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Abstract  24 

Plant trait evolution can be impacted by common mechanisms of genome evolution, including 25 

whole genome and small-scale duplication, rearrangement, and selective pressures. With the 26 

increasing accessibility of genome sequencing for non-model species, comparative studies of 27 

trait evolution among closely related or divergent lineages have supported investigations into 28 

plant chemical defense. Plant defensive compounds include major chemical classes such as 29 

terpenoids, alkaloids, and phenolics, and are used in primary and secondary plant functions. 30 

These include promotion of plant health, facilitation of pollination, defense against pathogens, 31 

and responses to a rapidly changing climate. We discuss mechanisms of genome evolution and 32 

use examples from recent studies to impress a stronger understanding of the link between 33 

genotype and phenotype as it relates to the evolution of plant chemical defense. We conclude 34 

with considerations for how to leverage genomics, transcriptomics, metabolomics, and functional 35 

assays for studying the emergence and evolution of chemical defense systems. 36 

 37 

Abbreviations: Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), 38 

whole genome duplication (WGD). 39 
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Introduction 47 

Plant chemical defense compounds are important for primary and secondary function and 48 

are also known to serve a variety of important roles, including pollinator attraction [1], herbivore 49 

and pathogen defense [2], and response to abiotic stress [3]. Some are thought to have been 50 

maintained due to increased fitness during a historical change in climate [e.g., 4,5]. Once present, 51 

some are believed to have evolved in concert with insects resulting in a diversity of compounds 52 

in plants [6–8]. Certain plant lineages feature certain biochemical classes due to co-evolutionary 53 

arms races with insects (e.g., butterflies and glucosinolates in Brassica plants [6], parsnip 54 

webworm and furanocoumarins in parsnip [8]), however the specific biochemicals used are not 55 

necessarily the same across species within a lineage. The evolutionary and ecological 56 

significance of plant chemical defense compounds necessitates investigation into their evolution. 57 

A stronger understanding of the relationship between genotype and phenotype is required to 58 

address the evolution of these important chemical defense compounds. It is becoming clearer that 59 

establishing how genome evolution impacts the evolution of these chemical defense compounds 60 

is integral to illuminating this relationship. 61 

Foundational to genomic analysis of plant chemical defense evolution is an 62 

understanding of metabolite biosynthesis and characterization of genes underlying these 63 

pathways. Recent genomic studies have leveraged our understanding of plant biosynthetic 64 

pathways to target key gene families for comparative analyses, resulting in robust hypotheses for 65 

how genomic evolution (e.g., gene family expansions and genomic rearrangements) has 66 

influenced chemical defense evolution in certain lineages. For example, studies have revealed 67 

patterns in genomic evolution between lineages and related those patterns to the evolution of 68 

biosynthesis pathways (e.g., identifying lineage-specific, local duplication in an important 69 
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biosynthesis gene family). These hypotheses for how genomic evolution have influenced 70 

chemical defense evolution can (and should) be robustly honed, however, with the addition of 71 

transcriptomic and metabolomic data, as well as functional assays (Fig. 1). More recently, 72 

comparative transcriptomic analyses have been used to identify genes involved in chemical 73 

defense and localize their expression. In a similar way, comparative metabolomics has allowed 74 

for the identification and localization of metabolite profiles. Because such analyses enable 75 

identification of candidate genes, they have the potential to reveal whether genomic evolution 76 

has influenced plant adaptations specifically related to chemical defense. Finally, enzymatic 77 

assays have, perhaps most importantly, been used to assess protein function and help to 78 

corroborate the role of candidate genes or isoforms. 79 

In this review, we discuss common mechanisms of plant genome architecture evolution, 80 

highlight recent studies that advance understanding of the effect of such mechanisms on the 81 

evolution of plant defensive chemicals (e.g., terpenoids, alkaloids, and phenolics), and discuss 82 

relevant methodological approaches. We do not attempt to address the effects of small-scale 83 

genomic mutation, such as allelic divergence within a lineage or post-transcriptional evolution 84 

(e.g., alternative splicing) as they relate to the evolution of plant chemical defense, nor do we 85 

attempt to address genome evolution induced by parasitism. Figure 1 reviews current multi-omic 86 

methods to investigate trait evolution from a genomic evolution perspective and is referenced in 87 

the following discussions. 88 

We highlight at least three major classes of defensive chemicals: terpenoids, which are 89 

found commonly across nearly all plants and considered primary metabolites (e.g., abscisic acid, 90 

gibberellins, brassinosteroids, carotenoids, chlorophyll), though some are thought to be more 91 

specialized for interaction with biotic and abiotic stress (e.g., nepetalactone, menthol, taxol) [9]; 92 
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alkaloids, which have been extensively studied in Solanaceae species [e.g., 10–12] for plant-93 

insect interactions, are common stimulants (e.g., caffeine in coffee, tobacco, opium in poppy, and 94 

cocaine from coca), and whose mechanisms of toxicity are varied, including enzymatic 95 

alterations and inhibition of DNA synthesis and repair, and central nervous system alteration 96 

[13]; and phenolics, which are produced in plants in response to biotic and abiotic stress, are 97 

important in plant development (e.g., pigmentation), defense against pathogens, and defense 98 

against ultraviolet radiation [14]. Uncovering the genomic mechanisms underlying the evolution 99 

of defense compounds in different plant lineages is one step toward understanding the link 100 

between genotype and phenotype as it relates to plant chemical defense and the complex role of 101 

these metabolites in interactions with insects, ecological adaptations, and potential production of 102 

these compounds for human use. 103 

 104 

Genomic architecture and the evolution of plant chemical defense 105 

Whole genome duplication 106 

Ancient whole genome duplications (WGD) occurred at the origin of angiosperms, the core-107 

eudicots, and monocots [15–20]. Polyploids are thought to establish due to increased fitness in 108 

harsh environmental conditions [21]. Although fractionation may occur after WGD, whereby 109 

homeologous genomic regions undergo gene loss and diploidization, syntenic fingerprints of 110 

these ancient duplication events can still be found in the genomes of extant angiosperm lineages 111 

[22–24]. Many plant lineages have also undergone recent WGD via allo- or autopolyploidization 112 

[25]. The post-WGD process of neofunctionalization can enable new gene functions to arise, 113 

sometimes causing new phenotypes [26–28]. Figure 1A(1-4;6-7) depicts some of the genomic 114 

analyses that can be done to investigate the effects of WGD on trait evolution. 115 
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Post-WGD, evolutionary pressures can affect subgenomes differently and lead to 116 

differential roles of subgenomes in the evolution of a trait. For example, in Brassica juncea 117 

(Chinese mustard, Brassicaceae), there are two deletions, one in each of the two subgenomes, 118 

with conserved variation between oil-use and vegetable-use varieties that are associated with 119 

genes involved in abiotic stress response (TGA1 and HSP20) [29]. In this case, mutations in both 120 

subgenomes may have led to differential phenotypes in varieties selected for different features. 121 

In another example, while structural variations are significantly more frequent in B. juncea 122 

subgenome B than in subgenome A, GWAS analysis shows that two loci containing orthologs of 123 

MYB28, a regulatory gene involved in glucosinolate biosynthesis, are associated with higher 124 

glucosinolate content and are both found on subgenome A. This case reveals a potential 125 

differential role of the subgenomes in expression of glucosinolates, which are selected for and 126 

against in vegetable and oil-seed varieties, respectively, but are also important in herbivore and 127 

pathogen defense [30,31]. 128 

Patterns of gene retention following genome multiplication can signify the importance of 129 

multiplication events as they relate to the evolution of a particular phenotype. For example, while 130 

the genus Lavandula (lavender, Lamiaceae) underwent two lineage-specific genome 131 

duplications, genes retained following these duplication events were enriched for molecular 132 

functions directly related to terpenoid biosynthesis, which may have been advantageous for 133 

coping with the changing Mediterranean environment [4,32,33]. Similarly, in Camellia (tea, 134 

Ericaceae), which shares a WGD event with 17 other families in the order Ericales, one, eight, 135 

and four duplicated genes related to caffeine, catechin, and theanine biosynthesis respectively, 136 

were retained post WGD. The duplicated gene copies were up-expressed in various tissues and 137 

under different temperature treatments, suggesting the importance of both copies in biosynthesis 138 
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of these compounds. In rhododendron and persimmon, however, which do not produce caffeine 139 

or theanine, but that share the WGD event, the caffeine-related gene duplication was not retained 140 

in either of the species, only three and one catechin-related gene duplications were retained 141 

respectively, and only one theanine-related gene duplication was retained in rhododendron. [34]. 142 

These genes may perform different functions in rhododendron and persimmon, and differential 143 

retention may have played a role in the evolution of caffeine biosynthesis in tea, which is 144 

important for tea flavor and may play a role in pollinator interactions [35]. 145 

Genome linkage mapping assigns subgenomes to known progenitors of a polyploid, 146 

which can be useful for assessing the evolution of a trait when genetic constituents of each 147 

progenitor are required for the new trait [5]. For example, GWAS analysis identified two 148 

candidate loci responsible for the cyanogenesis phenotype in polyploid Trifolium repens (white 149 

clover, Fabaceae): one corresponding to the known Ac/ac gene cluster that controls the presence 150 

of cyanogenic glucosides, and one corresponding to the known Li/li gene cluster that controls the 151 

presence of their hydrolyzing enzyme, linamarase [5]. The dominant alleles of both loci are 152 

required for the cyanogenesis phenotype because the recessive alleles are deletions of the genes. 153 

Through genetic mapping, the GWAS loci containing Ac/ac and Li/li were found in the 154 

progenitor T. occidentale and T. pallescens subgenomes respectively. In addition, the sequence 155 

of the Ac/ac locus of T. repens shared more similarity with T. occidentale than T. pallescens. 156 

Although the GWAS locus containing Li/li locus was placed in the T. pallescens subgenome, the 157 

Li/li sequence was not found in the T. pallescens genome. The authors suggest that the genotype 158 

of the sequenced individual was li/li and thus missing the locus, or that present-day T. pallescens 159 

has completely lost the Li/li locus.This example illustrates a dual inheritance of the cyanogenic 160 

trait from non-cyanogenic progenitors via allopolyploidy. 161 
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Because the order and clustering of genes required for a certain phenotype can be 162 

retained after WGD, genome duplication events that distinguish lineages can be used to estimate 163 

the relative timing of the development of a phenotype. For example, the evolution of the iridoid 164 

pathway in Nepeta (catnip, Lamiaceae) seems to predate a Nepeta-specific WGD event, based on 165 

syntenic clustering of non-homologous iridoid biosynthesis genes (ISY, NEPS, and MLPL) in N. 166 

cataria (a tetraploid with 2 clusters) and N. mussarii (a diploid with 1 cluster) [36]. This suggests 167 

that iridoids, important for plant defense and multi-species interactions, evolved via a conserved 168 

iridoid biosynthesis pathway in this group [37].  169 

 170 

Local gene duplication and loss 171 

Small-scale duplications, including local or tandem gene duplications, occur frequently within 172 

plant genomes [38–40]. These small-scale duplication events can arise from transposable 173 

elements (TEs), slipped strand mispairing, or unequal crossing over during meiosis, and can 174 

account for gene family expansions within lineages. Local gene loss may occur via TEs that 175 

interrupt a gene or repress expression, slipped strand mispairing that excises DNA, or through 176 

pseudogenization via accumulation of mutations in a gene that result in nonsense mutations or 177 

frameshifts. It is possible that gene loss is more commonly facilitated by fractionation, or DNA 178 

excision, rather than gene-by-gene pseudogenization of formerly functioning genes [41]. The 179 

fate of genes post-small-scale duplication mirror that of genes post-WGD, where processes such 180 

as neofunctionalization can promote new gene function, and thus play an important role in trait 181 

evolution. In addition, a co-regulated tandem array can impact levels of gene expression and 182 

influence trait evolution.  183 
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To investigate the role of small-scale duplications in trait evolution, lineages with or 184 

without a trait can be investigated for gene family expansions or contractions (Fig. 1A(1)). In 185 

addition, whether local duplications are shared or lineage-specific can inform whether the 186 

evolution of a trait is conserved or is evolving in a lineage-specific manner. For example, 187 

lineage-specific evolution in alkaloid biosynthesis seems to have played a major role in 188 

Zanthoxylum (Sichuan pepper, Rutaceae), which may use alkaloids for insect defense [42]. The 189 

Sichuan pepper genome is composed of over 50% transposable elements (TEs) (1.72Gb out of 190 

the reported 2.63Gb assembly length) and 16,796 in-tact long terminal repeats (LTRs) were 191 

identified in Sichuan pepper compared to 371 in the close relative Citrus sinensis. 2,816 protein-192 

coding genes were inserted into gene regions or 2kb flanking regions by long terminal repeats 193 

(LTRs) and the protein-coding genes are enriched for functions such as “defense response”, 194 

“stilbene biosynthetic process”, and “coumarin biosynthetic process”. This suggests that TEs 195 

might play an important role in the expansion of genes used for chemical defense functions in 196 

Sichuan pepper. In addition, key candidate genes for GX-50 biosynthesis (TYDC, 3OHase, PAL, 197 

OMT, and BAHD-AT) and sanshool biosynthesis (BCAD, SCPL-AT, and FAD) are expanded in 198 

the Sichuan pepper genome compared to citrus relatives. Additionally, enriched functions of 199 

Sichuan pepper-specific gene families and gene family expansions suggest the importance of 200 

local duplications on the evolution of secondary metabolite biosynthesis in the genus. For 201 

example, genes from families specific to Zanthoxylum are enriched for KEGG pathways related 202 

to “plant-pathogen interaction” and significantly expanded gene families are enriched for GO 203 

terms including stress resistance related to “defense response” and biosynthetic processes related 204 

to alkaloids, stilbenes, and coumarins.  205 
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In Scutellaria (skullcaps, Lamiaceae), key elements of flavonoid biosynthesis seem to be 206 

conserved within the genus, with some possible lineage-specific evolution [43]. For example, 207 

Scutellaria-specific genes are enriched for domains related to secondary metabolite biosynthesis, 208 

such as cytochrome P450s and O-methyltransferase, perhaps signifying the important role of 209 

secondary metabolite biosynthesis in the genus. In addition, tandem expansions of flavonoid 210 

biosynthesis genes that function early in the pathway occurred after speciation of two Scutellaria 211 

species (PAL and CHS, and 4CL in S. baicalensis and S. barbata respectively) suggesting that 212 

the flavonoid biosynthesis pathway has evolved in a lineage-specific manner in this genus. The 213 

CYP gene family, including CYP82D1-9, which catalyzes the formation of baicalein and 214 

scutellarein, is tandemly duplicated in both species, suggesting conservation of this biosynthesis 215 

pathway. Finally, evolution of flavone biosynthesis is potentially conserved between the two 216 

species, evidenced by a duplication of 4CLL, which enables biosynthesis of 4′-deoxyflavones, 217 

occurring prior to the S. baicalensis and S. barbata speciation event, and a tandem duplication of 218 

a flavone biosynthesis gene FNSII1-FNSII2 found in both species.  219 

 In a final example, Rubus chingii (Fu-pen-zi, Rosaceae) produces abundant hydrolyzable 220 

tannins (HTs), which contribute to biotic and abiotic stress response. In contrast, its relative 221 

Malus x domestica (apple, Rosaceae), does not produce abundant HTs. A collinear tandem 222 

duplication of three genes involved in HT biosynthesis or degradation (CXE, UGT, and SCPL) 223 

were found in R. chingii with 11, eight, and six copies of CXE, UGT, and SCPL, respectively 224 

[44]. The region of this tandem array is found syntenically in the apple genome on four 225 

chromosomes. Interestingly, key CXE family genes (TAs) are lost in the apple genome, which 226 

may have resulted in a lack of HTs, but the low levels of HTs produced in apple may be the 227 

result of the homologous expansion of this tandem array. 228 
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 229 

Genomic rearrangements and transcriptional regulation 230 

In addition to local duplications, genome rearrangements can occur in plants in the form of 231 

chromosomal rearrangements during polyploidization [45] or movement of co-adapted loci into 232 

colocalized gene clusters [46–48]. Metabolic gene clusters are physically clustered genes that 233 

may include one or more operons that act together in metabolite biosynthesis. The formation of 234 

these clusters is hypothesized to be due to selective pressure for coinheritance, where 235 

colocalization reduces the likelihood of loss of important individual genes during recombination 236 

[47,49]. Another hypothesis for the formation of metabolic gene clusters is the efficiency and 237 

likelihood of complete co-expression of genes required for metabolite biosynthesis [47,50]. A 238 

hypothesis for the maintenance of intact metabolic gene clusters is that there is a strong selective 239 

pressure to reduce toxic metabolite intermediates in a biosynthesis pathway that can occur when 240 

a cluster is no longer intact (e.g., disrupted by mutation) [47,51,52]. Because metabolic gene 241 

clusters and neofunctionalization of tandem duplications are often co-regulated, genomic 242 

arrangement through synteny or collinearity can influence the evolution of a trait (Fig. 1A(5)) 243 

[53].  244 

For example, consistent with findings in other species [54–56], terpenoid biosynthesis 245 

genes are physically clustered in lavender and some clusters fall into the same co-expression 246 

networks, suggesting coinheritance and co-regulation of terpenoid biosynthesis [4]. This might 247 

promote terpenoid production in the genus, while potentially providing the benefit of less toxic 248 

intermediates [47]. In another example, like other vascular species such as rice and barnyard 249 

grass, Calohypnum plumiforme (bryophyte in Hypnaceae) produces momilactones, which are 250 

diterpenoids used in pathogen defense and allelopathic interactions. A biosynthesis gene cluster 251 
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(BGC) of important genes in momilactone biosynthesis (two cytochrome P450s, one 252 

CpDTC1/HpDTC1 and one “dehydrogenase momilactone A synthase”) was found in 253 

Calohypnum and induced upon stress exposure [57]. When compared with other plant genomes, 254 

this BGC was only found in the rice and barnyard grass, but they were not in syntenic regions. 255 

This study suggests not only the importance of BGCs in momilactone biosynthesis, but also 256 

presents a case of independent evolution of a BGC. 257 

A final example of genomic rearrangement as it relates to chemical defense evolution 258 

comes from the post-WGD fission and fusion events and formation of a benzylisoquinoline 259 

alkaloid BGC of 15 genes in the genus Papaver (poppy, Papaveraceae) [58]. Poppy produces the 260 

benzylisoquinoline alkaloid compounds morphinan (morphine) and noscapine in response to 261 

mechanical damage, and these alkaloids share a biosynthesis pathway that branches to produce 262 

each compound [59]. Papaver somniferum and P. setigerum are sister to P. rhoeas, and the two 263 

species share a WGD and produce relatively higher levels of morphinan and noscapine than P. 264 

rhoeas. A model of chromosomal fission and fusion events post-WGD reveals that the genes 265 

around the chromosomal rearrangement breakpoints are enriched for KEGG pathways related to 266 

isoquinoline and indole alkaloid biosynthesis. This suggests that the shared WGD event and its 267 

subsequent genomic rearrangements may have influenced the co-regulation of genes involved in 268 

chemical defense evolution. The formation of a benzylisoquinoline alkaloid BGC that is shared 269 

between P. somniferum and P. setigerum and not present in P. rhoeas is another example of the 270 

influence of genomic rearrangement on chemical defense evolution. Genes in the BGC exhibit 271 

higher gene expression than their ancestral copies, suggesting that the formation of the BGC has 272 

increased benzylisoquinoline alkaloid expression within poppy. Based on syntenic analysis of 273 

each of the three species, the STORR gene, which is a fusion of two genes and is involved in 274 
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morphinan biosynthesis, was present in the two BGC-containing species as the result of a 275 

translocation event. In the BGC-containing species, the post-donor locus is syntenic with the pre-276 

donor locus but does not contain the two non-adjacent STORR genes, and the post-recipient 277 

locus is syntenic with the pre-recipient locus but contains the fused STORR gene. This is another 278 

example of the influence of post-WGD rearrangement on the evolution of chemical defense. In 279 

addition, the authors suggest that the STORR gene fusion prevents accumulation of toxic 280 

intermediates. The remainder of the genes in the BGC may have been incorporated via non-281 

tandem small-scale duplication based on the lack of synteny or co-localization of the genes and 282 

their original copies. However, the authors caution this interpretation, citing the possibility of 283 

tandem duplication with subsequent deletion. This evolutionary analysis and additional tests of 284 

gene expression and gene regulation reveal that overall, the evolution of this BGC was critical to 285 

the evolution benzylisoquinoline alkaloid biosynthesis in poppy. 286 

 287 

Co-option and independent evolution 288 

When genes with a pre-existing function are recruited for a new function, this is known as co-289 

option. Gene duplications, whether via WGD or small-scale duplications, are thought to facilitate 290 

co-option [60,61]. Through this process, similarly to neofunctionalization as described above, 291 

newly duplicated gene copies can be released from selection pressure, allowing for the fixation 292 

of mutations that lead to the emergence of modified or new biological pathways or traits [62,63]. 293 

An important evolutionary pattern is one in which modified or new phenotypes evolve 294 

independently in distant lineages. While the terms parallel and convergent evolution remain 295 

contentious, a developmental biology understanding is that they represent phenotypes that evolve 296 
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via the same or different genetic and regulatory pathways, respectively [64–66]. The genomic 297 

mechanism of convergence via co-option shapes the patterns of trait evolution found in plants. 298 

An example of co-option as it relates to chemical defense evolution comes from another 299 

Trifolium repens example. Its progenitor, T. occidentale, has the Ac/ac locus, which controls 300 

presence of cyanogenic glucosides, but lacks the Li/li locus, which controls the presence of their 301 

hydrolyzing enzyme, linamarase [5]. This suggests that T. occidentale uses cyanogenic 302 

glucosides for other metabolic functions and perhaps the Ac/ac locus and cyanogenic glucosides 303 

were co-opted in for chemical defense in the presence of the Li/li locus in T. repens. 304 

An example of convergence as it relates to chemical defense evolution comes from 305 

Hypericum perforatum (St. John’s Wort, Hypericaceae) in the biosynthesis of hyperforin, a 306 

polycyclic polyprenylated acylphloroglucinol (PPAP) that has thus far been identified only in 307 

this genus, is likely used for plant defense, and has antidepressant activity [67–69]. Two BGCs 308 

identified in H. perforatum contain copies of genes confirmed to be involved in biosynthesis of 309 

the hyperforin precursor phloroisobutyrophenon (PIBP) [67]. The two BGCs have different 310 

expression and localization profiles and might be regulated for different functions or contribute 311 

to different combinations of PPAP compounds. Syntenic and substitution rate divergence time 312 

analyses revealed that BGC1 and BGC2 evolved via different duplications and genomic 313 

rearrangements, and that while BGC1 is likely shared across the Hypericum order Malpighiales, 314 

the formation of BGC2 is more recent and is likely only shared by a few species of Hypericum. 315 

This points to potential independent evolution of PPAP biosynthesis within Malpighiales given 316 

the lineage-specific pathway found in Hypericum. Specifically, the evolutionary model of BGC1 317 

is either a shared origin of a two-gene cluster between the Hypericum order Malpighiales and the 318 

Arabidopsis order Brassicales or independent evolution of the two-gene cluster in these orders. 319 
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This is followed by recruitment of two additional genes in the common ancestor of Malpighiales. 320 

An enzymatically active syntenic homolog of BGC1 in Mesua ferrea (ironwood, 321 

Calophyllaceae), a Malpighiales relative that also produces PPAPs, points to this recruitment in 322 

the common ancestor of Malpighiales. Additional evidence for this timing is the syntenic 323 

homologs of BGC1 in non-PPAP producing Malpighiales relatives that contain combinations of 324 

the same genes in BGC1, but only one or the other of two required genes for PPAP biosynthesis. 325 

The presence of these clustered genes across Malpighiales suggests that it evolved in a common 326 

ancestor and has since undergone lineage-specific gene loss or duplication. The evolutionary 327 

model of BGC2 is a co-occurring duplication of one region of BGC2 containing one gene of the 328 

cluster, and a duplication of the region of BGC1 containing the remaining genes, followed by 329 

genomic rearrangement. These co-occurring duplications occurred after the split between Mesua 330 

and Hypericum, thus suggesting potential convergent evolution within Hypericum of PPAP 331 

function and biosynthesis. 332 

A final example of convergence as it relates to metabolite evolution comes from the 333 

blood-red nectar pigments found in the gecko-pollinated Nesocodon mauritianus 334 

(Campanulaceae) and hummingbird-visited Jaltomata herrerae (Solanaceae). The red coloration 335 

is derived from an alkaloid called nesocodin. Two of the enzymes used in its synthesis and 336 

identified in the nectars of N. mauritianus and J. herrerae (carbonic anhydrases and alcohol 337 

oxidases) have low sequence similarity between the two plant species (~42% and ~21% identity, 338 

respectively). There are also more closely related homologs of the carbonic anhydrases 339 

elsewhere in each others’ genomes, suggesting that each species uses a different copy [70]. In 340 

addition, the alcohol oxidases found in the nectar from each species are not from the same 341 

enzyme family (GMC flavonenzyme oxidoreductase in N. mauritianus and berberine-bridge 342 
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family within the flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN)-containing 343 

dehydrogenase superfamily in J. herrerae). These lines of evidence suggest that the two species 344 

have converged on this phenotype under their own selective pressures. 345 

 346 

Tests of genomic evolution related to chemical defense 347 

 Some of the processes highlighted above, such as whole genome duplication and gene 348 

family expansion and loss, do not necessarily result in evolution of a trait. For example, a 349 

functional enrichment analysis that suggests a biological activity associated with a gene 350 

expansion [e.g., 42,43] can only serve as hypotheses of gene activity and function. Additional 351 

tests of gene activity and function should be conducted to make further assessments of genomic 352 

evolution of a trait, such as whether a lineage-specific gene family expansion contains a 353 

candidate gene copy known to be involved in trait expression. In the context of trait evolution, 354 

comparative transcriptomics is used to identify copies of genes or gene networks that are 355 

upregulated and their location, and thus identify candidate genes/networks for trait expression 356 

(Fig. 1B). In this same context of trait evolution, comparative metabolomics is used to identify 357 

the location and quantity of metabolites related to a trait of interest, thus corroborating the 358 

hypotheses of candidate genes/networks involved in trait expression (Fig. 1C). Importantly, 359 

mismatches between gene upregulation and metabolite presence or quantity can illuminate an 360 

incorrect hypothesis about which genes or gene families are involved in trait expression. 361 

Enzymatic analysis can test the activity of a protein from a candidate gene to further corroborate 362 

that gene’s involvement in trait expression (Fig. 1D). Finally, selection tests can be conducted on 363 

gene family phylogenies to assess whether positive or purifying selection has contributed to the 364 
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evolution of lineage-specific, local expansions or candidate genes related to the trait of interest 365 

(Fig. 1A(1)). 366 

For example, in Lavandula, expression of terpenoid biosynthesis genes generally 367 

coincides with the presence of terpenoids in the same tissues, revealing candidate genes for 368 

terpenoid biosynthesis [4]. Most gene copies of expanded terpenoid biosynthesis gene families 369 

such as terpenoid synthases, which includes TPS-b responsible for monoterpene biosynthesis, are 370 

highly expressed in the glandular trichomes where the volatile terpenoids for essential oils are 371 

produced. In addition, genes whose expression was positively correlated with the presence of 372 

linalool, linalyl acetate, and lavandulyl acetate, the primary terpenoids in lavender flowers, were 373 

mostly found in flowers and glandular trichomes. In another example, the expression of LaAAT 374 

and quantity of lavendulyl acetate coordinately fluctuated across flower development.  375 

In an example from Nepeta [36], candidate genes responsible for the biosynthesis of 8OG 376 

(GES, G8H, and HGO), the iridoid precursor, are expressed across tissues in Nepeta, but very 377 

lowly expressed in Hyssopus, which aligns with the lack of iridoids in Hyssopus. In addition, 378 

expression levels of NEPS and MLPL (both involved in iridoid biosynthesis) were correlated 379 

with tested enzymatic activity in Nepeta accessions with distinct nepetalactone stereo-380 

chemotypes, suggesting that specific NEPS and MLPL genes are responsible for creating each of 381 

the nepetalactone stereoisomers. Finally, iridoid evolution in Nepeta is described by an ancestral 382 

duplication in PRISE (progesterone 5β-reductase/iridoid synthase (ISY) family), which had only 383 

minor ISY enzymatic activity, followed by positive selection that formed functioning ISY 384 

enzymes. PRISE and NEPS phylogenetic dating and concurrent timing of positive selection in 385 

ISY and diversification of NEPS suggest that the evolution of their catalytic activity was in 386 

concert.  387 
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In Zanthoxylum, candidate genes involved in GX-50 and sanshool alkaloid biosynthesis 388 

were identified in the husk, given the correlation of the expression of alkaloid biosynthesis genes 389 

and the presence of alkaloids in that tissue [42]. In one example, the husk had the highest GX-50 390 

content and highly expressed members of five GX-50 gene families that belong to a single co-391 

expression module. In another example, the husk had the highest content of hydroxy-β-sanshool, 392 

which is converted into hydroxy-α-sanshool, the compound known for its numbing property, and 393 

highly expressed 18 copies of BCAD, a gene family involved in sanshool biosynthesis. 394 

Interestingly, these BCADs and one copy of SCPL-AT, another gene family involved in sanshool 395 

biosynthesis, were in the same co-expression module that is closely related to GX-50 396 

biosynthesis, suggesting possible co-expression of the two alkaloid families. Husk-specificity of 397 

alkaloid metabolites and alkaloid biosynthesis gene expression suggests that this tissue played a 398 

role, perhaps via insect interactions, in the evolution of these compounds in Sichuan pepper. 399 

In an example of flavonoid biosynthesis evolution in Scutellaria, tissue-specific 400 

metabolomics and transcriptomics identified the location of metabolites and candidate genes 401 

involved in flavonoid biosynthesis, while misalignment in these data established a hypothesis of 402 

functional divergence between S. baicalensis and S. barbata [43]. Duplication of 4CLL, which 403 

enables biosynthesis of 4′-deoxyflavones, occurred prior to the S. baicalensis and S. barbata 404 

speciation event. One of the copies of the ancestral 4CLL duplication is not expressed in S. 405 

baicalensis or S. barbata, suggesting that the duplication enabled the inherited biosynthesis of 4′-406 

deoxyflavones. In addition, copies of the scutellarein biosynthesis gene, C4H, found early in the 407 

pathway were identified as candidate genes for producing scutellarin, the glycoside of 408 

scutellarein, in the stem, leaf, and flower in both species. Copies of the flavonoid biosynthesis 409 

genes CHS and CYP450 were identified as candidate genes for producing baicalein, norwogonin, 410 
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wogonin, and their glycosides in the roots of both species. Expression of tandemly duplicated 411 

CHS genes specific to S. baicalensis supported the hypothesis that flavonoid biosynthesis in S. 412 

baicalensis is affected by the evolution of tandem arrays. Surprisingly, however, in S. barbata 413 

expression levels of CYP82D1 and CYP82D2 misaligned with the metabolite profile, which 414 

suggested functional divergence of hydroxylation and evolutionary divergence in the flavonoid 415 

pathway between the species. Finally, Ka/Ks values between orthologous gene pairs between the 416 

two species indicates purifying selection, suggesting conservation in flavone biosynthesis in 417 

Scutellaria. 418 

 419 

Future considerations 420 

Recent studies have creatively and elegantly pushed the limits of identifying the genomic 421 

fingerprints of plant chemical defense evolution [e.g., 4,5,29,34,36,42–44,57,58,67,70–80]. 422 

Multiple mechanisms of genomic evolution, alongside selective pressures from the important 423 

role that these compounds play in primary and ecological functions, work in concert to produce 424 

the evolutionary patterns of plant chemical defense observed. Identifying candidate mechanisms 425 

of genomic evolution is only the first step in developing a chemical defense evolution hypothesis 426 

(Fig. 1A). Recent studies have combined genome, transcriptome, metabolome, and functional 427 

enzymatic data to further corroborate and test hypotheses (Fig. 1).  428 

Perhaps not surprisingly, the interplay of biological and chemical analysis is integral to 429 

fully understanding the biological system of chemical defense (where, how, and when of defense 430 

compounds) and uncovering the evolutionary pathway (where, how, and when of genes, their 431 

regulation, and selective pressures) that led to a lineage’s current system. Namely, methods in 432 

functional genomics, including enzymatic assays and gene knockouts of candidate genes integral 433 
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to plant biosynthesis pathways are required to test hypotheses [e.g., 36,44,70,72]. This next step 434 

of functional analysis has the significant potential to define the relationship between genotype 435 

and phenotype, as well as improve understanding of how chemical defense systems emerge and 436 

evolve (Fig. 1D). 437 

Comparisons between studies can generate hypotheses of shared or unique mechanisms 438 

of genome evolution across plant lineages that contribute to chemical defense evolution [e.g., 439 

9,81,82]. However, future studies that investigate distantly related species with similar 440 

biochemical profiles [70,83] but in a genomic context [e.g., 36] could draw more robust, direct 441 

comparisons across plants by testing questions of parallel or convergent evolution. For example, 442 

these studies could test whether the same genes or BGCs have been co-opted for biosynthesis 443 

function. In addition, to fully understand plant chemical defense evolution from a genomic 444 

perspective, the role of selection on genome evolution and vice versa needs to be uncovered. 445 

This may require interdisciplinary studies between evolution and ecology whereby the 446 

hypotheses of how genomic evolution has influenced the evolution of metabolite biosynthesis 447 

are tested within an ecological context. For example, sister species that occupy divergent 448 

ecological niches should be compared for differences in patterns of genomic evolution. In a 449 

similar way, recent phylogenetic diversification within a genus, correlated with shifts in 450 

biochemical expression or regulation and shifts in ecological context can also point to the role of 451 

selection in metabolite biosynthesis evolution [e.g., 84] (Fig. 1A(6)). In instances where 452 

polyploid plants can be bred, direct experimentation of the effects of polyploidy on functional 453 

traits and fitness can be done [e.g., 85]. More feasibly, positive selection tests on candidate genes 454 

involved in metabolite biosynthesis have shown whether selective pressures have played a part in 455 

the evolution of metabolite biosynthesis [e.g., 36,43] (Fig. 1A(1)). However, these tests are often 456 
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done in the context of distant relatives. If these tests are carried out in a comparative way 457 

between closely related species occupying divergent niches, this may provide more robust 458 

insight into what ecological factor(s) contribute to an identified selective pressure and perhaps 459 

led to adaptation to biotic or abiotic conditions. This comparative investigation would be 460 

bolstered with evidence of adaptation from ecological common garden studies that compare 461 

fitness under different environmental conditions. These future analyses would enrich 462 

understanding of the reciprocal or cyclical impacts of genome evolution on adaptation and 463 

selection on genome evolution.  464 
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 478 

Figure 1. A workflow of investigating secondary metabolite evolution using genomics, 479 
transcriptomics, metabolomics, and gene functional analysis. A. Genomics: A1. Gene Family 480 
Phylogeny: a. Test gene family expansions and/or contractions; b. (with B1 and/or B2) Map DE 481 
genes or networks (these are putative candidate genes); c. Identify potential independent 482 
evolution of putative candidate genes; d. Date the evolution of gene families to test if important 483 
families evolved concurrently; e. Ka/Ks to test for positive selection in branches leading to 484 
candidate genes; f. (with D1) reconstruct ancestral sequences to test chronology and evolution of 485 
enzymatic activity. A2. GWAS: a. Identify candidate loci associated with a polymorphic 486 
phenotype. A3. Ks Plots: a. Identify WGD events; b. Date specific duplications of interest to 487 
either pre- or post-WGD. A4: Linkage Mapping: a. (If find WGD in A3) Identify parental 488 
inheritance of relevant genomic material. A5: Gene Cluster Mining: a. Identify biosynthesis gene 489 
clusters (BGCs); b. (With B1 and/or B2) Confirm putative cis-regulation of BGCs; c. (With A7) 490 
Identify whether BGCs are shared (ancestral/syntenic) or lineage specific. A6: Species 491 
Phylogeny: a. (If find WGD in A3) Map WGD events; b. (If find expansions and/or contractions 492 
in A1) Map change in expansions and/or contractions of gene families. A7: Synteny: a. Identify 493 
shared (syntenic or small-scale and syntenic) vs. lineage specific (only small-scale) duplications. 494 
B: Tissue-Specific Transcriptomics: B1. DE: a. Identify where secondary metabolite 495 
biosynthesis occurs (can combine with B2 and/or C1). B2. DE of WGCNA: a. Identify which 496 
genes are co-expressed; b. Identify where biosynthesis occurs (can combine with B1 and/or B1). 497 
C: Tissue-Specific Metabolomics: C1. Identification of Metabolites: a. Identify where 498 
secondary metabolite biosynthesis occurs (can combine with B1 and/or B2); b. (with B1 and/or 499 
B2) Identify potential functional divergence of genes or gene networks based on mismatches in 500 
metabolite and transcriptome profiles. D: Gene Functional Analysis: D1. Enzymatic Assay: a. 501 
Confirm function of candidate genes or BGCs; b. (with A1e) Confirm function of genes under 502 
selection. 503 
 504 
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