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Abstract

Plant trait evolution can be impacted by common mechanisms of genome evolution, including
whole genome and small-scale duplication, rearrangement, and selective pressures. With the
increasing accessibility of genome sequencing for non-model species, comparative studies of
trait evolution among closely related or divergent lineages have supported investigations into
plant chemical defense. Plant defensive compounds include major chemical classes such as
terpenoids, alkaloids, and phenolics, and are used in primary and secondary plant functions.
These include promotion of plant health, facilitation of pollination, defense against pathogens,
and responses to a rapidly changing climate. We discuss mechanisms of genome evolution and
use examples from recent studies to impress a stronger understanding of the link between
genotype and phenotype as it relates to the evolution of plant chemical defense. We conclude
with considerations for how to leverage genomics, transcriptomics, metabolomics, and functional

assays for studying the emergence and evolution of chemical defense systems.

Abbreviations: Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGQG),

whole genome duplication (WGD).
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Introduction

Plant chemical defense compounds are important for primary and secondary function and
are also known to serve a variety of important roles, including pollinator attraction [1], herbivore
and pathogen defense [2], and response to abiotic stress [3]. Some are thought to have been
maintained due to increased fitness during a historical change in climate [e.g., 4,5]. Once present,
some are believed to have evolved in concert with insects resulting in a diversity of compounds
in plants [6—8]. Certain plant lineages feature certain biochemical classes due to co-evolutionary
arms races with insects (e.g., butterflies and glucosinolates in Brassica plants [6], parsnip
webworm and furanocoumarins in parsnip [8]), however the specific biochemicals used are not
necessarily the same across species within a lineage. The evolutionary and ecological
significance of plant chemical defense compounds necessitates investigation into their evolution.
A stronger understanding of the relationship between genotype and phenotype is required to
address the evolution of these important chemical defense compounds. It is becoming clearer that
establishing how genome evolution impacts the evolution of these chemical defense compounds
is integral to illuminating this relationship.

Foundational to genomic analysis of plant chemical defense evolution is an
understanding of metabolite biosynthesis and characterization of genes underlying these
pathways. Recent genomic studies have leveraged our understanding of plant biosynthetic
pathways to target key gene families for comparative analyses, resulting in robust hypotheses for
how genomic evolution (e.g., gene family expansions and genomic rearrangements) has
influenced chemical defense evolution in certain lineages. For example, studies have revealed
patterns in genomic evolution between lineages and related those patterns to the evolution of

biosynthesis pathways (e.g., identifying lineage-specific, local duplication in an important
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biosynthesis gene family). These hypotheses for how genomic evolution have influenced
chemical defense evolution can (and should) be robustly honed, however, with the addition of
transcriptomic and metabolomic data, as well as functional assays (Fig. 1). More recently,
comparative transcriptomic analyses have been used to identify genes involved in chemical
defense and localize their expression. In a similar way, comparative metabolomics has allowed
for the identification and localization of metabolite profiles. Because such analyses enable
identification of candidate genes, they have the potential to reveal whether genomic evolution
has influenced plant adaptations specifically related to chemical defense. Finally, enzymatic
assays have, perhaps most importantly, been used to assess protein function and help to
corroborate the role of candidate genes or isoforms.

In this review, we discuss common mechanisms of plant genome architecture evolution,
highlight recent studies that advance understanding of the effect of such mechanisms on the
evolution of plant defensive chemicals (e.g., terpenoids, alkaloids, and phenolics), and discuss
relevant methodological approaches. We do not attempt to address the effects of small-scale
genomic mutation, such as allelic divergence within a lineage or post-transcriptional evolution
(e.g., alternative splicing) as they relate to the evolution of plant chemical defense, nor do we
attempt to address genome evolution induced by parasitism. Figure 1 reviews current multi-omic
methods to investigate trait evolution from a genomic evolution perspective and is referenced in
the following discussions.

We highlight at least three major classes of defensive chemicals: terpenoids, which are
found commonly across nearly all plants and considered primary metabolites (e.g., abscisic acid,
gibberellins, brassinosteroids, carotenoids, chlorophyll), though some are thought to be more

specialized for interaction with biotic and abiotic stress (e.g., nepetalactone, menthol, taxol) [9];
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alkaloids, which have been extensively studied in Solanaceae species [e.g., 10—12] for plant-
insect interactions, are common stimulants (e.g., caffeine in coffee, tobacco, opium in poppy, and
cocaine from coca), and whose mechanisms of toxicity are varied, including enzymatic
alterations and inhibition of DNA synthesis and repair, and central nervous system alteration
[13]; and phenolics, which are produced in plants in response to biotic and abiotic stress, are
important in plant development (e.g., pigmentation), defense against pathogens, and defense
against ultraviolet radiation [14]. Uncovering the genomic mechanisms underlying the evolution
of defense compounds in different plant lineages is one step toward understanding the link
between genotype and phenotype as it relates to plant chemical defense and the complex role of
these metabolites in interactions with insects, ecological adaptations, and potential production of

these compounds for human use.

Genomic architecture and the evolution of plant chemical defense

Whole genome duplication

Ancient whole genome duplications (WGD) occurred at the origin of angiosperms, the core-
eudicots, and monocots [15-20]. Polyploids are thought to establish due to increased fitness in
harsh environmental conditions [21]. Although fractionation may occur after WGD, whereby
homeologous genomic regions undergo gene loss and diploidization, syntenic fingerprints of
these ancient duplication events can still be found in the genomes of extant angiosperm lineages
[22-24]. Many plant lineages have also undergone recent WGD via allo- or autopolyploidization
[25]. The post-WGD process of neofunctionalization can enable new gene functions to arise,
sometimes causing new phenotypes [26—28]. Figure 1A(1-4;6-7) depicts some of the genomic

analyses that can be done to investigate the effects of WGD on trait evolution.
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Post-WGD, evolutionary pressures can affect subgenomes differently and lead to
differential roles of subgenomes in the evolution of a trait. For example, in Brassica juncea
(Chinese mustard, Brassicaceae), there are two deletions, one in each of the two subgenomes,
with conserved variation between oil-use and vegetable-use varieties that are associated with
genes involved in abiotic stress response (7GA1 and HSP20) [29]. In this case, mutations in both
subgenomes may have led to differential phenotypes in varieties selected for different features.
In another example, while structural variations are significantly more frequent in B. juncea
subgenome B than in subgenome A, GWAS analysis shows that two loci containing orthologs of
MYB28, a regulatory gene involved in glucosinolate biosynthesis, are associated with higher
glucosinolate content and are both found on subgenome A. This case reveals a potential
differential role of the subgenomes in expression of glucosinolates, which are selected for and
against in vegetable and oil-seed varieties, respectively, but are also important in herbivore and
pathogen defense [30,31].

Patterns of gene retention following genome multiplication can signify the importance of
multiplication events as they relate to the evolution of a particular phenotype. For example, while
the genus Lavandula (lavender, Lamiaceae) underwent two lineage-specific genome
duplications, genes retained following these duplication events were enriched for molecular
functions directly related to terpenoid biosynthesis, which may have been advantageous for
coping with the changing Mediterranean environment [4,32,33]. Similarly, in Camellia (tea,
Ericaceae), which shares a WGD event with 17 other families in the order Ericales, one, eight,
and four duplicated genes related to caffeine, catechin, and theanine biosynthesis respectively,
were retained post WGD. The duplicated gene copies were up-expressed in various tissues and

under different temperature treatments, suggesting the importance of both copies in biosynthesis



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

of these compounds. In rhododendron and persimmon, however, which do not produce caffeine
or theanine, but that share the WGD event, the caffeine-related gene duplication was not retained
in either of the species, only three and one catechin-related gene duplications were retained
respectively, and only one theanine-related gene duplication was retained in rhododendron. [34].
These genes may perform different functions in rhododendron and persimmon, and differential
retention may have played a role in the evolution of caffeine biosynthesis in tea, which is
important for tea flavor and may play a role in pollinator interactions [35].

Genome linkage mapping assigns subgenomes to known progenitors of a polyploid,
which can be useful for assessing the evolution of a trait when genetic constituents of each
progenitor are required for the new trait [5]. For example, GWAS analysis identified two
candidate loci responsible for the cyanogenesis phenotype in polyploid Trifolium repens (white
clover, Fabaceae): one corresponding to the known Ac/ac gene cluster that controls the presence
of cyanogenic glucosides, and one corresponding to the known Li/li gene cluster that controls the
presence of their hydrolyzing enzyme, linamarase [5]. The dominant alleles of both loci are
required for the cyanogenesis phenotype because the recessive alleles are deletions of the genes.
Through genetic mapping, the GWAS loci containing Ac/ac and Li/li were found in the
progenitor 7. occidentale and T. pallescens subgenomes respectively. In addition, the sequence
of the Ac/ac locus of T. repens shared more similarity with 7. occidentale than T. pallescens.
Although the GWAS locus containing Li/li locus was placed in the 7. pallescens subgenome, the
Li/li sequence was not found in the 7. pallescens genome. The authors suggest that the genotype
of the sequenced individual was li/li and thus missing the locus, or that present-day 7. pallescens
has completely lost the Li/li locus.This example illustrates a dual inheritance of the cyanogenic

trait from non-cyanogenic progenitors via allopolyploidy.
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Because the order and clustering of genes required for a certain phenotype can be
retained after WGD, genome duplication events that distinguish lineages can be used to estimate
the relative timing of the development of a phenotype. For example, the evolution of the iridoid
pathway in Nepeta (catnip, Lamiaceae) seems to predate a Nepeta-specific WGD event, based on
syntenic clustering of non-homologous iridoid biosynthesis genes (ISY, NEPS, and MLPL) in N.
cataria (a tetraploid with 2 clusters) and N. mussarii (a diploid with 1 cluster) [36]. This suggests
that iridoids, important for plant defense and multi-species interactions, evolved via a conserved

iridoid biosynthesis pathway in this group [37].

Local gene duplication and loss

Small-scale duplications, including local or tandem gene duplications, occur frequently within
plant genomes [38—40]. These small-scale duplication events can arise from transposable
elements (TEs), slipped strand mispairing, or unequal crossing over during meiosis, and can
account for gene family expansions within lineages. Local gene loss may occur via TEs that
interrupt a gene or repress expression, slipped strand mispairing that excises DNA, or through
pseudogenization via accumulation of mutations in a gene that result in nonsense mutations or
frameshifts. It is possible that gene loss is more commonly facilitated by fractionation, or DNA
excision, rather than gene-by-gene pseudogenization of formerly functioning genes [41]. The
fate of genes post-small-scale duplication mirror that of genes post-WGD, where processes such
as neofunctionalization can promote new gene function, and thus play an important role in trait
evolution. In addition, a co-regulated tandem array can impact levels of gene expression and

influence trait evolution.
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To investigate the role of small-scale duplications in trait evolution, lineages with or
without a trait can be investigated for gene family expansions or contractions (Fig. 1A(1)). In
addition, whether local duplications are shared or lineage-specific can inform whether the
evolution of a trait is conserved or is evolving in a lineage-specific manner. For example,
lineage-specific evolution in alkaloid biosynthesis seems to have played a major role in
Zanthoxylum (Sichuan pepper, Rutaceae), which may use alkaloids for insect defense [42]. The
Sichuan pepper genome is composed of over 50% transposable elements (TEs) (1.72Gb out of
the reported 2.63Gb assembly length) and 16,796 in-tact long terminal repeats (LTRs) were
identified in Sichuan pepper compared to 371 in the close relative Citrus sinensis. 2,816 protein-
coding genes were inserted into gene regions or 2kb flanking regions by long terminal repeats
(LTRs) and the protein-coding genes are enriched for functions such as “defense response”,
“stilbene biosynthetic process”, and “coumarin biosynthetic process”. This suggests that TEs
might play an important role in the expansion of genes used for chemical defense functions in
Sichuan pepper. In addition, key candidate genes for GX-50 biosynthesis (TYDC, 30OHase, PAL,
OMT, and BAHD-AT) and sanshool biosynthesis (BCAD, SCPL-AT, and FAD) are expanded in
the Sichuan pepper genome compared to citrus relatives. Additionally, enriched functions of
Sichuan pepper-specific gene families and gene family expansions suggest the importance of
local duplications on the evolution of secondary metabolite biosynthesis in the genus. For
example, genes from families specific to Zanthoxylum are enriched for KEGG pathways related
to “plant-pathogen interaction” and significantly expanded gene families are enriched for GO
terms including stress resistance related to “defense response” and biosynthetic processes related

to alkaloids, stilbenes, and coumarins.
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In Scutellaria (skullcaps, Lamiaceae), key elements of flavonoid biosynthesis seem to be
conserved within the genus, with some possible lineage-specific evolution [43]. For example,
Scutellaria-specific genes are enriched for domains related to secondary metabolite biosynthesis,
such as cytochrome P450s and O-methyltransferase, perhaps signifying the important role of
secondary metabolite biosynthesis in the genus. In addition, tandem expansions of flavonoid
biosynthesis genes that function early in the pathway occurred after speciation of two Scutellaria
species (PAL and CHS, and 4CL in S. baicalensis and S. barbata respectively) suggesting that
the flavonoid biosynthesis pathway has evolved in a lineage-specific manner in this genus. The
CYP gene family, including CYP82D1-9, which catalyzes the formation of baicalein and
scutellarein, is tandemly duplicated in both species, suggesting conservation of this biosynthesis
pathway. Finally, evolution of flavone biosynthesis is potentially conserved between the two
species, evidenced by a duplication of 4CLL, which enables biosynthesis of 4’-deoxyflavones,
occurring prior to the S. baicalensis and S. barbata speciation event, and a tandem duplication of
a flavone biosynthesis gene FNSIII-FNSII2 found in both species.

In a final example, Rubus chingii (Fu-pen-zi, Rosaceae) produces abundant hydrolyzable
tannins (HTs), which contribute to biotic and abiotic stress response. In contrast, its relative
Malus x domestica (apple, Rosaceae), does not produce abundant HTs. A collinear tandem
duplication of three genes involved in HT biosynthesis or degradation (CXE, UGT, and SCPL)
were found in R. chingii with 11, eight, and six copies of CXE, UGT, and SCPL, respectively
[44]. The region of this tandem array is found syntenically in the apple genome on four
chromosomes. Interestingly, key CXE family genes (74s) are lost in the apple genome, which
may have resulted in a lack of HTs, but the low levels of HTs produced in apple may be the

result of the homologous expansion of this tandem array.
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Genomic rearrangements and transcriptional regulation

In addition to local duplications, genome rearrangements can occur in plants in the form of
chromosomal rearrangements during polyploidization [45] or movement of co-adapted loci into
colocalized gene clusters [46—48]. Metabolic gene clusters are physically clustered genes that
may include one or more operons that act together in metabolite biosynthesis. The formation of
these clusters is hypothesized to be due to selective pressure for coinheritance, where
colocalization reduces the likelihood of loss of important individual genes during recombination
[47,49]. Another hypothesis for the formation of metabolic gene clusters is the efficiency and
likelihood of complete co-expression of genes required for metabolite biosynthesis [47,50]. A
hypothesis for the maintenance of intact metabolic gene clusters is that there is a strong selective
pressure to reduce toxic metabolite intermediates in a biosynthesis pathway that can occur when
a cluster is no longer intact (e.g., disrupted by mutation) [47,51,52]. Because metabolic gene
clusters and neofunctionalization of tandem duplications are often co-regulated, genomic
arrangement through synteny or collinearity can influence the evolution of a trait (Fig. 1A(5))
[53].

For example, consistent with findings in other species [54—56], terpenoid biosynthesis
genes are physically clustered in lavender and some clusters fall into the same co-expression
networks, suggesting coinheritance and co-regulation of terpenoid biosynthesis [4]. This might
promote terpenoid production in the genus, while potentially providing the benefit of less toxic
intermediates [47]. In another example, like other vascular species such as rice and barnyard
grass, Calohypnum plumiforme (bryophyte in Hypnaceae) produces momilactones, which are

diterpenoids used in pathogen defense and allelopathic interactions. A biosynthesis gene cluster
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(BGC) of important genes in momilactone biosynthesis (two cytochrome P450s, one
CpDTCI/HpDTCI and one “dehydrogenase momilactone A synthase”) was found in
Calohypnum and induced upon stress exposure [57]. When compared with other plant genomes,
this BGC was only found in the rice and barnyard grass, but they were not in syntenic regions.
This study suggests not only the importance of BGCs in momilactone biosynthesis, but also
presents a case of independent evolution of a BGC.

A final example of genomic rearrangement as it relates to chemical defense evolution
comes from the post-WGD fission and fusion events and formation of a benzylisoquinoline
alkaloid BGC of 15 genes in the genus Papaver (poppy, Papaveraceae) [58]. Poppy produces the
benzylisoquinoline alkaloid compounds morphinan (morphine) and noscapine in response to
mechanical damage, and these alkaloids share a biosynthesis pathway that branches to produce
each compound [59]. Papaver somniferum and P. setigerum are sister to P. rhoeas, and the two
species share a WGD and produce relatively higher levels of morphinan and noscapine than P.
rhoeas. A model of chromosomal fission and fusion events post-WGD reveals that the genes
around the chromosomal rearrangement breakpoints are enriched for KEGG pathways related to
isoquinoline and indole alkaloid biosynthesis. This suggests that the shared WGD event and its
subsequent genomic rearrangements may have influenced the co-regulation of genes involved in
chemical defense evolution. The formation of a benzylisoquinoline alkaloid BGC that is shared
between P. somniferum and P. setigerum and not present in P. rhoeas is another example of the
influence of genomic rearrangement on chemical defense evolution. Genes in the BGC exhibit
higher gene expression than their ancestral copies, suggesting that the formation of the BGC has
increased benzylisoquinoline alkaloid expression within poppy. Based on syntenic analysis of

each of the three species, the STORR gene, which is a fusion of two genes and is involved in
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morphinan biosynthesis, was present in the two BGC-containing species as the result of a
translocation event. In the BGC-containing species, the post-donor locus is syntenic with the pre-
donor locus but does not contain the two non-adjacent STORR genes, and the post-recipient
locus is syntenic with the pre-recipient locus but contains the fused STORR gene. This is another
example of the influence of post-WGD rearrangement on the evolution of chemical defense. In
addition, the authors suggest that the STORR gene fusion prevents accumulation of toxic
intermediates. The remainder of the genes in the BGC may have been incorporated via non-
tandem small-scale duplication based on the lack of synteny or co-localization of the genes and
their original copies. However, the authors caution this interpretation, citing the possibility of
tandem duplication with subsequent deletion. This evolutionary analysis and additional tests of
gene expression and gene regulation reveal that overall, the evolution of this BGC was critical to

the evolution benzylisoquinoline alkaloid biosynthesis in poppy.

Co-option and independent evolution

When genes with a pre-existing function are recruited for a new function, this is known as co-
option. Gene duplications, whether via WGD or small-scale duplications, are thought to facilitate
co-option [60,61]. Through this process, similarly to neofunctionalization as described above,
newly duplicated gene copies can be released from selection pressure, allowing for the fixation
of mutations that lead to the emergence of modified or new biological pathways or traits [62,63].
An important evolutionary pattern is one in which modified or new phenotypes evolve
independently in distant lineages. While the terms parallel and convergent evolution remain

contentious, a developmental biology understanding is that they represent phenotypes that evolve
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via the same or different genetic and regulatory pathways, respectively [64—66]. The genomic
mechanism of convergence via co-option shapes the patterns of trait evolution found in plants.

An example of co-option as it relates to chemical defense evolution comes from another
Trifolium repens example. Its progenitor, 7. occidentale, has the Ac/ac locus, which controls
presence of cyanogenic glucosides, but lacks the Li/li locus, which controls the presence of their
hydrolyzing enzyme, linamarase [5]. This suggests that 7. occidentale uses cyanogenic
glucosides for other metabolic functions and perhaps the Ac/ac locus and cyanogenic glucosides
were co-opted in for chemical defense in the presence of the Li/li locus in 7. repens.

An example of convergence as it relates to chemical defense evolution comes from
Hypericum perforatum (St. John’s Wort, Hypericaceae) in the biosynthesis of hyperforin, a
polycyclic polyprenylated acylphloroglucinol (PPAP) that has thus far been identified only in
this genus, is likely used for plant defense, and has antidepressant activity [67-69]. Two BGCs
identified in H. perforatum contain copies of genes confirmed to be involved in biosynthesis of
the hyperforin precursor phloroisobutyrophenon (PIBP) [67]. The two BGCs have different
expression and localization profiles and might be regulated for different functions or contribute
to different combinations of PPAP compounds. Syntenic and substitution rate divergence time
analyses revealed that BGC1 and BGC2 evolved via different duplications and genomic
rearrangements, and that while BGC1 is likely shared across the Hypericum order Malpighiales,
the formation of BGC2 is more recent and is likely only shared by a few species of Hypericum.
This points to potential independent evolution of PPAP biosynthesis within Malpighiales given
the lineage-specific pathway found in Hypericum. Specifically, the evolutionary model of BGC1
is either a shared origin of a two-gene cluster between the Hypericum order Malpighiales and the

Arabidopsis order Brassicales or independent evolution of the two-gene cluster in these orders.
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This is followed by recruitment of two additional genes in the common ancestor of Malpighiales.
An enzymatically active syntenic homolog of BGC1 in Mesua ferrea (ironwood,
Calophyllaceae), a Malpighiales relative that also produces PPAPs, points to this recruitment in
the common ancestor of Malpighiales. Additional evidence for this timing is the syntenic
homologs of BGCI in non-PPAP producing Malpighiales relatives that contain combinations of
the same genes in BGC1, but only one or the other of two required genes for PPAP biosynthesis.
The presence of these clustered genes across Malpighiales suggests that it evolved in a common
ancestor and has since undergone lineage-specific gene loss or duplication. The evolutionary
model of BGC2 is a co-occurring duplication of one region of BGC2 containing one gene of the
cluster, and a duplication of the region of BGCI containing the remaining genes, followed by
genomic rearrangement. These co-occurring duplications occurred after the split between Mesua
and Hypericum, thus suggesting potential convergent evolution within Hypericum of PPAP
function and biosynthesis.

A final example of convergence as it relates to metabolite evolution comes from the
blood-red nectar pigments found in the gecko-pollinated Nesocodon mauritianus
(Campanulaceae) and hummingbird-visited Jaltomata herrerae (Solanaceae). The red coloration
is derived from an alkaloid called nesocodin. Two of the enzymes used in its synthesis and
identified in the nectars of N. mauritianus and J. herrerae (carbonic anhydrases and alcohol
oxidases) have low sequence similarity between the two plant species (~42% and ~21% identity,
respectively). There are also more closely related homologs of the carbonic anhydrases
elsewhere in each others’ genomes, suggesting that each species uses a different copy [70]. In
addition, the alcohol oxidases found in the nectar from each species are not from the same

enzyme family (GMC flavonenzyme oxidoreductase in N. mauritianus and berberine-bridge
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family within the flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN)-containing
dehydrogenase superfamily in J. herrerae). These lines of evidence suggest that the two species

have converged on this phenotype under their own selective pressures.

Tests of genomic evolution related to chemical defense

Some of the processes highlighted above, such as whole genome duplication and gene
family expansion and loss, do not necessarily result in evolution of a trait. For example, a
functional enrichment analysis that suggests a biological activity associated with a gene
expansion [e.g., 42,43] can only serve as hypotheses of gene activity and function. Additional
tests of gene activity and function should be conducted to make further assessments of genomic
evolution of a trait, such as whether a lineage-specific gene family expansion contains a
candidate gene copy known to be involved in trait expression. In the context of trait evolution,
comparative transcriptomics is used to identify copies of genes or gene networks that are
upregulated and their location, and thus identify candidate genes/networks for trait expression
(Fig. 1B). In this same context of trait evolution, comparative metabolomics is used to identify
the location and quantity of metabolites related to a trait of interest, thus corroborating the
hypotheses of candidate genes/networks involved in trait expression (Fig. 1C). Importantly,
mismatches between gene upregulation and metabolite presence or quantity can illuminate an
incorrect hypothesis about which genes or gene families are involved in trait expression.
Enzymatic analysis can test the activity of a protein from a candidate gene to further corroborate
that gene’s involvement in trait expression (Fig. 1D). Finally, selection tests can be conducted on

gene family phylogenies to assess whether positive or purifying selection has contributed to the
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evolution of lineage-specific, local expansions or candidate genes related to the trait of interest
(Fig. 1A(1)).

For example, in Lavandula, expression of terpenoid biosynthesis genes generally
coincides with the presence of terpenoids in the same tissues, revealing candidate genes for
terpenoid biosynthesis [4]. Most gene copies of expanded terpenoid biosynthesis gene families
such as terpenoid synthases, which includes 7PS-b responsible for monoterpene biosynthesis, are
highly expressed in the glandular trichomes where the volatile terpenoids for essential oils are
produced. In addition, genes whose expression was positively correlated with the presence of
linalool, linalyl acetate, and lavandulyl acetate, the primary terpenoids in lavender flowers, were
mostly found in flowers and glandular trichomes. In another example, the expression of La4AT
and quantity of lavendulyl acetate coordinately fluctuated across flower development.

In an example from Nepeta [36], candidate genes responsible for the biosynthesis of 8OG
(GES, G8H, and HGO), the iridoid precursor, are expressed across tissues in Nepeta, but very
lowly expressed in Hyssopus, which aligns with the lack of iridoids in Hyssopus. In addition,
expression levels of NEPS and MLPL (both involved in iridoid biosynthesis) were correlated
with tested enzymatic activity in Nepeta accessions with distinct nepetalactone stereo-
chemotypes, suggesting that specific NEPS and MLPL genes are responsible for creating each of
the nepetalactone stereoisomers. Finally, iridoid evolution in Nepeta is described by an ancestral
duplication in PRISE (progesterone 5B-reductase/iridoid synthase (ISY) family), which had only
minor ISY enzymatic activity, followed by positive selection that formed functioning ISY
enzymes. PRISE and NEPS phylogenetic dating and concurrent timing of positive selection in
1SY and diversification of NEPS suggest that the evolution of their catalytic activity was in

concert.
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In Zanthoxylum, candidate genes involved in GX-50 and sanshool alkaloid biosynthesis
were identified in the husk, given the correlation of the expression of alkaloid biosynthesis genes
and the presence of alkaloids in that tissue [42]. In one example, the husk had the highest GX-50
content and highly expressed members of five GX-50 gene families that belong to a single co-
expression module. In another example, the husk had the highest content of hydroxy-B-sanshool,
which is converted into hydroxy-a-sanshool, the compound known for its numbing property, and
highly expressed 18 copies of BCAD, a gene family involved in sanshool biosynthesis.
Interestingly, these BCADs and one copy of SCPL-AT, another gene family involved in sanshool
biosynthesis, were in the same co-expression module that is closely related to GX-50
biosynthesis, suggesting possible co-expression of the two alkaloid families. Husk-specificity of
alkaloid metabolites and alkaloid biosynthesis gene expression suggests that this tissue played a
role, perhaps via insect interactions, in the evolution of these compounds in Sichuan pepper.

In an example of flavonoid biosynthesis evolution in Scutellaria, tissue-specific
metabolomics and transcriptomics identified the location of metabolites and candidate genes
involved in flavonoid biosynthesis, while misalignment in these data established a hypothesis of
functional divergence between S. baicalensis and S. barbata [43]. Duplication of 4CLL, which
enables biosynthesis of 4’-deoxyflavones, occurred prior to the S. baicalensis and S. barbata
speciation event. One of the copies of the ancestral #CLL duplication is not expressed in S.
baicalensis or S. barbata, suggesting that the duplication enabled the inherited biosynthesis of 4'-
deoxyflavones. In addition, copies of the scutellarein biosynthesis gene, C4H, found early in the
pathway were identified as candidate genes for producing scutellarin, the glycoside of
scutellarein, in the stem, leaf, and flower in both species. Copies of the flavonoid biosynthesis

genes CHS and CYP450 were identified as candidate genes for producing baicalein, norwogonin,
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wogonin, and their glycosides in the roots of both species. Expression of tandemly duplicated
CHS genes specific to S. baicalensis supported the hypothesis that flavonoid biosynthesis in S.
baicalensis is affected by the evolution of tandem arrays. Surprisingly, however, in S. barbata
expression levels of CYPS82D1 and CYPS82D?2 misaligned with the metabolite profile, which
suggested functional divergence of hydroxylation and evolutionary divergence in the flavonoid
pathway between the species. Finally, Ka/Ks values between orthologous gene pairs between the
two species indicates purifying selection, suggesting conservation in flavone biosynthesis in

Scutellaria.

Future considerations

Recent studies have creatively and elegantly pushed the limits of identifying the genomic
fingerprints of plant chemical defense evolution [e.g., 4,5,29,34,36,42-44,57,58,67,70-80].
Multiple mechanisms of genomic evolution, alongside selective pressures from the important
role that these compounds play in primary and ecological functions, work in concert to produce
the evolutionary patterns of plant chemical defense observed. Identifying candidate mechanisms
of genomic evolution is only the first step in developing a chemical defense evolution hypothesis
(Fig. 1A). Recent studies have combined genome, transcriptome, metabolome, and functional
enzymatic data to further corroborate and test hypotheses (Fig. 1).

Perhaps not surprisingly, the interplay of biological and chemical analysis is integral to
fully understanding the biological system of chemical defense (where, how, and when of defense
compounds) and uncovering the evolutionary pathway (where, how, and when of genes, their
regulation, and selective pressures) that led to a lineage’s current system. Namely, methods in

functional genomics, including enzymatic assays and gene knockouts of candidate genes integral
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to plant biosynthesis pathways are required to test hypotheses [e.g., 36,44,70,72]. This next step
of functional analysis has the significant potential to define the relationship between genotype
and phenotype, as well as improve understanding of how chemical defense systems emerge and
evolve (Fig. 1D).

Comparisons between studies can generate hypotheses of shared or unique mechanisms
of genome evolution across plant lineages that contribute to chemical defense evolution [e.g.,
9,81,82]. However, future studies that investigate distantly related species with similar
biochemical profiles [70,83] but in a genomic context [e.g., 36] could draw more robust, direct
comparisons across plants by testing questions of parallel or convergent evolution. For example,
these studies could test whether the same genes or BGCs have been co-opted for biosynthesis
function. In addition, to fully understand plant chemical defense evolution from a genomic
perspective, the role of selection on genome evolution and vice versa needs to be uncovered.
This may require interdisciplinary studies between evolution and ecology whereby the
hypotheses of how genomic evolution has influenced the evolution of metabolite biosynthesis
are tested within an ecological context. For example, sister species that occupy divergent
ecological niches should be compared for differences in patterns of genomic evolution. In a
similar way, recent phylogenetic diversification within a genus, correlated with shifts in
biochemical expression or regulation and shifts in ecological context can also point to the role of
selection in metabolite biosynthesis evolution [e.g., 84] (Fig. 1A(6)). In instances where
polyploid plants can be bred, direct experimentation of the effects of polyploidy on functional
traits and fitness can be done [e.g., 85]. More feasibly, positive selection tests on candidate genes
involved in metabolite biosynthesis have shown whether selective pressures have played a part in

the evolution of metabolite biosynthesis [e.g., 36,43] (Fig. 1A(1)). However, these tests are often
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done in the context of distant relatives. If these tests are carried out in a comparative way
between closely related species occupying divergent niches, this may provide more robust
insight into what ecological factor(s) contribute to an identified selective pressure and perhaps
led to adaptation to biotic or abiotic conditions. This comparative investigation would be
bolstered with evidence of adaptation from ecological common garden studies that compare
fitness under different environmental conditions. These future analyses would enrich
understanding of the reciprocal or cyclical impacts of genome evolution on adaptation and

selection on genome evolution.
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Figure 1. A workflow of investigating secondary metabolite evolution using genomics,
transcriptomics, metabolomics, and gene functional analysis. A. Genomics: Al. Gene Family
Phylogeny: a. Test gene family expansions and/or contractions; b. (with B1 and/or B2) Map DE
genes or networks (these are putative candidate genes); c. Identify potential independent
evolution of putative candidate genes; d. Date the evolution of gene families to test if important
families evolved concurrently; e. Ka/Ks to test for positive selection in branches leading to
candidate genes; f. (with D1) reconstruct ancestral sequences to test chronology and evolution of
enzymatic activity. A2. GWAS: a. Identify candidate loci associated with a polymorphic
phenotype. A3. Ks Plots: a. Identify WGD events; b. Date specific duplications of interest to
either pre- or post-WGD. A4: Linkage Mapping: a. (If find WGD in A3) Identify parental
inheritance of relevant genomic material. A5: Gene Cluster Mining: a. Identify biosynthesis gene
clusters (BGCs); b. (With B1 and/or B2) Confirm putative cis-regulation of BGCs; c. (With A7)
Identify whether BGCs are shared (ancestral/syntenic) or lineage specific. A6: Species
Phylogeny: a. (If find WGD in A3) Map WGD events; b. (If find expansions and/or contractions
in A1) Map change in expansions and/or contractions of gene families. A7: Synteny: a. Identify
shared (syntenic or small-scale and syntenic) vs. lineage specific (only small-scale) duplications.
B: Tissue-Specific Transcriptomics: B1. DE: a. Identify where secondary metabolite
biosynthesis occurs (can combine with B2 and/or C1). B2. DE of WGCNA: a. Identify which
genes are co-expressed; b. Identify where biosynthesis occurs (can combine with B1 and/or B1).
C: Tissue-Specific Metabolomics: C1. Identification of Metabolites: a. Identify where
secondary metabolite biosynthesis occurs (can combine with B1 and/or B2); b. (with B1 and/or
B2) Identify potential functional divergence of genes or gene networks based on mismatches in
metabolite and transcriptome profiles. D: Gene Functional Analysis: D1. Enzymatic Assay: a.
Confirm function of candidate genes or BGCs; b. (with Ale) Confirm function of genes under
selection.
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