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Abstract—Group testing is one of the fundamental problems
in coding theory and combinatorics in which one is to identify
a subset of contaminated items from a given ground set. There
has been renewed interest in group testing recently due to its
applications in diagnostic virology, including pool testing for
the novel coronavirus. The majority of existing works on group
testing focus on the uniform setting in which any subset of size
d from a ground set V of size n is potentially contaminated.

In this work, we consider a generalized version of group
testing with an arbitrary set-system of potentially contaminated
sets. The generalized problem is characterized by a hypergraph
H = (V, E), where V represents the ground set and edges e ∈ E
represent potentially contaminated sets. The problem of gener-
alized group testing is motivated by practical settings in which
not all subsets of a given size d may be potentially contaminated,
rather, due to social dynamics, geographical limitations, or other
considerations, there exist subsets that can be readily ruled out.
For example, in the context of pool testing, the edge set E may
consist of families, work teams, or students in a classroom, i.e.,
subsets likely to be mutually contaminated. The goal in studying
the generalized setting is to leverage the additional knowledge
characterized by H = (V, E) to reduce the number of tests.

The paper considers both adaptive and non-adaptive group
testing and makes the following contributions. First, for the non-
adaptive setting, we show that finding an optimal solution for
the generalized version of group testing is NP-hard. For this
setting, we present a solution that requires O(d log |E|) tests,
where d is the maximum size of a set e ∈ E. Our solutions
generalize those given for the traditional setting and are shown
to be of order-optimal size O(log |E|) for hypergraphs with edges
that have “large” symmetric differences. For the adaptive setting,
when edges in E are of size exactly d, we present a solution of

size O(log |E|+ d log2 d) that comes close to the lower bound of
Ω(log |E|+ d).

I. INTRODUCTION

Group testing is one of the fundamental problems in cod-

ing theory, statistical inference, and combinatorics due to

its practical importance in a broad range of applications,

such as multi-access communication [1], pattern matching

[2], molecular biology, and others. The problem has deep

connection to other fundamental problems in combinatorics

and coding theory [3].

The group testing problem was subject to a large number of

studies since its introduction more than 75 years ago (refer to,

e.g., [4], [5] and references therein). An instance of the group

testing problem includes a ground set V of items of size n, a

subset of which may be contaminated (we refer to the latter

set as a contaminated set). In the traditional setting, for a
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given parameter d, any subset of V of size d may potentially

be a contaminated set. The contaminated set can be detected

through a pooling process which includes a series of tests,

where each test reveals the existence of a contaminated item

in the tested subset of items. The goal of the group testing

problem is to design a minimum set of tests that can identify

the contaminated set of items in V. The testing algorithms

can be constructed in a non-adaptive manner, i.e., fixed in

advance, or in an adaptive manner, i.e., each test can depend

on the outcome of previous tests.

In this work, we study a more general version of group

testing, termed here generalized group testing, in which the

set-system of potentially contaminated sets is characterized by

a hypergraph H = (V, E), in which the vertex set V represents

the ground set and the hyperedges in E represent potentially

contaminated sets. Traditional group testing thus corresponds

to the hypergraph H with edge set E consisting of all subsets

of V of size d. Our study of arbitrary edge sets E grants

the flexibility required for a broad range of settings, including

those in which the set-system E of potentially contaminated

sets does not have any uniformity or regularity properties.

For example, in the context of pool testing, E can represent

potentially contaminated sets that correspond to families, work

teams, or groups of friends or students in a classroom [6].

We consider settings in which H = (V, E) is known in

advance, e.g., E can capture groups of individuals that are

likely get infected. Our goal in studying the generalized

setting is to leverage the additional knowledge characterized

by H = (V, E) to minimize the number of required tests.

Contribution. The paper considers both adaptive and non-

adaptive group testing and makes the following contributions.

First, for the non-adaptive setting, we show that finding an op-

timal solution for the generalized version of the group testing

problem is NP-hard, and approximating the optimal solution

within a factor of 1 + ε (for sufficiently small ε) is as hard

as coloring a 3-colorable graph with nε colors. The latter is a

well known open problem, e.g., [7], [8]. For the non-adaptive

setting, we present a solution that requires O(d log |E|) tests,

where d is the maximum size of a set e ∈ E. Our solutions

generalize those given in the classical setting and are shown

to be of order-optimal size O(log |E|) for hypergraphs with

edges that have “large” symmetric differences. For the adaptive

setting, in which all edges in E are of size exactly d, we present

a solution of size O(log |E| + d log2 d) that comes close to

the lower bound of Ω(log |E|+ d). For the adaptive setting

in which d is the maximum size of a set e ∈ E, we obtain an

upper-bound of O(log |E|+ d2).
Related works. The overwhelming majority of works on

group testing fall under the traditional setting in which H =
(V, E) includes all edges of size d (or, alternatively, of size

at most d). Known upper and lower bounds in this context
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are reviewed in Section II-A. For hypergraphs H that differ

from the traditional setting, less is known. Using our notation,

Nikolopoulos et al. [6], [9] study hypergraphs H = (V, E) that

have a certain community structure. Specifically, [6] assumes

that V consists of F disjoint groups (referred to as families) and

studies the special setting in which E includes all edges that

intersect a bounded number of families. The paper leverages

the structure of H = (V, E) to maximize the efficiency of the

group testing algorithms in the adaptive, non-adaptive, and

probabilistic settings; [9] further studies the problem for the

case of families that are not necessarily disjoint. Ahn et al. and

Arasli and Ulukus [10], [11] also discuss group testing under

community constraints using different infection spread models.

Other recent works related to community aware group testing

include [12], [13]. A few related papers [14], [15] focus on

leveraging side-information (e.g., that can be obtained from

contact tracing) to make the decoding algorithm faster. Finally,

graph-constrained group testing, a variant of the group testing

problem where the tests must conform to constraints imposed

by a graph, is considered, e.g., in [16]–[18]. The results of this

work differ significantly from those above as we study general

set-systems of potentially contaminated sets, and do not place

any constraints on the tests used.

II. PROBLEM FORMULATION

An instance of the group testing problem includes a ground

set V of n items, a subset of which may be contaminated,

with the goal of designing a minimum set of tests that can

identify the contaminated items. We first define traditional

non-adaptive group testing.

Definition 1 (traditional group testing (non-adaptive))

For a ground set V of size n and a parameter d, find a

minimum size family T of subsets of V such that for any

A, B ⊆ V of size d there exists T ∈ T for which A ∩ T = ∅

if and only if B ∩ T 6= ∅.

Equivalently to Definition 1, given a ground set V =
{1, . . . , n}, a family of tests T = {T1, . . . , Tk} corresponds

to a k × n matrix T with Tij = 1 if j ∈ Ti, and Tij = 0
otherwise. The outcome yi,A of the test Ti on a subset A is 1

if there exists j ∈ A with Tij = 1, and 0 otherwise. Namely,

yi,A = ∨j∈ATij. With this notation, we seek a family of tests

T = {T1, . . . , Tk} of minimum cardinality with corresponding

matrix T such that for any A, B ⊆ V of size d there exists

Ti ∈ T for which yi,A 6= yi,B. Such Ti is said to separate A
and B.

In traditional group testing, given a subset S ⊆ V of con-

taminated items of cardinality d, the outcomes y1,S, . . . , yk,S

of tests T = {T1, . . . , Tk} can be used to reliably recover the

contaminated subset S.

We now turn to define the object studied in this work

- generalized group testing - in which one requires T =
{T1, . . . , Tk} to separate not any two subsets A and B of size

d, but rather any two subsets A and B in a known family E.

Definition 2 (generalized group testing (non-adaptive))

Given a ground set V of size n and a family E of subsets of

V, find a minimum size family T of subsets of V such that

for any A, B ∈ E there exists T ∈ T for which A ∩ T = ∅

if and only if B ∩ T 6= ∅.

Notice that the ground set V and the family E can be

represented by a hypergraph H = (V, E) whose vertices

are the elements of the ground set and whose hyperedges

are the sets in E. As before, equivalently to Definition 2, a

family of tests T = {T1, . . . , Tk} corresponds to a k × n
matrix T, and in the generalized group testing problem we

seek a minimum sized family of tests T = {T1, . . . , Tk} with

corresponding matrix T such that for any A, B ∈ E there exists

Ti ∈ T for which yi,A 6= yi,B (i.e., Ti separates A and B).

In the general group testing problem, for any possible subset

S ∈ E of contaminated items, the outcomes y1,S, . . . , yk,S of

T = {T1, . . . , Tk} can be used to reliably recover S.

It is evident by our definitions that the traditional group test-

ing problem with parameter d corresponds to the generalized

problem with a hypergraph H = (V, E) in which the edge set

consists of all subsets of V of size d.

We now turn to define the adaptive version of group testing

in which one can design the tests T adaptively, that is, test Ti

may depend on the outcomes of tests Tj for j < i. We present

the definition for the generalized case, with the definition for

the traditional setting following as a special case.

Definition 3 (generalized adaptive group testing) Given a

ground set V of size n, a family E of subsets of V, and a fixed

but unknown subset S ∈ E of contaminated items, interactively

design a family T = {T1, . . . , Tk} of subsets of V such that

for any 2 ≤ i ≤ k the choice of Ti depends on {yj,S|j < i},
where yj,S is 1 if S∩ Tj 6= ∅, and 0 otherwise. The outcomes

y1,S, . . . , yk,S can be used to reliably recover the contaminated

subset S, in the sense that for any other A ∈ E there exists an

index i such that Ti separates A and S, i.e., yi,A 6= yi,S. The

governing adaptive algorithm is said to use at most k tests if

for any S ∈ E, the interactively designed family of tests T is

of size at most k. One seeks to find an adaptive scheme that

minimizes the value of k.

A. Prior upper and lower bounds on group testing

We start by stating the information-theoretic lower bound

that follows from the fact that each test (in both the adaptive

and non-adaptive setting) yields at most one bit of information

regarding the contaminated set (see, e.g., [5], [19]–[21]).

Claim 1 (Adaptive & non-adaptive information-theoretic

lower bound) For any 0 < d < n, the size of an optimal adap-

tive or non-adaptive solution for the traditional group testing

problem with parameters n and d is at least Ω(d log(n/d)).
The size of an optimal solution for the generalized group

testing problem with corresponding hypergraph H = (V, E)
is at least dlog2 |E|e.

For non-adaptive traditional group-testing there is an im-

proved lower bound [22]:
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Claim 2 (Non-adaptive lower bound) For any 0 < d < n,

the size of an optimal non-adaptive solution for the tradi-

tional group testing problem with parameters n and d is

Ω(min{n, d2 log n/ log d}).

Known upper-bounds for the traditional group testing prob-

lem in the non-adaptive and adaptive setting (for general n,

d) are given below (see e.g., [5], [20], [23]):

Claim 3 (Non-adaptive upper bound) For any 0 < d < n, all

d contaminated items in a given ground set V of size n can

be found using at most O(d2 log n) tests.

Claim 4 (Adaptive upper bound) For any 0 < d < n, all d
contaminated items in a given ground set of size n can be

found using at most d log2(n/d) +O(d) adaptive tests, even

when d is unknown.

The table below compares the upper and lower bounds

presented in this work (for small values of d) with those

surveyed above (we use the notation: Adaptive (A), Non-

Adaptive (NA), Upper-bound (UB), Lower-bound (LB)). Note

that our results for generalized group testing on H = (V, E)
match, or come close to matching, those of traditional group

testing when E is taken to be all subsets of size d in V (and

thus log |E| = Θ(d log(n/d))).

Traditional Generalized

NA/UB O(d2 log n) O(d log |E|)
NA/LB Ω(d2 log n/ log d) Ω(d log |E|/ log d)

A/UB d log2(n/d) + O(d) O(log |E|+ d log2 d)
A/LB Ω(d log(n/d)) Ω(log |E|+ d)

III. NON-ADAPTIVE GENERALIZED GROUP TESTING

A. The Computational Complexity of finding an Optimal or

Approximately-Optimal Solution

We first prove that the generalized group testing problem is

NP-hard by showing a reduction from 3-colorability. 1

Theorem 1 Finding the size of an optimal solution for the

(non-adaptive) generalized group testing problem is NP-hard.

Proof: Given a graph G = (V, E), which is an instance

of the 3-colorability problem, define the following instance of

the generalized group testing problem. Let V = {1, 2, . . . , n}
and assume without loss of generality that |E| = 2` − 1 for

some integer ` ≥ 2 (otherwise one can modify G by adding

an additional 2-colorable component). Define the hypergraph

H = (VH , EH) for the generalized group testing problem as

follows: VH = E ∪V and

EH = {{1, . . . , n, e} | e ∈ E}

∪ {{i, e}|i ∈ V, e ∈ E, ∃j ∈ V s.t e = (i, j)} .

Note that |VH | = 2` − 1 + n (recall that |E| = 2` − 1) and

that |EH | = 2` − 1 + 2(2` − 1) = 2`+1 + 2` − 3 > 2`+1.

This latter fact implies (using the bounds of Claim 1) that

1A valid 3-coloring of a graph G is an assignment of at most 3 colors to
its vertices so that the vertices of each edge are assigned to distinct colors.

1

𝑒 𝑒

𝑒

𝑒 𝑒

𝑒

𝑒

2

3

4 5

e1 e2 e3 e4 e5 e6 e7 1 2 3 4 5

t1 0 0 0 1 1 1 1 0 0 0 0 0

t2 0 1 1 0 0 1 1 0 0 0 0 0

t3 1 0 1 0 1 0 1 0 0 0 0 0

t4 0 0 0 0 0 0 0 0 0 1 0 0

t5 0 0 0 0 0 0 0 0 1 0 1 0

Fig. 1. Illustration of the reduction in Theorem 1. As |E| = 7, the parameter
` equals 3. Note that each edge em has a unique vector um encoded in rows
t1, t2, t3, and each vertex has a unique color encoded by rows t3, t4.

the optimal solution for the generalized group testing problem

corresponding to H is of size at least `+ 2.

In what follows, we show that G is 3-colorable (but not 2-

colorable) if and only if the generalized group testing problem

corresponding to H can be solved using `+ 2 tests.

For the first direction assume that G is 3-colorable (but

not 2-colorable). Define a (`+ 2)× (2` − 1+ n) matrix T as

follows. For every edge em ∈ E let um be a distinct identifying

binary non-zero encoding using ` bits. For 1 ≤ m ≤ 2` − 1
the m’th column in T is an (`+ 2)-length vector whose first

` entries are um and the last 2 entries are 0. For 2` ≤ m ≤
2` + n− 1 the m’th column in T is a (`+ 2)-length vector

whose first ` entries are 0 and the last 2 entries are 00 if for

i = m− (2` − 1), node i ∈ V is colored with the first color,

01 if i is colored with the second color, and 10 if i is colored

with the third color. The construction is illustrated in Figure 1

on a simple example graph G with 5 nodes.

To show that T is a feasible solution for the generalized

group testing problem we prove that for any hyperedges

A, A′ ∈ EH there exists 1 ≤ t ≤ `+ 2 such that yt,A 6= yt,A′ .

First assume that A and A′ satisfy one of the following cases

for m 6= m′: A = {1, . . . , n, em}, A′ = {1, . . . , n, em′};
or A = {i, em}, A′ = {i′, em′}; or A = {i, em}, A′ =
{1, . . . , n, em′}. In these cases, since the encodings um of em

and um′ of em′ are distinct, there exists an entry t, 1 ≤ t ≤ `,

for which Tt,m 6= Tt,m′ . This, in turn, implies (given the

construction of T) that yt,A = ∨j∈ATt,j 6= ∨j∈A′Tt,j = yt,A′ .

If A = {1, . . . , n, em} and A′ = {i′, em}, then, by our

construction of T there exists t ∈ {` + 1, ` + 2} for which

Tt,2`−1+i′ = 0. For such t, there must be an r ∈ V for which

Tt,2`−1+r = 1, as otherwise the nodes in V are colored by two

colors alone. Thus, it is not hard to verify that in this case as

well yt,A 6= yt,A′ .

Finally, if A = {i, em}, A′ = {i′, em} where em = (i, i′),
then since i and i′ are assigned to distinct colors in G we get

that there exists t ∈ {` + 1, ` + 2} such that Tt,2`−1+i 6=
Tt,2`−1+i′ . As above, in this case as well yt,A 6= yt,A′ .

Therefore any two subsets of EH can be separated.

For the second direction, assume that T is a solution for

the generalized group testing problem with |T | = `+ 2, and

let T be the corresponding (` + 2) × (2` − 1 + n) matrix.

We show that G is 3-colorable. Denote by Tcol
1 , . . . , Tcol

2`−1+n
the columns of T, and let w be the vector corresponding

to the union of the last n columns in T. Namely w =
Tcol

2`
∨, . . . ,∨Tcol

2`−1+n
and wt = 1 if and only if there exists

m ≥ 2` for which Tt,m = 1. Then, it holds that the

support |sup(w)| of w is at most of size 2. Assume to the
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contrary that |sup(w)| ≥ 3, and without loss of generality

that w` = w`+1 = w`+2 = 1. As there are 2` − 1 edges em

in E, we have that tests T1 up to T`−1 cannot separate at least

one pair of subsets A, A′ in EH of the form {1, . . . , n, em}
and {1, . . . , n, em′}. This fact follows from the lower-bound

of log2 |E| given in Claim 1. Moreover, these same subsets

A and A′ cannot be separated by tests T`, T`+1, and T`+2 by

our assumption that w` = w`+1 = w`+2 = 1. Thus T is not

a feasible solution to the generalized group testing problem

corresponding to H, a contradiction.

We can now assume that |sup(w)| ≤ 2. Without loss of

generality assume that entries 1 to ` of w are 0. Then for

every 1 ≤ i ≤ n it holds that |sup(Tcol
2`−1+i

)| < 2, as

otherwise both T
`+1,2`−1+i = 1 and T

`+2,2`−1+i = 1 implying

that for any e = (i, j) ∈ E the subsets A = {1 . . . , n, e}
and A′ = {i, e} can not be separated. For a coloring of G,

assign to node i in V the color corresponding to the values in

T
`+1,2`−1+i, T

`+2,2`−1+i. This implies a legal coloring of G
using the colors 00,01,10. Specifically, if e = (i, j) then there

exists a test Tt ∈ T that separates A = {i, e} and A′ = {j, e}
implying that Tt,2`−1+i 6= Tt,2`−1+j, which in turn guarantees

that i and j are assigned to distinct colors.

We next extend Theorem 1 to establish the hardness of

approximation of the size of an optimal group testing solution.

Namely, we address the question of approximating the size of

the optimal solution for the generalized group testing problem

within a multiplicative factor of 1 + ε (for small ε). We again

reduce from 3-colorability, using the fact that coloring a 3-

colorable graph with nε colors (for sufficiently small ε) is a

well known open problem (see e.g. [7], [8] and references

therein). Our proof appears in the full version of this work

[24], and closely follows that of Theorem 1.

Theorem 2 Let ε > 0 be sufficiently small. Approximating the

size of an optimal solution for the (non-adaptive) generalized

group testing problem within a multiplicative factor of 1 + ε
is as hard as coloring a 3-colorable graph with at most n4ε

colors.

B. Non-adaptive generalized group testing bounds

In the following theorem we present an upper bound for

the non-adaptive generalized group testing problem. The stated

bound is a function of the set-system size |E|, the maximum

size d of any e ∈ E, and a parameter β which addresses

the maximum pair-wise symmetric difference size of any two

subsets in E. Loosely speaking, symmetric difference is an

important and natural primitive, since if |e \ e′| or |e′ \ e| is

large, then it is easier for a test to separate e from e′. Implying

that less tests may be needed when such sizes are large. Using

a rough analog from coding theory, one can view the tests T as

a syndrome based decoding process, and the (indicator vector

of) edges e as codewords. In this analog, max{|e \ e′|, |e′ \ e|}
is related to distance, implying intuitively that a collection

of codewords with large minimum distance is easier to de-

code than a collection with small minimum distance. In

what follows, we set β = mine,e′∈E max{|e \ e′|, |e′ \ e|}.
For β = Θ(d) our solution size matches the information-

theoretic lower bound of log2 |E| stated in Claim 1 (up to

a constant multiplicative factor). In the case in which no

assumptions are made on β, our solution of size O(d log2 |E|)
comes close to matching our (worst-case) lower bound of

Ω(d log |E|/ log d). Our solution is generated by constructing

tests at random, refining the analysis appearing in, e.g., [25],

addressing traditional group testing. All detailed proof appears

in the full version of this work [24].

Theorem 3 Consider an instance of the generalized group

testing problem with corresponding hypergraph H = (V, E)
with edges of size at most d. In addition, assume that for all

e, e′ ∈ E it holds that max{|e \ e′|, |e′ \ e|} ≥ β, for some

parameter 1 ≤ β < d. Then there exists a solution T to the

generalized group testing problem corresponding to H of size

O( d
β log |E|). Moreover, for any constant α, there exists an

efficient randomized construction of T of size O( d
β (log |E|+

α)) that is a valid solution with probability at least 1− e−α.

Corollary 1 Consider an instance of the generalized group

testing problem with corresponding hypergraph H = (V, E)
for which all edges are of size at most d. Then there exists a

solution T of size O(d log |E|).

Claim 5 Let d ≤ n′ ≤ n be integers. There exist

hypergraphs H = (V, E) with |V| = n, edges of

size d, and |E| = (n′

d ) such that any non-adaptive so-

lution for the generalized group testing problem corre-

sponding to H requires Ω(min{n′, d log |E|/ log d}) =
Ω(min{n′, d2 log n′/ log d}) tests.

IV. ADAPTIVE GENERALIZED GROUP TESTING

We now address the adaptive setting. Adaptive schemes

improve on non-adaptive constructions as the adaptive iterative

process allows to rule-out potential contaminated items or

subsets of the population in each iteration. While, in traditional

group testing, the adaptive analysis is commonly governed by

the ground-set size of potentially contaminated individuals,

which shrinks with each iteration of the iterative process (see,

e.g. [5], [26]), the analysis in our generalized setting must be

governed by the number of remaining edges that are potentially

contaminated. This difference causes a number of challenges

that are addressed in the proof below.

Theorem 4 Consider an instance H = (V, E) of the gener-

alized group testing problem in which edges in E are of size

d. There is an adaptive algorithm that interactively designs a

collection of tests T of size at most O(log |E|+ d log2 d) that

can reliably recover the contaminated set in E. Moreover, there

exists instances H = (V, E) with corresponding bound d for

which any adaptive solution is of size at least Ω(log |E|+ d).

Proof: The proof of the lower bound is given in the

full version of this work [24]. For the upper bound, let

V = {1, 2, . . . , n} (that is, |V| = n), and for 1 ≤ i ≤ n, let

di be the degree of node i in V. Notice that ∑
n
i=1 di = d · |E|.

In what follows, we present an adaptive algorithm using

O(log |E|+ d log2 d) tests. Roughly speaking, the algorithm
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proceeds in rounds in which we search for subsets T ⊆ V
that intersect a constant fraction of the edge set. In round j,
the constant fraction is required to be in the range [ε j, 1− ε j],

for ε j = 1/2j+1. Once such a subset T is found and used as

a test, we are able to reduce the edge size of the instance at

hand by a factor if (1− ε j) and thus to make progress towards

finding the contaminated e ∈ E.

Each round j consists of several sub-rounds in which

one consecutively finds subsets T corresponding to the same

parameter ε j, thus reducing the size of the edge set in each

sub-round by a factor of (1 − ε j). We move from round j
to round j + 1 once no such T corresponding to ε j is found

(and thus increase j by 1 allowing for additional flexibility

in the requirements on T). Finally, once ε reaches 1/d, we

stop the iterative process and solve the remaining instance in

a non-adaptive manner. The algorithm is presented below:

Algorithm 1 (Adaptive algorithm)

1) E′ ←− E, ε←− 1/4.

2) If |E′| = 1, return E′.
3) Label the nodes in V such that d1 ≤ d2 ≤ . . . ≤ dn

where di be the degree of node i in V w.r.t. E′.
4) If there exists a subset T ⊆ V of the form T = {1, . . . t}

(i.e., T takes nodes in increasing order of degree) such

that the number of edges of E′ intersecting T is in the

range [ε|E′|, (1− ε)|E′|] then:

a) Perform test with subset T.

i) If the test is negative, set E′ ←− {e ∈ E′|e ∩
T = ∅} (i.e., update E′ to the subset of edges

that do not intersect T), and return to (2).

ii) If the test is positive, then set E′ ←− {e ∈
E′|e∩ T 6= ∅} (i.e., update E′ to be the subset

of edges that do intersect T) and return to (2).

b) Else, if no such T is found, if ε > 1/d then

return to (2) with ε ←− ε/2. Otherwise, continue

with E′, using the non-adaptive testing described

in Theorem 3 to find the contaminated e ∈ E.

We first address the correctness of the proposed algorithm.

Let e ∈ E be the contaminated subset. It suffices to show that

throughout the execution of our algorithm, the subset e is in

E′. This holds initially as E′ = E, and continues to hold in

Step 4a by the fact that T is positive if and only if e∩ T 6= ∅.

We now compute the number of tests performed by the

algorithm. Consider round j in which ε = ε j = 1/2j+1. We

first show that if T is not found in Step 4 then it must be

the case that E′ is of size at most (1 + 2ε j)2
d(1+4ε j)H(2ε j).

Specifically, if there is no test T as described in Step 4, then

it must be the case that for some node i the number of edges

intersecting {1, 2, . . . i− 1} is less than ε j|E
′| and the number

of edges intersecting {1, 2, . . . i} is more than (1 − ε j)|E
′|.

This implies that di ≥ (1− ε j)|E
′| − ε j|E

′| = (1− 2ε j)|E
′|.

As di ≤ di+1 ≤ . . . ≤ dn, and ∑
n
`=1 d` = d|E′| it holds

that (n− i + 1)(1− 2ε j)|E
′| ≤ ∑

n
`=i d` ≤ d|E′|. Therefore,

(n− i + 1)(1− 2ε j) ≤ d, so n− i + 1 ≤ d/(1− 2ε j).
Recall that less than ε j|E

′| edges are adjacent to nodes

{1, . . . , i − 1}. This implies that at least (1− ε j)|E
′| edges

are induced by nodes {i, . . . , n}. As |{i, . . . , n}| = n −

i + 1 ≤ d/(1 − 2ε j), the number of edges of size d

induced by {i, . . . , n} is at most (
d/(1−2ε j)

d
). This implies

that (1− ε j)|E
′| ≤ (

d/(1−2ε j)

d
) = (

d/(1−2ε j)

2ε j ·d/(1−2ε j)
), so |E′| ≤

2
d·H(2ε j)/(1−2ε j)

1−ε j
≤ (1 + 2ε j)2

d(1+4ε j)H(2ε j).

To bound the number of tests in the adaptive algorithm,
it suffices to analyze the total number of sub-rounds exe-
cuted. Let mj be the size of E′ in the beginning of round

j. From the above, we have that m1 = |E|, and mj ≤

(1+ 2ε j)2
d(1+4ε j)H(2ε j), for any j = 1, 2, . . . , log d. Moreover,

as the size of E′ in any sub-round of round j reduces its size

by a factor of 1− ε j ≤
1

1+ε j
. The total number of sub-rounds

is thus bounded by

log d

∑
j=1

log(mj)− log(mj+1)

log (1 + ε j)
≤

log d

∑
j=1

(log(mj)− log(mj+1))
1

ε j

≤ 4 log |E|+
log d

∑
j=2

log(mj) · 2
j−1

≤ O



log |E|+
log d

∑
j=2

dH(2ε j) · 2
j





= O



log |E|+
log d

∑
j=2

d · 2ε j log(1/2ε j) · 2
j





= O



log |E|+
log d

∑
j=2

d · j



 = O
(

log |E|+ d log2 d
)

.

Finally, to bound the total number of tests in the suggested

algorithm, we add the number of tests performed in step 4b for

the set E′ once ε j ≤ 1/d. At this stage, the set E′ is of size at

most (1 + 2ε j)2
d(1+4ε j)H(2ε j) ≤ 2O(d· 1d log d) = dO(1). Thus,

the non-adaptive testing described in Theorem 3 when applied

to E′ will use at most O(d log |E′|) = O(d log d) tests. We

conclude that, all in all, the suggested adaptive algorithm uses

O
(

log |E|+ d log2 d
)

tests.

We remark that an adaptive upper-bound of O(log |E|+ d2)
holds, using a similar proof, for the modified setting in which

edges of E are of size at most d (as apposed to exactly d).

V. CONCLUDING REMARKS

In this paper we consider a generalization of the traditional

group testing problem in which the contaminated set is one

of a collection of subsets characterized by the edge set

of a hypergraph H = (V, E). Leveraging this additional

knowledge, we address both adaptive and non-adaptive group

testing, in terms of upper and lower bounds, and for the latter,

analyze the complexity of determining the size of optimal (or

approximately optimal) solutions.

Beyond adaptive and non-adaptive group testing, several

additional models have been studied for traditional group

testing. These include, noisy group testing, probabilistic group

testing, partial recovery, non-binary outcomes, an unknown

bound on d, and more. Addressing those models in our

generalized setting is subject to future research.
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