraph H = (V, E), in which the vertex set V represents
the ground set and the hyperedges in E represent potentially
contaminated sets. Traditional group testing thus corresponds
to the hypergraph H with edge set E consisting of all subsets
of V of size d. Our study of arbitrary edge sets E grants
the flexibility required for a broad range of settings, including
those in which the set-system E of potentially contaminated
sets does not have any uniformity or regularity properties.
For example, in the context of pool testing, E can represent
potentially contaminated sets that correspond to families, work
teams, or groups of friends or students in a classroom [6].
We consider settings in which H = (V,E) is known in
advance, e.g., E can capture groups of individuals that are
likely get infected. Our goal in studying the generalized
setting is to leverage the additional knowledge characterized
by H = (V,E) to minimize the number of required tests.

Contribution. The paper considers both adaptive and non-
adaptive group testing and makes the following contributions.
First, for the non-adaptive setting, we show that finding an op-
timal solution for the generalized version of the group testing
problem is NP-hard, and approximating the optimal solution
within a factor of 1+ e (for sufficiently small ¢) is as hard
as coloring a 3-colorable graph with n® colors. The latter is a
well known open problem, e.g., [7], [8]. For the non-adaptive
setting, we present a solution that requires O(d log |E|) tests,
where d is the maximum size of a set ¢ € E. Our solutions
generalize those given in the classical setting and are shown
to be of order-optimal size O(log |E|) for hypergraphs with
edges that have “large” symmetric differences. For the adaptive
setting, in which all edges in E are of size exactly d, we present
a solution of size O(log|E| + dlog?d) that comes close to
the lower bound of Q(log|E| + d). For the adaptive setting
in which d is the maximum size of a set ¢ € E, we obtain an
upper-bound of O(log |E| + d?).

Related works. The overwhelming majority of works on
group testing fall under the traditional setting in which H =
(V,E) includes all edges of size d (or, alternatively, of size
at most d). Known upper and lower bounds in this context
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are reviewed in Section II-A. For hypergraphs H that differ
from the traditional setting, less is known. Using our notation,
Nikolopoulos et al. [6], [9] study hypergraphs H = (V, E) that
have a certain community structure. Specifically, [6] assumes
that V consists of F disjoint groups (referred to as families) and
studies the special setting in which E includes all edges that
intersect a bounded number of families. The paper leverages
the structure of H = (V, E) to maximize the efficiency of the
group testing algorithms in the adaptive, non-adaptive, and
probabilistic settings; [9] further studies the problem for the
case of families that are not necessarily disjoint. Ahn et al. and
Arasli and Ulukus [10], [11] also discuss group testing under
community constraints using different infection spread models.
Other recent works related to community aware group testing
include [12], [13]. A few related papers [14], [15] focus on
leveraging side-information (e.g., that can be obtained from
contact tracing) to make the decoding algorithm faster. Finally,
graph-constrained group testing, a variant of the group testing
problem where the fests must conform to constraints imposed
by a graph, is considered, e.g., in [16]-[18]. The results of this
work differ significantly from those above as we study general
set-systems of potentially contaminated sets, and do not place
any constraints on the tests used.

II. PROBLEM FORMULATION

An instance of the group testing problem includes a ground
set V of n items, a subset of which may be contaminated,
with the goal of designing a minimum set of tests that can
identify the contaminated items. We first define traditional
non-adaptive group testing.

Definition 1 (traditional group testing (non-adaptive))
For a ground set V of size n and a parameter d, find a
minimum size family T of subsets of V such that for any
A,B CV of size d there exists T € T for which ANT =@
if and only if BN'T # @.

Equivalently to Definition 1, given a ground set V =
{1,...,n}, a family of tests T = {Ty,..., Ty} corresponds
to a kxn matrix T with T; = 1if j € Tj, and T;; = 0
otherwise. The outcome y; 4 of the test T; on a subset A is 1
if there exists j € A with Tij =1, and O otherwise. Namely,
Yia = VjeaTij. With this notation, we seek a family of tests
T ={Ty,..., Tx} of minimum cardinality with corresponding
matrix T such that for any A, B C V of size d there exists
T; € T for which y; o4 # y; . Such T; is said to separate A
and B.

In traditional group testing, given a subset S C V of con-
taminated items of cardinality d, the outcomes ¥ s,..., Yk s
of tests T = {Ty,..., Tx} can be used to reliably recover the
contaminated subset S.

We now turn to define the object studied in this work
- generalized group testing - in which one requires 7 =
{Th,..., Ty} to separate not any two subsets A and B of size
d, but rather any two subsets A and B in a known family E.

Definition 2 (generalized group testing (non-adaptive))
Given a ground set V of size n and a family E of subsets of

V, find a minimum size family T of subsets of V such that
for any A,B € E there exists T € T for which ANT =@
if and only if BN'T # @.

Notice that the ground set V and the family E can be
represented by a hypergraph H = (V,E) whose vertices
are the elements of the ground set and whose hyperedges
are the sets in E. As before, equivalently to Definition 2, a
family of tests 7 = {Ty,..., Ty} corresponds to a k x n
matrix T, and in the generalized group testing problem we
seek a minimum sized family of tests 7 = {Ty,..., Ty} with
corresponding matrix T such that for any A, B € E there exists
T; € T for which y; o # y;p (i.e., T; separates A and B).
In the general group testing problem, for any possible subset
S € E of contaminated items, the outcomes ¥, ..., ks of
T ={T1,..., Tx} can be used to reliably recover S.

It is evident by our definitions that the traditional group test-
ing problem with parameter d corresponds to the generalized
problem with a hypergraph H = (V, E) in which the edge set
consists of all subsets of V of size d.

We now turn to define the adaptive version of group testing
in which one can design the tests 7 adaptively, that is, test T;
may depend on the outcomes of tests T; for j < i. We present
the definition for the generalized case, with the definition for
the traditional setting following as a special case.

Definition 3 (generalized adaptive group testing) Given a
ground set 'V of size n, a family E of subsets of V, and a fixed
but unknown subset S € E of contaminated items, interactively
design a family T = {Ty,..., Ty} of subsets of V such that
for any 2 < i < k the choice of T; depends on {y;s|j < i},
where Yjs is 1 if SNT; # @, and 0 otherwise. The outcomes
Y1,5,- - -, Yk s can be used to reliably recover the contaminated
subset S, in the sense that for any other A € E there exists an
index i such that T; separates A and S, i.e., Y o # Yis. The
governing adaptive algorithm is said to use at most k tests if
for any S € E, the interactively designed family of tests T is
of size at most k. One seeks to find an adaptive scheme that
minimizes the value of k.

A. Prior upper and lower bounds on group testing

We start by stating the information-theoretic lower bound
that follows from the fact that each test (in both the adaptive
and non-adaptive setting) yields at most one bit of information
regarding the contaminated set (see, e.g., [5], [19]-[21]).

Claim 1 (Adaptive & non-adaptive information-theoretic
lower bound) For any 0 < d < n, the size of an optimal adap-
tive or non-adaptive solution for the traditional group testing
problem with parameters n and d is at least Q)(dlog(n/d)).
The size of an optimal solution for the generalized group
testing problem with corresponding hypergraph H = (V,E)
is at least [log, |E|].

For non-adaptive traditional group-testing there is an im-
proved lower bound [22]:
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Claim 2 (Non-adaptive lower bound) For any 0 < d < n,
the size of an optimal non-adaptive solution for the tradi-
tional group testing problem with parameters n and d is

Q(min{n,d*logn/logd}).

Known upper-bounds for the traditional group testing prob-
lem in the non-adaptive and adaptive setting (for general n,
d) are given below (see e.g., [5], [20], [23]):

Claim 3 (Non-adaptive upper bound) For any 0 < d < n, all
d contaminated items in a given ground set V of size n can
be found using at most O(d?logn) tests.

Claim 4 (Adaptive upper bound) For any 0 < d < n, all d
contaminated items in a given ground set of size n can be
found using at most dlog,(n/d) + O(d) adaptive tests, even
when d is unknown.

The table below compares the upper and lower bounds
presented in this work (for small values of d) with those
surveyed above (we use the notation: Adaptive (A), Non-
Adaptive (NA), Upper-bound (UB), Lower-bound (LB)). Note
that our results for generalized group testing on H = (V, E)
match, or come close to matching, those of traditional group
testing when E is taken to be all subsets of size d in V (and
thus log |E| = ©(dlog(n/d))).

Traditional Generalized
NA/UB O(d?logn) O(dlog |E|)
NA/LB | Q(d%logn/logd) Q(dlog |E|/ logd)
A/UB | dlog,(n/d) +O(d) | O(log|E| + dlog®d)
A/LB Q(dlog(n/d)) Q(log|E]+4d)

III. NON-ADAPTIVE GENERALIZED GROUP TESTING

A. The Computational Complexity of finding an Optimal or
Approximately-Optimal Solution

We first prove that the generalized group testing problem is
NP-hard by showing a reduction from 3-colorability. !

Theorem 1 Finding the size of an optimal solution for the
(non-adaptive) generalized group testing problem is NP-hard.

Proof:  Given a graph G = (V,E), which is an instance
of the 3-colorability problem, define the following instance of
the generalized group testing problem. Let V = {1,2,...,n}
and assume without loss of generality that |E| = 2¢ — 1 for
some integer ¢ > 2 (otherwise one can modify G by adding
an additional 2-colorable component). Define the hypergraph
H = (Vy,Ey) for the generalized group testing problem as
follows: Vi = EUV and

Ey={{1,...,ne} |e€ E}
U{{i,e}lie ViecE,Jje Vste=(i))}.

Note that |Viy| = 2¢ — 1+ n (recall that |[E| = 2¢ — 1) and
that |Eg| = 26 —142(20 —1) = 2641 426 —3 > 2f+1,
This latter fact implies (using the bounds of Claim 1) that

A valid 3-coloring of a graph G is an assignment of at most 3 colors to
its vertices so that the vertices of each edge are assigned to distinct colors.

2 e; e, e; e; es eg e; 1 2 3 4 5
~
e;/ \e /0 00 1 1 1 1]/0 0 0 0 O
/01 1. 0 0 1 1|0 0 0 0 0
1/ e \ 3 2
B . |1 01010100000
p
p
€y E5 &7 t4/o 0o 0 0o 0 00]0 0 1 00
p
4 e 5 ts{0 0 0 0 0 0 0j0 1 0 1 0

Fig. 1. Illustration of the reduction in Theorem 1. As |E| = 7, the parameter
¢ equals 3. Note that each edge e, has a unique vector u,, encoded in rows
t1,t2, t3, and each vertex has a unique color encoded by rows t3, ty.

the optimal solution for the generalized group testing problem
corresponding to H is of size at least £ + 2.

In what follows, we show that G is 3-colorable (but not 2-
colorable) if and only if the generalized group testing problem
corresponding to H can be solved using ¢ + 2 tests.

For the first direction assume that G is 3-colorable (but
not 2-colorable). Define a (£ +2) x (2¢ — 14 n) matrix T as
follows. For every edge e;; € E let uy, be a distinct identifying
binary non-zero encoding using ¢ bits. For 1 < m < 261
the m’th column in T is an (¢ + 2)-length vector whose first
{ entries are 1, and the last 2 entries are 0. For 2! < m <
2¢ + 1 —1 the m’th column in T is a (¢ + 2)-length vector
whose first ¢ entries are 0 and the last 2 entries are 00 if for
i=m— (22 —1), node i € V is colored with the first color,
01 if 7 is colored with the second color, and 10 if i is colored
with the third color. The construction is illustrated in Figure 1
on a simple example graph G with 5 nodes.

To show that T is a feasible solution for the generalized
group testing problem we prove that for any hyperedges
A, A’ € Ey there exists 1 < t < £ +2 such that y; 4 7# y; .
First assume that A and A’ satisfy one of the following cases
for m # m': A = {1,...,n,en}, A" = {1,...,n,e,0};
or A = {ien}, A" = {7, en}; or A = {i,en}, A\ =
{1,...,n,e,}. In these cases, since the encodings u, of ey,
and u,, of e, are distinct, there exists an entry ¢, 1 <t < /,
for which Ty, # Ty,y. This, in turn, implies (given the
construction of T) that y; o4 = VjeaTy; # VieaTtj = Ypar-

If A={1...,nen} and A’ = {7, ey}, then, by our
construction of T there exists t € {¢+1,¢+ 2} for which
Tt,zf—l i = 0. For such ¢, there must be an » € V for which
Tt,z‘—l = 1, as otherwise the nodes in V are colored by two
colors alone. Thus, it is not hard to verify that in this case as
well Yy 4 7# Ve ar-

Finally, if A = {i,en}, A’ = {i’,em} where e,, = (i,7'),
then since i and i’ are assigned to distinct colors in G we get
that there exists t € {{+1,£+2} such that T,p |,; #
Tipe_q,p- As above, in this case as well y;4 # Ypar
Therefore any two subsets of Ey can be separated.

For the second direction, assume that 7 is a solution for
the generalized group testing problem with | 7| = £+ 2, and
let T be the corresponding (¢ +2) x (2¢ — 1 + n) matrix.
We show that G is 3-colorable. Denote by Tf“l, ... ,Tch’l_ 14n
the columns of T, and let w be the vector corresponding
to the union of the last n columns in T. Namely w =
Tzcg’v, ceey \/TZC[?Z_HW and wy = 1 if and only if there exists
m > 2' for which T;,, = 1. Then, it holds that the
support |sup(w)| of w is at most of size 2. Assume to the
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contrary that |sup(w)| > 3, and without loss of generality
that wy = wyy1 = wyyp = 1. As there are 201 edges e
in E, we have that tests T7 up to Ty_; cannot separate at least
one pair of subsets A, A’ in Ey of the form {1,...,71,¢e,}
and {1,...,m,e, }. This fact follows from the lower-bound
of log, |E| given in Claim 1. Moreover, these same subsets
A and A’ cannot be separated by tests Ty, Ty, 1, and Ty, by
our assumption that w, = wy,1 = wyyp = 1. Thus T is not
a feasible solution to the generalized group testing problem
corresponding to H, a contradiction.

We can now assume that |sup(w)| < 2. Without loss of
generality assume that entries 1 to ¢ of w are 0. Then for
every 1 < i < n it holds that |sup(T20§?’_1+l.)| < 2, as
otherwise both Ty 1 o ¢, ; =1land Ty, 5or 4, ; = 1 implying
that for any e = (i,j) € E the subsets A = {1...,n,e}
and A" = {i,e} can not be separated. For a coloring of G,
assign to node 7 in V the color corresponding to the values in
Tyi19¢—1+ir Toyn0r 144 This implies a legal coloring of G
using the colors 00,01,10. Specifically, if e = (i, ) then there
exists a test Ty € T that separates A = {i,e} and A’ = {j, e}
implying that T, »¢ 1, ; # Tyo0 4 +j» Which in turn guarantees
that 7 and j are assigned to distinct colors. W

We next extend Theorem 1 to establish the hardness of
approximation of the size of an optimal group testing solution.
Namely, we address the question of approximating the size of
the optimal solution for the generalized group testing problem
within a multiplicative factor of 1+ ¢ (for small €). We again
reduce from 3-colorability, using the fact that coloring a 3-
colorable graph with n? colors (for sufficiently small ¢) is a
well known open problem (see e.g. [7], [8] and references
therein). Our proof appears in the full version of this work
[24], and closely follows that of Theorem 1.

Theorem 2 Let ¢ > 0 be sufficiently small. Approximating the
size of an optimal solution for the (non-adaptive) generalized
group testing problem within a multiplicative factor of 1+ ¢
is as hard as coloring a 3-colorable graph with at most n*
colors.

B. Non-adaptive generalized group testing bounds

In the following theorem we present an upper bound for
the non-adaptive generalized group testing problem. The stated
bound is a function of the set-system size |E|, the maximum
size d of any e € E, and a parameter S which addresses
the maximum pair-wise symmetric difference size of any two
subsets in E. Loosely speaking, symmetric difference is an
important and natural primitive, since if |e \ ¢/| or |¢/ \ e| is
large, then it is easier for a test to separate e from ¢’. Implying
that less tests may be needed when such sizes are large. Using
a rough analog from coding theory, one can view the tests 7 as
a syndrome based decoding process, and the (indicator vector
of) edges e as codewords. In this analog, max{|e\ ¢’|, |¢/ \ e|}
is related to distance, implying intuitively that a collection
of codewords with large minimum distance is easier to de-
code than a collection with small minimum distance. In
what follows, we set f = min,cpmax{|e\ ¢[,|¢’ \ e|}.
For B = ©(d) our solution size matches the information-
theoretic lower bound of log, |E| stated in Claim 1 (up to

a constant multiplicative factor). In the case in which no
assumptions are made on B, our solution of size O(d log, |E|)
comes close to matching our (worst-case) lower bound of
Q(dlog|E|/logd). Our solution is generated by constructing
tests at random, refining the analysis appearing in, e.g., [25],
addressing traditional group testing. All detailed proof appears
in the full version of this work [24].

Theorem 3 Consider an instance of the generalized group
testing problem with corresponding hypergraph H = (V ,E)
with edges of size at most d. In addition, assume that for all
e,¢’ € E it holds that max{le\ ¢'|,|¢' \ e|} > B, for some
parameter 1 < B < d. Then there exists a solution T to the
generalized group testing problem corresponding to H of size
O(%log |E|). Moreover, for any constant a, there exists an
efficient randomized construction of T of size O(%(log |E| +

«)) that is a valid solution with probability at least 1 — e™".

Corollary 1 Consider an instance of the generalized group
testing problem with corresponding hypergraph H = (V,E)
for which all edges are of size at most d. Then there exists a
solution T of size O(dlog |E|).

Claim 5 Let d < n' < n be integers. There exist
hypergraphs H = (V,E) with |V| = mn, edges of
size d, and |E| = (7‘;’) such that any non-adaptive so-
lution for the generalized group testing problem corre-
sponding to H requires Q(min{n’,dlog|E|/logd}) =
Q(min{n’,d*logn’/logd}) tests.

IV. ADAPTIVE GENERALIZED GROUP TESTING

We now address the adaptive setting. Adaptive schemes
improve on non-adaptive constructions as the adaptive iterative
process allows to rule-out potential contaminated items or
subsets of the population in each iteration. While, in traditional
group testing, the adaptive analysis is commonly governed by
the ground-set size of potentially contaminated individuals,
which shrinks with each iteration of the iterative process (see,
e.g. [5], [26]), the analysis in our generalized setting must be
governed by the number of remaining edges that are potentially
contaminated. This difference causes a number of challenges
that are addressed in the proof below.

Theorem 4 Consider an instance H = (V,E) of the gener-
alized group testing problem in which edges in E are of size
d. There is an adaptive algorithm that interactively designs a
collection of tests T of size at most O(log |E| + d log? d) that
can reliably recover the contaminated set in E. Moreover, there
exists instances H = (V,E) with corresponding bound d for
which any adaptive solution is of size at least Q(log |E| + d).

Proof: The proof of the lower bound is given in the
full version of this work [24]. For the upper bound, let
V ={1,2,...,n} (that is, |V| = n), and for 1 < i < n, let
d; be the degree of node i in V. Notice that /' ; d; = d - |E|.
In what follows, we present an adaptive algorithm using
O(log |E| + dlog?d) tests. Roughly speaking, the algorithm
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proceeds in rounds in which we search for subsets T C V
that intersect a constant fraction of the edge set. In round j,
the constant fraction is required to be in the range [s jr 1—¢ ]-],
for € = 1/ 2/+1 Once such a subset T is found and used as
a test, we are able to reduce the edge size of the instance at
hand by a factor if (1 —¢;) and thus to make progress towards
finding the contaminated e € E.

Each round j consists of several sub-rounds in which
one consecutively finds subsets T corresponding to the same
parameter ¢;, thus reducing the size of the edge set in each
sub-round by a factor of (1 —¢;). We move from round j
to round j+ 1 once no such T corresponding to ¢j is found
(and thus increase j by 1 allowing for additional flexibility
in the requirements on T). Finally, once € reaches 1/d, we
stop the iterative process and solve the remaining instance in
a non-adaptive manner. The algorithm is presented below:

Algorithm 1 (Adaptive algorithm)
1) El+—E e<+—1/4
2) If |E'| =1, return E'.
3) Label the nodes in V such that di < dy < ...
where d; be the degree of node i in V w.r.t. E'.
4) If there exists a subset T C 'V of the form T = {1,...t}
(i.e., T takes nodes in increasing order of degree) such
that the number of edges of E' intersecting T is in the
range [e|E'|, (1 —¢)|E'|] then:
a) Perform test with subset T.
i) If the test is negative, set E' «+— {e € E'|eN
T = @} (i.e., update E' to the subset of edges
that do not intersect T), and return to (2).
ii) If the test is positive, then set E' +— {e €
E'leNT # @} (i.e., update E' to be the subset
of edges that do intersect T) and return to (2).
b) Else, if no such T is found, if ¢ > 1/d then
return to (2) with € <— ¢/2. Otherwise, continue
with E', using the non-adaptive testing described
in Theorem 3 to find the contaminated e € E.

< dy

We first address the correctness of the proposed algorithm.
Let e € E be the contaminated subset. It suffices to show that
throughout the execution of our algorithm, the subset e is in
E’. This holds initially as E’ = E, and continues to hold in
Step 4a by the fact that T is positive if and only if eN T # @.

We now compute the number of tests performed by the
algorithm. Consider round j in which ¢ = ¢; = 1/2/*1. We
first show that if T is not found in Step 4 then it must be
the case that E’ is of size at most (1 + Zsj)Zd(H‘lEJ)H(ZEJ‘).
Specifically, if there is no test T as described in Step 4, then
it must be the case that for some node i the number of edges
intersecting {1,2,...1 — 1} is less than &;|E’| and the number
of edges intersecting {1,2,...i} is more than (1 —¢;)|E’|.
This implies that d; > (1 —¢;)|E'| — &;|E'| = (1 —2¢;)|E'|.
As d; < diyg < ... < dy, and Y}, d; = d|E'| it holds
that (n —i+1)(1 —2¢)|E'| < Y¥j_;dy < d|E'|. Therefore,
(n—i+1)(1-2¢) <d,son—i+1<d/(1-2¢).

Recall that less than ¢;|E’| edges are adjacent to nodes
{1,...,i—1}. This implies that at least (1 —¢;)|E’| edges
are induced by nodes {i,...,n}. As |{i,...,n}| = n—

i+1 < d/(1 —28]'), the number of edges of size d
d/(l—z&,)
)
d/(l*ZEJ)

induced by {i,...,n} is at most
that (1—¢))|E'| < (V%)) = (

ZE]d/(l—ZSI)
HAH(2e))/(1-2¢))

i . . .

To bound the number of tests in the adaptive algorithm,
it suffices to analyze the total number of sub-rounds exe-
cuted. Let m; be the size of E' in the beginning of round

j. From the above, we have that m; = |E|, and m; <
(1+ 2£j)2d(1+48f)H(2‘€f), forany j =1,2,...,logd. Moreover,
as the size of E’ in any sub-round of round j reduces its size
by a factor of 1 —¢; < ﬁe, The total number of sub-rounds
is thus bounded by

. This implies
). so |E'| <

1% log(m;) — log(m;11) _ %4 |
! RN (log(m;) —log(miy1))—
= log (1 +¢)) *]; g(mj) —log(mj 41 >
logd )
< 4log|E| + ) log(m;) 21
j=2

logd )
<O |log|E|+ ) dH(2) -2

=2

j=2

logd )
=0 (10g|E| + Y d-2ejlog(1/2e;) .2J>

logd

=0 (log|E|+ ) d~j> :O<log\E\+dlog2d>.
j=2

Finally, to bound the total number of tests in the suggested
algorithm, we add the number of tests performed in step 4b for
the set E’ once ej < 1/d. At this stage, the set E’ is of size at
most (1 +2£j)2d(l+4ej)H(Zsj) < ZO(d.%logd) — 40 Thus,
the non-adaptive testing described in Theorem 3 when applied
to E’ will use at most O(dlog |E’|) = O(dlogd) tests. We
conclude that, all in all, the suggested adaptive algorithm uses
O <log |E| + dlog? d) tests. W

We remark that an adaptive upper-bound of O(log |E| + d?)
holds, using a similar proof, for the modified setting in which
edges of E are of size at most d (as apposed to exactly d).

V. CONCLUDING REMARKS

In this paper we consider a generalization of the traditional
group testing problem in which the contaminated set is one
of a collection of subsets characterized by the edge set
of a hypergraph H = (V,E). Leveraging this additional
knowledge, we address both adaptive and non-adaptive group
testing, in terms of upper and lower bounds, and for the latter,
analyze the complexity of determining the size of optimal (or
approximately optimal) solutions.

Beyond adaptive and non-adaptive group testing, several
additional models have been studied for traditional group
testing. These include, noisy group testing, probabilistic group
testing, partial recovery, non-binary outcomes, an unknown
bound on d, and more. Addressing those models in our
generalized setting is subject to future research.

Authorized licensed use limited to: University at Buffalo Libraries. Downloa8eéi 8n October 04,2022 at 21:20:43 UTC from IEEE Xplore. Restrictions apply.



[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

2022 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

J. Wolf. Born again group testing: Multiaccess communications. /EEE
Transactions on Information Theory, 31(2):185-191, 1985.

R. Clifford, K. Efremenko, E. Porat, and A. Rothschild. Pattern matching
with don’t cares and few errors. Journal of Computer and System
Sciences, 76(2):115-124, 2010.
E. Porat and A. Rothschild.
group testing schemes.
57(12):7982-7989, 2011.
M. Aldridge, O. Johnson, and J. Scarlett. Group testing: an information
theory perspective. CoRR, abs/1902.06002, 2019.

D.Z Du and FK. Hwang. Combinatorial Group Testing and Its
Applications, volume 12 of Series on Applied Mathematics. Singapore:
World Scientific Publishing Co. Inc., River Edge, NJ, 2nd edition, 2000.
P. Nikolopoulos, S.R Srinivasavaradhan, T. Guo, C. Fragouli, and S. Dig-
gavi. Group testing for connected communities. In Proceedings of The
24th International Conference on Artificial Intelligence and Statistics,
volume 130, pages 2341-2349. PMLR, 2021.

S. Khanna, N. Linial, and S. Safra. On the Hardness of Approximating
the Chromatic Number. Combinatorica, 20:393—-415, 2000.

M. Langberg. Graph coloring. In Encyclopedia of Algorithms, pages
368-371. Springer, 2008.

P. Nikolopoulos, S.R Srinivasavaradhan, T. Guo, C. Fragouli, and
S. Diggavi. Group testing for overlapping communities. In Proceedings
of the IEEE International Conference on Communications, 2021.

S. Ahn, W.N. Chen, and A. Ozgur. Adaptive group testing on networks
with community structure. In 2021 IEEE International Symposium on
Information Theory (ISIT), 2021.

B. Arasli and S. Ulukus. Graph and cluster formation based group
testing. In 2021 IEEE International Symposium on Information Theory
(ISIT), pages 1236-1241, 2021.

P. Bertolotti and A. Jadbabaie. Network group testing. Manuscript;
available on https://arxiv.org/abs/2012.02847, 2020.

YJ. Lin, CH. Yu, TH. Liu, C.S. Chang, and W.T. Chen. Positively
correlated samples save pooled testing costs. Manuscript; available on
https://arxiv.org/abs/2011.09794, 2020.

Explicit nonadaptive combinatorial
IEEE Transactions on Information Theory,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

J. Zhu, K. Rivera, and D. Baron. Noisy pooled pcr for virus testing,
2020.

R. Goenka, S.J Cao, C.W Wong, A. Rajwade, and D. Baron. Contact
tracing enhances the efficiency of covid-19 group testing. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8168-8172, 2021.

M. Cheraghchi, A. Karbasi, S. Mohajerzefreh, and V. Saligrama. Graph-
constrained group testing. IEEE Transactions on Information Theory,
58(1):248-262, 2010.

A. Karbasi and M. Zadimoghaddam. Sequential group testing with graph
constraints. In 2012 IEEE Information Theory Workshop, pages 292—
296, 2012.

S. Luo, Y. Matsuura, Y. Miao, and M. Shigeno. Non-adaptive group test-
ing on graphs with connectivity. Journal of Combinatorial Optimization,
38(1):278-291, 2019.

M. Hahn-Klimroth and P. Loick. Optimal adaptive group testing.
Manuscript; available on https://arxiv.org/abs/1911.06647, 2019.

M. Aldridge, O. Johnson, and J. Scarlett. Group testing: An information
theory perspective. Found. Trend. Comms. Inf. Theory, 15(3-4):196-392,
2019.

O.T Johnson. Strong converses for group testing from finite block length
results. IEEE Trans. Inf. Theory, 63(9):5923-5933, 2017.

P. Erdos, P. Frankl, and Z. Furedi. Families of finite sets in which no
set is covered by the union of r others. Israel J. Math, 51:79-89, 1985.
E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group
testing schemes. In Automata, Languages and Programming, 35th
International Colloquium, ICALP, pages 748-759, 2008.

M. Gonen, M. Langberg, and A Sprintson. Group Testing on General
Set-Systems. Manuscript, available on arXiv.org, 2022.

N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets
for k-restrictions. ACM Transactions on Algorithms, 2(2):153—-177,
2006.

L. Baldassini, O. Johnson, and M. Aldridge. The capacity of adaptive
group testing. In /IEEE International Symposium on Information Theory,
ISIT, pages 26762680, 2013.

Authorized licensed use limited to: University at Buffalo Libraries. Downloa8eéi 9n October 04,2022 at 21:20:43 UTC from IEEE Xplore. Restrictions apply.



