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We present a deep-learning artificial intelligence model (AI) that is capable of learning and forecasting
the late-inspiral, merger and ringdown of numerical relativity waveforms that describe quasicircular,
spinning, nonprecessing binary black hole mergers. We used theNRHybSur3dqg8 surrogate model to
produce train, validation and test sets of # = |m| =2 waveforms that cover the parameter space
of binary black hole mergers with mass ratios ¢ < 8 and individual spins ‘5?1,2}| < 0.8. These waveforms
cover the time range ¢ € [-5000 M, 130 M], where = OM marks the merger event, defined as the
maximum value of the waveform amplitude. We harnessed the ThetaGPU supercomputer at the
Argonne Leadership Computing Facility to train our Al model using a training set of 1.5 million
waveforms. We used 16 NVIDIA DGX A100 nodes, each consisting of 8 NVIDIA A100 Tensor Core
GPUs and 2 AMD Rome CPUs, to fully train our model within 3.5 h. Our findings show that artificial
intelligence can accurately forecast the dynamical evolution of numerical relativity waveforms in the
time range ¢ € [-100 M, 130 M]. Sampling a test set of 190,000 waveforms, we find that the average
overlap between target and predicted waveforms is 299% over the entire parameter space under
consideration. We also combined scientific visualization and accelerated computing to identify what
components of our model take in knowledge from the early and late-time waveform evolution to
accurately forecast the latter part of numerical relativity waveforms. This work aims to accelerate the
creation of scalable, computationally efficient and interpretable artificial intelligence models for

gravitational wave astrophysics.
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I. INTRODUCTION

The combination of artificial intelligence (AI) and
innovative computing has led to novel, computationally
efficient and scalable methodologies for gravitational
wave detection [1-17], denoising [18-20], parameter
estimation [21-26], rapid waveform production [27,28],
and early warning systems for multimessenger sources
[29-31], to mention a few. The convergence of Al,
distributed computing and scientific data infrastructure
has enabled the creation of production-scale, Al-driven
frameworks for gravitational wave detection [32-34].
The fact that these advances have stemmed from proto-
types to search for gravitational waves in advanced Laser
Interferometer Gravitational Wave Observatory (LIGO)
data [2] into production-scale Al frameworks that process
advanced LIGO data in bulk [29-31] within just five
years, and that these methodologies have been embraced
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and developed by multiple teams around the world,
furnish evidence for the transformational, global impact
of Al and innovative computing in gravitational wave
astrophysics [35-37].

Al has also been harnessed to learn and describe multi-
scale and multiphysics phenomena, such as the physics of
subgrid-scale ideal magnetohydrodynamics turbulence of
2D simulations of the magnetized Kelvin-Helmholtz insta-
bility [38]. The creation of Al surrogates is an active area of
research that aims to improve the computational efficiency,
scalability and accuracy of scientific software utilized in
conjunction with high-performance computing (HPC) plat-
forms to study and simulate complex phenomena [39,40]. It
is in the spirit of this work that researchers have explored
the ability of Al to forecast the nonlinear behavior of
waveforms that describe the physics of quasicircular,
nonspinning, binary black hole mergers [41].

In this study we quantify the ability of Al to learn and
describe the highly dynamical, nonlinear behavior of
numerical relativity waveforms that describe quasicircular,
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spinning, nonprecessing binary black hole mergers. To do
this, we have implemented a deep-learning Al model that
takes as input time-series waveform data that describe the
inspiral evolution, and then outputs time-series data that
describe the late-inspiral, merger and ringdown of binary
black holes that span systems with mass ratios 1 < g < 8,
and individual spins s{, € [-0.8,0.8]. To make apparent
the size and complexity of this problem, the astute reader
may notice that the amount of training data to address this
problem in the context of nonspinning, quasicircular binary
black hole mergers is of order ~1.2 x 10* [41]. In stark
contrast, addressing this problem in the context of quasi-
circular, spinning, nonprecessing binary black hole mergers
requires a training dataset that contains over ~1.5 x 10°
modeled waveforms to densely sample this high-dimen-
sional signal manifold. This amount of data is needed to
capture the rich dynamics imprinted in the waveforms that
describe these astrophysical systems. The strategy we have
followed to tackle this computational grand challenge
consists of combining Al and HPC to reduce time to
insight, and to incorporate a number of methodologies to
create our Transformer-based Al model, including posi-
tional encoding, multihead self-attention, multihead cross
attention, layer normalization, and residual connections.

Furthermore, we acknowledge the importance of going
beyond innovative algorithm design, and the confluence of
Al and HPC to address these types of computational
challenges. There is a pressing need to understand how Al
models abstract knowledge from data and make predictions.
Thus, we also showcase the use of scientific visualization and
HPC to interpret and understand how various components of
our Al model work together to make accurate predictions.
Throughout this paper we use geometric units in which
G = ¢ = 1. In this convention, M sets the length scale of the
scale-invariant black hole simulations, and corresponds to
the total mass of the spacetime simulated. For instance,
M=1My=493x10%sorM=1Mg =148 km. In
this article we use M to describe time.

This article is organized as follows. Section II describes
the datasets, neural network architecture and optimization
methods used to create our Al model. We present and
discuss our results in Sec. III. This section includes a
detailed study of the forecasting capabilities of our Al
model, as well as interpretability studies. Finally, we
summarize our findings and outline future work in Sec. IV.

II. METHODS

Here we describe the waveform datasets used for this
study, the key components of our Al model, and the
approaches followed to train and optimize it.

A. Dataset

We consider inspiral-merger-ringdown waveforms that
describe quasicircular, spinning, nonprecessing binary

black hole mergers. We have produced training,
test and validation waveform sets with the surrogate
model NRHybSur3dg8 [42]. Since the surrogate
NRHybSur3dg8 is trained with 104 numerical relativity
waveforms in the parameter range g < 8 and |s7| < 0.8, we
restrict our datasets to lie within the same parameter span.
Throughout this paper we use a geometric unit system in
which G = ¢ = 1.

We use £ = |m| = 2 waveforms for this study that cover
the time span 7 € [-5,000 M, 130 M] with the merger
(amplitude peak of the signal) occurring at t = OM. To
accurately capture the dynamics of the waveform we
sample it with a time step Ar=2 M. We split each
waveform into two segments, namely, the input consisting
of the early inspiral phase covering the time span
t € [-5,000 M, —100 M], and the target consisting of
late-inspiral, merger and ringdown covering the time span
t € [-100 M, 130 M]. We then train an AI model to
forecast the target waveform segment when fed with the
input waveform segment. An example waveform with the
input and target segments is shown in Fig. 1.

The training set consists of ~1.5 million waveforms
generated by sampling the mass ratio ¢ € [1, 8] in steps of
Ag =0.08, and the individual spins s; € [-0.8,0.8] in
steps of As? = 0.012. The validation and test sets consist of
~190, 000 waveforms each, and are generated by alter-
nately sampling the intermediate values, i.e., by sampling ¢
and s; in steps of 0.16 and 0.024 to lie between training set
values. We show a small slice of the parameter space to
illustrate this sampling in Fig. 1.

B. Neural network architecture

The neural network we use for numerical relativity
waveform forecasting is a slightly modified version of
the Transformer model, originally proposed in the
context of Natural Language Processing [43]. The funda-
mental operation in the Transformer model is the
multihead scaled dot-product Attention mechanism.
Attention can be thought of as a mapping between two
sets; each element of the output set is a weighted average
of all elements in the input set, where the weights
are assigned according to some scoring function. This
helps with context-aware memorization of long sequen-
ces. We briefly discuss the various components of the
Transformer model below.

1. Scaled dot-product attention

Consider a set of n input vectors {x;, x,, X3, ..., X, } and a
set of t output vectors {h;,hy, hs,...,h,} in RY Then
according to scaled dot-product attention, the outputs are
computed as follows:

hi:ZWijUj, (1)
J
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(Left panel) Training, validation and test sets for the binary black hole 3D signal manifold 1 < ¢ < 8 and Sfl'l 2 € [-0.8,0.8].

1.5M waveforms are used for the training set, and 190,00 waveforms for the test and validation sets. The sampling shown in this 3D
representation for ¢ € [1, 1.8) is mirrored throughout the parameter space under consideration. (Top-right panel) Sample waveform for a
binary black hole with parameters {q, s%, s5} = {6.8,0.718,0.718}. Signals span the time window ¢ € [-5000 M, 130 M] sampled
with a time step At = 2 M. (Bottom-right panel) Input data to our AI model span the time window ¢ < —100M, whereas ¢ > —100M

represents the target time-series output.

where
T
qi kj)

w;; = softmax , 2

, (2% o)

qi = qui» (3)

ki = Wix;, (4)

Vi = vaiv (5)

where W, W, and W, are three learnable weight matrices
and each of the three vectors g¢;, k;, v; (referred to as
queries, keys and values) are linear transformations of the
specific input x;.

2. Self- and cross attention

Self-attention refers to applying the attention mechanism
to relate different elements of a single set, i.e., queries, keys
and values all correspond to the linear transformations of
the same set of vectors {x;} as above. However, in cross
attention the queries can come from a different set of
vectors {y;}, i.e., g; = W,y;.

In our case, the set {x;, x,, x3, ..., X, } corresponds to the
input waveform segment and the set {y;,ys, V3, ..., V;}

corresponds to the target waveform segment. These are
shown in blue and green respectively in the right panels
of Fig. 1.

3. Multihead attention

Multihead attention simply refers to applying the atten-
tion operation several times in parallel to independently
projected queries, keys and values, i.e., for n heads we
would have n sets of the three matrices; W/, Wi and Wi,
ie{l1,2,3,...,n}. To do this efficiently, the multihead
attention module first splits the input vector x; into n
smaller chunks, and then computes the attention scores
over each of the n subspaces in parallel.

4. Positional encoding

In our case, the inputs and output waveform segments are
not sets but ordered time-series sequences. However, we
can see from Eq. (1) that attention mechanism is permu-
tation equivariant, i.e., it ignores the sequential nature of the
input. In order to make the model sensitive to the sequential
ordering of the data, we inject information about the
absolute positioning of the time steps in the form of
positional encoding (PE), i.e., some fixed function f: N —
R< to map the positions to real-valued vectors. Following
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FIG. 2. (Left panel) Heatmap of the evaluation of the positional encodings—see Eqs. (6) and (7). These real-valued vectors are

computed at each time stamp of the target waveform ¢ € [-100 M, 130 M]—shown in the x axis, for each dimension d—shown in the y
axis. (Right panel) Sample of encodings evaluated at several time stamps and dimensions. The encoding at each dimension d is a

sinusoid of a different frequency.

the original Transformer paper, we compute the posi-
tional encodings as follows:

PE(p, 2i) = sin(p/10000%/%), (6)
PE(p,2i + 1) = cos(p/10000%/4), (7)

where p is the position and i is the dimension. A sample
encoding for d = 128, used for the actual analysis con-
ducted in this paper, is shown in Fig. 2. It is worth
mentioning that the dimension d is a hyperparameter
and has to be tuned for optimal performance.

At the fundamental level, the input to our model is one
dimensional (a 1D wave). However, we transform these
data from rank-1 to rank-2, i.e., from a sequence of real
numbers of amplitude values (4, h,,, h,) to a sequence
of d+1 dimensional vectors (vq,Vs,...,V,), where
each v; = [h;, PE(i, 1), PE(i, 2), PE(, 3), ..., PE(i, d)],
and PE(i,n) is given by Egs. (6) and (7).

We do this because we want the model to be aware of the
time stamp of each amplitude value. One could in principle
do this by inputting into the model a tuple (h;, t;) instead of
just the sequence of amplitude values (%;,). However,
positional encodings in the manner described above have
historically worked much better.

5. Encoder and decoder modules

The Transformer model consists of an encoder
module and a decoder module. The encoder takes in an
input sequence {x;,x,, Xx3,...,Xx,}, passes it through
a multihead self-attention layer and a positionwise
fully connected feed-forward network, mapping it to an

attention-based latent vector representation {hy, h,,
hs, ..., h,}. This latent representation is then passed to
the decoder module, which outputs the desired target
sequence {y,y», Y3, ..., ¥, }. At each time step # = i when
the decoder is predicting y;, it passes the thus-far generated
output sequence {y;, 2, ¥s, ..., ¥i_1 } through a multihead
self-attention layer and the latent vector representation
{hy,hy, h3,...,h,} through a multihead cross-attention
layer. The two are added together and passed through a
positionwise fully connected feed-forward network and a
final 1D convolutional layer to generate the next time step of
the output sequence y; in an autoregressive fashion.

Both the encoder and decoder modules also make
use of layer normalization and residual connections. We
refer the reader for a more in-depth discussion of the
Transformer model to the original paper [43]. We
summarize the architecture for our model in Fig. 3.

C. Training and optimization

As mentioned above, we first divide the waveforms into
input segments corresponding to ¢ € [-5000 M, —100 M],
and target segments corresponding to ¢ € [-100 M,
130 M]. We then concatenate both segments with their
respective fixed positional encodings. In our experiments,
we trained two models; one on only the plus-polarization
waveforms and another on a dataset composed of equal
number of plus- and cross-polarization waveforms.
However, we did not find a significant difference in the
performance between these two models, i.e. the model
trained on only plus polarizations was just as good at
generalizing to the cross polarizations as the model that was
trained on both. Consequently, in this paper we report
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FIG. 3. Model architecture. Schematic representation of our AI model. During training we provide two input waveforms, namely, a
premerger waveform that spans the time range < —100 M—shown at the bottom left of the diagram, and a time-shift version of the
target waveform that spans the time range 7 € [-101 M, 129 M]—shown at the bottom right of the diagram. The output of this Al
model, the target waveform that spans the range ¢t € [-100 M, 130 M], is shown at the top left of this diagram. At inference, we provide
an input waveform—as indicated in the bottom left of the diagram. The model then outputs time samples up to time i, which are then
passed as input—as shown in the bottom right panel of the figure—so that the model produces the following time samples up to time
i + 1. The final output is a waveform that covers the range ¢ € [-100 M, 130 M].

results for the model that was trained only on the plus
polarization, but during inference it is used to predict
both plus- and cross polarization. During training time we
employ the Teacher Forcing methodology, i.e., we
pass the input segment through the encoder, and a one-
step time-shifted version of the target to the decoder. This
means that true output is fed to the decoder for the next
time-step prediction regardless of the predicted value at
the current time step, which helps the model converge
faster. A visual exposition of this methodology is pre-
sented in Appendix A.

We use mean-squared error between the predicted and the
target series as the loss function, and use Adam optimizer
with #; =0.9, , =0.999, ¢ = 1¢ —07 and learning_rate =
0.001. During training we also monitor the loss on the
validation set to prevent overfitting and to dynamically
reduce the learning rate whenever the loss hits a plateau.

We trained our Al model using 16 NVIDIA DGX A100
nodes at the Argonne Leadership Computing Facility. Each
node comprises eight NVIDIA A100 Tensor Core GPUs
and two AMD Rome CPUs that provide 320 gigabytes of
GPU memory. We used a batch size of 8 and trained the
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FIG. 4. Gallery of results. Sample input, target and predicted waveforms for binary black holes with mass ratios
g = {1.04,4.24,6.80}, from top to bottom; and spins s; = s5 = {-0.7,0.0,0.7}, from left to right. Notice the impact of individual
spins in the dynamics of the systems, encompassing rapid (left column) and delayed plunges (right column). The model predicts the
waveform evolution in the range —100 M < ¢ < 130 M.

model for a total of 53 epochs, reaching convergence

in 3.5 h.

III. RESULTS

During inference, we only feed the input segment to the
model and let it recover the full target sequence

autoregressively, i.e., to make the prediction at time step
t = i, the decoder module is fed its own prediction from the
previous time step ¢ = i — 1. Our Al model outputs both the
plus- and cross polarizations. We show a representative
sample of target and predicted waveforms in Fig. 4. We
have selected these cases to provide a visual representation
of the rich dynamics captured by our AI model,
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FIG. 5.

0
t[M]

0 0
t[M] t[M]

(Top panel) Near-universal behavior in the dynamical evolution of quasicircular, nonspinning binary black hole mergers in the

vicinity of merger (¢t = 0 M). (Bottom panels) Individual spins modulate the waveform amplitude, and drive binary black holes to
merger in distinct ways, namely, rapid merger (left panel) and delayed merger (right panel). Notice the distinct features of the normalized
amplitude for each system near merger. These subtle differences in waveform dynamics are highly nontrivial to capture by
semianalytical waveform models, though Al can accurately learn and predict these properties in a data-driven fashion.
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encompassing rapid plunges represented by black hole
binaries whose components have negative spins (left
column); nonspinning binary black holes (mid column);
and systems that, on account of having binary components
with positive spins and thus more angular momentum,
complete more waveform cycles before plunge (right
column).

To get a visual representation of the type of dynamics
that our Al model needs to capture, we present in Fig. 5 the
normalized waveform amplitude of the binary black hole
systems considered in Fig, 4. Key points to extract from
these results include:

(i) Top panel: Quasicircular, nonspinning, binary black
holes display a well-known universal behavior in the
vicinity of merger. These physical properties facili-
tate the training of Al models for these types of
systems.

(i) Bottom panels: We notice the role individual spins
play in modulating the waveform amplitude, and
driving the systems to merger. These physical
properties are one of the most challenging features
to capture for waveform modeling experts who
aim to accurately describe the late-time evolution
of spinning, nonprecessing binary black hole
mergers. In this study we have demonstrated that
Al may accomplish such a task in data-driven
manner.

We have quantified the accuracy of our model’s pre-
dictions by computing the overlap, O(h,, h,), between the
target waveform £, and the predicted waveform 4,

O(htv hp) = r[ngx(l:ltmp [tcv ¢c])’
with ]:lr = ht(ht|ht)_1/2’ (8)

where »lte. @] indicates that the normalized waveform h »
has been time- and phase shifted. Hence, the overlap O lies
in [0, 1], reaching the maximum value of 1 for a perfect
match. To visualize our findings, we first recast the
parameter space (g, s7,s;) into symmetric mass ratio z
and effective spin o using the relations

gsi + 53
d == 9
an Oeff 1 +q ( )

14 ¢q)
Using these conventions, we present overlap calculations
between the target and predicted waveforms for the
entire test dataset in Fig. 6. To carry out these calculations,
we used the plus- and cross polarizations of the target
waveforms spanning the range ¢ € [-5000 M, 130 M].
Our target waveforms consist of input data spanning
the range 7€ [-5000 M, —100 M] and complemented
with our predicted waveforms that span the range
t € [-100 M, 130 M]. These calculations, presented in
the top panels of Fig. 6, indicate that both the mean and

median overlaps O > 0.99, and that less than 10% of the
test dataset has O < 0.98. These outliers are localized at the
edges of the parameter space, as shown in the top right
panel of Fig. 6. In brief, our model predicts the late-inspiral,
merger and ringdown waveform evolution in the time range
[-100 M, 130 M]. Since we sampled waveforms with a
time step of 2 M, this means that the model outputs 115
steps of waveform evolution.

We have also used our Al model to quantify the accuracy
of its predictions from two additional initial times, namely
t = {—80 M, —60 M}. In these cases, the model outputs
105 and 95 steps of waveform evolution, respectively. We
present results for these cases in the mid and bottom panels
of Fig. 6. The overlap distributions for these cases are
such that

(i) t = —80 M: median and mean overlaps O > 0.994,

with less than 6.1% of the test dataset with O < 0.98.

(i) t = —60 M: median and mean overlaps O > 0.996,

with less than 2.4% of the test dataset with O < 0.98.

We provide additional results that may be explored
interactively in the website [44]. We see a progressive
degradation in overlaps as we increase the target interval
from t € [-60 M, 130 M] to 7€ [-100 M, 130 M]. To
explore the cause of this effect further, we trained three
more models tasked with predicting only the segments
[-80 M, 130 M], [-60 M, 130 M], and [-50 M, 130 M]
respectively. Let us call these models M80, M60, and M50
respectively. Then we noticed that the performance of
M60 was slightly worse than M80 when predicting the
same segment [—60 M, 130 M], and so on. This hints at
some of the loss in performance coming from the margin
effect, i.e., —60 M is at the margin during training for M60
but not for M80, etc. However, these small variations are
hard to quantify due to inherent stochasticity of training
deep neural networks. But more importantly, the most
significant degradation in performance came from
increasing the prediction span from [-60 M, 130 M] to
[-80 M, 130 M], and similarly from [-80 M, 130 M]
to [-100 M, 130 M].

Interpretability: A nice side effect and a major
advantage of the attention mechanism is that it enables
us to visualize and try to interpret what is happening
inside the model. Looking at Eqgs (1) and (2) we notice
that the coefficients w;; form a # X n matrix A. The ith row
of A consists of the attention scores over all the input
vectors  {x|,X,,x3,...,x,} when producing the ith
output /;, and hence each row sums up to 1. Therefore
visualizing the ith row of matrix A shows which parts
of the input {xy,x,,x3,...,x,} the model was “paying
attention” to when generating the ith output h;.
Visualizing the whole matrix A then summarizes where
the model was “looking at” when generating each time
step of the output.

In this vein, we visualize the self-attention and cross-
attention score matrices of the decoder module when
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FIG. 6. (Left column) Cumulative distribution of overlaps between target and predicted waveforms. From top to bottom, we present
results for our Al model predicting the waveform evolution from ¢t = {—100 M, —80 M, —60 M}, respectively. (Right column)
Heatmap of the overlap distribution over the entire test set. We present results in terms of the symmetric mass ratio and effective spin,
(17, 6¢ft), as defined in Eq. (9).
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FIG.7. (Left panel) Heatmap for one of the 12 cross-attention heads showing which parts of the input waveform (shown in blue on the
left) the decoder is paying attention to when predicting the output at any particular time step (shown in green at the top). (Right panel)

Heatmap showing one of the self-attention heads of the decoder.

generating the predictions for a sample waveform with
parameters {q,s7,s5} = {6.8,0.718,0.574} in Fig. 7.
Therein we present results for one of the 12 attention
heads from our model’s decoder. We present additional
results for the other attention heads in Appendix B.

The left panel of Fig. 7 shows the transpose of the cross-
attention score matrix. Each column j shows which parts
of the input waveform segment (z € [-5000 M, —100 M])
the model was paying attention to when predicting
the jth time step of the target waveform segment
(t; € [-100 M, 130 M]). For reference, we also plot the
input waveform segment and the predicted waveform
segment to the left and top of the matrix, respectively.
We see that for the late-inspiral and merger phases of the
prediction, the model is paying a diffused form of
attention to the whole input segment, occasionally flip
flopping, i.e., paying more attention to the late inspiral
rather than early inspiral and vice versa. However, when
predicting the ringdown, all of the attention gets focused
towards the early inspiral of the input segment.

The right panel of Fig. 7 shows the transpose of the self-
attention matrix. Since predictions are generated autore-
gressively, the self-attention here is causal, i.e., at any given
time step ¢t = j, the model cannot pay attention to future
time steps t > j. Consequently this matrix is upper tri-
angular with a strong correlation between adjacent time
steps, thus mostly diagonal.

The results in Fig. 7 provide a glimpse of the activity
happening within our trained Al model that is responsible
for accurate and reliable forecasting predictions. For
the interested readers, we provide in the website [44]
additional interactive results to enhance our intuition into

how our AI model behaves for different astrophysical
configurations.

IV. CONCLUSIONS

We have designed an Al model that is capable of learning
and predicting the late-inspiral, merger and ringdown
evolution of quasicircular, spinning, nonprecessing binary
black hole mergers. The data-driven methodology used to
create these Al tools demonstrates that Al can learn and
accurately describe the plus- and cross polarizations of
numerical relativity waveforms when we feed input signals
that contain information up to —100M before the merger
event (defined as the amplitude peak of the waveform
signal). We have also demonstrated that our AI model may
forecast the waveform evolution starting at some other
initial time ¢#;. In this study we presented quantitative results
for the cases t; = —80 M and #; = —60 M. In all these
cases, the mean and median overlap between target and
predicted waveforms is O > 0.99.

We have also explored visualizing several components in
our Al model (i.e., the various attentions heads) that are
responsible for data-driven decision-making and waveform
forecasting. In particular, we generated visualizations to see
which components of the input are responsible for the
prediction of the premerger, merger and ringdown pieces
of our predicted waveforms. We have made available an
interactive website where users can explore these results in
further detail for a variety of astrophysical systems. We
expect that this approach persuades other researchers to go
a step beyond and try to understand how Al models make
predictions, and will help advance other efforts on creating
interpretable Al models.
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APPENDIX A: TEACHER FORCING

Our model is designed to predict the waveform evolution
in the time range —100 M < < 130 M. During both
training and inference, we compute the loss and quantify
the performance of the model by comparing the entire
predicted and ground-truth waveforms in the time seg-
ment —100 M <r < 130 M.

During both training and inference we feed the input
waveform covering the time span [-5000 M, —100 M] into
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A visual representation of Teacher Forcing approach. (Top panel) Teacher Forcing is used during training; at each time

step the decoder is fed the ground-truth target values from the previous time steps. (Bottom panel) During inference, Teacher Forcing is
turned off, and at each time step the decoder is fed its own predicted values from the previous time steps.
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the encoder. Additionally, during training we also employ
Teacher Forcing, whereby at each time step the
decoder is fed the ground-truth target values from the
previous time steps, as illustrated in the top panel of Fig. 8.
This methodology results in a more stable training and
helps the model converge faster. Finally, during inference
we turn off Teacher Forcing and instead feed the
decoder its own predictions from the previous time steps, as
illustrated in the bottom panel of Fig. 8.
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APPENDIX B: INTERPRETABILITY

We provide additional results for the 12 attention
heads that our Al model utilizes for the forecasting of
numerical relativity waveforms (Figs. 9 and 10). As in
Fig. 7, we have produced these results for a binary black
hole system with parameters {gq,sj,s5} = {6.8,0.718,
0.574}. For additional results, we refer readers to the
interactive website [44].
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FIG. 9. Response of all cross-attention heads to a given input signal, indicating which parts of the input waveform signal are taken into
account to forecast the late-inspiral, merger and ringdown evolution. This behavior is very consistent across the parameter space under
consideration.
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