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Small-sample estimation of the mutational
support and distribution of SARS-CoV-2

Vishal Rana, Eli Chien, Jianhao Peng, and Olgica Milenkovic

Abstract—We consider the problem of determining the mutational support and distribution of the SARS-CoV-2 viral genome in the
small-sample regime. The mutational support refers to the unknown number of sites that may eventually mutate in the SARS-CoV-2
genome while mutational distribution refers to the distribution of point mutations in the viral genome across a population. The
mutational support may be used to assess the virulence of the virus and guide primer selection for real-time RT-PCR testing.
Estimating the distribution of mutations in the genome of different subpopulations while accounting for the unseen may also aid in
discovering new variants. To estimate the mutational support in the small-sample regime, we use GISAID sequencing data and our
state-of-the-art polynomial estimation techniques based on new weighted and regularized Chebyshev approximation methods. For
distribution estimation, we adapt the well-known Good-Turing estimator. Our analysis reveals several findings: First, the mutational
supports exhibit significant differences in the ORF6 and ORF7a regions (older vs younger patients), ORF1b and ORF10 regions
(females vs males) and in almost all ORFs (Asia/Europe/North America). Second, even though the N region of SARS-CoV-2 has a

predicted 10% mutational support, mutations fall outside of the primer regions recommended by the CDC.

Index Terms—Small-sample support estimation, Small-sample distribution estimation, Chebyshev and weighted Chebyshev

approximations, Good-Turing estimators, Virology.

1 INTRODUCTION

IRUSES mutate due to unreliable replication of their
Vgenetic content and their need to evolve, adapt and
evade the immune system of the host organism. As viruses
accumulate mutations, some of them may become advan-
tageous to the survival of the virus and help it circulate
more widely in the host population. Simultaneously, the
more the virus circulates in a population, the more likely
it mutates leading to new variants that cause even more
aggressive host invasion and spreading. As a result, the
rate of mutation varies widely across viral families [1] and
mutational and fitness landscapes of viruses are frequently
used to assess their potential to spread within diverse sub-
populations and communities [2], [3], [4].

The definition of a viral “mutation rate” varies signifi-
cantly [1], [5]. What is referred to as the genomic mutation
rate is the product of the per-nucleotide site mutation rate
and the genome size, and it represents the average number
of mutations each viral offspring has with respect to the
parental (or ancestral) genome. RNA viruses have a per
site mutation rate that lies in the range 1076 — 10~ per
nucleotide site per cell infection [5]. The mutation rate
of a virus is also often equated with the rate at which
errors are made during replication of the viral genome.
Nevertheless, it is clear that replication errors are not the
only source of viral mutations. Hence, some other estimates
are based on counting the mutations in sequenced genomes,
using a reference corresponding either to Patient O (the first
infected individual) or more frequently, to Patient 1 (the first
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individual that was sequenced). In the former context, the
genome mutation rate for SARS-CoV-2 is estimated to be 2-3
mutations a month [6]]. Defining the genomic mutation rate
of a population is an even more challenging task as hosts
may harbor viruses with widely different mutation rates.
We define the mutational support of a virus as follows.
First, we declare the viral genome of Patient 1 or some
other patient as a reference and index all locations along
the genome. The mutational support set of a single viral
genomic sequence equals the set of locations where it dis-
agrees with the reference. Therefore, the mutational support
set cardinality equals the Hamming distance between the
reference and the sequence under consideration. The muta-
tional support of a population (henceforth, mutational support)
of viral genomes equals the size of the union of the indi-
vidual mutational support sets. It is impossible to directly
observe the mutational support of a population as not all
patient’s viral genomes are sequenced and as the mutations
change in time. To estimate the mutational support, one
can use a limited number of samples and count the total
number of genetic sites mutated in at least one viral genome
encountered in the host population. Counts (or maximum
likelihood (ML) estimators) only offer good estimates of the
actual mutational support when the number of genomic
samples is significantly larger than the length of the viral
genome. In other words, simple counting of mutations when
only a small number of sequenced genomes are available
may produce inaccurate estimates due to unseen mutations
(caused by not having sequenced every individual and by
not being able to account for all circulating mutations). The
small-sample effect is a well-known phenomena extensively
studied in the machine learning community [7], [8]]. Never-
theless, to the best of the authors knowledge, the problems
of mutational support and mutational distribution estima-
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tion in the small-sample regime have not been addressed in
the literature. We argue that this problem is of significant
relevance as its successful solution may be used to assess
the virulence of the virus, guide primer selection for real-
time RT-PCR tests during the early stages of an outbreak
and help identify emerging variants [9], [10].

It has already been observed that mutations in the viral
genome can be influenced by the characteristics and features
of the specific host. For example, the mutation 27964C>T-
(524L) in the ORFS region is known to be more dominant
in female patients than their male counterparts [11]. The
expression of the angiotensin-converting enzyme-2 (ACE-
2), a receptor for coronavirus [12], is observed to be higher
in male patients and is a potential cause for sex-based dif-
ferences in the severity of SARS-CoV-2 [13]. Immunological
and hormonal differences also contribute to males having
poorer prognosis [14]. There are other well-established ex-
amples of how virus evolution depends on host characteris-
tics that go beyond coronaviruses, like the interdependence
of the Human Immunodeficiency Virus (HIV) evolution and
the Human Leukocyte Antigen (HLA) type of the host [15].
Even though HIV mutates significantly faster than coron-
aviruses, the evidence suggests that such host-dependent
differences may exist in many viruses. This motivates an in-
depth analysis of the mutational landscape of various hu-
man subpopulations to identify “characteristic” mutations.

Our contributions are two-fold. First, we present new
machine learning methods for determining the unknown
support of mutations and their distributions given sequenc-
ing data from a limited number of Covid-19 patients.
The methods use efficient polynomial class estimators and
exhibit state-of-the art performance on synthetic datasets.
The actual genomic datasets are retrieved from the Global
Influenza Surveillance Aid (GISAID) repository during the
early stages of the Covid-19 outbreak. In the first step of
our analysis, we use roughly 9,000 samples, which is a
significantly smaller number than the length of the SARS-
CoV-2 genome which roughly equals 30, 000. The approach
is based on weighted Chebyshev polynomial estimators
and adapted Good-Turing distribution estimators, and its
accuracy is evaluated based on larger sample set sizes
retrieved on later dates. We emphasize that our problem lies
the so-called small-sample regime. The term small-sample regime
in our setting does not pertain to the number of samples (or
patients) compared to the total population of the world (or the
actual number of infected individuals), despite this clearly being
the case. Instead, our notion of small-sample estimate refers to the
number of mutations observed within the union of all genomes
(samples) compared to entire set of genomic locations.

Second, the mutational supports are estimated for three
different population types, namely according to geographic
region (Asia (A), Europe (E), North America (NA)), sex
(female (F)/male (M)) and age (< 55, > 55). For European
samples retrieved at a later time stage, estimates for females
of age < 55 versus males of age > 55 were analyzed as well.
The estimates are used to predict mutational hotspots and
compare the genomic loci with highest mutation frequency
in different subpopulations. For the latter task, we further
process the results by using the Jaccard distance as well as
the symmetric Kullback-Leibler divergence. To determine
if the mutation rates are appropriately low in the primer

regions for polymerase chain reactions (RT-PCR) [16], we
also examine the N ORF of SARS-CoV-2.

Our analysis reveals several important biological find-
ings. The predicted mutational supports exhibit significant
differences in the ORF6 and ORF7a regions in older versus
younger patients, ORF1b and ORF10 regions in females
versus males. The mutational support of the ORF1b region
for young females is almost twice that of old males, while
old males have a substantially larger mutational support
for gene ORF10. Given that young females are much less
likely to develop severe symptoms than old males, the
identified potential high-mutation regions may be further
examined to identify their potential role in the spread and
severity /potency of the virus. Furthermore, it is important
to observe that the variance of the support is extremely
high in the ORFS8 region, close to 200 times higher for
patients above 55 years of age compared to patients below
55 years of age. Less surprisingly, there also exist statistically
significant differences in the ORFs of Asian versus European
and NA samples in the ORFla,b and other ORFs. Second,
despite the fact that we predict that the N region of SARS-
CoV-2 will have a very large mutational support, almost all
high-probability mutations fall outside of the two regions of
paired primers recommended by the CDC.

It is important to point out that potential sampling biases
could have an impact on our findings. GISAID data does not
provide information regarding the severity of the disease;
however, data deposited at this repository is not exclusively
contributed by hospitals so there is no a priori reason to
believe that sampling biases exist. Furthermore, note that
the observed frequencies of mutations across viral genomic
sites are a function of numerous and complex factors that
are still poorly understood; they include population dy-
namics, viral-host interactions and natural selection. They
also reflect the random timings at which mutations occur.
As one can expect, given the lack of adequate models, our
analysis and synthetic data simulations cannot completely
account for the above described phenomena. Nevertheless,
our methods for sequence analysis have provable guar-
antees for some simplified models, which is seldom the
case for computational biology methods. Furthermore, the
random mutation process may be nonstationary, although
at small time scales one does not expect the distribution to
change in a significant manner; to account for this issue, we
address the dynamics of the mutation process by sampling
genomes made available at different times and comparing
the prediction results based on earlier (and smaller) time-
stamped collections with those actually observed at a latter
time. In all our experiments, we randomly subsampled the
different subpopulations to the same final sample set size.
Random subsampling may potentially reduce unknown
sampling biases. It is worth noting that the sampling bi-
ases may persist even when a large number of samples is
available, and large datasets need to be downsampled to
make computations tractable [17], [18]], [19]. A theoretical
analysis of small-sample support estimation in the presence
of sampling biases is available at [20].

The paper is organized as follows. In the Methods
Section, we describe the data acquisition process, the pre-
processing tasks as well as our new small-sample support
and distribution estimation algorithms. The most relevant
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results are presented in the Results and Discussion Section.

2 METHODS
2.1 Organization of the SARS-CoV-2 genome

Typically, coronaviruses have genomes including at least
six open reading frames (ORFs) [21] and [22]. ORFla and
ORF1b constitute the longest component of the genomes
and are responsible for encoding two polypeptides, ppla
and pplab, which are jointly used to create a family of
nsp proteins. This family of polypeptides includes replicase-
transcriptase proteins, responsible for promoting cellular
mRNA degradation and blocking the translation process in
host cells, thereby impairing the operation of the immune
response and proofreading. The ppla/b polypeptides are
functionally combined using proteases, such as the native
chymotrypsin-like protease. Viral structural proteins are
encoded by the sgRNA region, and include the ORF2 or
spike (S), ORF5 or membrane (M), ORF4 or envelope (E),
and nucleocapsid (N) proteins, as well proteins encoded by
the ORF10 sequence. ORF3a encodes a membrane protein
that interacts with proteins encoded by ORFs M, S and E
and is believed to play an important role in viral release
and the generation of cytokine storm; on the other hand,
OREF3b encodes protein that block the induction of interfer-
ons with antiviral activity. The ORF6 products are important
virulence factors that enable the virus to escape detection by
the immune system of the host.

For real time RT-PCR testing and detection of Covid-19,
the oligonucleotide primers and probes are selected from
the nucleocapsid (N) gene region (per CDC guidelines for
the United States [23]]). Countries like Germany and China
have adopted primers from other genomic regions [16].
For individual testing for Covid-19 in the United States,
it is of special interest to predict mutation rates in the
N region of the genome [16]. High-rate mutations in this
region may cause highly undesirable false negatives in the
test outcomes. ORF7a encodes for a membrane protein while
ORF7b is believed to act as a viral attenuation factor and
contributor in human infectivity, similarly to the protein
encoded by ORF8. The ORF9b has the role to impede
mitochondrial morphology and function and disable the
interferon response of the host, while ORF9c appears to
block important signaling pathways of the host [22].

2.2 Data acquisition

We used genomes from the GISAID EpiCoV database [24]
which contains sequenced viral strains collected from pa-
tients across the world. We downloaded the data at three
time points in 2020, starting with 04-03-2020, continuing
on 04-10-2020 and finishing on 04-14-2020. We revisited the
repository on 10-20-2020 to further evaluate the quality of
our predictions regarding the mutational supports. At that
point of time, 9,271 samples from Asia and more than
30,000 samples from NA and 85, 000 samples from Europe
were available. For samples made available in April as well
as in September, we filtered the datasets only to include
nearly-complete samples i.e., those of length > 29, 000 nts,
resulting in a number of samples summarized in Supple-
mentary Table S1. We also downloaded the associated meta-
data for patient subtyping. Observe again that our method

is designed to work with as few samples as possible and is
most relevant in the very early stages of a pandemic.

As the first step in our analysis, we used the sequence
alignment software MUSCLE [25] to perform pairwise align-
ment of all the samples with the SARS-CoV-2 sequence
of Patient 1, published under the name Wuhan-Hu-1, col-
lected on December 26, 2019 (GenBank accession number
MN909847). Furthermore, we also performed PAIRWISE
alignment with respect to Patient 1 of two additional conti-
nents, Europe and NA. The latter alignment was performed
to better determine how the mutational support and mu-
tational distribution depends on a particular geographic
context. The choice of Patient 1 is a complex issue. For Asia,
Patient 1 is easily identifiable and their utility clear. How-
ever, for all other regions there can be several reasonable
choices for Patient 1 besides the ones selected based on the
timing of sequencing (as the first individual to be sequenced
could have arrived from China). For example, one could
select a small number of individuals sequenced early on,
then cluster all the samples from that month and declare
the individual with the largest cluster size as Patient 1. This
procedure can be performed for different subregions as well,
resulting in more regional Patient 1 choices. We opted for
our time-stamped approach as we do not have information
about the travel history of local Patient 1s.

We did not make use of majority based rules for SNPs,
and did not deal with synonymous/non-synonymous mu-
tations. Also, we did not use multiple sequence alignment
(MSA) as we did not try to establish phylogenetic relation-
ships between the various samples. Sequence divergence
methods were not considered for the same reasorl] Note
that a similar analysis could have been performed using
male/female or old/young Patients 1, but the evidence
suggests that the geographic context has a stronger impact
on mutational supports of the viral genome [10].

For each aligned pair of samples, we generated a “muta-
tion profile”, a list containing the positions in the reference
genome in which the patient aligned to the reference has
a substitution mutation. The mutational profile lists are
subsequently aggregated over all the patient samples, re-
sulting in a histogram of mutations across all positions in the
viral reference genome. The aggregate profiles are further
partitioned according to the 11 genes they are located in on
the viral genome depicted in Supplementary Figure S1. The
total count of mutations for each location in each gene is
used as a sufficient statistics for estimating the mutational
support and the distribution of the mutations.

“Spurious” mutations due to sequencing may impact
any estimation procedure. Nevertheless, given that it is most
likely that sequencing experiments were performed using
Next Generation sequencing devices, the error rates are
expected to be low, only a fraction of a %. Furthermore,
sequencing errors are mostly random, and will hence have
very little (if any) influence on the results as they are
sporadic. The interested reader is referred to [39] for an
analysis of sample errors on the accuracy of small-sample
estimators.

1. The only phylogeny method very remotely related to our approach
is bootstrapping for phylogeny (bootstrap phylogeny [26])). Bootstrap-
ping is used to estimate the confidence of the edges in a phylogenetic
tree, which is a very different estimation problem.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. XX, XXXX 20XX 4

To adjust for alignment artifacts introduced by sequenc-
ing errors, dropouts and alignment gaps, we removed all
gaps encountered in prefixes and suffixes, and sufficiently
long gaps (> 10 nts) within the alignments. Most gaps are
encountered at the 5’'UTR and 3'UTR regions of the genome,
as expected from global alignment algorithms.

As there exists a large body of evidence of stratified sus-
ceptibility and severity of symptoms across different racial,
age and sex groups [27], [28], we performed four different
types of mutational support and distribution analyses. In
the first set of tests, we split the patient mutation histograms
based on sex (male/female), based on age (under 55/over
55) and based on the geographic location (Asia/ NA/
Europe). The age threshold was set by taking into consider-
ation available sample sizes needed for the analysis and the
age profile of patients available on GISAID; the threshold
also reflects different risk groups for the development of
severe symptoms. In addition, we performed the same anal-
ysis for a combination of patient features for settings with
sufficiently many samples available early in the pandemic,
such as males above 55 years of age/females below 55 years
of age, from Europe. A partition into different population
strata also (partially) mitigates the problem of confounding
factors. Note that in all the described cases, “geographic
location” refers to the region of infection of the patient and
not the region where their sample was sequenced.

Since the number of samples per population type may
vary significantly, we performed two tests. In one test we
used all samples available, while in another we adjusted for
difference in sizes of the sets by subsampling the larger of
the two classes to make the sample sets of equal sizes. The
number of samples available for various patient subgroups
is listed in Supplementary Table S1. For data obtained on
04-03-2020, we used all the samples available for all the
classes, without balancing the class sizes. For data retrieved
on 04-10-2020 and 04-14-2020, we balanced the classes by
subsampling from the larger of the two classes for both age-
and sex- based subtypes. For different geographical regions,
on 04-10-2020, we used all 615 samples from Asia and sub-
sampled Europe and NA to 1000 samples each. Similarly, we
used all 636 samples from Asia and subsampled Europe and
NA to 1, 774 samples each, for data retrieved on 04-14-2020.
By performing the experiments with different sample set
sizes one can compare the quality of the estimates obtained
using samples from the early stages of a pandemic and those
obtained from later stages that are typically much larger.

2.3 New small-sample support estimators

We focus on the polynomial approximation approach [29],
and significantly improve on it in practice by introducing
new weighted Chebyshev polynomial optimization tech-
niques [30]. The weighted approximation method can be
seamlessly combined with regularization techniques that
use the variance of the estimator in a way that complements
features used in ML estimation [31f]; and with Semi-Infinite
Programming (SIP) solvers that produce the parameters of
the estimator. The SIPs can be solved consistently and effi-
ciently through discretization, leading to a Linear Program
(LP) of size decreasing with the number of samples.

Next, we provide a detailed description of our polyno-
mial estimation method. Recall that the support of a discrete

probability distribution is defined as the number of symbols
with positive probability of occurrence. We define the muta-
tional support of a virus as the total number of genomic sites
mutated in any viral genome in any individual (observed or
unobserved due to limited testing), compared to a reference
genome. As already pointed out, in our case the reference
is the genome of Patient 1, the first sequenced SARS-CoV-2
genome or the genome of regional Patient 1.

The simplest and most commonly used estimator for
the support in the large sample regime relies on counting
the number of distinct symbols observed. It is well known
that these approaches perform poorly for large alphabet
sizes (supports) when only a small number of samples from
the distribution is available. In this case, they fail to take
account for samples that have never been observed due to
limited sampling. To see why this is the case, assume that
we observe 10 samples from a distribution supported on
{1,...,100}. Clearly, with only 10 samples available, our
best possible guess for the support size will be the number
of distinct symbols observed which is a number < 10 and
far from the correct value 100.

The problem of estimating the support of an unknown
probability distribution or estimating the distribution itself
in the context of small-sample sets has a long history. The
first line of work in this area is attributed to Laplace,
who introduced a class of smoothed distribution estimators
termed add 1 (or more generally, add constant ¢ estimators).
These estimators adjust the counts of observed symbols in
order to address the problem of unseen symbols.

Let P = (p1, po, - - .) be a discrete distribution over some
finite alphabet and let x" be a vector of n i.i.d samples drawn
according to the distribution P. The problem of interest is
to estimate the support size, defined as S(P) = Y, 1,03
An important assumption used in our estimation methods is
that the minimum non-zero probability of the distribution P
is greater than 1, for some k € RT, ie., inf{p € P|p > 0} >
+. We let Dy, denote the space of all probability distributions
satisfying inf{p € P|p > 0} > ;. A sufficient statistics
for x™ is the empirical distribution (i.e., histogram) N =
(n1,ne,...), where n; = Z;-L:l 14y,—iy and 14 stands for
the indicator function of the event A.

To determine the quality of an estimator, we use the
most-frequently studied risk model, the minmax risk under
normalized squared loss, defined as

R*(k,n) =inf sup E
S PeD

~ 2
wp B {(SW;S@) ] o
PeDy,

= Ssup
PEDk

)

The first term within the supremum captures the expected
bias of the estimator S (N). The second term represents the
variance of the estimator S (N). A”good” estimator should
jointly balance out the worst-case contributions of the bias
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and variance (for the case that only the bias is considered
directly, and the variance accommodated for by modifying
the bias-optimized solution, the underlying estimator was
analyzed in [29]).

To introduce our method, we first describe the class of
polynomial estimators. Given a positive integer parameter
L, we say that an estimator S (N) is a polynomial class
estimator with a threshold parameter L (i.e., a Poly(L)
estimator) if it takes the form S(N) = Y, gr.(n;), where
gr, is defined as

. a;jjl+1, ifj<L
= 4
91(4) {17 otherwise. @)
The coefficients a satisfy a; € R, and ag = —1, (since this

choice ensures that gz, (0) = 0) and have to be optimized in
order to minimize the risk. One can associate an estimator
S(N) with its corresponding coefficients a, i.e.,

Poly(L) = {a € REFYay = —1}.

The authors of [29] proposed using a special form of
polynomial estimators in which the coefficients a; corre-
spond to scaled evaluations of a Chebyshev polynomial
of order L. The Chebyshev polynomial of the first kind of
degree L is defined as

L L
Ty (z) = cos(L arccos(z)) = %,
where 2 is the solution of the quadratic equation z + 2 =% =
2z. The polynomial 77, is bounded in the interval [—1,1]
and may be scaled and shifted to lie in an arbitrary interval
1, 7] based on

TL(2£ r— l

RL($> = — TL(

L
Clearly, R1,(0) = —1 and a9 = —1.
The Chebyshev polynomial estimator is an estimator for
which )
- R}’ (0
aj = LJ'( ) ) (5)

= >_; 9r.(ni), where

and it takes the form S(N)

L. a;jjl+1, ifj<L,
= 6
91.(7) {1, otherwise, ©
with L £ [¢ologk], [I,7] = {%,cl log k} . (7)

In [29], the authors suggest setting c¢o = 0.558 and ¢; =
0.5 based on their analysis of the bias and variance of the
proposed estimator.

The estimator S(N) is order-optimal in the exponent un-
der the unbiased risk. Thus, the estimator can be improved
by selecting coefficients of Poly(L) that jointly optimize
the bias and variance term in the risk. We show how to
accomplish this task by rewriting the original minmax prob-
lem as a regularized exponentially weighted Chebyshev
approximation problem [30].

In order to jointly optimize the bias and variance
term in the squared loss, we start by directly analyzing

S(N)-S(P)
1z

2
Suppep, E ( ) . We use the classical Poissoniza-

tion technique [29] to make the analysis tractable. For a more
detailed discussion of the Poissonization process, please
refer to the Supplement.

Poissonization arguments lead to

E<S<N>;S<P>>2 _ ;Q{iéoéemm)
P>

(e*)‘/" Pr(\;, a)) (e”‘i Pr(Aj, a)) },
i£§: A\ >0

where \; = np; and Pp(\,a) = Zf:o a;\. Taking the
supremum over D}, we can bound the risk as
< sup

S {MX;O (Zeﬂ Aﬁl!)
+ Z (e"\iPL()\i,a)> (e_AfPL(/\j,a)>}

i£5: A >0

which can be further bounded as

< o (H(E) (o))

sup

In the above inequality, we used the Cauchy-Bunyakovsky-
Schwarz inequality, the fact that S(P) < k and

(ZzL:o e raZ !

tion problem for the coefficients of the polynomial estimator
at hand reads as

L 2
inf sup {%(Z e_’\alQAll!) + (e_APL(/\, a)) }
,n] 1—0

acPoly(L) Ag(n
®)

Problem (8) represents an instance of a regularized weighted
Chebyshev approximation problem. If we ignore the first term
in (8), the optimization problem becomes

> 0, for all A > 0. Hence, the optimiza-

2
inf sup <e_/\PL()\,a)) .
acPoly(L) A€[%,n]

The term e~* Py, (), a) corresponds to the bias of the estima-
tor. It is straightforward to see that the optimal choice of a
for the above problem is a solution to

inf sup e Pp(),a)l.

acPoly(L) A€[%,n)]

©)

The first term + < ZIL:O e_/\a?)\ll!) , which corresponds

to the variance, may be written as
L
1
- < > e”a?M!) =a"M(Na £ [a|[Rz), M(N)
1=0
-2
S %Diag(/\OO!,)\lll, o AELY).

Clearly, ||.||ni¢n) is a valid norm, and consequently, the first
term in (8) can be viewed as a regularizer.
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Simple algebra reveals that

1 A _
sup —[E(S(N) = S(P))| < sup [e *Pr(\a)  (10)
PeDy, k AE[En]
<e * sup |Pr(\ a)| = ek sup Zal)\l (11)
AE[Z )] xelz.nl =g

where (10) is equivalent to (9), while (1I) resembles the prob-
lem studied in [29], except for a different optimization inter-
val used within the supremum (the authors of [29] choose
a shorter interval in order to decrease the contribution of
the variance to the loss). Hence, optimizing should
produce an estimator with smaller bias as the exponential
weight is inherent to the formulation. The modified bound
in is minimized with respect to the coefficients a, using
the minmax property of Chebyshev polynomials [32], [33],
resulting in a.

To solve (8), we more closely examine some results
known about weighted Chebyshev approximations [33] and
semi-infinite programs. Solving for the problem directly is
difficult, so we instead resort to numerically solving the
epigraph formulation of problem (8) and proving that the
numerical solution is asymptotically consistent.

The epigraph formulation of (8) is of the form

min
t,al,...,aL

{;(ée_’\a%l“) + (e-APL(xa))Q} <t,  (12)

VA € [%,

t subject to

n], with ag = —1.

Note that is a semi-infinite programming problem.
There are many algorithms that can be used to numerically
solve , such as the discretization method, and the central
cutting plane, KKT reduction and SQP reduction methods
[34], [35]. For simplicity, we focus on the discretization
method. For this purpose, we first form a grid of the
interval [, ] involving s points, denoted by Grid([%,n], s).
Problem h may consequently be viewed as an LP with
infinitely many quadratic constraints, which is not solvable.
Hence, instead of solving , we focus on the relaxation
min
t,ai,...,ar,

" 2
{%(Ze‘ka?)\ll!) + (e_’\PL()va)) } st (19
1=0

VA € Grid([%,n],
The solution of the relaxed problem is asymptotically con-
sistent with the solution of the original problem (i.e., as s
goes to infinity, the optimal values of the objectives of the
original and relaxed problem are equal). Problem is an
LP with a finite number of quadratic constraints that may
be solved using standard optimization tools. Unfortunately,
the number of constraints scales with the length of the grid
interval, which in the case of interest is linear in n. This is an
undesired feature of the approach, but it may be mitigated
through the following theorem which demonstrates that an
optimal solution of the problem may be found over an inter-
val of length proportional to the significantly smaller value

t subject to

s),with ag = —1.

log k, where 10 = < nis the fundamental bound for support
estimation. We relegate the proof to the Supplement.

lco log k], and

Theorem 2.1. For any a € Poly(L) and L =
co = 0.558, let

L 2
1
\) = E(Ze—A Wz') (e_’\PL()\,a)) .
1=0
Then, we have

gla,\) if 2 <6.5L

sup 9(@) if 2> 650
n > 6.5L.

_ ) SUPxe[2 6.51)
AE[En]

g(a, %)

Remark. In weighted approximation theory [30], the prob-
lem of bounding the interval over which the supremum
is achieved is of significant interest, with many available
results. For example, if we ignore the regularization term,
we can directly use the Mhaskar-Saff theorem to reduce the
length of the interval in the supremum to 7 L. Our result
shows that even when a regularization term is present, we
can still restrict the length of the interval to 6.5L.

The optimization problem we need to solve to determine
our estimator therefore reads as

min
t,ai,...,ar,

{;(ie—ka%lu) - (e-*PL<A7a>>2} <t (4
=0

VA € Grid([%, 6.5,

Since L = |¢g log k], the length of the optimization interval
in is proportional to log k.

It seems intuitive to assume that as s grows, the solution
of the relaxed semi-infinite program approaches the optimal
solution of the original problem (12). This intuition can
be rigorously justified for the case of objective functions
and constraints that are “well-behaved”, as defined in [36]
and [37]. The first line of work describes the conditions
needed for convergence, while the second establishes the
convergence rate given that the discretized solver con-
verges. We use these results in conjunction with the proper-
ties of our objective SIP to establish the following theorem.
The proof is delegated to the Supplement.

t subject to

s),with ag = —1.

Theorem 2.2. Let s be the number of uniformly placed grid
points on the interval (14), and let d £ 058~ ’” be the length
of the discretization interval. Asd — 0, the opt1ma1 objective
value ¢4 of the discretized SIP converges to the optimal
objective value of the original SIP ¢t*. Moreover, the optimal
solution is unique a*. The convergence rate of ¢4 to t* equals
O(d?). If the optimal solution of the SIP is a strict minimum
of order one (i.e., if t — t* > C||a — a*|| for some constant
C > 0 and for all feasible neighborhoods of a*), then the
solution of the discretized SIP also converges to an optimal
solution with rate O(d?).

In summary, for given parameters k and n, and sample
count histograms N we obtain the optimal coefficients of
our polynomial estimators by solving the small LP program
described above. An example of our polynomial estima-
tor (henceforth termed Regularized Weighted Chebyshev
(RWC) estimator) and its scaled coefficients gz, is shown in
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Figure [1} along with a corresponding example of a Cheby-
shev estimator (termed the Wu-Yang (WY) estimator). It is
easily observed that the coefficients of the two estimators
exhibit very different behaviors: Unlike the Chebyshev case,
for which the coefficients have to alternate in sign, our es-
timators are not constrained to obey this pattern. The RWC

Coefficients of g

10
—O RWC
8r —O wy |1

A1
T

4l

s

-8

Fig. 1: The function g7, for RWC and WY estimator. The
parameter setting used for the illustration is n = k = 106
and ¢y = 0.558.

estimators are “additive”: They operate on each symbol
separately and the contributions of symbols are linearly
combined to obtain the overall support estimate.

We conclude by observing that our RWC estimator can
be further heuristically improved in practice by optimizing
it with respect to a minmax risk that involves a different
scaling factor in the denominator. For this estimator, termed
RWC-S, scaling is performed using the unknown support
S(P) approximated by the counting support estimator
Sc¢(N)). The analysis of the RWC-S estimator is delegated
to the Supplement.

2.4 Small-sample distribution estimation

By far the most frequently used method for distribution
estimation in the small-sample regime is the Good-Turing
estimator [7], which tries to account for the unseen by
adjusting the counts of the actually observed symbols. In a
slightly modified form the method may be described as fol-
lows. For a sequence x" of length n over an unknown finite
alphabet, we once again let n; denote the number of times
a symbol 7 appears in x". Furthermore, we let ¢, stand for
the count of counts, i.e., the number of symbols that appear
t times in x". The estimator proposed in [8] combines the
Good-Turing and ML estimators, the latter being used for
the frequently observed symbols. For symbols that appear
t times, if ;11 > Q(t), then the Good-Turing estimate is
used to determine the underlying total probability mass,
otherwise, the ML estimator is used instead. More precisely,
for a symbol appearing ¢ times, if @11 > t we use the
Good-Turing estimator, otherwise we use the ML estimator.
If n; = t, the estimated probability of the symbol 7 is
computed according to

ift > @ry1,

1

T
bi = 1 .
Pra1tl t41 otherwise,

Pt n’
where 7 is a normalization term that ensures that the ob-
tained values are probability masses. The term ;11 used in
the Good-Turing estimator is replaced by 41 + 1 so that
every symbol has a nonzero probability.

The modified Good-Turing estimator is used instead
of the classical Good-Turing estimator as the latter poorly
estimates the probabilities of high frequency symbols. Mod-
ifications of the Good-Turing estimator that take sampling
artifacts/errors into account were reported in [38], [39].

The GT method [40] used for comparison first estimates
the total probability of seen symbols (e.g., the sample cover-
age) according to C=1- %1 Here, h; equals the number
of different alphabet symbols observed only once in the
n samples and S'C(N ) stands for the counting estimator.
Vaguely speaking, coverage uses the count of symbols that
“were barely seen” (i.e., seen only once) as a proxy for
the number of symbols that have not been seen at all. The
GT method then computes the support size according to
Ser(N) = % (see [40]).

We tested our methods against “synthetic” data gener-
ated using a multitude of different distributions and the
corresponding results are provided in the Supplement. We
are not aware of any existing accurate mathematical mu-
tation model for SARS-CoV-2 that can be used to simulate
synthetic data [41]. Our methods are also general enough
to be applied to other viral genomes provided sufficient
number of samples are available along with associated
metadata. We discuss Influenza samples in the Supplement
to further illustrate these requirements.

3 RESULTS AND DISCUSSION

The underlying assumption behind our work is that most of
the mutations cannot be observed due to limited testing. The
mutational process is inherently nonstationary but that does
not preclude an analysis at shorter time scales as changes
are gradual. Our studies of the mutational support and
mutation distribution are conducted for different patient
subpopulations and all ORFs separately in order to de-
termine potential subpopulation differences. Furthermore,
we also run our methods at various time points and do a
comparative study of the changes in our results over time.
The importance of the method lies in the fact that if, due to
various biological reasons, there is a substantial change in
mutation patterns, our method will be able to capture it with
least amount of sampling possible. The proposed estimators
are additive, so that estimates for individual genes may be
added to obtain the estimate for the whole genome.

First, we observe that by the last small-sample data
collection date reported in the manuscript, 04-14-2020, the
average number of mutations with respect to the reference
was 7.93 (for male patients) and 7.96 (for female patients).
This difference is statistically insignificant. For patients
older than 55 years, this number was 7.33 while for those
younger than 55 the recorded values were substantially
higher, amounting to 8.377. For three different continents,
Asia, Europe and NA the average number of mutations
recorded equaled 13.51, 6.67, and 6.68, respectively. The
average number of mutations per patient in Asia is almost
twice as large as the corresponding numbers in Europe
and NA. A large number of similar sequences from Eu-
rope and NA might have contributed to these differences
in the mutation frequencies. In all cases, the total num-
ber of recorded mutations across all patients is too small
to allow for accurate prediction of the actual mutational
support using frequency methods. The higher variation in
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Asian population compared to Europe and NA can also be
viewed from a phylogenetic perspective. SARS-CoV-2 has
various clades, including S, L, V and G-derived (GR, GV,
GS) clades. These clades dominate samples from different
regions, which may bias the sampling towards a particular
clade. However, this does not impact our estimators and
the corresponding results because the estimators only aim
to estimate and predict the number of mutations in the
population without focusing on particular mutation sites.

Additional statistical tests on the raw number of muta-
tions in each gene are given in the Supplement.

3.1 Mutational support

The first set of results pertains to data collected at a very
early stage of the pandemic (04-03-2020) that did not include
sufficiently many samples to allow for sample set sizes
to be evened out through subsampling. Therefore, for this
analysis, all available samples are included, which may
create biases due to sample set size differences. The results
are listed in Supplementary Tables S6, 57 and S8. They
illustrate the difference in the support estimates for two
different age groups, sexes and three geographic regions.
The nonuniform sample size artifacts do not obscure the
most important findings regarding mutation rates in differ-
ent genes across different age groups, sexes and geographic
regions - the same trends persist even when significantly
more samples are used in the analysis, as described next. In
all the tables, “Counting” refers to the estimator that counts
the number of distinct symbols observed, while RWC and
RWC-S stand for our proposed two regularized weighted
Chebyshev estimators. Note that whenever the estimate exceeds
the length of the gene itself, which is obviously possible as the
estimators used can overestimate the true support, we indicated
the result by T. In such cases, one should use the minimum of the
length of the gene and the value returned by the estimator.

Supplementary Tables S9 and S10 list the results for
age and sex analogue to those reported for 04-03-2020,
obtained using datasets retrieved on 04-10-2020. Table(]lists
corresponding results for geographical regions. The datasets
were sufficiently large to allow for random subsampling
to obtain equal sample set sizes for all subpopulations
considered (excluding Asia).

TABLE 1: Support size for three different geographic regions
based on 615 samples from Asia and 1,000 samples from
Europe and NA each. The data was retrieved from GISAID
on 04-10-2020.

Counting RWC RWC-S Gene
Gene | A [ E NA| A E NA[ A E NA]| length
ORFla| 827| 504| 470| 1,768 975| 948| 1,725 919| 874| 13,203
ORF1b| 308| 271| 244| 631 | 531| 478| 611 | 491| 432| 8,087
S 182 163| 142| 352 | 336| 269| 340 | 293| 243 | 3,822
ORF3a| 91 | 56 | 39 | 174 | 96 | 74 | 168 | 85 | 63 | 828
E 37 | 12 | 14 | 66 | 21 | 24 | 65 21 | 24 | 228
M 31 | 23 | 17 | 55 38 | 28 | 52 | 35 | 27 | 669
ORF6 | 3 48 | 15 | 3 87 | 26 | 3 86 | 25 | 186
ORF7a| 109| 63 | 51 | 216 | 118| 94 | 214 | 116| 93 | 366
ORF8 | 340| 19 | 21 | 335 | 29 | 31 | 339 | 29 | 31 | 366
N 58 | 72 | 77 | %6 121] 137| 91 108| 129| 1,260
ORF10| 10 | 26 | 7 18 | 48 | 10 | 17 | 48 | 10 | 117

Based on the results of Supplementary Table S9, we see
that the mutational supports in populations of different
age (cutoff at 55 years) differ substantially for the ORF3a,
ORF6 and ORF7a regions. For ORF7a, the older population

exhibits almost twice as many mutations compared to the
younger population (a difference of 14.8% with respect to
the length of the gene), while for ORF6 and ORF3a the
corresponding numbers are 1.5 and 1.4, respectively (a
difference of 12.4% and 5.7% with respect to the length of
the genes, respectively); the estimated mutational supports
of the ORF6 and ORF7a regions are close to 1/3 of the
whole gene length for individuals older than 55 years.
The mutational differences in the ORF6 and ORF7a region
persist with an increase in the number of samples (see the
Supplementary Table S11), with an estimated mutational
support for the former region equal almost 1/2 of the gene
length. Furthermore, additional differences are observed in
the M region which were not apparent when using smaller
sample set sizes. The protein encoded by ORF6 was studied
in depth during the SARS epidemics [42] and it has been
established that the ORF6 protein impairs the nuclear im-
port complex formation (controlling the transport of innate
immune regulatory cargo to the nucleus of cells capable
of increasing antiviral defenses). The protein encoded by
ORF7a has been implicated in inhibiting bone marrow stro-
mal antigen 2 virion tethering [43]]. Bone marrow stromal
antigen 2, also known as tetherin, is an interferon-induced
protein which, when expressed, reduces the release of en-
veloped viral particles. The significant number of predicted
mutations in the ORF7a region of older patients suggests a
similar observation as that made for the ORF3a region - a
possible effort by the virus to disable or strongly impair the
function of the tetherin antigen.

The results pertaining to female/male patients differ
substantially from those pertaining to different age groups.
The results are listed in Supplementary Table S10, and
imply strong differences in the mutation rates of the ORF1b
and ORF10 regions. The mutational support of ORF1b in
the female population is 1,621 compared to 941 in the
male population, which amounts to a 8.4% difference with
respect to the length of the ORF. A similar result is true for
the ORF10 region, for which no well-understood functions
are known. Some recent results suggest, based on different
evidence, that ORF10 encodes a functional protein in SARS-
CoV-2 and that positive selection is driving the evolution of
this region [44].

The above described differences persist with increased
sample set sizes. The estimated mutational support for
ORF1b is 24% and 16% of the length of the region, and for
ORF10 18% and 32% of the length of the region, for females
and males, respectively (see the Supplementary Table 512).
Smaller, yet possibly relevant differences are also observed
for the ORF3a and M regions, but these do not persist with
increased sample set sizes.

For samples obtained from Asia, Europe and NA the
results show that despite the number of samples for Asia
being substantially smaller than that from Europe and NA,
the predicted mutational support in all regions is higher
except for the N and ORF6 genes (with only 3 mutations
observed in the ORF6 gene). Particularly for ORF3a and
ORF8, the mutation rates are more than 2- and 10-fold
higher in Asian patients, respectively (a difference of 10%
and 84% with respect to the length of the gene, respectively).
It is reasonable to assume that these regions are mutated
early on in an epidemic and tend to “accumulate” the num-
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ber of mutations. Also, the substantial differences suggest
that the pandemic started significantly earlier in Asia than
Europe and NA. The ORF3a region is known to encode for a
protein that activates the NLRP3 inflammasome [45]. ORF3a
proteins are activators of pro-IL-13 gene transcription and
protein maturation that trigger activation of the NLRP3
inflammasome. The inflammasome has a dual role of boost-
ing the host defense and driving pathologic inflammation.
Based on our findings, one possible explanation for the high
mutation rate in this region in older populations is that
the virus trying to disable the host’s immune system and
increase its virulence. Recent results show that the ORF8
protein may be acquired from SARS-related coronaviruses
present in bats [46], which could explain the large difference
in the mutational support through “adaptation” in a human
host (for patients in Asia).

Supplementary Tables S11, S12 and S13 show the trends
of increase for the mutational support with increased sam-
ple sizes. For data collected by 04-14-2020, this includes
roughly 9,000 samples. All sample set sizes used are equal
(except for Asia, for which the sample set sizes available
are substantially smaller), therefore allowing for fair com-
parisons. Supplementary Table S11 illustrates that when
the sample set sizes are equal, no substantial differences
are observed in the mutational supports of disparate age
groups except in the E, ORF6, ORF7a and ORF8 regions.
Given that the difference in the number of mutations in the
ORF7a regions persists for several data acquisition dates,
the finding appears to be sample-size independent. On the
other hand, the substantial differences in the number of
mutations in the E region is only evident when sufficiently
many samples are available. The E region contains the code
for the encapsulation protein of viral RNA, in addition
to some spike proteins. In older subjects, this region is
subjected to a significantly larger number of mutations than
in other groups. This may imply that immunity in elder
patient may be dependent on generating antibodies for the
encapsulation proteins. Clearly, no conclusive explanation is
possible based on limited data sets but the results suggest
performing further sampling and analysis for this particular
OREF in older patients. Although it has been observed that
the immune responses of individuals vary significantly due
to the initial viral load, physical health, and the hosts
microbiome, no definite link between these features and the
mutation rates in the above region can be established due to
lack of supporting clinical data at GISAID.

Supplementary Table S12 illustrates surprisingly few
differences in the mutational supports of male and female
patients once a sufficiently large number of samples is
available: Exceptions are the ORF1b and ORF10 regions. For
different geographic regions, the most substantial difference
observed pertains to the ORF8 region, where samples from
Asia exhibit a roughly one order of magnitude larger num-
ber of mutations compared to those for samples sequenced
in Europe and NA (a difference of 79.2% with respect to the
length of the gene). There also exists a marked difference
in the mutational support of ORF7a between patients from
Europe on one side and patients from Asia and NA on the
other (roughly a two-fold difference for Europe and NA).

Ten additional data collection days (starting on 04-03-
2020, ending on 04-14-2020) lead to more than twice the

samples, and the results for the latter date are shown in Sup-
plementary Figure S4 along with the standard deviations
of the estimators (in order to estimate the variance of an
estimator, one needs to subsample the data which requires
more samples to start with; hence, the standard deviation is
only evaluated for all samples available by 04-14-2020). The
additional data samples show that the N region of the SARS-
CoV-2 genome exhibits a much more substantial increase
in mutations than could have been predicted from early
small-set sample sizes, amounting to roughly an average
of 23% of the genome, across populations. This finding
is significant as it suggests that genomic regions used as
identifiers for the virus may mutate much faster than pre-
dicted based on small preliminary sample set information.
Nevertheless, the N1 and N2 regions used as primer targets
for RT-PCR testing (the use of region N3 as a primer has
been discontinued) appear to be largely unmutated. This is
illustrated in the Supplementary Table 523 which lists a total
of only 8 mutations observed in these regions in the SARS-
CoV-2 genomes of US patients. Similar results for mutations
in viral genomes of patients from China are presented in
Supplementary Table 524.

Table [3| provides results for a finer partition of test sam-
ples into two categories, one including males over 55 years
of age and another females below 55 years of age, with both
populations sampled from Europe. The first category has
been empirically observed to be at higher risk of infection
and for exhibiting more severe symptoms [28]. Substantial
mutational differences are observed in the ORF1b, ORF6
and ORF10 regions. The differences in ORF10 appears to be
mostly sex specific, while the age factor may contribute to
the differences in the mutation rates of the other two genes.
Another important finding is that the mutational support of
ORF1b is almost twice as large in the low risk population
compared to the high risk population (a difference of 5.9%
with respect to the length of the gene). This results may
suggest that the large mutational support is a result of a
highly competitive virus-host interaction which forces the
virus to mutate the proteins encoded by ORF1b in order to
gain advantage over the host’s immune system.

Figure[2|depicts the mutational support sizes, along with
the standard deviations of the estimates, for six different
patient categories and genes ORFlb, E and ORF6. The
corresponding results for the entire set of genes are plotted
in Supplementary Figure S4. The procedure for computing
the standard deviations is also described in the Supplement.
The mutational supports generated by our procedure have
small variances, indicating good concentration of the esti-
mates; some exceptions exist, though and are supported
in part by previously observed high rates of mutations in
certain SARS-CoV-2 genes [47].

We also performed the Levene test on raw counts of mu-
tations to check for the homogeneity of variance for various
subpopulations. The details of the test implementation and
the results are available in the Supplement. As one can see
from the Table [2} the variances for various subpopulations
are equal for all genes except gene N (when stratifying
the population according to age) and ORF8, N and ORF10
(when stratifying the population according to regions). We
also performed Welch’s t-test to check for the equality of
means of various subpopulations and the corresponding
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Fig. 2: Support sizes for different groups along with their standard deviation estimates. The estimates are based on data

collected by 04-14-2020.

results are also provided in the Supplement.

We also performed a collection of tests in which align-
ments and mutational counts were performed with respect
to the first sample from the same geographical region.
Hence, for patients from Asia, the alignments and mutation
counts are still performed with respect to the genome of
the Wuhan-Hu-1 patient. For NA, we used the sample
USA/WA1/2020 with ID EPI_ISL_404895, while for Eu-
rope we used the sample France/IDF0372/2020 with ID
EPI_ISL_406596, both being the chronologically first sam-
ples from NA and Europe available at GISAID. For this
study, we only used samples retrieved by 04-14-2020, and
the results are available in Supplementary Tables 514-517.

It is important to note that for some genes and patient
categories it appears the RWC estimates roughly double
those of the counting estimator, but this is not a general
trend of the analysis. For example, the mutational support
estimates for ORF8 for male and female are approximately
equal to counting estimates (Supplementary Table S10) and
more pronounced differences exist across the whole subpop-
ulation spectrum. Similar trends are observed for ORF6 in
Asian subjects, and ORF10 across different subpopulations.
Furthermore, although the counting estimates may lead to
similar conclusions regarding the trends of mutations in
some OREFs, the degree of the trend and the scale of the
mutation rates within different regions cannot be fully
understood through the use of counting estimates only.
As an illustrative example, the counting estimator implies
that there is no difference in the mutational supports of the
ORF8 region in young versus old patients (Supplementart
Table S9), as the values equal 340 and 341, respectively. On
the other hand, the RWC-S estimator predicts mutational
supports of 236 and 343, respectively, which show a very
different stratification.

We conclude by pointing out that one way to validate
the results for our support estimation methods is to compare
the results of the counting estimator at a later date with the
computed estimates. We compare the mutational supports
using the small-sample techniques and the data collected
by 04-10-2020 with the actual count generated from data
retrieved by 04-14-2020. In this time period, the number of
samples increased by roughly 3,000, as may be seen from
Supplementary Table S1. The results are listed in Table [4
As may be seen, the estimates obtained based on data
acquired by 04-10-2020 for Europe and NA and all open
reading frames are excellent matches for the actual counts
obtained by 04-14-2020, indicating that the number of sam-
ples was sufficient to predict the growth trend. Much more

substantial differences are observed for Asia, which can
clearly be attributed to the very small sample sizes available
from that continent on both 04-10-2020 and 04-14-2020 or
potential strong correlations between the mutations in the
three aforementioned regions. Other categories that are of
interest involve male/female patients for which the actual
counts from 04-14-2020 are substantially smaller than the
estimates. This is indicative of a large number of potentially
unseen mutations harbored by these populations.

Finally, Table [f|shows the support estimates for samples
from patients from Asia for a more recent date of data
collection, 10-20-2020. In this case, almost 10,000 samples
from Asia are available, which allows one to improve the
counting estimators. As may be seen, the differences be-
tween the counting estimator and RWC-S values are small.
In particular, the ratio of the number of estimated mutations
in the ORF E region for the RWC-S and counting method
was close to 1.76 in April, and only 1.24 in October. Similar
findings hold true for other ORFs.

3.2 Distribution estimation
Next, we report on the distribution of mutations in the

ORFlab and N regions of the SARS-CoV-2 virus obtained
using the Good-Turing estimator and once again focus on
the traits of different subpopulations. We focus on these
regions as the first two regions are the longest genes while
the N region is of importance for Covid-19 testing in NA. As
may be seen from Supplementary Figures S5 and S6 there
is a surprisingly small difference in the distribution of the
top-20 mutated sites across different age groups and sexes,
except for a marked difference in the largest probability
(in particular, in the N region for populations partitioned
according to age and populations partitioned according to
sex when including larger sample sets from 04-14-2020 as
seen in Supplementary Figure S7). This is especially the
case for samples partitioned according to sex, despite the
fact that the number of mutations in female subjects in the
ORF1b region was close to twice as large as that in male
subjects. In addition, the probability of having a mutation
at the highest probability sites is substantially larger in
“younger” than “older” populations. The trend remains the
same for data collected by 04-14-2020 as supported by the
results in Supplementary Figure S7. Supplementary Figure
S8 gives similar results for alignment performed against
first sequenced patient from each region. The situation is
completely different when comparing the distributions of
mutations across different geographic regions (Figure [3). To
compactly summarize the differences in the distributions,
we also computed all three pairwise symmetric Kulback-
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TABLE 2: The p-values generated by the Levene test on the number of mutations in each gene based on data collected by
14-04-2020. The cases where the null-hypothesis was rejected are shown in bold.

ORFla | ORFlb S ORF3a E M ORF6 | ORF7a | ORF8 N ORF10
Sex 0.50 0.08 0.94 0.45 042 | 0.64 0.85 0.26 0.51 0.09 0.12
Age 0.11 0.36 0.34 0.70 0.38 | 0.48 0.43 0.22 0.38 0.04 0.42
Region 0.46 0.93 0.75 0.10 056 | 0.27 0.68 0.32 8e-39 | 6e-16 6e-8

TABLE 3: Support size differences between males > 55
years and females < 55 years from Europe, based on 1,078
samples in each group. The data was retrieved from GISAID
by 04-14-2020.

Counting RWC RWC-S
M F M F M F Gene
Gene >55 | <55 | >55 | <55 | >55 | <55 | length
ORFla | 588 670 | 1,159 | 1,374 | 1,078 | 1,294 | 13,203
ORF1b | 349 553 686 | 1,189 | 638 | 1,117 | 8,087
S 209 166 420 329 387 296 3,822
ORF3a 76 61 138 104 124 96 828
E 10 9 17 15 16 14 228
M 27 33 45 58 40 52 669
ORF6 15 28 25 47 24 48 186
ORF7a 31 23 54 36 52 36 366
ORF8 27 28 45 48 43 46 366
N 110 108 197 199 178 183 1,260
ORF10 27 5 28 7 33 7 117

TABLE 4: RWC-S estimates for data retrieved by 04-10-2020
and the ML estimates for data retrieved by 04-14-2020.

Gene | Alg/Date A E NA | > < M F
55 55
ORFla RWC-5(04-10) | 1,725 919| 874 | 1,89¢ 1,743 2,055 2,175
ML (04-14) 835 | 911| 804 | 1,48§ 1,439 1,478 1,456
ORFI1b RWC-S5(04-10) | 611 | 491| 432 | 924 | 896 | 941 | 1,621
ML (04-14) 316 | 477| 403 | 787 | 953 | 705 | 991
S RWC-5(04-10) | 340 | 293| 243 | 458 | 501 | 509 | 519
ML (04-14) 188 | 246| 209 | 431 | 400 | 405 | 389
ORF3a RWC-5(04-10) | 168 | 85 | 63 | 171 | 124 | 190 | 158
ML (04-14) 93 99 | 81 156 | 165 | 169 | 140
E RWC-S (04-10) | 65 21 | 24 | 36 32 |36 |22
ML (04-14) 36 15 | 15 | 43 | 26 | 30 | 36
M RWC-5 (04-10) | 52 35 | 27 | 92 77 | 82 | 94
ML (04-14) 31 51 | 28 | 79 62 67 | 69
ORF6 RWC-5(04-10) | 3 8 | 25 | 64 | 41 74 | 50
ML (04-14) 3 52 | 21 | 53 32 | 50 | 40
ORF7a RWC-S(04-10) | 214 | 116| 93 | 103 | 49 71 84
ML (04-14) 109 | 66 | 135 | 86 | 66 68 72
ORFS RWC-5(04-10) | 339 | 29 | 31 | 236 | 343 | 344 | 345
ML (04-14) 340 | 32 | 29 | 341 | 343 | 343 | 342
N RWC-S (04-10) | 91 108 | 129 | 223 | 265 | 226 | 259
ML (04-14) 60 139| 138 | 201 | 219 | 195 | 204
ORF10 RWC-5(04-10) | 17 | 48 | 10 | 39 50 | 32 19
ML (04-14) 11 30 | 10 | 35 33 | 31 13

Leibler (KL) divergences for the normalized top-20 mutation
probabilities as described below. We also list the Jaccard
distances between the sets of 20 most frequent mutations.
The distributions of mutations only reveal the statistical
landscape of the mutation sites but not their exact locations
in the genome. The actual mutated sites in the SARS-CoV-2
genomes are depicted in Figure [} in addition to a more de-
tailed set of results presented in the Supplementary Figures
S9 and S10. We selected the latest retrieval data for this anal-
ysis as it most accurately reflects the positions undergoing
most frequent mutations; we also focused on two cohorts
of patients for which the mutational landscapes differ the
most. The positional stratification of mutations is substantial
for patients from different continents, especially in the N
region of the SARS-CoV-2 genome. The largest spread of
probability mass is (as expected) observed for patients from
Asia which is indicative of the larger exploration rate for

mutations in the region where the outbreak originated.

Supplementary Table S18 lists the 10 most frequently
mutated sites in the ORFla region of all previously analyzed
patients categories when alignment is performed with re-
spect to the first patient sequenced in the geographic region.
For the age and sex groupings, as expected, the top-ten sites
are the same except for one difference encountered in both
cases. A mutation in position 8, 781 of Asian and NA viral
samples appears with high frequency but is surprisingly
not present in the list of top mutated sites in the European
population. Similarly, Supplementary Table S19 lists the 10
most frequently mutated sites in the ORF1b region of all
previously analyzed patients categories. As one may expect
from the differences in the mutational support, the frequent
sites of mutations differ more in this region for different age
groups, sexes and continents when compared to the ORFla
region. This is especially the case when viewing the results
for different geographic regions as except for the top-ranked
site and one more site (i.e., sites 14,407 and 14,804), all
other locations are different.

Supplementary Tables S20 and S21 list the top 10 most
frequently mutated sites in the ORF3a and ORFS8 regions,
respectively. One observation pertaining to the top most
frequently mutated sites for these genes is related to epstasis
in the SARS-CoV-2 genome. In [48], the authors examined
50,000 samples and reported interactions between a total
of eight genes, comprising two groups: ORF3a and ORFlab
(in particular, the coding regions for nsp2, nsp6 and nsp12),
and ORF8 and ORFlab (in particular, the coding regions
for nsp2, nsp4, nspl3, nspl4). The most frequent epistatic
interactions observed include locations 1,059 and 25,563
of the genomes. The probability of mutation for location
1,058 within ORFla (Supplementary Table S18) is in the top
ten positions for all our subpopulations, while 25,562 in
ORF3a is in the top two positions across all subpopulations.
Note that our locus 1,058 is the same as locus 1,059 and
25,562 is the same as 25,563, the latter numbers being
reported in [48]. This shift by one is due to the fact that
we used alignment results with respect to a specific refer-
ence sequence that has a starting location shifted by one.
Similarly, the interaction between 8,781 and 28, 143 ranks
fifth in [48]. The two aforementioned loci belong to genes
ORFlab and ORFS, respectively. Both positions are ranked
high by our distribution estimation method in most of the
subpopulations analyzed: The interacting loci found in [48]
are those with largest individual marginal probabilities.

Supplementary Table S22 lists top 10 most frequently
mutated sites in the N region and suggests significantly
fewer stratifications in the mutations of different patient
groups. Sex and age does not appear to play a major
role, but marked differences are observed in patients from
Asia, Europe and NA. Given the large differences in the
mutational sites of patients across different continents in
the N region it does not come as a surprise that different
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TABLE 5: ML and RWC-S estimates for mutational support based on 9, 271 samples from Asia collected by 10-20-2020. The

standard deviation values are given in parentheses.

ORFla [ ORFIb | S [ ORF3a | E | M | ORF6 | ORF7a | ORE8 | N | ORFI0
ML 5020 | 2,691 | 1418 | 464 | 115 | 188 | 90 304 363 | 510 45
77) (42) (27) am 16 |4 | 6 ©) (OB N©) @
RWC.s | SA8T [ 4435 [2227 [ 674 | 143 [ 262 | 112 333 361 | 711 61
(152) (80) (61) GH |G 1B | @ as5) @ 109 G

Top 20 ranked positions in gene ORF1a(04-10-20)
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Fig. 3: Differences in the estimated distributions of mutations for genes ORFla, ORF1b and N for different geographic
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Fig. 4: Positions of mutations in the SARS-CoV-2 genome for
patients across three different continents, and for European
females of age < 55 and males of age > 55 for data collected
by 04-14-2020. The height of the bar is proportional to the
estimated probability of mutation.
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primers for RT-PCR testing were selected for Asia, Europe
and NA. The sites selected for forward and reverse primers
by the CDC, i.e., the N1 and N2 region, do not contain
a significant number of mutations, as seen from Supple-
mentary Table S23. Mutations are often asymmetric due to
polymerase errors and C-to-U substitutions caused host to
virus reactions mediated by the APOBEC system [49]: For
the N1 and N2 regions, the mutations are predominantly C-
to-U substitutions. Similar observations are true for primers
selected by China (Supplementary Table S24).

The outlined distribution estimation procedure may also
be important in terms of predicting growth trends for certain
mutations that may not be easily observed based on fre-
quency counts alone. Figure |5|demonstrates that the Good-
Turing estimator predicted higher probabilities for 4 out of
6 mutation sites in the S region of the UK variant compared
to the ML estimator for data collected in September 2020,
giving a potentially early indication of the spread of the

UK variant (when very few samples with the underlying
mutations are seen). Applying GT and ML estimators on
data from November 2020 produced identical results.

The symmetric KL divergence between two discrete
probability distributions p and ¢ equals

&m®=DwM+DMmwam=th%%

For the mutation distributions pertaining to Europe-NA,
Europe-Asia and Asia-NA, the KL divergences equal 0.672,
0.316 and 0.376 (ORFla), 0.491, 0.435 and 0.646 (ORF1b),
0.293, 1.021 and 0.303 (N), respectively, for data collected by
04-14-2020. These results indicate that the largest differences
in the distributions in the ORFla region exist between
Europe and NA, while the largest differences in the ORF1b
region exist between Asia and NA. For the N region, a
significant difference between the distributions of mutations
is observed between Europe and Asia, and at this point,
no simple explanation for this finding is possible. Similarly,
the corresponding KL divergences based on the samples
collected by 04-10-2020 equal 0.788 (which is substantially
larger than the one predicted based on data collected on 04-
14-2020), 0.328 and 0.371 (ORF1la), 0.743 (which is substan-
tially larger than the one predicted based on data collected
on 04-14-2020), 0.615 and 0.0.755 (ORF1b), 0.315, 0.893 and
0.248 (N), respectively. The results for the KL divergences
for the N regions suggest relatively small changes in the
distribution of mutations in the N region, and larger changes
in the ORFla and ORF1b regions, which is expected.

Since the previously described distribution estimates do
not convey the information about the locations of the most
mutated sites but only their frequency, we also list the
Jaccard distances of the sets of mutations specific to each
tested subpopulation. For two sets X; and X5 over the same
ground set ¥, the Jaccard distance J (X1, ¥2) equals

Y1 N3y
Y1 UXs '
As may be seen from Table [6 the largest distances are

observed in the E and ORF10 regions, in the first case
when comparing patients from Asia and Europe and in

J(S1,5) =1—
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Fig. 5: The probability of mutations at six substitution sites in the S region of the UK variant obtained using the GT and

ML estimators.

TABLE 6: The Jaccard distance between sets of mutations from different pairs of geographic regions, based on alignments
with respect to Patient 1 from Wuhan. Values in italics are the smallest in the category, while values in bold are the largest.

ORFla | ORFlb S ORF3a E M ORF6 | ORF7a | ORFS8 N ORF10
Asia - Europe 0.91 0.95 091 0.92 0.98 | 0.92 0.96 0.74 0.91 0.86 0.89
Europe-NA 0.88 0.89 0.88 0.84 0.89 | 0.89 0.86 0.91 0.89 0.82 0.95
Asia - NA 0.91 0.95 0.92 0.95 091 | 0.89 0.96 0.89 0.92 0.87 0.89
M, >55 - F, < 55 (Europe) 0.85 0.87 0.85 0.73 0.88 | 0.75 0.87 0.83 0.83 0.77 0.97

the second case when comparing younger female and older
males in Europe. The distances in the N region seem to
be much smaller, especially between the two categories of
patients from Europe. The results for the ORF10 region
are rather surprising as they indicate the highest possible
difference is observed between males and females on the
same continent despite these differences being uniformly
small for all other open reading frames. As already pointed
out, the function of the ORF10 reading frame is currently
unknown but given the marked mutational profiles in high-
risk and low-risk profiles it is highly likely that this gene
plays an important role in guiding disease symptoms. The
exact same trends are observed when using alignments with
respect to Patient 1 from the underlying geographic region,
as listed in Supplementary Table 25.

CONCLUSION

We addressed the problem of determining the mutational
support and distribution of SARS-Cov-2 in the small-sample
regime, of importance during the early stages of an out-
break. To estimate the statistical quantities of interest, we
developed a novel, state-of-the-art weighted Chebyshev
polynomial estimator for support estimation and adapted
the Good-Turing estimator for distribution estimation.

We tested our estimators on various patient subpopula-
tions, including male/female, older/younger and different
geographic locations. We observed significant differences
in the mutational support of ORF6 and ORF7a between
older and younger patients as well as differences in ORF1b
and ORF10 between males and females. We also noted
that these differences persist when the number of samples
increases. We observed that even though the N region of

the SARS-CoV-2 genome has a high number of mutations,
only a few mutations lay in the primer regions for real
time RT-PCR kits recommended by CDC for testing in the
USA. Finally, we compared the distributions of mutations
among various population groups and computed pairwise
symmetric Kulback-Leibler divergences for normalized top-
20 mutated positions as well as Jaccard distances for the sets
of all mutations for each population.
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